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Abstract. A meromorphic quadratic differential on a punctured Riemann surface induces hor-
izontal and vertical measured foliations with pole-singularities. In a neighborhood of a pole
such a foliation comprises foliated strips and half-planes, and its leaf-space determines a metric
graph. We introduce the notion of an asymptotic direction at each pole, and show that for a punc-
tured surface equipped with a choice of such asymptotic data, any compatible pair of measured
foliations uniquely determines a complex structure and a meromorphic quadratic differential
realizing that pair. This proves the analogue of a theorem of Gardiner-Masur, for meromor-
phic quadratic differentials. We also prove an analogue of the Hubbard-Masur theorem, namely,
for a fixed punctured Riemann surface there exists a meromorphic quadratic differential with
any prescribed horizontal foliation, and such a differential is unique provided we prescribe the
singular-flat geometry at the poles.

1. Introduction

A holomorphic quadratic differential on a Riemann surface has associated coordinate charts
with transition maps that are half-translations (z 7→ ±z+c). This induces a singular-flat structure
on the surface, namely, a flat metric with conical singularities, together with a pair (horizontal
and vertical) of measured foliations. These structures have been useful in Teichmüller theory,
and the study of the mapping class group of a surface (see [FLP12]). The correspondence be-
tween these analytical objects (the differentials) and their induced geometric structures is well-
understood for a closed surface. In particular, the work of Hubbard-Masur in [HM79] proved
that for a fixed compact Riemann surface X of genus g ≥ 2, assigning the induced horizontal (or
vertical) foliation to a holomorphic quadratic differential defines a homeomorphism between
the space Q(X), and the space of measured foliations MF g. Moreover, in [GM91] Gardiner-
Masur proved that the pair of horizontal and vertical foliations uniquely determines the complex
structure and holomorphic quadratic differential inducing those foliations (see Theorem 3.1 in
that paper). The main result in this article is the analogue of the Gardiner-Masur theorem for
surfaces with punctures.

The analogue of the Hubbard-Masur theorem has been extended to the case of meromorphic
quadratic differentials on a punctured surface S of negative Euler characteristic, by the work in
[GW19] (that deals with higher order poles at the punctures) and [GW17] (that deals with poles
of order two). It is well-known that poles of order one (i.e. simple poles) can be reduced to the
classical theory (i.e. the holomorphic case) by taking a branched double cover; we therefore
consider poles of order greater than one throughout. In the work of Gupta-Wolf, the behaviour
of the measured foliations at a pole-singularity was analyzed in terms of the “principal part”

1

ar
X

iv
:1

80
3.

09
19

8v
3 

 [
m

at
h.

G
T

] 
 2

3 
Ju

n 
20

20



2 KEALEY DIAS, SUBHOJOY GUPTA, AND MARIA TRNKOVA

of the differential. This paper develops a more constructive approach in terms of various cut-
and-paste operations; as an application we provide an alternative generalization of the Hubbard-
Masur theorem in terms of the singular-flat geometry at the poles.

Sphere with ≤ 2 punctures. We shall first focus on the case when S is the sphere with at most
two punctures, that is, S = C or C∗. As a special case of the classical Three-Pole theorem
(see [Jen72]), the trajectory structure of a meromorphic quadratic differential on S comprises
foliated strips and half-planes. Thus, the induced measured foliations can be described in terms
of their leaf-spaces, that are metric graphs on the punctured sphere. These metric graphs have
(n− 2) infinite-length edges incident on any puncture of order n ≥ 3, and a loop or infinite edge
for each pole of order 2 (see §2.3 for details).

The case that S = C was dealt with in [AW06]; in this case the holomorphic quadratic
differential necessarily has a pole of order n ≥ 4 at ∞, and has the form p(z)dz2 where p is
a polynomial of degree n − 4. By a conformal change of coordinates, it can be arranged that
the polynomial is monic, namely, that the leading coefficient is 1, and centered, namely, that
the zeroes of the polynomial have vanishing mean. The leaf-spaces of the induced measured
foliations are then planar trees, and the result for this case can be summarized as follows (see
§3 for details):

Theorem (Au-Wan, [AW06]). The space MF 0(n) of the measured foliations on CP1 with a
single pole-singularity of order n > 4 at ∞ admits a bijective correspondence with the space
T (n − 2) of planar metric trees with (n − 2) labelled infinite rays incident at∞, andMF 0(n) �
T (n − 2) � Rn−5.

Moreover, let Q0(n) � Cn−5 be the space of monic and centered polynomial quadratic differ-
entials of degree n − 4. Then the map

Φ1 : Q0(n)→MF 0(n) ×MF 0(n)

that assigns to a polynomial quadratic differential its associated horizontal and vertical folia-
tions, is a homeomorphism.

Remark. The space of measured foliations MF 0(n) decomposes into regions corresponding
to the different combinatorial types of planar trees with labelled ends, and there is exactly a
Catalan number of them. This is closely related to the classification of the trajectory-structure
for polynomial vector fields on C (see [BD10], [Dia13], [DES] and the references therein). One
of the differences is that a foliation induced by a quadratic differential is typically not orientable.

For S = C∗, let n,m ≥ 2 denote the orders of poles at 0 and ∞ respectively. A meromorphic
quadratic differential on C∗ with poles of these prescribed orders has the form

(1) q =
p(z)
zn dz2

where p is a polynomial of degree n + m − 4 such that p(0) , 0.
As we shall see in §2.1, the argument of the leading order coefficient at the poles deter-

mines the asymptotic directions of the induced foliations at the poles. At a pole of order two,
this asymptotic direction is the “slope” of the leaves when lifted to the universal cover H of a
neighborhood of the pole. At each higher order pole, the asymptotic direction of a single hori-
zontal leaf determines the complete set of asymptotic directions of horizontal as well as vertical
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leaves. If we prescribe this asymptotic data, the remaining coefficients of p(z) and the modu-
lus of the leading order term at each pole, parametrize the space of such quadratic differentials
Q0(n,m) � R × Cn+m−5 × R provided n + m > 4.

Our first result is:

Theorem 1.1. Let n,m ≥ 2 such that n,m are not both equal to 2. LetMF 0(n,m) be the space
of measured foliations on CP1 with a pole-singularity of order n at 0 and of order m at∞, with
prescribed asymptotic data at the poles. Let

Φ2 : Q0(n,m)→MF 0(n,m) ×MF 0(n,m)

be the map that assigns to a quadratic differential with prescribed asymptotic data, its induced
horizontal and vertical measured foliations. Then Φ2 defines a homeomorphism to the subspace
comprising pairs of foliations that

• do not both have transverse measure zero around the punctures, and
• in case that either n or m equals two, and both foliations have positive transverse mea-

sures around the punctures, then the two transverse measures are compatible with the
prescribed asymptotic direction at the pole of order two (see Definition 2.11).

The key part in the proof of Theorem 1.1 is defining an inverse map to Φ2 (see §4.2). This
uses a decomposition of the measured foliations on C∗ into “model foliations” on neighbor-
hoods of the two punctures, and the remaining annulus. The desired meromorphic quadratic
differential is then constructed by assembling the singular-flat surfaces that realize the corre-
sponding pairs of foliations on each of these subsurfaces. On a punctured disk, realizing such
a pair of model foliations crucially uses the work of Au-Wan from [AW06]. The special case
when n = m = 2 is discussed in §4.4.

Surface of negative Euler characteristic. Now consider the case when S is an oriented sur-
face of genus g and k labelled punctures, such that the Euler characteristic 2 − 2g − k < 0. Let
n = (n1, n2, . . . , nk) be a k-tuple of integers, each greater than one. Let MF g(n) be the space
of measured foliations with a pole-singularity of order ni at the i-th puncture, and with pre-
scribed asymptotic directions at the poles. Combining the results in [GW17] and [GW19], we
parametrize this space in §2.2 (see Proposition 2.5). This work of Gupta-Wolf had also defined
these spaces, but had done so relative to fixing a choice of a “disk neighborhood” of the poles;
the notion of asymptotic data of the foliations at the poles, introduced in this paper, provides a
cleaner definition.

By the work in [BS15], a generic measured foliation in MF g(n) comprises foliated strips
and half-planes, and thus has a leaf-space that can be represented as an embedded metric graph
on the surface, exactly as in the Three-Pole case. There are, however, measured foliations with
more complicated trajectory structure (e.g. dense leaves) whose corresponding leaf-space is de-
scribed as a π1(S )-invariant R-tree in the universal cover of S , with an additional π1(S )-invariant
collection of infinite rays corresponding to the higher-order poles (see §3.3. of [GW19]).

Let Qg(n) be the space of meromorphic quadratic differentials on S , with a pole of order ni
at the i-th puncture. Our main result is:

Theorem 1.2. Let S be an oriented surface of genus g and k punctures such that 2−2g− k < 0.
Let n = (n1, n2, . . . , nk) be a k-tuple of positive integers, each greater than one, and fix a set a of
asymptotic data comprising a tangent direction at each pole.
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Let (H ,V) ∈ MF g(n) × MF g(n) be a compatible pair of transverse measured foliations,
that is,

• H has prescribed asymptotic directions given by a at the poles, andV has the opposite
set
√
−1 · a of asymptotic directions (see Definition 2.10),

• H and V do not simultaneously have transverse measure zero around any puncture,
and
• if ni = 2, and both H and V have positive transverse measure around the i-th punc-

ture, then the two transverse measures are compatible with the prescribed asymptotic
direction at the order two pole (see Definition 2.11).

Then there exists a unique meromorphic quadratic differential in Qg(n) that induces a hori-
zontal foliation equivalent toH and vertical foliation equivalent toV.

The proof of Theorem 1.2 in §5.1 uses a decomposition of the desired pair of measured foli-
ations to model foliations around each puncture (as in the proof of Theorem 1.1) together with a
pair of measured foliations on a surface with boundary. Realizing the latter pair can be reduced
to the case of a closed surface by doubling across the boundary; however, the final assembly
of singular-flat surfaces requires the angle at which either foliation intersects the boundary to
be prescribed. This is achieved in an intermediate step that involves truncating cylindrical ends
that are attached to each boundary component.

The space of meromorphic quadratic differentials Qg(n) forms a vector bundle over the “ap-
pended Teichmüller space” T̂g,k of conformal structures on S up to isotopy fixing a framing of
the tangent-space at the punctures (see Definition 3.3. of [GM]). Here, the space T̂g,k records,
in addition to the 6g− 6 + 2k parameters of the Teichmüller space of S , a real “twist” parameter
at each puncture. Let π : Qg(n) → T̂g,k be the projection map; any fiber π−1(X) comprises
quadratic differentials that are meromorphic with respect to the Riemann surface structure on X
and induces foliations that have asymptotic directions and integer twist parameters around each
pole determined by the corresponding twist parameter on X (c.f. §3.1 of [GM], and see §5.2 for
details.)

Our final result is a generalization of the Hubbard-Masur theorem to the case of meromorphic
quadratic differentials on punctured surfaces. This generalization was first proved in [GW17]
(for order-two poles) and in [GW19] (for higher-order poles) using the theory of harmonic
maps, and their work uses the complex-analytic notion of a “principal part” of a quadratic
differential at each pole, with respect to a choice of a coordinate disk. The following alternative
generalization instead uses the space of “model foliations” Pn in the neighborhood of a pole of
order n (introduced in §2.3).

Theorem 1.3. Let S , n be as in Theorem 1.2. Let X ∈ T̂g,k, and fix a measured foliation
H ∈ MF g(n), and model foliations Fi ∈ Pni for each 1 ≤ i ≤ k. Suppose the asymptotic
directions a and real twist parameters of H at the poles are those determined by the twist
parameters of X, and H restricts to the model foliations FH

i ∈ Pni in a disk Di � D
∗ around

the i-th pole, where each pair (FH
i , Fi) is compatible, exactly as in Theorem 1.2. Then there

is a unique meromorphic quadratic differential q ∈ Qg(n) satisfying π(q) = X, such that the
horizontal foliation of q is equivalent toH , and the vertical foliation of q restricts to the model
foliation Fi at the i-th pole.
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A key step in the proofs of Theorems 1.1 and 1.2 was the fact that a pair of model foliations
in Pn uniquely determines a singular-flat metric on a neighborhood of that pole (see Propo-
sition 4.2). Thus in Theorem 1.3, since H determines the horizontal model foliation at each
pole, prescribing the vertical model foliations is equivalent to prescribing the geometry of the
singular-flat end corresponding to each pole. The strategy of the proof of Theorem 1.3 in §5.2
is to reduce to the case when all poles have order two (and all ends are cylindrical) and use the
main result of [GW17].
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ric structures And Representation varieties” (the GEAR Network). SG is also grateful for the
support by the Danish National Research Foundation centre of Excellence, Centre for Quan-
tum Geometry of Moduli Spaces (QGM), the Department of Science and Technology (DST)
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are grateful to Fred Gardiner, as well as an anonymous referee, whose comments improved a
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2. Preliminaries

2.1. Quadratic differentials and their induced geometry. A holomorphic quadratic differen-
tial q on a Riemann surface X is a holomorphic section of the symmetric square of canonical
bundle K2

X . Locally, such a holomorphic quadratic differential can be expressed as q(z)dz2

where q(z) is a holomorphic function. A holomorphic quadratic differential induces a singular-
flat metric and horizontal and vertical foliations on the underlying Riemann surface that we now
describe. For an account of what follows, see [Str84] or [Gar87]. A key new notion introduced
in this paper is that of an “asymptotic direction” at a pole – see Definition 2.8.

Definition 2.1 (Singular-flat metric). A holomorphic quadratic differential induces a conformal
metric locally of the form |q(z)||dz|2, which is a flat Euclidean metric with cone-type singularities
at the zeroes, where a zero of order n has a cone-angle of (n + 2)π.

Definition 2.2 (Horizontal and vertical foliations). A holomorphic quadratic differential on X =

C or C∗ determines a bilinear form q : TxX ⊗ TxX → C at any point x ∈ X away from the poles.
Away from the zeroes, there is a unique (un-oriented) horizontal direction v where q(v, v) ∈ R+.
Integral curves of this line field on X determine the horizontal foliation on X. Similarly, away
from the zeroes, there is a unique (un-oriented) vertical direction h where q(h, h) ∈ iR+. Integral
curves of this line field on X determine the vertical foliation on C.

Remarks. 1. The terminology arises from the fact that for the quadratic differential dz2 on any
subset of C (equipped with the coordinate z), the horizontal and vertical foliations are exactly
the foliations by horizontal and vertical lines.
2. Conversely, if we start with (possibly non-compact) domains on C whose boundaries com-
prise straight line intervals and identify pairs of such geodesic by half-translations to obtain an
oriented surface, then the resulting surface acquires a Riemann surface structure as well as a
holomorphic quadratic differential. The latter descends from the standard differential dz2 on the
domains, since dz2 is invariant under half-translations. The condition that the boundary edges
are identified by half-translations is equivalent to the requirement that the identification is by a
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Figure 1. The horizontal foliation for zdz2 has a 3-prong singularity at the
origin (left), and a pole-singularity of order 5 at infinity (right). The red arrow
shows a choice of an asymptotic direction at the pole.

(Euclidean) isometry and the horizontal foliation of the standard differential dz2 intersects any
pair of boundary edges being identified at the same angle.

Definition 2.3 (Prong-singularities and natural coordinates). At the zero of order k ≥ 1 of a
quadratic differential q, the horizontal (and vertical) foliation has a (k + 2)-prong singularity.
That is, in a neighborhood of the zero, the horizontal foliation is the pullback of the horizontal
foliation on C by the map z 7→ ξ = zk/2+1 (which is a branched cover, branched at the zero of
the target ξ-plane). Here, ξ is called the natural coordinate for the quadratic differential, since
q = dξ2 (up to a constant multiplicative factor).

Definition 2.4 (Pole-singularities of higher order). At a pole of order n ≥ 2, the foliation in-
duced by q has a pole-singularity of order n. For n > 2, the induced singular-flat geometry
comprises (n − 2) foliated Euclidean half-planes surrounding the pole in cyclic order; the hor-
izontal leaves are asymptotic to (n − 2) directions at the pole, and the same for vertical leaves.
See Figure 1, and §6 of [Str84] for details. Indeed, if the leading order term for q is a2

zn in some
local coordinate z around the pole, for some a ∈ C∗ with Arg(a) = θ, then the horizontal leaves
are asymptotic to the directions at angles θ + j · 2π

n−2 where 0 ≤ j < n − 2 and the vertical leaves
are asymptotic to the directions θ + ( j + 1

2 ) · 2π
n−2 .

Definition 2.5 (Pole-singularity of order 2). Around a pole of order two, the induced foliation
looks either like a foliation by concentric circles, or leaves spiralling to the pole. That is, one
can choose a local coordinate disk U � D∗ around the pole such that q = −a2

z2 dz2 for some
±a ∈ C∗, called the residue at the pole, which is in fact coordinate-indpendent. The case of
concentric circles then arises for the horizontal foliation when a2 ∈ R+, and for the vertical
foliation when a2 ∈ R−. In either case, in the singular-flat metric induced by q, a neighborhood
of the pole is isometric to a semi-infinite Euclidean cylinder. (See Chapter III §7.2 of [Str84],
and §2.2 of [GW17].)
We also note that in the universal cover p : H → D∗ given by w 7→ z = e2πiw, q pulls back to
the quadratic differential a2

4π2 dz2, and the induced foliation on H is by straight lines at an angle
θ = −Arg(a). (See Figure 2.) This will be the definition of the asymptotic direction in this case
(see Definition 2.8).
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Figure 2. The angle θ of the leaves in H determines the asymptotic direction
of the foliation at a pole-singularity of order two in D∗ � H/Z.

Remark. In a neighborhood of a pole of order 1, also called a simple pole, this foliation looks
like a “fold”, since it is the pullback of the horizontal foliation by the map z 7→ ξ =

√
z. As

alluded to in the Introduction, this implies that the pole-singularity becomes a regular point on
the double cover branched at the simple pole.

Definition 2.6 (Transverse measure). The horizontal (resp. vertical) foliation induced by a
holomorphic quadratic differential is equipped with a transverse measure, that is, any arc trans-
verse to the foliation acquires a measure that is invariant under transverse homotopy of the arc.
Namely, the transverse measure of such an arc γ transverse to the horizontal foliation is

τh(γ) = |

∫
γ

=(
√

q)(z)dz|

assuming γ is contained in a coordinate chart, and similarly the transverse measure τv(γ) of an
arc γ transverse to the vertical foliation is given by the modulus of the integral of the real part
<(
√

q)(z). In general one adds such distances along a cover of the arc comprising of coordinate
charts; this is well-defined as the above integrals are preserved (up to sign) under change of
coordinates. Given a simple closed curve γ that is homotopically non-trivial, we define the
transverse measure of the homotopy class [γ] to be the infimum of the transverse measures of
curves homotopic to γ.

These foliations equipped with a transverse measure induced by a holomorphic quadratic
differential are examples of a measured foliation on a smooth surface, that is defined purely as
a topological object as follows:
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Definition 2.7 (Measured foliations). A measured foliation on a (possibly punctured) smooth
surface S is a 1-dimensional foliation that is smooth except finitely many prong-singularities
(see Definition 2.3), equipped with a transverse measure. We shall define two such measured
foliations to be equivalent if they differ by an isotopy and Whitehead-moves. If the surface has
punctures, then the isotopy is relative to the punctures, in the sense that a choice of framing of
the tangent space at the pole (given by a tangent direction v and an orthogonal vector

√
−1 ·v) is

kept fixed by the isotopy. Equivalently, if we consider a real oriented blow-up of each puncture
to a boundary circle to obtain a surface-with-boundary, then the isotopy is required to fix each
boundary component pointwise.

Remarks. 1. For a closed surface, it can be shown that two measured foliations are equivalent if
and only if the respective transverse measures of homotopy classes of all simple closed curves
are equal. See [FLP12] for a comprehensive account of this.
2. As mentioned in the Introduction, for a closed Riemann surface X, [HM79] showed that any
such equivalence class of a measured foliation (on the underlying smooth surface) is in fact the
horizontal (or vertical) foliation of a unique holomorphic quadratic differential.

The following fact about the global trajectory-structure is well-known (see [Jen58] or [Str84]):

Proposition 2.1. Let F be a measured foliation on a compact surface S with finitely many pole-
singularities of order greater than one at the punctures. Then the surface can be decomposed
into finitely many regions, such that the restriction of F to any region yields one of the following:

(1) a foliated half-plane, foliated by leaves parallel to the boundary.
(2) a foliated strip, foliated by leaves parallel to the two boundary components. or
(3) a foliated annulus, with leaves that are closed curves parallel to the two boundary

components. (We shall continue to call this a “ring-domain”.)
(4) a spiral domain in which each leaf is dense.

At the pole-singularities of a measured foliation, we introduce a circle-valued parameter:

Definition 2.8 (Asympotic direction). The asymptotic direction of measured foliation F at a
pole-singularity of order n > 2 is the asymptotic direction θ of a leaf at the pole, where θ can be
thought of as a point on the unit tangent circle at the pole. At a pole-singularity of order n = 2,
the asymptotic direction of F is defined to be the angle θ ∈ [0, π) of the linear foliation on the
universal cover H that descends to a foliation equivalent to F in a punctured-disk neighborhood
of the pole (c.f. Definition 2.5). Note that in the case that θ = 0 the foliation F comprises closed
leaves (concentric circles) around the pole; in this case the transverse measure around the pole
is necessarily zero.

2.2. Compatible pairs. The horizontal and vertical foliations induced by a meromorphic qua-
dratic differential are, by construction, transverse to each other away from the prong and pole
singularities. In this section we list some such “compatibility” criteria that are necessary for
a pair of measured foliations to be equivalent to the horizontal and vertical foliations of some
meromorphic quadratic differential.

First, the “transversality” of the two foliations implies the following:

Lemma 2.9. Let H and V be the horizontal and vertical foliations, respectively, of a mero-
morphic quadratic differential on some surface S . For any simple closed curve γ on S that is
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homotopically non-trivial, let τh, τv be the transverse measures of the homotopy class of γ, for
H andV respectively. Then τh, τv cannot both be zero.

Proof. It suffices to show that if the vertical foliation has a ring domain with core curve γ, then
the horizontal foliation cannot have a ring domain with the same core curve.

Suppose both the horizontal and vertical foliations have ring domains, with core curves ho-
motopic to γ. Let γv be a leaf in the vertical ring domain, and γh be a leaf in the horizontal ring
domain. There are two cases:

Case 1: The leaves γv and γh are disjoint:
Since they are homotopic to each other, they bound an annulus A between them. Consider

the restriction F of, say, the horizontal foliation on A. One boundary component of A is a leaf
of F, and the other boundary (which is a vertical leaf) is transverse to F. This implies that F
must have singularities in A; however any prong-singularity has negative index, and since the
Euler characteristic of A is zero, we again have a contradiction to the Poincaré-Hopf theorem.

Case 2: The leaves γv and γh intersect:
By an “innermost disk” argument we can choose two sub-arcs of γv and γh respectively, that

bound a topological disk D. The horizontal foliation is transverse to the part of the boundary
∂D that is vertical; we can assume, after an isotopy, that the leaves intersect the boundary
orthogonally. Then doubling across it, we obtain a foliated disk such that the boundary is a leaf,
and the foliation has only prong-type singularities. This contradicts the Poincaré-Hopf theorem,
exactly as in the proof of the Claim above.

This contradicts our assumption that both the horizontal and vertical foliations have ring
domains with core curve γ; hence, one the transverse measures τh, τv of the homotopy class of
γ is positive. �

We shall apply the above lemma, in particular, for asserting the transverse measures of the
horizontal and vertical foliations around any pole-singularity (considered as a puncture on the
surface) cannot both be zero. At these pole-singularities, the horizontal and vertical foliations
satisfy some additional compatibility conditions, which we now define:

Definition 2.10 (Opposite parameters). Given an asymptotic direction a ∈ S 1 at a pole of order
n > 2 (See Definition 2.8), a direction a′ ∈ S 1 is opposite if it differs from a by an odd multiple
of π/(n− 2). For an asymptotic direction θ at a pole of order two, the opposite is the asymptotic
direction θ + π/2 (modulo π).

Note that the horizontal and vertical foliations induced by a meromorphic quadratic differen-
tial q have opposite asymptotic directions at each pole (see Definition 2.4).

Definition 2.11 (Compatible transverse measures). Let F,G be two measured foliations with
a pole-singularity of order two and asymptotic direction θ ∈ (0, π), such that the transverse
measures τF and τG around the pole are positive. Then these transverse measures are said to be
compatible with the asymptotic direction θ, if the ratio τF/τG = |tan θ|.

Remark. As in the previous definition, the motivation for this definition is that this compati-
bility of transverse measures is necessary if F,G are the horizontal and vertical foliations in-
duced by q = − a2

z2 dz2. Indeed, from our definitions, in that case θ = −Arg(a) (modulo π), and
τF = |a||cos θ| and τG = |a| sin θ.

Finally, we shall say:
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Definition 2.12. Two measured foliations H and V on a punctured surface S with pole-
singularities at the punctures of identical orders, are said to be compatible if

(i) they are transverse to each other away from the prong and pole-singularities,
(ii) the transverse measures around any pole-singularity are not both zero,

(iii) the asymptotic directions at each pole-singularity are opposite, and
(iv) if both have positive transverse measures around a pole-singularity of order two, then

the two transverse measures are compatible with the asymptotic direction, as in Defini-
tion 2.11.

2.3. Space of measured foliations. We can define the following space of measured foliations
(already introduced in the Introduction):

Definition 2.13. For an integer k ≥ 1, and an integer k-tuple n = (n1, n2, . . . , nk) such that each
ni ≥ 2, we defineMF g(n) to be the space of (equivalence classes of) measured foliations on an
oriented surface S of genus g and k labelled points, such that the i-th point is a pole-singularity
of order ni, and the asymptotic direction (see Definition 2.8) at each point is prescribed.

In this section shall describe the parametrization of MF g(n), following the discussions in
[GW17] and [GW19]. The topology onMF g(n) will also be described in the proof of Proposi-
tion 2.5. We shall start with:

Definition 2.14 (Model foliations on D∗). For any pole-singularity of order n > 2, there is
an (open) punctured disk neighborhood U � D∗ that is (a) a ‘sink-neighborhood”, that is, any
leaf entering U continues to the pole, after possibly passing through prong-singularites, and
(b) satisfies the property that no leaf exits U and then enters U again. (See the discussion in
Definition 12 of [GW19].) The measured foliation F|U is then a “model foliation” for that
order n of a pole-singularity. Note that F|U comprises the foliated half-planes and (possibly)
foliated strips (either infinite, from the puncture to itself, or semi-infinite, from the puncture
to ∂U). As before, we consider such foliations up to an equivalence: two model foliations on
U are equivalent if they differ by Whitehead moves, or an isotopy that fixes a framing of the
tangent-space at the puncture (but is allowed to move points on the boundary ∂U).

Recall that the leaf-space G of a measured foliation F on a surface is defined as

G := X/ ∼

where x ∼ y if x, y lie on the same leaf of F, or on leaves that are incident on a common
prong-singularity. The leaf-space of F|U is then a metric graph G with finitely many vertices
and edges, where the finite-length edges of G are the leaf-spaces of the strips, and the (n − 2)
infinite-length rays are the leaf-spaces of the half-planes. See Figure 3. Conversely, given such
a metric graph G, it is easy to construct a model foliation on a punctured disk with leaf-space
G; this is uniquely defined once the asymptotic direction at the puncture is fixed.

For n > 2, let Pn be the space of model foliations on a punctured disk with a pole-singularity
of order n at the puncture, with a prescribed asymptotic direction at the puncture. We can equip
this space with the topology on the space of their leaf-spaces: two metric graphs are close if
they combinatorially equivalent up to Whitehead moves on short edges, and the lengths of the
finite-length edges are close. Following Proposition 17 of [GW19] we have:
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Figure 3. A model foliation in a neighborhood of a pole of order 3 (inside the
circle shown on the left) has a leaf-space that is a metric graph (show on the
right) with one finite length cycle and one infinite ray.

Proposition 2.2. Let n > 2. The space Pn is homeomorphic to Rn−3 ×R≥0 where the first factor
is parametrized by the edge-lengths of the leaf-spaces, the second factor records the transverse
measure of ∂U.

Order two pole. For a pole of order n = 2, there is a punctured disk neighborhood U of the pole
such that the leaf-space of F|U is either an infinite ray (in the case that the transverse measure is
zero), or a circle of circumference equal to the transverse measure around ∂U. The foliation on
U is rotationally symmetric; however we can define the asymptotic direction of the leaves on
the universal cover (see Definition 2.5). Once again, there is a space P2 of such model foliations
on a punctured disk, where we note:

Proposition 2.3. A model foliation on D∗ with a pole singularity of order 2 at the puncture is
uniquely determined by the transverse measure, and the asymptotic direction at the pole.

Proof. Recall from Definition 2.8 that the asymptotic direction at the pole determines the angle
θ ∈ [0, π) of the leaves of the straight-line foliation on the universal cover H. Thus the lift of the
model foliation to the universal cover is specified completely by the asymptotic direction. If the
asymptotic direction is 0, then the transverse measure is necessarily equal to zero, and the lifted
foliation is by horizontal lines, which is the horizontal foliation of the quadratic differential
q̃ = dz2 on H. Otherwise, the lifted foliation is the horizontal foliation of a constant quadratic
differential q̃ = a2dz2 on H, where a ∈ C∗ satisfies Arg(a) = −θ. If the transverse measure
is prescribed to be τ > 0, then from our definitions τ = |a||cos θ|, and hence a is uniquely
determined. Thus, given θ and the transverse measure, the measured foliation in the quotient
D∗ = H/〈z 7→ z + 1〉 is uniquely determined. �

Foliations on a surface with boundary. In §3.1 of [GW19] and §3.4 of [ALPS16], the space
of measured foliations MF g,k on a compact oriented surface of genus g and k ≥ 1 boundary
components, and negative Euler characteristic, was parametrized. In their work the foliations
were considered up to isotopy that allowed points on the boundary to move, that is, there was
no “twist” parameter associated with the boundary components. They proved (see, Proposition
3.9 of [ALPS16] or Proposition 11 of [GW19]) that:

Proposition 2.4. The space of measured foliationsMF g,k is homeomorphic to R6g−6+3k.
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Here, the topology onMF g,k is such that two measured foliations are close if the transverse
measures of (homotopy classes) of a filling set of arcs or simple closed curves on S are close.
Note that in their parametrization, the transverse measure around a boundary component deter-
mines a real-valued parameter τ (and not a non-negative real parameter); τ < 0 is interpreted
as the foliation having a ring domain adjacent to the boundary (i.e. a cylinder foliated by closed
leaves parallel to boundary) with transverse measure |τ|.

Parametrizing MF g(n). The measured foliations with pole-singularities in MF g(n) have an
additional real-valued twist parameter associated with each pole, since we consider foliations
up to an isotopy that fixes a framing of the tangent space at each such point. Such a framing is
determined by the asymptotic data at the pole and its opposite (see Definitions 2.8 and 2.10).

Combining the cases of foliations on a surface-with-boundary, and on a punctured disk, as
discussed above, we have:

Proposition 2.5. Let S be an oriented surface of negative Euler-characteristic, having genus g
and k ≥ 1 punctures. Let n be a k-tuple of integers greater than one, as in Definition 2.13. Then

the space of measured foliationsMF g(n) is homeomorphic to Rχ where χ = 6g−6+
k∑

i=1
(ni +1).

Proof. Let F be a measured foliation inMF g(n). Deleting the neighborhoods U1,U2, . . . ,Uk
where F restricts to a model foliation, we obtain a measured foliation F0 on the surface-with-
boundary S ′ = S \ (U1 ∪U2 ∪ · · · ∪Uk) that by Proposition 2.4 is parametrized by 6g − 6 + 3k
parameters.

On a punctured disk Ui around the i-th puncture with a pole-singularity of order ni > 2, the
model foliation F|Ui is specified by ni − 3 additional parameters by Proposition 2.2 (since the
transverse measure parameter of ∂Ui has to coincide with that of F0). We have an additional real
twist parameter around each puncture, which measures the gluing of Ui with the corresponding
boundary component of S ′. This is relevant only when the transverse measure around ∂Ui is
positive, since otherwise ∂Ui is a closed leaf of the foliation, and foliations differing by a twist
around it are in fact isotopic.

The data of the twist parameter σi can be thought of as measuring an additional twist as-
sociated with the boundary component ∂Ui on S ′. As usual for Fenchel-Nielsen parameters,
these twist parameters can be measured relative to a collection of reference arcs, each non-
trivial in homotopy, between the boundary components of S ′. Moreover, each twist parameter
can be combined with the transverse measure of that boundary component: namely, following
[ALPS16], the two real parameters of the (non-nonegative) transverse measure τ around the
boundary component and twist parameter σ constitute the parameter space

(2) R[2] = R≥0 × R/ ∼ where (0, σ) ∼ (0,−σ)

that is homeomorphic to R2.
Here, when the transverse measure τ = 0, the absolute value of the σ coordinate equals the

transverse measure across the corresponding ring domain adjacent to the boundary. In particu-
lar, if the twist parameter σ is kept fixed, and the transverse measure τ→ 0, then the foliations
converge to a ring domain of length |σ|. This describes the phenomenon that foliations converge
to one with a ring domain, as we twist more and more, and decrease the transverse measure at
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the appropriate rate so that the foliations converge. Note that one can converge to such a fo-
liation both by positive or negative twists; this results in the identification of the positive and
negative rays as described above.

On a punctured disk Ui with pole order ni = 2, the model foliation F|Ui is uniquely deter-
mined from the prescribed asymptotic direction and the transverse measure of ∂Ui (see Proposi-
tion 2.3). Hence F0 admits a unique extension to Ui, and for such a punctured disk, there are no
other parameters. Note that in the case that the asymptotic direction at the i-th puncture forces
the transverse measure of ∂Ui to be zero, then the (possibly degenerate) ring domain R of F0
adjacent to ∂Ui extends to a ring domain on Ui, and we ignore the transverse measure across R.

Adding the parameters thus obtained, we have χ = 6g − 6 +
k∑

i=1
(ni + 1) real parameters that

specify F uniquely.
Conversely, any such set of χ real parameters can be realized: the parameters determine a

unique measured foliation F0 on S ′ by Proposition 2.4, and on each Ui by Propositions 2.2 (if
ni > 2) and 2.3 (if ni = 2). Thus, it only remains to glue the foliated disk Ui by identifying
the boundary ∂Ui with the i-th boundary component of S ′; here the twist parameter σi of F0
associated with that boundary component plays a role. In the case that the transverse measure of
the i-th boundary component τi > 0, this identification of the two circles is with a twist that, in
the universal cover, corresponds identifying the boundary lines after a translation by a (signed)
distance σi, where the distance is on the line is the induced transverse measure. In the case the
transverse measure of the i-th boundary component τi = 0, the twist parameter σi denotes the
transverse measure across a ring domain Ai; here such a ring domain Ai is inserted in between
the boundary component of S ′ and the foliated disk Ui.

The topology onMF g(n) is defined to make this bijection a homeomorphism: namely, a pair
of foliations (with the same set of asymptotic directions at the poles) are close if

(i) their restriction on neighborhoods of the poles define a pair of model foliations that are
close, in the corresponding space Pn,

(ii) their restriction to the complement of these neighborhoods determines is pair of folia-
tions that is close inMF g,k, and

(iii) the twist parameters that determines the gluing of each neighborhood in (i) with the
complementary subsurface in (ii) are close.

�

Remark. Proposition 2.5 assumes that the underlying surface S has negative Euler character-
istic; the spaces of foliations on the complex plane C and the punctured plane C∗ (relevant for
Theorem 1.1) will be described in §3 and §4.1 respectively.

3. The work of Au-Wan

In this section we recall the work of Au-Wan in [AW06] that solved the problem of pre-
scribing horizontal and vertical foliations of a meromorphic quadratic differential on CP1 with
exactly one pole, necessarily of order n ≥ 4. As mentioned in §1, the space of such quadratic
differentials is

Q0(n) = {(zn−4 + a1zn−6 + · · · + an−2z + an−5)dz2 | ai ∈ C for i = 1, . . . , n − 1}
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Figure 4. The different combinatorial types of metric trees in T(5) form R2 and
parametrize the space of foliations inMF 0(5) (see Theorem 3.1 and Proposi-
tion 3.1).

and is thus homeomorphic to Cn−5. Note that we have normalized our polynomial to be, in
particular, monic; this fixes the asymptotic data (see Definition 2.8) at the pole at∞.

Measured foliations on C. On the other hand, a measured foliation on CP1 with a single pole-
singularity of order n > 4 at∞ has (n− 2) foliated half-planes around∞ and (possibly) foliated
infinite strips. In what follows we shall assume that the positive real direction is an asymptotic
direction at the pole at infinity. The leaf-space of such a foliation is thus a planar metric tree;
the (n− 2) infinite-length edges corresponding to the half-planes are labelled by {1, 2, . . . , n− 2}
in anti-clockwise order, where the ray corresponding to the positive real direction is labelled
1. Note that this metric tree can be embedded in C, transverse to the foliation, such that each
infinite ray eventually lies in the foliated half-plane it represents.

Following the work of Mulase-Penkava in [MP98], any such metric tree is obtained by a
metric expansion of a (n − 2)-pronged star Gn−2 (where the prongs are infinite-length rays that
are labelled) that replaces the central vertex of Gn−2 by a tree (with each new vertex of degree
greater than two) that connects with the rest of the graph. They proved:

Theorem 3.1 (Theorem 3.3 of [MP98]). The space of metric trees T(n − 2) with (n − 2) infinite
rays, labelled in cyclic order, and all vertices of valence at least 3, is homeomorphic to Rn−5.

Remark. It is easy to check that a generic tree in T(n − 2) is trivalent at each vertex, and has
exactly n− 5 edges of finite length. These (non-negative) lengths form parameters that parame-
trize a subset of T(n− 2) corresponding to a fixed combinatorial type; there are Catalan number
of types that are obtained by Whitehead moves and the corresponding regions fit together to
form Rn−5 (see Figure 4).

As a consequence, we have:
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Proposition 3.1. For n > 4 the space of foliations MF 0(n) on CP1 with exactly one pole-
singularity of order n, is homeomorphic to Rn−5.

Proof. Let Ψ0 : MF 0(n) → T(n − 2) be the map that assigns to a foliation its leaf-space. It
is not difficult to construct an inverse map: given a planar metric tree in T(n − 2), we arrange
foliated half-planes and foliated infinite strips in the pattern prescribed by the tree, and identify
their boundaries. Note that the strip widths are prescribed by the edge-lengths of the tree. The
proposition then follows from Theorem 3.1. �

Prescribing horizontal and vertical trees. To complete the proof of Au-Wan’s theorem stated
in §1, it remains to show that the map

Φ1 : Q0(n)→MF 0(n) ×MF 0(n)

is a homeomorphism.
It suffices to define the inverse map, that is, given a pair of measured foliations (or equiva-

lently, their metric trees), construct a holomorphic quadratic differential which has these as its
vertical and horizontal foliations. Such a quadratic differential can be constructed by attach-
ing Euclidean half-planes and bi-infinite strips to each other by isometries (half-translations)
on their boundaries; the standard differential dz2 on each piece then descends to a well-defined
holomorphic quadratic differential on the resulting surface (c.f. Remark (2) after Definition 2.2).

This then becomes a combinatorial problem, which was solved by Au-Wan who gave a more
general construction, that works for metric trees with countably many edges:

Theorem 3.2 (Theorem 4.1 of [AW06]). Given two properly embedded planar metric trees H,V
in C and a bijection f between the infinite rays of H and the complementary regions of V, there
is a unique quadratic differential on C or D with induced horizontal and vertical foliations that
have leaf-spaces V and H respectively. Moreover, the arrangement of their foliated half-planes
induces the prescribed bijection f .

Remarks. (i) In the case that V and H have finitely-many edges (as is the case for metric trees in
T (n + 2)) they showed that the resulting quadratic differential is in fact defined on the complex
plane C (see Theorem 4.5 of [AW06]).

(ii) The uniqueness of the quadratic differential obtained is clarified in Theorem 4.2 of
[AW06]: they show that if there are homeomorphisms F,G : C → C that restrict to isome-
tries of V and H respectively, then the quadratic differential that realizes (V,H, f ) is identical to
the one that realizes (V,H,G ◦ f ◦ F−1).

Thus, by Remark (ii) above, to define the inverse of Φ1, it suffices to prescribe the bijec-
tion f uniquely. We can do this by defining, assigning to each i in the cyclically ordered set
{1, 2, . . . , n − 2}, the complementary region of V that is enclosed by the infinite rays of V la-
belled i − 1 and i (and possibly other edges of V).

4. Proof of Theorem 1.1

In §4.1-4.3, we shall deal with the case when S is the surface C∗, and complete the proof of
Theorem 1.1. In these sections n,m ≥ 2 will be the orders of the poles at 0 and ∞ respectively,
such that at least one of n,m is strictly greater than two, and we shall fix an asymptotic direction
at each pole. The special case when n = m = 2 is dealt with in §4.4.
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Figure 5. Possible measured foliations in MF 0(3, 3) and their leaf-spaces –
with transverse measure positive (shown on the left) and zero (shown on the
right).

4.1. Foliations on C∗. Following the notation introduced earlier, MF 0(n,m) is the space of
measured foliations on C∗ with pole-singularities of orders n and m at 0 and ∞ that have the
prescribed asymptotic data at the two poles.

Topologically, a punctured plane can be thought of as a bi-infinite Euclidean cylinder. Any
measured foliation inMF 0(n,m) can be decomposed into a foliation without any prong-singularities
on a finite-modulus annulus A in the middle of the cylinder, and two model foliations in
punctured-disk neighborhoods of the two ends, i.e. around 0 and ∞, that lie in Pn and Pm
respectively.

In what follows, the transverse measure τF of a foliation F ∈ MF 0(n,m) shall refer to the
transverse measure of the homotopy class of a loop around the puncture(s), unless otherwise
specified. (See Definition 2.6.)

The leaf-space of the restriction of F to A is either

(a) if τF > 0, an embedded circle homotopic to the core curve of the bi-infinite cylinder
with length equal to τF , or

(b) if τF = 0, an embedded interval corresponding to the ring domain A of length equal to
the transverse measure across A.

The leaf-space of the entire foliation F then comprises metric trees that are the leaf-spaces of
the model foliations on D0 and D∞ respectively, attached to the circle or interval corresponding
to A as above. See Figure 5. Although we shall not need this fact, we mention here that this
metric graph recovers the measured foliation F, except when the transverse measure τF > 0, in
which case one needs the additional data of the number of Dehn-twists across A.

For the following parametrization ofMF 0(n,m), we shall use the above decomposition of a
measured foliation on C∗, into model foliations on punctured disks and a foliated annulus A:

Proposition 4.1. If n,m ≥ 3, the space MF 0(n,m) is homeomorphic to Rn+m−4. In the case
that one of the poles has order 2, say n = 2, thenMF 0(2,m) is homeomorphic to Rm−3 if the
asymptotic direction at the order two pole is 0 (i.e. the transverse measure is zero), otherwise it
is homeomorphic to Rm−1.

Proof. We first consider the case when n,m > 2. Let F ∈ MF 0(n,m). Let D0 and D∞ be
neighborhoods of 0 and ∞ respectively, such that F|D0 ∈ Pn and F|D∞ ∈ Pm. Then A :=
C∗ \ (D0 ∪ D∞) is a “central annulus” that we shall think of as a Euclidean cylinder of finite
modulus.
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In the case that the transverse measure τF > 0, we shall assume that all the “twisting” of the
leaves of the foliation across C∗ happens in A. (For τF = 0 this twist parameter is absent, since
A is then a ring domain and foliations differing by a Dehn twist are isotopic to each other.)

The foliation F|A can be isotoped (relative the boundary) to a foliation by straight lines of
constant slope; this foliation is parametrized by two real parameters, which are the transverse
measure τ around A, and a twist parameter σ across A. These form a parameter space homeo-
morphic to R2, exactly as in equation (2) in the proof of Proposition 2.5. By Proposition 2.2 the
model foliations on D0 and D∞ are parametrized by Rn−3 and Rm−3 respectively, assuming we
have fixed the transverse measure around the boundary to be equal to τF , since they are glued
with the boundary components of A. Adding the parameters, we see that the total parameter
space is Rn+m−4.

When one of the pole-singularities is of order two, say n = 2, then recall that the prescribed
asymptotic direction at 0 determines the slope of the leaves on D0. We consider two sub-cases:

(a) If the transverse measure around the pole is zero, then so is the transverse measure
around A. The foliations on D0 and A are both ring domains, and A can be absorbed
into D0. The possible model foliations on D∞ are parametrized by Rm−3 by Proposition
2.2.

(b) If the transverse measure is positive, then this agrees with the transverse measure of A.
By Proposition 2.3, the model foliation on D0 is then completely determined, since we
have already fixed the asymptotic direction at 0. The parameters specifying the entire
foliation then are the (positive) transverse measure around A, the twist parameter across
A, and the (m − 3) parameters for the foliation on D∞ as before. Hence the parameter
space is Rm−1.

As in Proposition 2.5, the topology on the space MF 0(n,m) is defined to be the one for
which this parametrization is a homeomorphism; namely, two foliations F1, F2 ∈ MF 0(n,m)
are close if their restrictions to D0 and D∞ are close in the space of model foliations Pn and Pm
respectively, and so are the pairs of transverse measures τ1, τ2 and twist parameters σ1, σ2. �

4.2. Prescribing horizontal and vertical foliations. Recall from §1 that the space Q0(n,m) is
the space of meromorphic quadratic differentials on C∗ with a pole of order n and m at 0 and∞
respectively (we shall continue with our assumption that one of n,m is greater than two), and
with prescribed asymptotic directions at the poles, denoted by the set a.

Compatible pair. Throughout this section, (H ,V) ∈ MF 0(n,m)×MF 0(n,m) will be a pair of
foliations, where the space of measured foliations in the first factor has prescribed asymptotic
directions given by a, and the second factor has opposite asymptotic directions given by

√
−1 ·a

(see Definition 2.10). We shall further assume that these two foliations are compatible in the
sense defined in §2.2 – first, they do not both have zero transverse measure (for the non-trivial
loop in C∗ around the punctures) and second, in the case that one of the poles has order two and
their transverse measures τH and τV are positive, then they are compatible for the asymptotic
direction at the order two pole (see Definition 2.11).

Outline. Our goal in this section is to construct a meromorphic quadratic differential in Q0(n,m)
whose horizontal and vertical foliations areH andV, respectively. To do this, we consider the
decomposition of each foliation into model foliations in the punctured-disk neighborhoods D0
and D∞ of 0 and∞ respectively, and a foliation on a central annulus A, as in §4.1.
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Figure 6. In the proof of Lemma 4.1 the flat metric on A is obtained as a
quotient of a strip S (L) of height L.

Our strategy is to first construct
(a) a flat annulus A that realizes the prescribed pair of foliationsH|A andV|A,
(b) singular flat metrics on D0 and D∞, induced by meromorphic quadratic differentials

with poles of orders n and m respectively at the punctures, that realize the prescribed
pairs of model foliations.

Finally, we shall glue these singular-flat pieces to get the desired meromorphic quadratic differ-
ential on C∗.

Constructing singular flat surfaces. We start with describing the construction in (a) and (b) of
the outline above; (a) is handled by Lemmas 4.1 and 4.2, and (b) is handled by Lemmas 4.3 and
4.4.

Lemma 4.1. Let t ∈ R and H ,V be two measured foliations on an annulus A with positive
transverse measures (around A) τH and τV . Then, there is a unique flat metric (with geodesic
boundary) on A induced by a (constant) holomorphic quadratic differential q, such that the
horizontal and vertical foliations of q are equivalent toH ,V respectively and the difference of
the twist parameters is t.

Proof. Passing to the universal cover, it suffices to show that there is a unique choice of c ∈ C∗

and L > 0 such that the desired flat annulus A is the quotient of the infinite strip S (L) = {w ∈
C | 0 ≤ =(w) ≤ L} equipped with the quadratic differential metric q̃ = c2dz2, with the infinite
cyclic group Z = 〈w 7→ w + 1〉.

Let Arg(c) = −β; the transverse measures τV = |c||sin β| and τH = |c||cos β| since they are the
absolute values of the imaginary and real parts of

∫
[0,1]

√
q̃ (c.f. the remark following Definition

2.11). Thus the two transverse measures determine |c|, and an angle β ∈ (0, π) up to an ambiguity
of sign, i.e either β or π − β. As we shall now see, the sign of the relative twist parameter t fixes
the ambiguity in β, and determines the remaining parameter L uniquely.

Note that the horizontal foliation of q̃ comprises straight lines at an angle β or π − β, and the
vertical foliation comprises straight lines at an angle π/2 + β or π/2 − β. We shall assume that
the twist parameter is measured relative to the two basepoints b0 and b1 on the top and bottom
boundary components of S (L) respectively, that lie on the same vertical line. Namely, the twist
parameter σH of the horizontal foliation is measured as follows: consider a lift l ⊂ S (L) of a
horizontal leaf that passes through b0, and intersects the other boundary component at a point
b; then σH equals the (signed) transverse measure ofH of the interval between b1 and b on the
other boundary component. (See Figure 6, which shows the case when the horizontal leaves
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make an angle β.) We can calculate σH by integrating
√

q̃ along that interval, which has length
L|cot β|, and taking the real part of the integral. This yields σH = ±L|c| cot β cos β, where the
sign depends on whether the angle of the horizontal foliation is β or π − β . Similarly, the twist
parameter σV of the vertical foliation equals ±L|c| cot β sin β, with the opposite dependence on
the two possibilities for β. Since the difference σH − σV = t is prescribed, the sign of β, and L
are uniquely determined. �

Lemma 4.2. LetH ,V are two measured foliations on an annulus A such that

• the transverse measure τH ofH around A is zero, i.e.H on A is a ring domain, and
• V has positive transverse measure τV > 0.

Then, there is a flat metric (with geodesic boundary) on A induced by a (constant) holomorphic
quadratic differential q, such that the horizontal and vertical foliations of q are equivalent to
H ,V respectively. Moreover, q is unique if we also specify the transverse measure ofH across
the annulus A.

Proof. As in the proof of the previous lemma, we pass to the universal cover, and consider the
infinite strip S (L) = {w ∈ C | 0 ≤ =(w) ≤ L} equipped with the metric induced by the quadratic
differential q̃ = a2dz2 for some a ∈ C∗, such that A is the quotient of S (L) by the infinite cyclic
group Z = 〈w 7→ w + 1〉.

In this case, since H is a ring domain, the horizontal foliation of q̃ is by horizontal lines in
S (L), and the vertical foliation is by vertical lines; consequently, a = τV ∈ R

+. The remaining
parameter L (the “height” of the flat annulus A) equals the transverse measure ofH across A, if
the latter is specified. �

Remark. In the case the transverse measure ofH across A is zero, the flat annulus A is degener-
ate, i.e. is a circle of length τV ; in this case we shall still refer to A as a flat metric on an annulus.

The construction for (b) in the outline is easier in the case the model foliations on D∗ have
an order two pole:

Lemma 4.3. Let H ,V ∈ P2 be two model foliations on a punctured disk that are compatible,
that is,

• one of their transverse measures around the boundary of the disk is non-zero, and
• if both transverse measures are positive, then they are compatible in the sense of Defi-

nition 2.11.

Then there exists a meromorphic quadratic differential q on D∗ whose induced horizontal and
vertical foliations are equivalent to H and V respectively, and the boundary circle ∂D is geo-
desic in the induced singular flat metric. Moreover, the quadratic differential q is unique if we
prescribe an asymptotic direction θ at the puncture, and in the case both transverse measures
are positive, we require that the horizontal leaves are incident on the boundary at a prescribed
angle β ∈ (0, π).

Proof. We start with the case when one of the transverse measures equals zero, say τH = 0 and
τV > 0, where τH , τV are the transverse measures around ∂D of the model foliations H and V
respectively. Passing to the universal cover H, H and V lift to a foliation of H by horizontal
lines and vertical lines, respectively. The quadratic differential q̃ = τ2

Vdw2 on H has these as
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Figure 7. A cylindrical end corresponding to a pole of order two with posi-
tive transverse measure has an embedded sub-cylinder E (shown shaded) with
geodesic boundary that intersects the horizontal foliation at angle β ∈ (0, π).

its horizontal and vertical foliations; this is invariant under the translations 〈w 7→ w + 1〉 and
descends to the desired meromorphic quadratic differential q on D∗.

Note that in the case that τV = 0 and τH > 0, then we take q̃ = −τ2
Hdw2 on H; its horizontal

and vertical foliations comprise the vertical and horizontal lines on H respectively, and once
again, this quadratic differential descends to D∗ to define the desired q.

In the case that both transverse measures τH , τV > 0, then by their compatibility, we can write
τH = τ|cos θ| and τV = τ sin θ for some τ > 0 and θ ∈ [0, π), where θ is the prescribed asymptotic
direction of H at the order two pole. This time, in the universal cover H we consider the
quadratic differential q̃ = a2dw2 where a = τe−iθ. The horizontal and vertical foliations of q̃ are
then foliations by straight lines of slopes θ and θ+π/2 (considered modulo π) respectively. In the
quotient D∗ = H/〈w 7→ w + 1〉, the horizontal and vertical transverse measures of the boundary
∂D correspond to the horizontal and vertical transverse measures of the interval [0, 1] ⊂ ∂H
which are the absolute values of the imaginary and real parts of a, respectively. Thus, we have
obtained our desired quadratic differential q.

Note that the induced metric on D∗ determines semi-infinite Euclidean cylinder E with geo-
desic boundary, and the horizontal foliation of q intersects the boundary circle ∂D at the angle
θ (which is necessarily 0 if τH = 0). To obtain the desired angle β ∈ (0, π) (in the case that
τH > 0), we consider the cylindrical end E embedded in E, which is bounded by a geodesic
circle C chosen such that the horizontal foliation intersects C at angle β. (See Figure 7.) Since
E � D∗, the restriction q|E defines the desired quadratic differential.

To show the uniqueness statement, observe that since these model foliations do not have any
prong-singularities, the metric induced by q is in fact flat, without any singularities. If ∂D is
geodesic, then passing to the universal cover, we obtain a Euclidean half-plane bounded by a
bi-infinite straight line, that we can realize as the upper half-plane H equipped with a constant
quadratic differential q = a2dz2 for some a ∈ C∗. The constant a is uniquely determined by
the prescribed asymptotic direction θ and the requirement that the transverse measures on the
quotient D∗ = H/〈w 7→ w + 1〉 are equal to the prescribed τH , τV , exactly as described above.
Finally, (in the case that τH > 0) the sub-cylinder E bounded by the geodesic circle intersecting
the horizontal foliation at angle β is unique up to isometry. �

For poles of higher order, the construction for step (b) shall use the work of Au-Wan in the
planar case by extending the model foliation on D∗ to C∗ and passing to the universal cover C:
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Figure 8. The Z-invariant metric tree H has the structure on the left if τH = 0,
and the structure on the right if τH > 0. (The figure assumes r = 4, so that the
quotient by the Z-action has two infinite rays towards the puncture at 0.)

Lemma 4.4. Let r > 2 and let H ,V ∈ Pr be two model foliations on a punctured disk such
that at least one of their transverse measures around the boundary of the disk is positive. Then
there exists a unique meromorphic quadratic differential q on D∗ such that

(i) the horizontal and vertical foliations of q are equivalent toH andV respectively,
(ii) the boundary circle ∂D is geodesic in the induced singular-flat metric, and when both

transverse measures are positive, the horizontal leaves are incident on the boundary at
a prescribed angle β ∈ (0, π),

(iii) the induced metric has at least one prong-singularity on the boundary circle, and
(iv) q has a prescribed asymptotic direction at the pole.

Proof. The idea of the proof is to reduce to the planar case as in Theorem 3.2, by considering
the the lifts of the foliations to the universal cover H, and then extending them to C. Here, the
universal covering map is π : H → D∗ defined by π(w) = e2πiw. The group of deck-translations
π1(C∗) = Z acts on H by the group of translations generated by w 7→ w + 1.

Let τH , τV be the transverse measures of H and V respectively; we shall denote the lifts of
the latter foliations by H̃ and Ṽ respectively.

In the case the transverse measure τH > 0 (resp. τV > 0), one can isotope the leaves of H̃
(resp. Ṽ) so that they are orthogonal to R, the boundary of the upper half-plane. Then we can
extend H̃ (resp. Ṽ) to the entire complex plane C by appending the foliation by vertical lines
on the lower half-plane.

On the other hand, in the case the transverse measure τH = 0 (resp. τV = 0), the entire
boundary of the upper half-plane comprises leaf segments of the lifted foliation between prong-
singularities. This lifted foliation can be extended to C by appending the foliation by horizontal
lines on the lower half-plane.

Let H,V be the metric trees that are the leaf-spaces for these extensions of the lifts of H ,V
respectively. Both are metric trees with an action of the infinite cyclic group Z on them. The
structure of these metric trees depends on the transverse measures; we now describe this for H
(see Figure 8):
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(a) If τH = 0, then the foliation on the lower half-plane corresponds to an infinite ray
L of H; the leaf-space corresponding to the chain of critical leaves constituting R is
a single vertex v that is the root of L. The rest of H then comprises a collection of
pairwise-isometric metric trees Ti, where i ∈ Z. Each Ti is rooted at v, and descends,
via the covering map π : H → D∗, to the metric graph that is the leaf space of H . The
generator of the group of deck-translations π1(C∗) = Z acts on H by fixing v (and the
infinite ray L) and takes Ti isometrically to Ti+1, for each i ∈ Z.

(b) if τH > 0, then the boundary R of the upper half-plane determines a bi-infinite line L′

in H; note that L′ is also the leaf-space of the foliation on the entire lower half-plane.
The rest of H comprises metric trees rooted at vertices on L′ invariant under the group
Z of deck-translations that acts on H by translations, such that the quotient is the metric
graph that is the leaf-space ofH on D∗. Note that L′ descends to a cycle on this metric
graph of length τH .

The same description holds for V , with τV replacing the role of τH in (a) and (b) above. As
in §3, these trees H and V can be topologically embedded in C, via equivariant embeddings
iH : H → C and iV : V → C where Z acts on the domain tree as described in (a) or (b) above,
and on C by translations generated by w 7→ w + 1.

Moreover, the infinite rays of H, and the complementary regions of V , acquire a labelling as
follows:

Let {α1, α2, . . . , αr−2} denote the cyclically ordered foliated half-planes surrounding the pole-
singularity of H at 0 on D∗, where α1 is the half-plane whose boundary is asymptotic to the
prescribed asymptotic direction θ and θ + 2π/(r − 2). These correspond to the complementary
regions of the metric tree forV. Lifting the labelling of the foliated half-planes to the universal
cover and the extended foliation, this induces a labelling of the complementary regions of V in
C, by the index set {αi

j | i ∈ Z, 1 ≤ j ≤ r − 2}.
We can also label the infinite rays of the metric tree for H on D∗ by {a1, a2, . . . , ar−2} in

cyclic order, such that the label a1 corresponds to the leaf-space of the half-plane α1 (as defined
above). Passing to the universal cover, and its extension, we obtain a labelling of the infinite
rays of H by the index set {ai

j | i ∈ Z, 1 ≤ j ≤ r − 2}.
We can now prescribe a bijection f between the complementary regions of V and the infinite

rays of H by the corresponding map of labels αi
j 7→ ai

j. Thus, we have a pair of metric trees
V and H on C, and a bijection f between the complementary regions of V and the infinite rays
of H. By Theorem 3.2, there is a singular-flat surface S that is conformally either C or D,
with horizontal and vertical foliations having metric graphs V,H, which induces the prescribed
bijection f .

By construction, the bijection f is Z-equivariant. Namely, let tV be the relabelling of com-
plementary regions of V and tH be the relabelling of infinite rays of H induced by the self-
homeomorphisms of C that extends the respective actions of Z on the trees. Then tH◦ f ◦t−1

V = f .
(Note that tV relabels αi

j by αi−1
j and tH relabels ai

j by ai−1
j for each i ∈ Z.) By the Z-equivariance

of the embeddings iH , iV of H and V into C, together with the uniqueness part of Au-Wan’s the-
orem (see Remark (ii) following Theorem 3.2), the singular-flat surface S is induced by a holo-
morphic quadratic differential on C that is invariant under the action of Z = 〈w 7→ w + 1〉. The
singular-flat metric thus passes to the quotient annulus S, with horizontal and vertical foliations
equal to the extensions ofH andV respectively.
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Next, we show that in fact the singular-flat annulus S thus obtained is conformally the punc-
tured plane C∗. Since the metric trees (and their quotients) are complete, so are the singular-flat
metrics on S and S. Moreover, it is easy to prove that the circumference of a disk of radius R on
S grows linearly with R: since there is a lower bound on any arc cutting across any fundamental
domain of the Z-action on S, such a disk will intersect at most O(R) copies of the fundamental
domain. In particular, such a disk will contain O(R) singularities of the singular-flat metric,
and an application of the Gauss-Bonnet theorem then completes the argument. We can then
invoke the main result of [Ahl35] (see also pg. 329 of [SN70]) to conclude that the underlying
Riemann surface is parabolic, that is, S is conformally equivalent to the complex plane C. The
quotient S must then be conformally equivalent to C/Z, namely the punctured plane C∗.

It remains to finally restrict to a suitable punctured disk D∗ ⊂ C∗. For this, note that by
construction, the singular flat metric on S has a half-plane E where the horizontal and vertical
foliations are transverse foliations without singularities, namely, the lower half-plane on C. On
E the metric is induced by a constant quadratic differential invariant under a translation such that
in the quotient we obtain a pole of order two at∞ on C∗ (c.f. Definition 2.5) a neighborhood of
which is isometric to a semi-infinite Euclidean cylinder. If both transverse measures τH , τV are
positive, consider the maximal (with respect to inclusion) isometrically embedded sub-cylinder
E such that the horizontal foliation intersects the geodesic boundary ∂E at a constant angle
β ∈ (0, π). (See Figure 7.) Note that if one of the transverse measures τH or τV is zero, then the
angle of intersection β equals 0 and π/2 respectively.

The maximality of E implies that the induced singular-flat metric necessarily has prong-
singularities on the boundary (otherwise we could take a larger disk). Excising E, we are left
with a singular-flat metric on a conformal puctured disk D∗. The corresponding meromorphic
quadratic differential on D∗ is the desired q, whose horizontal and vertical foliations are, by our
construction, H and V respectively, and properties (i)-(iii) in the statement of the Lemma are
satisfied.

This singular-flat metric on D∗ satisfying properties (i)-(iii) is unique up to isometry: given
any other such singular-flat punctured disk D′ we can pass to the universal cover H and attach
a Euclidean half-plane E′ by an isometry on the boundary line (which is a straight line by
property (ii)). Here, E′ is equipped with the metric induced by a constant quadratic differential
whose horizontal foliation intersects ∂E′ at the prescribed angle β ∈ (0, π) if both transverse
measures are positive, and at an angle 0 or π/2 otherwise. Thus, we obtain a singular-flat
surface S′ realizing H and V . By the uniqueness part of Theorem 3.2, S′ is isometric to S
via an equivariant isometry, and the quotient surface S′ is isometric to S. This isometry takes
the quotient E′ of the half-plane E′, to the maximal semi-infinite Euclidean cylinder E we had
defined on S. (Such a maximal semi-infinite cylinder E in a cylindrical end is unique when
we fix the prescribed angle β.) Hence the isometry restricts to one between S′ \ E′ and S \ E,
that is, D′ is isometric to the punctured disk with the singular flat metric induced by q. Since
a conformal map between punctured disks is a rotation, the isometry equals the identity map if
property (iv) is satisfied, that is, we prescribe the asymptotic direction of q at the puncture. �

We can now prove the main result of this section:
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Proposition 4.2. LetH andV be a compatible pair of measured foliations, as introduced in the
beginning of §4.2. Then there exists a unique meromorphic quadratic differential in Q0(n,m)
that has horizontal foliation equivalent toH and vertical foliation equivalent toV.

Proof. From the proof of Proposition 4.1, the foliations H and V decompose into model foli-
ations H0,V0 ∈ Pn respectively in an open punctured-disk neighborhood D0 of 0, into model
foliations H∞,V∞ ∈ Pm respectively in an open punctured-disk neighborhood D∞ of ∞, and a
foliated annulus A inbetween, such that C∗ = D0 ∪ A ∪ D∞ for both.

Using Lemma 4.1 or 4.2, there is a unique flat metric on A determined by the parameters of
the restrictions H|A and V|A, such that they are the horizontal and vertical foliations, respec-
tively, with the prescribed relative twist parameter (i.e the difference of the twist parameters, as
in Lemma 4.1), and the boundary components are geodesic circles. From the proofs of these
lemmas, the angle at which the horizontal foliation on A intersects the boundary components is
uniquely determined; we call this angle β.

Using Lemma 4.3 or 4.4, there are uniquely defined singular-flat metrics on D0 and D∞
respectively, such that

(a) they realize the pairs (H0,V0) and (H∞,V∞) respectively, as their horizontal and vertical
foliations,

(b) the boundary circle is geodesic in both cases, and the horizontal foliation intersects
them at the angle β as determined above, and

(c) the horizontal foliations H0 and H∞ have the prescribed asymptotic directions at the
poles at 0 and∞ respectively.

Finally, we glue these singular flat surfaces together to obtain the desired singular-flat metric
on C∗, and the corresponding meromorphic quadratic differential q in Q0(n,m). Since the as-
ymptotic directions at the poles D0 and D∞ are prescribed, the only freedom in this gluing is the
number of Dehn-twists in the gluing of ∂D0 with a boundary component of A, and in the gluing
of ∂D∞ with the other boundary component of A. Since A is an annulus, it is the difference of
these two integers that matters to determine the final marked singular-flat structure on C∗. (Note
that this discussion is relevant only if A is not a ring domain, since otherwise all markings are
equivalent by sliding around a closed leaf.)

This integer parameter d ∈ Z can be measured in terms of the gluing in the universal cover
as follows: choose an integer labelling of the fundamental domains of the Z-action on the lifts
D̃0, Ã and D̃∞, the lifts of D0, A and D∞ respectively, and let b0 and b1 be a choice of basepoints
on the boundary components of Ã that are on the same vertical line (as in Figure 6). Then, if
the gluing identifies b0 with a point in the boundary of the r-th fundamental domain of D̃0, and
b1 with a point in the boundary of the s-th fundamental domain of D̃∞, we define d := r − s.

Recall that the flat metric on the central annulus A takes care of the relative twist parameter
of the two foliationsH|A andV|A. The actual twist parameters ofH andV are then realized by
choosing the integer parameter d appropriately. There is a unique such choice, and the marked
singular-flat metric on C∗, and therefore q, is determined uniquely. �

4.3. Proof of Theorem 1.1. We can now complete:

Proof of Theorem 1.1. The image of the map Φ2 : Q0(n,m) → MF 0(n,m) × MF 0(n,m) lies
in the subspace S of pairs of foliations that are compatible in the sense defined in §2.2. By
Proposition 4.2, we obtain an inverse to the map Φ2 defined onS. This implies that, in particular,
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Φ2 is an injective map that surjects on to S. Note that the domain Q0(n,m) � R2n+2m−8, and the
the target S is a subspace ofMF 0(n,m)×MF 0(n,m), which is homeomorphic to RN for some
N. Here N depends on n,m and, in the case that one of them equals 2, the asymptotic direction
at that pole. (In particular, N = 2n + 2m − 8 if both n,m > 2.)

The continuity of the map Φ2, or more generally, the map Φ from the space of quadratic
differentials to the space of measured foliations on any surface that assigns the induced hor-
izontal (or vertical) foliation to any quadratic differential, is a standard fact. (In the case of a
closed surface, see for example the proof of Theorem 4.7 of [Ker92], and the references therein.)
Briefly, since the topology of the leaf-space, i.e. the combinatorial structure of the metric tree
of a measured foliation, is locally constant, the induced horizontal and vertical foliations are lo-
cally determined by the corresponding transverse measures. The latter, in turn, are determined
by the real and imaginary parts of the periods

∫
γ

√
q, where γ varies over a collection of arcs

between the prong-singularities and homotopically non-trivial simple closed curve on the un-
derlying surface. The continuity of Φ then follows from the continuity of the relative period
map, defined on the space of “framed” quadratic differentials on the surface (see, for example,
Theorem 4.12 of [BS15]).

Hence by the Invariance of Domain, the map Φ2 is a homeomorphism onto its image. �

Remark. A consequence of this is that the subspace S of compatible pairs of foliations, is
homeomorphic to R2n+2m−8; this can be verified independently, by analyzing the corresponding
parameter space, as in §4.1.

4.4. The case when n = m = 2. In the special case where both poles have order two, the
meromorphic quadratic differential q on C∗ is necessarily of the form q = a2

z2 dz2 where a ∈ C∗.
In this case the asymptotic directions at the two poles must be the same, and equal to −Arg(a)
(c.f. Definition 2.5). Thus the space Q0(2, 2) of such quadratic differentials with prescribed
(and necessarily equal) asymptotic directions at the poles is homeomorphic to R+, which can
be thought of as the remaining parameter |a|.

LetMF 0(2, 2) be the space of measured foliations on C∗ with pole-singularities of order 2 at
0 and∞, and with prescribed (and equal) asymptotic directions at the poles. By Proposition 2.3,
a measured foliation in MF 0(2, 2) is determined by the transverse measure around C∗. Note
that this transverse measure is zero if the asymptotic directions are 0, and the foliation lifts to a
foliation on C by horizontal lines. We then have:

Lemma 4.5. A pair (H ,V) ∈ MF 0(2, 2) × MF 0(2, 2) (where the prescribed asymptotic di-
rections in the first and second factor are opposite) is realizable as the horizontal and vertical
foliations of some q ∈ Q0(2, 2) if and only if either (a) exactly one of the transverse measures is
zero, and (b) both transverse measures are positive, and compatible in the sense of Definition
2.11.

Proof. The necessity of either (a) or (b) being satisfied, follows from the compatibility of the
horizontal and vertical foliations (see §2.2.). In the other direction, a meromorphic quadratic
differential q ∈ Q0(2, 2) is obtained in either case as follows:

Let τH , τV be the transverse measures around C∗ ofH ,V respectively.
If τH = 0 and τV > 0, the quadratic differential q̃ = τ2

Vdw2 on C, is invariant under the group
of translations Z = 〈w 7→ w + 1〉 and defines the desired quadratic differential q on the quotient
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C∗ = C/Z. If τV = 0 and τH > 0, then the quadratic differential q̃ = −τ2
Hdw2 on C descends to

the required quadratic differential q on C∗ = C/Z. This handles the case (a).
Finally, for (b), recall from the compatibility of transverse measures that τV = τ sin θ and

τH = τ|cos θ| for some τ > 0 and θ ∈ (0, π) is the asymptotic direction at the poles. The
quadratic differential q̃ = a2dz2 where a = τe−iθ descends to the desired q on C∗. �

5. Proofs of Theorems 1.2 and 1.3

In this section, let S be a surface of genus g and k ≥ 1 labelled punctures, where 2−2g−k < 0,
that is, S has negative Euler characteristic. We fix a k-tuple n = (n1, n2, . . . , nk) such that each
ni ≥ 2. Our proofs shall use some of the constructions of singular-flat metrics described in §4.2.

5.1. Proof of Theorem 1.2. From the statement of Theorem 1.2, we are given a pair of mea-
sured foliations (H , V) ∈ MF g(n) × MF g(n) where the set of asymptotic directions of the
measured foliations in the first and second factors are a and

√
−1 · a respectively. We also know

that the pairH ,V are compatible in the sense of Definition 2.12. Our task, then, is to construct
a meromorphic quadratic differential q ∈ Qg(n) whose horizontal and vertical foliations are
(equivalent to)H andV respectively. We shall do this in the following the same strategy as the
construction in Proposition 4.2 in §4.2.

Proof of Theorem 1.2. From the proof of Proposition 2.5, the surface S can be decomposed
into punctured-disk neighborhoods {Ui}1≤i≤k of each puncture, a surface-with-boundary S ′ =

S \ (U1 ∪U2 ∪ · · ·Uk). The measured foliationsH andV restrict to measured foliations on S ′

that we denote by H0 and V0 respectively. Moreover, on each Ui for 1 ≤ i ≤ k, the restrictions
H|Ui andV|Ui are model foliations Hi,Vi ∈ Pni . Moreover, the restrictionsH|Ai andV|Ai define
foliations H0

i ,V
0
i on an annulus Ai that is a collar of the boundary circle ∂Ui.

As in the proof of Proposition 4.2, by Lemmas 4.1 and 4.2, we can construct a flat metric
on each Ai with horizontal and vertical foliations H0

i ,V
0
i respectively. Similarly, by Lemmas

4.3 and 4.4, we can construct a singular-flat metric on Ui \ Ai � D
∗ (induced by a quadratic

differential qi with a pole of order ni at the puncture) whose horizontal and vertical foliations
are Hi and Vi respectively. For each i, we call this singular-flat punctured disk Di. It follows
from the proofs of these Lemmas that one can choose each qi such that the boundary component
shared by Ai and Di is geodesic of the same length, such that the prescribed horizontal foliations
intersect it at the same angle. We also impose that qi has an asymptotic direction at pole-
singularity at the i-th puncture given by the corresponding entries of a. By the uniqueness
statements in these Lemmas, the set of singular-flat annuli and punctured-disks thus obtained,
are uniquely determined byH andV.

On the surface-with-boundary S ′, we can construct a singular-flat metric realizing the pair H0
and V0, by reducing to the compact surface case by a doubling across the boundaries. Namely,
consider the closed surface Ŝ obtained by taking two copies of S ′, and identifying the corre-
sponding boundary components such that the closed surface obtained is orientable. This iden-
tification along the boundary components does not involve any further twist; if γi is the simple
closed curve arising from the i-th boundary component after identification, then there is a dif-
feomorphism φ : Ŝ → Ŝ of order two, that fixes each γi pointwise and locally, is a reflection
across them. We can assume, after an isotopy, that for each boundary component ∂Ui of S ′, the
foliations H0 and V0 are either orthogonal to ∂Ui or parallel to it. Let Ĥ0 and V̂0 be the measured
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Figure 9. The decomposition used in the proofs of Theorems 1.2 and 1.3. (The
figure assumes that there is only one puncture.)

foliations on Ŝ , invariant under φ, obtained by doubling H0 and V0 respectively Note that since
the original foliations H and V are compatible, the transverse measures of H0,V0 around ∂Ui

cannot both be zero; hence the measured foliations Ĥ0 and V̂0 we obtain on the closed surface
Ŝ are transverse. Then there exists a unique holomorphic quadratic differential q̂ (with respect
to some complex structure) on the closed surface Ŝ , whose horizontal and vertical foliations are
equivalent to Ĥ0 and V̂0 respectively. (See, for example, the proof of Theorem 4.7 of [Ker92]
and the references therein.) Since these prescribed foliations are invariant under φ, it follows
from the uniqueness that φ is an involutive isometry on the induced singular-flat surface. In
particular, the quotient by φ yields a singular-flat metric on S ′ with geodesic boundary, whose
horizontal and vertical foliations are equivalent to H0 and V0 respectively.

Note that in our preceding construction, the boundary components of singular-flat metric on
S ′ are either completely horizontal (in the case the transverse measure of H0 around it is zero)
or completely vertical (in the case that transverse measure is positive). In what follows, we
show how to further ensure that the horizontal foliation intersects the i-th boundary component
at the same angle, as that of the horizontal foliation on the flat Ai that was constructed earlier.
Note that this modification is needed only if the transverse measures of both H0 and V0 around
the i-th boundary component are positive; we call the desired angle βi ∈ (0, π).

For each i, take a semi-infinite Euclidean cylinder Ri, such that the boundary ∂Ri is either
completely horizontal or completely vertical (matching with the i-th boundary component Ci
on S ′), and identify ∂Ri with Ci with an isometry that does not introduce any further twists.
We thus obtain a complete singular-flat surface Ŝ with cylindrical ends; not that the horizontal
and vertical foliations extend to the whole surface. Now, for each i, consider the maximal (with
respect to inclusion) open semi-infinite Euclidean cylinder Ei that is isometrically embedded
in the i-th end, such that the horizontal foliation intersects the geodesic boundary ∂Ei at an
angle βi (c.f. Figure 7). Excising each Ei, we obtain the desired singular-flat surface S ′′ =

Ŝ \ (E1 ∪ E2 ∪ · · · Ek) that realizes the horizontal and vertical foliations H0,V0, but now has
the horizontal foliation intersecting each boundary component at a prescribed angle. Note that
it is possible that S ′′ is topologically not a surface, but has degeneracies; this happens in the
case that the closures of, say Ei and E j intersect along a common boundary arc (c.f. the remark
following Lemma 4.2). In that case, we shall continue to call S ′′ a singular-flat surface, despite
such degeneracies.

It remains to glue these singular-flat surfaces {Di, Ai}1≤i≤k and S ′′ along their respective
boundaries, as determined by the decomposition of S into {Ui \ Ai, Ai}1≤i≤k and S ′, to obtain
the singular-flat metric on S with horizontal and vertical foliations H and V. (See Figure 9.)
As in the last part of the proof of Proposition 4.2, the only freedom in this gluing is an integer
parameter di ∈ Z that measures the relative twist between Di and S ′′ across Ai, calculated as the
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difference in the number of Dehn-twists in the gluings of the corresponding boundary compo-
nents. Recall that the flat metric on Ai realizes the difference of the twist parameters of H and
V at the i-th puncture; each di is chosen such that the singular-flat metric on S has the correct
marking, and realizes the actual twist parameters for these foliations.

The singular-flat subsurfaces we obtained were unique, and so is the integer twist parameter
di for each i, such a singular-flat metric on S , and hence the corresponding quadratic differential
q ∈ Q0(n,m) is unique. �

5.2. Proof of Theorem 1.3. We now prove the analogue of the Hubbard-Masur Theorem
([HM79]) for meromorphic quadratic differentials. As discussed in §1, in contrast with the
version proved in the work of Gupta-Wolf, our result dispenses with the need to choose a co-
ordinate disk around each puncture. The proof below uses the constructions in §4.2 to reduce
to the case when all poles are of order two, where one can use the main result of [GW17].
Note that the latter result does not depend on such a choice of coordinate disk either, since the
“residue” at a pole of order two is coordinate-independent.

In what follows, we shall fix X ∈ T̂g,k; recall that X represents a Riemann surface structure
on the punctured surface S , that we shall denote by X, together with the additional data of a real
twist parameter at each puncture, that we record as a k-tuple S = (s1, s2, . . . , sk).

Recall that throughout this paper, markings of S are considered up to an isotopy that fixes a
“framing” at each puncture, or alternatively, fixes (pointwise) the boundary circles obtained by
a real blow-up at each puncture. The twist parameter si then records the data of the framing and
the marking at the punctures, as follows (c.f. Definition 3.3. of [GM]) :

(a) The direction of a tangent vector vi at the i-th puncture, or alternatively, a point on
the circle obtained as a real blowup of the i-th puncture, given by exp(i2πsi). This
determines a framing, namely, the one given by vi and

√
−1 · vi.

(b) The integer bsic that denotes the number of Dehn twists about the i-th puncture.

Recall from §1 that π is the projection from Qg(n) to X ∈ T̂g,k; in what follows p : T̂g,k →

Tg,k will be the further projection that forgets the data of the twist parameters. ( In particular,
note that p(X) = X.)

As in the hypotheses of Theorem 1.3, we fix a measured foliation H ∈ MF g(n), and a
choice of model foliations Fi ∈ Pni for each 1 ≤ i ≤ k. The set of asymptotic directions a of
H are determined by S: namely, at a pole of order ni > 2 the asymptotic direction is exactly
the tangent directions as in (a) above, and if ni = 2, the asymptotic direction is equal to the the
angle 2πsi (modulo π). By compatibility, the set of asymptotic directions of (F1, F2, . . . , Fk) is
the opposite set

√
−1 · a (see Definition 2.10).

Moreover, the integer parameters determined byS as in (b) above, are also required to match
with integer twist parameters of any measured foliation F on a punctured surface equipped with
a marking, defined as follows:

Definition 5.1 (Integer twist parameter). Recall that a measured foliation F on S restricts to
a model foliation on the punctured disk Di that is a neighborhood of the i-th pole. Let S ′ =

S \(D1,D2, . . . ,Dk) be the surface-with-boundary obtained by deleting these neighborhoods. In
case the transverse measure of F around the i-th puncture is positive, the integer parameter of F
associated with that puncture on X is the number of Dehn-twists required in the gluing of Di to
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the corresponding boundary component of S i, in order to obtain the chosen marking. In the case
that the transverse measure of F around the i-th puncture is zero, the integer twist parameter
is ill-defined, so we ignore such punctures. This is because in that case, the i-th boundary
component of S ′ is the boundary of a (possibly degenerate) ring-domain, and changing F by a
Dehn-twist around that puncture yields an equivalent measured foliation.

Thus, in our case, we shall assume the integer twist parameters of H on X are equal to the
integer parameters determined by S as in (b) above. Note that S also determines the integer
twist parameters of the vertical foliationV of the meromorphic quadratic differential q ∈ Qg(n)
that we are aiming to construct.

Proof of Theorem 1.3. LetV be the vertical foliation of the desired meromorphic quadratic dif-
ferential q ∈ Qg(n); since the horizontal foliation of q would be H , note that by Theorem 1.2,
q is uniquely determined by the pair (H ,V). The model foliations for V would be the pre-
scribed foliations F1, F2, . . . , Fk in punctured-disk neighborhoods D1,D2, . . . ,Dk, respectively,
around the punctures. It thus remains to specify the foliation V0 on the surface-with-boundary
S ′ = S \ (D1,D2, . . . ,Dk).

Recall that we want π(q) = X, where X ∈ T̂g,k is a punctured Riemann surface equipped with
a framing at the punctures, and a marking that remembers the number of Dehn-twists around
each puncture, the data of which is encoded by the set S. From the discussion above, S deter-
mines the asymptotic directions of the model foliations (of either foliation) on Di, and the num-
ber of Dehn-twists in the gluing of Di to the corresponding boundary component of S ′. These
in turn determine the real twist parameters ofH andV at the punctures, as described in the the
proof of Proposition 2.5 ; we denote them by σ̂ = (σ1, σ2, . . . , σk) and σ̂′ = (σ′1, σ

′
2, . . . , σ

′
k)

respectively.
By Lemmas 4.1 and 4.2, for each 1 ≤ i ≤ k, there is a unique flat annulus Ai with its metric

induced by a constant quadratic differential, such that its horizontal and vertical foliations have
transverse measures equal to those of FH

i and Fi around ∂Di, and the difference of their twist
parameters equals σi − σ

′
i , where σi and σ′i are as defined above. Let βi ∈ [0, π) be the angle at

which the horizontal foliation intersects the boundary components of Ai. Note that if one of the
transverse measures around the i-th pole is zero, then βi is necessarily 0 or π/2.

By Lemma 4.3 (if ni = 2) or 4.4 (if ni > 2), there is a unique singular-flat metric on each Di,
induced by a meromomorphic quadratic differential qi, such that

(a) the horizontal and vertical foliations of qi are FH
i and Fi respectively,

(b) the asymptotic directions of qi are those prescribed by a, and
(c) the horizontal foliation FH

i intersects the geodesic boundary ∂Di at an angle βi, as de-
fined above.

From the proofs of these Lemmas, the length of the boundaries of Ai and Di are equal (they
only depend on the transverse measures of FH

i and Fi around ∂Di, and the angle βi). We identify
each ∂Di with one of the boundary components of Ai by an isometry to obtain a singular-flat disk
that we denote by Ui. The only freedom is the number of Dehn-twists in this gluing; however
this is determined by S, i.e. these are chosen such that the twist parameters of the foliations are
precisely σ̂ and σ̂′. Since the horizontal foliations intersect each boundary at the same angle by
(c) above, the singular flat metric on Ui is induced by a meromorphic quadratic differential qi
on a punctured disk D∗.
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Let τ̂ = (τ1, τ2, . . . , τk) be the transverse measures of F1, F2, . . . , Fk respectively, around the
boundaries of the corresponding punctured disks. LetMF g,k(τ̂) be the space of measured fo-
liations on a compact surface of genus g and k labelled boundary components, such that the
transverse measures around the boundary components are given by the k-tuple τ̂. By Propo-
sition 2.4, since we are fixing the parameters corresponding to the transverse measures of the
boundary, the spaceMF g,k(τ̂) � R6g−6+2k.

Let H0 be the restriction ofH to the surface-with-boundary S ′. Given V0 ∈ MF g,k(τ̂), there
is a unique singular-flat metric on S ′ realizing the pair (H0,V0) as its horizontal and vertical
foliations, obtained by a doubling across the boundaries to get a closed surface and applying
the Hubbard-Masur theorem, exactly as in the proof of Theorem 1.2. Recall that the resulting
horizontal and vertical foliations are either orthogonal or parallel to each boundary component,
depending on whether its transverse measure around the boundary is zero or positive, respec-
tively. However, we can make the horizontal foliation at the i-th boundary component intersect
at the angle βi exactly as in the proof of Theorem 1.2, namely by appending a cylindrical end
Ri, and truncating it along a suitable open sub-cylinder Ei bounded by a geodesic circle that
intersects the horizontal foliation at the desired angle βi. Let S ′′ be the resulting singular-flat
surface (with possible degeneracies when the closures of the sub-cylinders intersect). Recall
that in Lemmas 4.3 and 4.4, the angle βi was achieved by exactly the same truncation of a cylin-
drical end. Hence, the length of the resulting geodesic boundary component ∂Ei of S ′′ matches
the length of the boundary of Ui obtained above.

Thus, we can identify these boundaries (i.e. “cap off” the i-th boundary component in S ′′

by the singular-flat punctured-disk Ui) to obtain a singular-flat metric on S induced by a mero-
morphic quadratic differential q ∈ Qg(n). (See Figure 9.) Note that in this gluing we do not
introduce any additional twist, since the twist parameter at the i-th puncture has already been
taken care of by the gluing between Ai and Di. Thus, by an appropriate gluing, the resulting
marking on S is the one on X, and the horizontal foliation of q is exactly H . From our con-
struction, the vertical foliation of q restricts to the desired model foliations F1, F2, . . . , Fk at the
respective punctures.

Let Ψ : MF g,k(τ̂) → Tg,k be the map defined by Ψ(V0) = p ◦ π(q) where q ∈ Qg(n) is the
quadratic differential obtained from the construction we just described. It only remains to show
that in this construction, there is a unique initial choice of foliation V0 such that the Riemann
surface underlying q is the desired one, i.e. Ψ(V0) = X. This is immediate from the following:

Claim. The map Ψ is a homeomorphism.
Proof of claim. The continuity of Ψ follows from the fact that in the construction above, the
singular-flat surface S ′′ depends continuously on V0 from the continuity of the Hubbard-Masur
map. Since both the target and domain are homeomorphic to R6g−6+2k, it suffices to show, by
the invariance of domain, that Ψ is a bijection.

Consider the map Ψ0 :MF g,k(τ̂)→ Tg,k that “caps off” the boundary components of S ′′ in a
different way, by attaching cylindrical ends as we now describe. Namely, given V0, construct the
singular-flat surface S ′′ realizing the pair (H0,V0) exactly as above. Then, attach the boundary
of a semi-infinite Euclidean cylinder Ci to the i-th boundary component of S ′ where Ci is chosen
to have a circumference equal to the length of that boundary component, and Ci is equipped
with a holomorphic quadratic differential whose horizontal foliation intersects ∂Ci at an angle
βi ∈ (0, π), or at zero angle, depending on whether the corresponding transverse measure is
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positive or zero respectively, or equivalently, whether τi = 0 or τi > 0 respectively. (This looks
like gluing in the shaded cylinder in Figure 7.) This defines a singular-flat metric on S induced
by a meromorphic quadratic differential q0 ∈ Qg(n0) where n0 = (2, 2, . . . , 2)︸        ︷︷        ︸

k times

. We then define

Ψ0(V0) = p ◦ π0(q0), where π0 and p are the forgetful projections π0 : Qg(n0) → T̂g,k and
p : T̂g,k → Tg,k.

Note that Ci and Ui are defined by two different quadratic differentials on the punctured-disk
D∗ such that the induced metric on the boundary circle ∂D is identical; thus, the two different
“capping off” constructions in Ψ0 and Ψ involve exactly the same identification map on the
boundary circles. Thus, the resulting surfaces are conformally the same, i.e. the punctured
Riemann surfaces underlying q0 and q are identical, and we have Ψ0 = Ψ.

Now let H ′ ∈ MF g(n0) be the measured foliation on S obtained by extending H0 on S ′ as
follows: attach cylindrical ends to the boundary components of S ′′, as above, and extend H0 on
each cylindrical end by geodesic lines spiralling down the end (if the corresponding transverse
measure of H0 is positive) or meridional circles (if the corresponding transverse measure of
H0 is zero). Note that the asymptotic directions of H ′ at the i-th puncture is βi. In the above
construction, the quadratic differential q0 on the punctured Riemann surface X = Ψ0(V0) has
(a) horizontal foliation H ′, and (b) a residue at the i-th pole that is prescribed by τi and βi. By
Theorem 1.2 of [GW17], there exists a unique meromorphic quadratic differential q0 on X sat-
isfying (a) and (b). The existence of such a q0 implies that Ψ0 is surjective: one can obtain a V0
such that Ψ0(V0) = X by truncating the cylindrical ends of the q0-metric on S , and defining V0
to be the vertical foliation of the resulting surface-with-boundary. The uniqueness of q0 implies
that Ψ0 is injective: if Ψ0(V0) = Ψ0(V ′0) = X, then the corresponding quadratic differentials
q0 and q′0 obtained in the construction are identical; then so are their vertical foliations, and
consequently V0 = V ′0. This proves the bijectivity of Ψ0, and consequently of Ψ, and concludes
the proof. �

�
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