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Abstract

The execution of Grover’s quantum search algorithm needs rather limited resources without much

fine tuning. Consequently, the algorithm can be implemented in a variety of physical set-ups, which

involve wave dynamics but may not need other quantum features. Several of these set-ups are described,

pointing out that some of them occur quite naturally. In particular, it is entirely possible that the

algorithm played a key role in the selection of the universal structure of genetic languages.

1 Grover’s Algorithm

Lov Grover discovered a marvellous algorithm for unstructured search in the context of quantum computa-
tion.1 Formally, the problem is to find a target item with specific properties in an unsorted database using
a set of binary queries. The algorithm starts with a uniform superposition state, and alternately applies two
reflection operators for a number of iterations, until the target state is reached. One of the reflection opera-
tors is the response to the binary query, the other is the reflection across the uniform state, and the number
of iterations needed to reach the target state is O(

√
N) for a database of size N . Any Boolean algorithm

would require O(N) binary queries to accomplish the same task starting from an unbiased state, so this is
a square-root improvement in the computational efficiency. Furthermore, the algorithmic evolution is at a
constant rate along the geodesic from the initial state to the final state, taking place in the two-dimensional
subspace (of the total N -dimensional space) formed by the uniform state and the target state. That makes
it the optimal solution to the problem.2

The simplicity of the algorithm makes it implementable in a variety of physical settings, and a number
of its variations and applications have been explored over the years.3 The key feature of the algorithm is
wave dynamics that allows superposition; other quantum features can be easily skipped. Once coherent
wave modes are available, the algorithm needs nothing more than suitable reflection operations. Figure 1
illustrates how the algorithm works in the simplest case, unambiguously identifying one out of four items in
the database using a single binary oracle call. In contrast, a single binary oracle call in a Boolean setting
would only identify one out of two items in the database. Note that Grover’s algorithm is referred to as a
search algorithm due to the quantum interpretation of |amplitude|2 as probability.

The algorithm is robust to several types of modifications. One possibility is to replace the initial uniform
state by a generic state. Then the only change required in the algorithm is to replace the reflection across
the uniform state by the reflection across the specified generic state. The number of binary queries needed
in the algorithm is then of the order of the reciprocal of the overlap between the target state and the initial
generic state. This form of the algorithm is referred to as “amplitude amplification”, which can be used as a
subroutine to enhance small success probability of another algorithm that produces the generic state as an
output.4

Another possibility is to consider the situation where the database is spread out in space over distinct
locations. In this spatial search problem,5 the items are represented as vertices of a graph, and there is a
restriction that while searching for the target item one can proceed from one vertex to the next one only
along the edges of the graph. Grover’s algorithm corresponds to the maximally connected graph, i.e. there
is an edge between any two vertices of the graph. When the graph connectivity is reduced, the reflection in
the uniform state operation has to be replaced by a quantum walk proceeding along neighbouring vertices.
That decreases the efficiency of the search process. Still, the square-root improvement in computational
efficiency survives for graphs of effective dimensionality larger than two, while two is the critical dimension
and the square-root improvement is modified there by a logarithmic overhead.6
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Figure 1: The steps of Grover’s search algorithm for the simplest case of four items in the database, when
the first item is marked by the oracle. The left column depicts the amplitudes of the four states that evolve
coherently, with the dashed lines showing their average values. The middle column describes the algorithmic
steps, and the right column mentions their physical implementation.

2 Grover’s Algorithm as Hamiltonian Evolution

Grover constructed his algorithm with the physical intuition about the evolution of a quantum state, where
the potential energy term in the Hamiltonian attracts the state towards the target state and the kinetic
energy term in the Hamiltonian diffuses the state over the whole database.7 Following the Dirac notation,
let the target state be |t〉. Then the projection operator Pt = |t〉〈t| represents the potential energy. Also,
let the uniform superposition state be |s〉. Then the projection operator Ps = |s〉〈s| represents the isotropic
kinetic energy. The reflection operators used in the algorithm are easily expressed in terms of these projection
operators as Rt = I − 2Pt and Rs = I − 2Ps. Grover’s algorithm is then the discrete Trotter formula,8

|t〉 = (−RsRt)
Q|s〉 , (1)

which solves the problem with Q queries. This structure clarifies the reasons behind the extraordinary
properties of the algorithm: (a) Reflections are the largest steps that one can take consistent with unitarity,
and that makes the algorithm optimal. (b) The Trotter formula structure allows changes in the strengths
of potential and kinetic energy terms to be largely compensated by a change in the number of queries, and
that makes the algorithm robust.

The evolution of the quantum state remains confined to the two-dimensional subspace formed by the
states |t〉 and |s〉. Let 〈s|t〉 ≡ cos θ ∈ [0, 1] denote the overlap between these two states; for the uniform
initial state cos θ = 1/

√
N . Then we can express

|t〉 =
(

1

0

)

, |t⊥〉 =
(

0

1

)

, |s〉 =
(

cos θ

sin θ

)

, (2)

in the two-dimensional subspace. Grover’s algorithm iterates the discrete evolution operator,

UG = −RsRt =

(

1− 2 cos2 θ 2 cos θ sin θ
−2 cos θ sin θ 2 sin2 θ − 1

)

= − cos(2θ)I + i sin(2θ)σ2 , (3)

which rotates the state by the angle π − 2θ in the two-dimensional subspace. It corresponds to the effective
Hamiltonian evolution,

UG ≡ exp(−iHGτ) , HGτ = (2θ − π)σ2 . (4)

The number of queries required by the algorithm is therefore,

Q =
θ

π − 2θ
≈ π

4

√
N . (5)

This result can be also expressed as:

(2Q+ 1) sin−1 1√
N

=
π

2
. (6)
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Furthermore, it is clear that if the algorithm is not stopped after Q queries, it keeps on rotating the state at
a constant rate in the two-dimensional subspace, resulting in an oscillatory behaviour of the amplitude at
the target state.

This analysis also makes the spectral properties of the problem obvious. The kinetic energy operator in
the Hamiltonian, Ps, has a single eigenvalue equal to one with eigenvector |s〉, and N − 1 eigenvalues equal
to zero associated with the remaining orthogonal directions. When the potential energy is included in the
Hamiltonian, this spectrum gets modified. HGτ has two eigenvalues equal to ±(2θ−π) with (unnormalised)
eigenvectors (|t〉± i|t⊥〉) ∝ (e±iθ|t〉− |s〉), and N − 2 eigenvalues equal to zero associated with the remaining
orthogonal directions. Thus introduction of the potential creates a bound state in the spectrum with its
amplitude concentrated at the target state. Grover’s algorithm is a scattering process in this framework,
which focuses the initially uniform amplitude at the location of the scatterer. Note that both attractive and
repulsive potentials produce the same effect, since e+iπ = e−iπ in construction of Rt.

3 Localisation in Condensed Matter Systems

Localisation of electron states, due to disorder in a conducting material, is a well-established phenomenon
in condensed matter systems.9, 10 The phenomenon has been analysed in detail in the context of a metal-
insulator transition, to demonstrate its genuine quantum nature (in contrast to classical diffusion). The
disorder can arise from impurities or defects in the material, and the resultant scatterings impede transport
due to interference among many electron propagation paths.

A prototype model is provided by the tight-binding Hamiltonian:

H =
∑

i

Eic
†
i ci − t

∑

<i,j>

(c†icj + c†jci) . (7)

Here Ei denotes the potential energy for the electron at site i, and t is the hopping parameter for the electron
to jump from site i to site j. When all the Ei are the same, the spectrum of this Hamiltonian is a set of
energy bands for the electron, and the system is a conducting metal when the valence band is partially filled.

When one of the Ei is different than the rest, there is a delta-function potential, say at i = 0. Such an
attractive potential produces a bound state, separated from the continuous energy band and localised at
i = 0, for any strength of the potential in one space dimension and potential strengths beyond a particular
threshold in higher space dimensions.

When the energy disorder has a nonzero density, e.g. Ei are uniformly distributed over a finite interval,
all states can get localised, turning the conducting system into an insulator. That happens for any nonzero
disorder in one and two space dimensions, and for sufficiently large disorder (i.e. the magnitude of variation
of Ei) in higher dimensions.

Weak localisation is a precursor to the phenomenon described above, in which the disorder is limited
and the associated localisation increases the resistivity of the material.10–12 It is understood as enhanced
probability for electron paths containing closed loops, due to constructive interference between contributions
that travel the loops in opposite sense. On the other hand, the paths corresponding to random diffusive
motion suffer destructive interference. The heightened tendency for electrons to wander around in loops
then increases the resistivity. Random walks are much more likely to self-cross in lower dimensions than in
higher dimensions; so weak localisation is found strongly in systems of one and two space dimensions.

Grover’s algorithm can be looked upon as a still weaker version of localisation. The target site is the
only defect, and reflection from it produces a bound state around it in the spectrum. The localisation effect
is maximised because the evolution dynamics is restricted to the lowest possible dimensionality, i.e. the
subspace formed by |s〉 and |t〉. Overall, the scattering does not stop propagation of the initial state; instead
the amplitude to be at the target site goes through periodic ups and downs as a function of time. Stopping
the algorithm at the right time then results in the state having a large amplitude at the target site.

The modification of Grover’s algorithm to spatial search with multiple target items would be closer to
the transport behaviour of a material with many defects. In this case also, it is found that introduction
of a potential that causes reflection from the target sites (with all the reflection phase-shifts chosen to be
the same for simplicity) creates an eigenstate localised around them, and the scattering amplitude to this
eigenstate undergoes periodic ups and downs as a function of time.13
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4 Variety of Implementations of Grover’s Algorithm

The ingredients required to implement Grover’s algorithm are quite simple; quintessential quantum features
such as complex numbers and entangled states do not explicitly appear. It suffices to have coherent wave
modes that can be superposed and phase-shifted, and so the algorithm can be implemented using classical
wave dynamics as well.14, 15 As illustrated in Figure 1, the required features are:
(1) an initial state that is correlated in phase among its wave modes,
(2) a reflection oracle that singles out the target state,
(3) coherent oscillations of the wave modes about the direction specified by the initial state, and
(4) a threshold trigger that stops the algorithm when the target state amplitude becomes sufficiently large.

These features can be found in a variety of physical settings.
(1) It is known since the time of Huygens, that pendulums suspended on a single wall automatically syn-
chronise. The tiny coupling between the oscillators provided by the common support of the wall suffices
for this purpose. Such synchronisation of oscillations has been observed in nanoscale systems too.16 The
synchronised state is an equilibrium state, and so is well-suited to be the initial state of the algorithm.
(2) Any object with properties distinct from the rest can be looked upon as an impurity. Impurities in a
material generically scatter wave modes. When the impurity is a node for wave propagation, reflection from
it changes the sign of the wave amplitude, as can be easily deduced using the method of images.
(3) When the initial state is an equilibrium state, the perturbation caused by the target oracle would natu-
rally produce oscillations about the equilibrium direction.
(4) There exist many phenomena and reactions that need a critical threshold to be crossed. They can be
rapidly completed by amplitude amplification, with the threshold crossing becoming an effective measure-
ment that terminates the algorithm. (In such a situation, the number of iterations in the algorithm is not
decided at the outset; instead the iterations continue until success.)

Furthermore, these features are fairly immune to variations. As a result, Grover’s algorithm has been
extended to a multitude of physical scenarios since its discovery, and still found to do its job. Several
realisations that have been pointed out, in addition to the localisation phenomenon described in the previous
section, are:
• A coupled system of classical oscillators, with dynamics far sturdier against environmental disturbances
than the quantum case, can execute Grover’s algorithm.14, 15 The centre-of-mass mode plays the role of
the uniform superposition state, and the reflection operations are implemented as elastic collisions. The
frequencies have to be chosen to allow resonant amplitude transfer, and a high school science project has
demonstrated the scenario.17 A point to note is that both the classical wave version and the quantum version
of the algorithm have identical oracle complexity, but the classical version needs N distinct wave modes while
the quantum one requires log2 N qubits. The classical wave version therefore needs more spatial resources for
the algorithm than the quantum one, although the temporal resources are the same in both cases. Another
property is that |amplitude|2 represents energy in the mechanical setting, in contrast to it representing
probability in the quantum setting. So the mechanical version of the algorithm provides the optimal method
to focus energy, or while running in reverse, the optimal method to disperse energy. (Observe that energy
is neither supplied nor extracted during the running of the algorithm.) The consequences can be dramatic
in processes whose rates are governed by the Boltzmann factor, exp(−E/kT ), where the energy appears in
the exponent. Efficient schemes to transfer/redistribute energy have many practical uses in systems ranging
from mechanical to electrical, chemical and biological ones. Some possibilities are: focusing of energy can
be used as a selective switch, energy amplification can speed up catalytic processes, defects and impurities
in materials can be detected by wave reflections at suitably tuned frequencies, and fast dispersal of energy
can be used in shock absorbers.
• As mentioned earlier, the Trotter formula structure of Grover’s algorithm suggests that the reflection
operations can be replaced by other values of phase-shifts or related operations, and the algorithm will
still succeed, albeit with somewhat reduced efficiency. In spatial search problems, the reflection across the
uniform state is replaced by a quantum walk generated by the discrete Laplacian operator, and an extra
coin degree of freedom controls the choice of movement directions. The best algorithms involve relativistic
quantum walks, with the coin becoming the inherent internal degree of freedom.18 The Klein-Gordon version
as well as the Dirac version of the quantum walk have been studied; the former is easily extended to fractal
geometries as well as to search for multiple targets. A general framework with the reflection across the
uniform state replaced by any diffusion operator is analysed as well, where the spectral properties of the
diffusion operator decide the advantage provided by the algorithm.19

• The reflection oracle for the target state can be also replaced by a phase-shift different from π. Then
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the optimal performance is obtained, as expected from the Trotter formula structure, when this phase-shift
matches the phase rotation provided by the diffusion operator.19 In spatial search problems, the phase-shift
at the target state can also be created in many ways: scattering from a localised potential, scattering from
an obstacle,20 localized change in the effective mass of the propagating mode,21, 22 closed loop paths around
the target.23 The performance of the algorithm is optimised again by tuning the associated parameters.

5 Has Evolution Exploited Advantages of Grover’s Algorithm?

Biological systems, especially at the molecular level, have two striking features:
(a) Various biomolecules function according to their chemical and structural properties. Most of the time,
they are not readily available to the living organism. Rather a living organism eats food, breaks it down to its
elementary components by digestion, and then reassembles the components according to specific prescriptions
to obtain the required biomolecules. In this metabolic process, the elementary components are randomly
floating around in the cellular environment, and the task of assembling them in a specific order is that of
unstructured database search.
(b) Living organisms are non-equilibrium systems, sustained against the odds by clever manipulations of
energy. The tasks of efficient acquisition and transfer of energy have therefore high priority.
Given that Grover’s algorithm provides the optimal solution to both these requirements, the simplicity,
the robustness and the versatility of the algorithm, and the persistent hunt of biological evolution to find
ingenious and efficient solutions to the problems at hand (i.e. survival of the fittest), it would be a surprise
if nature hadn’t discovered Grover’s algorithm, even without a systematic analysis. Indeed, the evidence
described below highlights the manner in which Grover’s algorithm may have already become a key and an
inalienable part of life.

Whenever a suggestion regarding the role of Grover’s algorithm in a biological process is made, immediate
concerns are raised regarding how highly fragile quantum dynamics can survive in the cellular environment
with continuous jostling of a large number of molecules. The elaboration of the previous sections was to
emphasise that the quantum properties required for the execution of Grover’s algorithm are rather minimal,
and can be replaced by appropriate classical wave analogues. In particular, the following aspects are worth
keeping in mind:
(1) In the biological context, time is highly precious while space is fairly expendable, in sharp contrast to the
conventional computational complexity framework that treats time and space on an equal footing. Biological
systems can sense small differences in population growth rates, and even an advantage of a fraction of a
percent in time is sufficient for one species to overwhelm another over many generations. Spatial resources
are frequently wasted, that too on purpose. Just think of how many seeds a plant produces, when a single one
can ensure the continuity of its lineage. (Note that such wastefulness also leads to competition and Darwinian
selection.) Thus living organisms may be able to afford the classical version of Grover’s algorithm, with its
enhanced stability compared to the quantum version; the additional cost of spatial resources may remain
tolerable for small values of N . That would beat the Boolean algorithm for the same task in the cost of
temporal resources, which is crucial for the biological tasks. There can be even mixed scenarios, where fragile
quantum steps are stabilised by embedding them in a background classical evolution.
(2) Coherent superposition of wave modes, classical or quantum, is an essential part of Grover’s algorithm. It
must survive long enough for the algorithm to execute. But the algorithm would still work if the superposition
is merely apparent, and not genuine. That would happen if the cycling time between different states is
short compared to the time required to select the target state (e.g. the appearance of spokes of a rapidly
spinning wheel), which is possible when molecular diffusion in cells is fast. It is worth noting that the
molecular coherence of biomolecules (e.g. a polypeptide) can be delocalised over a region much larger than
the molecular size.24

(3) Similarity of Grover’s algorithm with localisation suggests that it is possible for underlying quantum
dynamics to produce macroscopic classical effects in interacting many-body systems. Moreover, the dynamics
is easier to protect from external disturbances when the steps involved are not too many.

The unique signature of Grover’s algorithm appears most strikingly in the structure of genetic lan-
guages.25, 26 The languages of genes and proteins are universal for all living organisms, they use specific
building blocks (i.e. nucleotide bases and amino acids) from the many similar ones available in cells, and the
information they carry is packed to nearly maximum density. These properties indicate that these languages
are essentially optimal solutions for the tasks they carry out, and not just a frozen accident of history.
During replication and translation, new DNA/RNA and polypeptide chains are synthesised by sequentially
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assembling their building blocks in an order specified by preexisting master templates. The correct building
block is identified by complementary base-pairing; either it takes place or it does not. Thus the problem
solved is indeed unstructured database search using a binary oracle provided by the master template. The
smallest three solutions of Grover’s algorithm in this situation, obtained from Eq.(6), are:27

Q = 1 → N = 4 , Q = 2 → N = 10.5 , Q = 3 → N = 20.2 . (8)

These are in remarkable agreement with the identification of the four nucleotide bases of DNA/RNA with
a single base-pairing, the identification of the twenty amino acids in polypeptide chains with a triplet code,
and the identification of ten amino acids in either of their two classes by a doublet code.28 There is no other
known scenario that explains these numbers as optimal solutions to the actual information processing task
accomplished;29 the best Boolean algorithm for the same task is binary search, which yields N = 2Q.

The smallest instance, N = 4, is an instructive example. Its solution with Grover’s optimal quantum
algorithm requires one query and two qubits. When that is fragile and impractical, the Boolean search
solves the problem with two queries and two bits (i.e. an extra factor of two in temporal resources), and
the classical wave search solves it with one query and four wave modes (i.e. an extra factor of two in spatial
resources). In biological systems, cheaper spatial resources than temporal ones would obviously favour the
latter solution. Note that the square-root temporal gain offered by the classical wave search over the Boolean
search (i.e. O(

√
N) vs. N) is indeed comparable to the exponential spatial cost involved (i.e. N vs. log2 N)

for small values of N .
If one imagines the development of a genetic information encoding system when life originated, it would

have been certainly sufficient and easier to do the job using two nucleotide bases (one complementary pair)
and a Boolean algorithm. Was it then the advantage of classical wave search that led nature to complicate
the encoding to the universal genetic languages observed today? It is entirely plausible that some primitive
organism discovered the advantages of Grover’s algorithm, quite likely by trial and error, and built that at
the core of life’s information processing system. Simple models that map the base-pairing to the reflection
oracle and the approach to equilibrium to an oscillatory process, incorporating the features described in
Section 4, can be constructed.25, 26 Nevertheless, for a realistic description that accurately identifies the
dynamical execution of the algorithm, we need experimental observations of the intermediate steps of the
genetic replication and translation processes. That is not yet possible in sufficient detail, but the progress
in technology should take us there some day. Alternatively, indirect checks that compare the efficiency of
the natural system with artificially constructed competitors (using different number of letters in the genetic
alphabet) would be easier to explore.30

Another biological phenomenon relevant to Grover’s algorithm is the process of energy transfer during
photosynthesis, from the chlorophyll pigment molecules that capture photons to the reaction centre where
glucose is synthesised. This energy transfer is nearly dissipationless and takes place as coherent wave motion
of an exciton in a network of pigment molecules.31 A classical strategy of hopping in a funnel-shaped energy
landscape cannot explain this behaviour. But it can be understood as amplitude amplification in a spatial
search algorithm, with the reaction centre acting as a defect that induces localisation, and the process being
terminated when the accumulated energy crosses the threshold for ionising water. Models with effective
Hamiltonians for the pigment network have been constructed, but details of the process in presence of the
existing environmental noise still remain to be properly understood. A rough analogy would be how a crack
in an object, say a child’s toy, opens up, when it is shaken in a suitable manner—the crack reflects the wave
motion causing energy to build up there, and then nonlinear material dynamics cascades the energy down
to the atomic scale where bonds are broken.

Telltale signatures of vibronic modes (i.e. coupled vibrational and electronic degrees of freedom) have also
been found in enzyme catalysis, olfaction and magnetoreception by birds.32 A standard test for significant
contribution from the vibrational degrees of freedom in such phenomena is the kinetic isotope effect,33 where
isotopic substitution alters the vibrational properties of molecules with negligible effect on the electronic
structure. How the involvement of vibrational modes and wave dynamics can help these processes is a
topic of active research. Needless to say, a better understanding of such processes discovered by natural
evolution, combined with features of Grover’s algorithm, would allow us to design new types of catalysts
and sensors. Moreover, when the turn comes to develop quantum memories, to go along with the quantum
devices being developed, organising them with quaternary addresses (instead of binary ones) will be an
attractive proposition worth considering.
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