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ABSTRACT

In this work, we propose an acoustic embedding based approach
for representation learning in speech recognition. The proposed ap-
proach involves two stages comprising of acoustic filterbank learn-
ing from raw waveform, followed by modulation filterbank learning.
In each stage, a relevance weighting operation is employed that acts
as a feature selection module. In particular, the relevance weighting
network receives embeddings of the model outputs from the pre-
vious time instants as feedback. The proposed relevance weight-
ing scheme allows the respective feature representations to be adap-
tively selected before propagation to the higher layers. The applica-
tion of the proposed approach for the task of speech recognition on
Aurora-4 and CHiME-3 datasets gives significant performance im-
provements over baseline systems on raw waveform signal as well as
those based on mel representations (average relative improvement of
15% over the mel baseline on Aurora-4 dataset and 7% on CHiME-3
dataset).

Index Terms— Speech representation learning, feedback of
acoustic embeddings, raw speech waveform, 2-stage relevance
weighting, speech recognition.

1. INTRODUCTION

Representation learning deals with the broad set of methods that en-
able the learning of meaningful representations from raw data. Simi-
lar to machine learning, representation learning can be carried out in
an unsupervised fashion like principal component analysis (PCA),
t-stochastic neighborhood embeddings (tSNE) proposed by [1] or
in supervised fashion like linear discriminant analysis (LDA). Re-
cently, deep learning based representation learning has drawn sub-
stantial interest. While a lot of success has been reported for text
and image domains (for eg., word2vec embeddings [2]), representa-
tion learning for speech and audio is still challenging.

One of the research directions pursued for speech has been the
learning of filter banks operating directly on the raw waveform [3–
7], mostly in supervised setting. Other efforts attempting unsuper-
vised learning of filterbank have also been investigated. The work
in [8] used restricted Boltzmann machine while the efforts in [9]
used variational autoencoders. The wav2vec method recently pro-
posed by [10] explores unsupervised pre-training for speech recog-
nition by learning representations of raw audio. There has been
some attempts to explore interpretability of acoustic filterbank re-
cently, for eg. SincNet filterbank by [11] and self-supervised learn-
ing by [12]. However, compared to vector representations of text
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which have shown to embed meaningful semantic properties, the in-
terpretability of speech representations from these approaches has
often been limited.

Subsequent to acoustic filterbank processing, modulation filter-
ing is the process of filtering the 2-D spectrogram-like representa-
tion using 2-D filters along the time (rate filtering) and frequency
(scale filtering) dimension. Several attempts have been made to learn
the modulation filters also from data. The earliest approaches using
LDA explored the learning of the temporal modulation filters in a
supervised manner [13, 14]. Using deep learning, there have been
recent attempts to learn modulation filters in an unsupervised man-
ner [15, 16].

In this paper, we extend our previous work [17] on joint acous-
tic and modulation filter learning in the first two layers of a con-
volutional neural network (CNN) operating on raw speech wave-
form. The novel contribution of our approach is the incorporation
of acoustic embeddings as feedback in the relevance weighting ap-
proach. In particular, the relevance weighting network is driven by
the acoustic/modulation filter outputs along with the embedding of
the previous one-hot targets. The output of the relevance network
is a relevance weight which multiplies the acoustic/modulation fil-
ter [17]. The rest of the architecture performs the task of acoustic
modeling for automatic speech recognition (ASR). The approach of
feeding the model outputs back to the neural network is also previ-
ously reported as a form of recurrent neural network (RNN) called
the teacher forcing network [18]. However, in this work, the em-
beddings of the model outputs are fed back only to the relevance
weighting network and not as a RNN architecture.

The ASR experiments are conducted on Aurora-4 (additive noise
with channel artifact) dataset [19], CHiME-3 (additive noise with re-
verberation) dataset [20] and VOiCES (additive noise with reverber-
ation) dataset [21]. The experiments show that the learned represen-
tations from the proposed framework provide considerable improve-
ments in ASR results over the baseline methods.

2. RELEVANCE BASED REPRESENTATION LEARNING

The block schematic of the senone embedding network is shown in
Figure 1. The entire acoustic model using the proposed relevance
weighting model is shown in Figure 3.

2.1. Step-0: Embedding network pre-training

The embedding network (Figure 1) is similar to the skip-gram net-
work of word2vec models as proposed in [2]. In this work, the
one-hot encoded senone (context dependent triphone hidden Markov
model (HMM) states modeled in ASR ) target vector at frame t, de-
noted as ht, is fed to a network whose first layer outputs the embed-
ding denoted as et. This embedding predicts the one-hot target vec-
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Fig. 1: Block schematic of senone embedding network used in the
proposed model.
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Fig. 2: t-SNE plot of the senone embeddings for TIMIT dataset.

tors for the preceding and succeeding time frames ht−1 and ht+1.
This model is trained using the ASR labels for each task before the
acoustic model training. Once the model is trained, only the em-
bedding extraction part (first layer outputs) is used in the final ASR
model. We use embeddings of 200 dimensions. During the ASR
testing, the embeddings are derived by feeding the softmax outputs
from the acoustic model (similar to teacher forcing network by [18]).

For the analysis, the TIMIT test set [22] consisting of 1344 utter-
ances is used. The dataset is hand labelled for phonemes. The t-SNE
visualization of the embeddings is shown in Fig. 2 for phonemes
from TIMIT test set for a group of vowel phonemes {/ao/, /aa/, /ae/,
/ey/, /uw/} and a group of plosives {/t/}, fricatives {/sh/, /zh/}, and
nasals {/em/, /eng/}. As seen in the t-SNE plot of embeddings, the
embeddings while being trained on one-hot senones, provides segre-
gation of different phoneme types such as vowels, nasals, fricatives
and plosives.

2.2. Step-1: Acoustic Filterbank representation [23]

The input to the neural network are raw samples windowed into S
samples per frame with a contextual window of T frames. Each
block of S samples is referred to as a frame. This input of size S×1
raw audio samples are processed with a 1-D convolution using F
kernels (F denotes the number of sub-bands in filterbank decompo-
sition) each of size L. The kernels are modeled as cosine-modulated
Gaussian function [9, 23],

gi(n) = cos 2πµin× exp (−n2µ2
i /2) (1)

where gi(n) is the i-th kernel (i = 1, .., F ) at time n, µi is the
center frequency of the ith filter (in frequency domain). The mean
parameter µi is updated in a supervised manner for each dataset. The
convolution with the cosine-modulated Gaussian filters generates F
feature maps which are squared, average pooled within each frame
and log transformed. This generates x as F dimensional features
for each of the T contextual frames, as shown in Figure 3. The
x can be interpreted as the “learned” time-frequency representation
(spectrogram).
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Fig. 3: (a) Block diagram of the proposed representation learning
approach from raw waveform, (b) expanded acoustic FB relevance
sub-network. Here, xt(f) denotes the sub-band trajectory of band f
for all frames centered at time t, et−1 denotes the acoustic embed-
ding vector for previous time step, (c) expanded modulation filter-
bank relevance sub-network.

2.3. Acoustic FB relevance weighting

The relevance weighting paradigm for acoustic FB layer is imple-
mented using a relevance sub-network fed with the F × T time-
frequency representation x and embeddings e of the previous time
step. Let xt(f) denote the vector containing sub-band trajectory
of band f for all T frames centered at t (shown in Figure 3(b)).
Then, xt(f) is concatenated with embeddings of the previous time
step et−1 with tanh() non-linearity. This is fed to a two layer deep
neural network (DNN) with a sigmoid non-linearity at the output. It
generates a scalar relevance weight wa(t, f) as the relevance weight
corresponding to the input representation at time t for sub-band f .
This operation is repeated for all the F sub-bands which gives a F
dimensional weight vector wa(t) for the input xt.

The F dimensional weights wa(t) multiply each column of
the “learned” spectrogram representation xt to obtain the relevance
weighted filterbank representation yt. The relevance weights in
the proposed framework are different from typical attention mech-
anism [24]. In the proposed framework, relevance weighting is
applied on the representation as soft feature selection weights with-
out performing a linear combination. We also process the first layer
outputs (y) using instance norm [25, 26].

In our experiments, we use T = 101 whose center frame is the
senone target for the acoustic model. We also use F = 80 sub-bands
and acoustic filter length L = 129. This value of L corresponds to 8
ms in time for a 16 kHz sampled signal. The value of S is 400 (25
ms window length) with frame shift of 10ms.
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2.4. Step-2: Relevance Weighting of Modulation Filtered Rep-
resentation
The representation z from acoustic filterbank layer is fed to the sec-
ond convolutional layer which is interpreted as modulation filtering
layer (shown in Figure 3). The kernels of this convolutional layer
are 2-D spectro-temporal modulation filters, learning the rate-scale
characteristics from the data. The modulation filtering layer gener-
ates K parallel streams, corresponding to K modulation filters wK .
The modulation filtered representations p are max-pooled with win-
dow of 3 × 1, leading to feature maps of size F ′ × T ′. These are
weighted using a second relevance weighting sub-network (referred
to as the modulation filter relevance sub-network in Figure 3, ex-
panded in Figure 3(c)).

The modulation relevance sub-network is fed with feature map
pk; where k = 1, 2, ...,K, and embeddings e of the previous time
step. The embedding e is linear transformed and concatenated with
the input feature map. This is fed to a two-layer DNN with softmax
non-linearity at the output. It generates a scalar relevance weight
wm(k) corresponding to the input representation at time t (t as cen-
ter frame) for kth feature map. The weights wm are multiplied with
the representation p to obtain weighted representation q. The re-
sultant weighted representation q is fed to the batch normalization
layer [27]. We use the value of K = 40 in the work. Following
the acoustic filterbank layer and the modulation filtering layer (in-
cluding the relevance sub-networks), the acoustic model consists of
series of CNN and DNN layers with sigmoid nonlinearity.

3. EXPERIMENTS AND RESULTS

The speech recognition system is trained using PyTorch [28] while
the Kaldi toolkit [29] is used for decoding and language modeling.
The models are discriminatively trained using the training data with
cross entropy loss and Adam optimizer [30]. A hidden Markov
model - Gaussian mixture model (HMM-GMM) system is used to
generate the senone alignments for training the CNN-DNN based
model. The ASR results are reported with a tri-gram language model
or using a recurrent neural network language model (RNN-LM).

For each dataset, we compare the ASR performance of the
proposed approach of learning acoustic representation from raw
waveform with acoustic FB (A) with relevance weighting (A-R)
and modulation FB (M) with relevance weighting (M-R) denoted
as (A-R,M-R), traditional log mel filterbank energy (MFB) fea-
tures (80 dimension), power normalized filterbank energy (PFB)
features [31], mean Hilbert envelope (MHE) features [32], and ex-
citation based (EB) features [33]. We also compare performance
with the SincNet method proposed in [11]. Note that the modulation
filtering layer (M) is part of the baseline model, and hence notation
M is not explicitly mentioned in the discussion. The neural network
architecture shown in Figure 3 (except for the acoustic filterbank
layer, the acoustic FB relevance sub-network and modulation filter
relevance sub-network) is used for all the baseline features.

3.1. Aurora-4 ASR

This database consists of read speech recordings of 5000 words cor-
pus, recorded under clean and noisy conditions (street, train, car,
babble, restaurant, and airport) at 10 − 20 dB SNR. The training
data has 7138 multi condition recordings (84 speakers) with total 15
hours of training data. The validation data has 1206 recordings for
multi condition setup. The test data has 330 recordings (8 speakers)
for each of the 14 clean and noise conditions. The test data are clas-
sified into group A - clean data, B - noisy data, C - clean data with
channel distortion, and D - noisy data with channel distortion.

Table 1: Word error rate (%) for different configurations of the pro-
posed model for the ASR task on Aurora-4 dataset.

Features ASR (WER in %)
A B C D Avg.

Baseline Raw Waveform (A,M) 4.1 6.8 7.3 16.2 10.7
Acoustic Relevance

A-R,M [Softmax, no embedding] [17] 3.6 6.4 8.1 15.1 10.0
A-R,M [Sigmoid, no embedding] 3.4 6.4 6.7 15.5 9.9
A-R,M [Sigmoid, with senone embedding] 3.4 6.2 6.7 14.5 9.6

Acoustic Relevance & Mod. Relevance
A-R,M-R [Softmax, no embedding] [17] 3.6 6.1 6.0 14.8 9.6
A-R,M-R [Sigmoid, no embedding] 3.4 6.0 6.5 14.5 9.5
A-R,M-R [Sigmoid, with senone embeddings] 3.0 5.8 6.2 14.4 9.1

Table 2: Word error rate (%) in Aurora-4 database with various fea-
ture extraction schemes with decoding using trigram LM (and RNN-
LM in paranthesis).

Cond MFB PFB MHE EB Sinc MFB-R S-R,M-R A-R,M-R
A. Clean with same Mic

Clean 4.2 4.0 3.8 3.7 4.0 3.9 3.8 3.0 (2.9)
B: Noisy with same Mic

Airport 6.8 7.1 7.3 - 6.9 6.7 6.2 5.7
Babble 6.6 7.4 7.4 - 6.7 6.5 6.1 5.7
Car 4.0 4.5 4.3 - 4.0 4.1 3.9 3.6
Rest. 9.4 9.6 9.1 - 9.4 9.6 8.4 7.0
Street 8.1 8.1 7.6 - 8.4 8.4 7.5 6.3
Train 8.4 8.6 8.6 - 8.3 8.2 7.4 6.8
Avg. 7.2 7.5 7.4 6.0 7.3 7.2 6.6 5.8 (5.3)

C: Clean with diff. Mic
Clean 7.2 7.3 7.3 5.0 7.3 7.1 6.8 6.2 (5.9)

D: Noisy with diff. Mic
Airport 16.3 18.0 17.6 - 16.2 16.2 13.9 14.0
Babble 16.7 18.9 18.6 - 17.6 16.9 16.0 15.0
Car 8.6 11.2 9.6 - 9.0 8.9 7.9 8.0
Rest. 18.8 21.0 20.1 - 19.0 18.8 19.2 18.5
Street 17.3 19.5 18.8 - 17.3 17.8 16.6 15.8
Train 17.6 18.8 18.7 - 18.1 17.9 16.6 15.3
Avg. 15.9 17.9 17.3 15.8 16.2 16.1 15.1 14.4 (13.7)

Avg. of all conditions
Avg. 10.7 11.7 11.4 9.9 10.8 10.8 9.9 9.1 (8.7)

The ASR performance on the Aurora-4 dataset is shown in Ta-
ble 1 for various configurations of the proposed approach and Ta-
ble 2 for different baseline features. In order to observe the impact
of different components of the proposed model, we tease apart the
components and measure the ASR performance (Table 1). The fifth
row (A-R,M-R, softmax with no-embedding) refers to the previous
attempt using the 2-stage filter learning reported in [17]. In this pa-
per, we explore the variants of the proposed model such as use of
softmax nonlinearity instead of sigmoid in both relevance weighting
sub-networks, sigmoid in both relevance weighting sub-networks,
without and with senone embedding, and the 2-stage approach (both
relevance weighting sub-networks). Among the variants with acous-
tic relevance weighting alone, the A-R [sigmoid with senone embed-
dings] improves over the softmax nonlinearity. With joint A-R,M-R
case, again the sigmoid with senone embeddings provides the best
result.

While comparing with different baseline features in Table 2, it
can be observed that most of the noise robust front-ends do not im-
prove over the baseline mel filterbank (MFB) performance. The raw
waveform acoustic FB performs similar to MFB baseline features
on average while performing better than the baseline for Cond. A
and B. The ASR system with MFB-R features, which denote the ap-
plication of the acoustic FB relevance weighting over the fixed mel
filterbank features, also does not yield improvements over the sys-
tem with baseline MFB features. We hypothesize that the learning
of the relevance weighting with learnable filters allows more free-
dom in learning the model compared to learning with fixed mel fil-

6885

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 09,2023 at 09:06:06 UTC from IEEE Xplore.  Restrictions apply. 



Table 3: Word error rate (%) in CHiME-3 Challenge database for
multi-condition training.

Test Cond MFB PFB RAS MHE A-R A-R,M-R
Sim dev 12.9 13.3 14.7 13.0 12.4 11.9
Real dev 9.9 10.7 11.4 10.2 9.9 9.5
Avg. 11.4 12.0 13.0 11.6 11.2 10.7
Sim eval 19.8 19.4 22.7 19.7 19.0 18.7
Real eval 18.3 19.2 20.5 18.5 17.2 17.0
Avg. 19.1 19.3 21.6 19.1 18.1 17.8

Table 4: WER (%) for cross-domain ASR experiments.

Filters ASR Trained and Tested on
Learned on Aurora-4 CHiME-3

Aurora-4 9.1 14.3
CHiME-3 9.2 14.2

ters. The proposed (A-R,M-R) representation learning (two-stage
relevance weighting) provides considerable improvements in ASR
performance over the baseline system with average relative improve-
ments of 15% over the baseline MFB features. Furthermore, the im-
provements in ASR performance are consistently seen across all the
noisy test conditions and with a sophisticated RNN-LM. In addition,
the performance achieved is also considerably better than the results
such as excitation based features (EB) reported by [33].

For comparison with the SincNet method by [11], our cosine
modulated Gaussian filterbank is replaced with the sinc filterbank
as kernels in first convolutional layer (acoustic FB layer in Fig. 3).
The ASR system with sinc FB (Sinc) is trained jointly without any
relevance weighting keeping rest of the architecture same as shown
in Fig. 3. From results, it can be observed that the parametric sinc
FB (without relevance weighting) performs similar to MFB and also
our learned filterbank A. In addition, the relevance weighting with
Sinc filterbank (S-R,M-R) results show that the relevance weighting
is also applicable to other prior works on learnable front-ends.

3.2. CHiME-3 ASR

The CHiME-3 corpus for ASR contains multi-microphone tablet de-
vice recordings from everyday environments, released as a part of
3rd CHiME challenge [20]. Four varied environments are present -
cafe (CAF), street junction (STR), public transport (BUS) and pedes-
trian area (PED). For each environment, two types of noisy speech
data are present - real and simulated. The real data consists of 6-
channel recordings of sentences from the WSJ0 corpus spoken in
the environments listed above. The simulated data was constructed
by artificially mixing clean utterances with environment noises. The
training data has 1600 (real) noisy recordings and 7138 simulated
noisy utterances, constituting a total of 18 hours of training data. We
use the beamformed audio in our ASR training and testing. The de-
velopment (dev) and evaluation (eval) data consists of 410 and 330
utterances respectively. For each set, the sentences are read by four
different talkers in the four CHiME-3 environments. This results in
1640 (410×4) and 1320 (330×4) real development and evaluation
utterances.

The results for the CHiME-3 dataset are reported in Table 3.
The ASR system with SincNet performs similar to baseline MFB
features. The initial approach of raw waveform filter learning with
acoustic FB relevance weighting (A-R) improves over the baseline
system as well as the other multiple noise robust front-ends consid-
ered here. The proposed approach of 2-stage relevance weighting
over learned acoustic and modulation representations provides sig-
nificant improvements over baseline features (average relative im-
provements of 7% over MFB features in the eval set).
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Fig. 4: ASR performance in WER (%) for VOiCES database.

3.3. Representation transfer across tasks

In a subsequent analysis, we perform a cross-domain ASR exper-
iment, i.e., we use the acoustic filterbank learned from one of the
datasets (either Aurora-4 or CHiME-3 challenge) to train/test ASR
on the other dataset. The results of these cross-domain filter learn-
ing experiments are reported in Table 4. The rows in the table show
the database used to learn the acoustic FB and the columns show the
dataset used to train and test the ASR (all other layers in Figure 3
are learned in the ASR task). The performance reported in this ta-
ble are the average WER on each of the datasets. The results shown
in Table 4 illustrate that the filter learning process is relatively ro-
bust to the domain of the training data, suggesting that the proposed
approach can be generalized for other “matched” tasks.

3.4. VOiCES ASR

The Voices Obscured in Complex Environmental Settings (VOiCES)
corpus is a creative commons speech dataset being used as part of
VOiCES Challenge [21]. The training data set of 80 hours has
22, 741 utterances sampled at 16kHz from 202 speakers, with each
utterance having 12− 15s segments of read speech. We performed
a 1-fold reverberation and noise augmentation of the data using
Kaldi [29]. The ASR development set consists of 20 hours of dis-
tant recordings from the 200 VOiCES dev speakers. It contains
recordings from 6 microphones. The evaluation set consists of 20
hours of distant recordings from the 100 VOiCES eval speakers and
contains recordings from 10 microphones. The ASR performance
on VOiCES dataset with baseline MFB features and our proposed
approach (A-R,M-R) of 2-step relevance weighting is reported in
Figure 4. These results suggest that the proposed model is also scal-
able to relatively larger ASR tasks where consistent improvements
can be obtained with the proposed approach.

4. SUMMARY

The summary of the work is as follows.

• Extending the previous efforts in 2-stage relevance weight-
ing approach with the use of embeddings feedback from past
prediction.

• Incorporating the feedback in the form of word2vec style
senone embedding for the task of learning representations.

• Performance gains in terms of word error rates for multiple
ASR tasks.
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