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Life cycle processes of positive-strand (+)RNAviruses are broadly conserved
across families, yet they employ different strategies to grow in the cell. Using
a generalized dynamical model for intracellular (+)RNA virus growth, we
decipher these life cycle determinants and their dependencies for several
viruses and parse the effects of viral mutations, drugs and host cell permis-
sivity. We show that poliovirus employs rapid replication and virus
assembly, whereas the Japanese encephalitis virus leverages its higher rate
of translation and efficient cellular reorganization compared to the hepatitis
C virus. Stochastic simulations demonstrate infection extinction if all seeding
(inoculating) viral RNA degrade before establishing robust replication criti-
cal for infection. The probability of this productive cellular infection, ‘cellular
infectivity’, is affected by virus–host processes and defined by early life cycle
events and viral seeding. An increase in cytoplasmic RNA degradation and
delay in vesicular compartment formation reduces infectivity, more so when
combined. Synergy among these parameters in limiting (+)RNA virus infec-
tion as predicted by our model suggests new avenues for inhibiting
infections by targeting the early life cycle bottlenecks.
1. Introduction
Positive sense single stranded RNA ((+)RNA) viruses, that include Enteroviridae
(poliovirus), Flaviviridae (Dengue virus), Coronaviridae (SARS coronavirus) virus
families, are a major public health challenge. Better understanding of the cellular
viral dynamics can help us identify new drug targets and novel antiviral
approaches. Thevirus grows inside the cell using acomplex set ofmolecular and cel-
lular processes that has evolved to ensure successful propagation. (+)RNA viruses
sequentially translate viral proteins using their positive strand RNA genome
upon cell entry, replicate to form nascent genomes from a double stranded RNA
(dsRNA) replication intermediate and create new virus particles by encapsidating
the newly synthesized (+)RNA genomes with structural proteins. Members of this
class show significant diversity in genome size, physical makeup, constituent viral
proteins, host tropismandchronicityof infection.Yet, theyalsodisplaystriking simi-
larities in cellular life cycle processes and their dynamics, closely imitating
mechanisms of replication, translation, virus assembly as well as analogous inter-
actions with the host cell machinery. This has motivated the search for universal
features that can be exploited as broad spectrum anti-viral targets.

One common characteristic of most (+)RNA viruses is the induction of
significant alterations of the intracellular host membranes [1–4]. The vesicular
membranous structures formed provide a conducive micro-environment for effi-
cient viral replication, protect the viral RNA and proteins from cytosolic
degradation and host defence systems, and hence are also referred to as vesicular
compartments (CMs). Impeding membrane reorganization has been shown to
decelerate cellular infection dynamics [5,6], lower viral yield [7–10] and reduce
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the propensity of the virus to establish cellular infection in the
host cell [6,11,12]. In general, failure to establish viral infection
has been associated with cellular heterogeneity and is attribu-
ted to the random loss of genome segments by RNA
degradation in the early stages of infection [13–15]. This sto-
chastic effect manifests at low multiplicity of infection [12]
and is observed across several virus families. While this
suggests that early events in the virus life cycle determine the
fate of infection, what factors control this mode of viral
clearance have not been examined in detail.

Quantitative measurements and mathematical modelling
have tremendously enhanced our understanding of how the
subtleties of intracellular processes shape the outcome of viral
infections [16–26]. Understanding derived from these and com-
bined with their extensions that incorporate extracellular and
immune response have been used to determine effectiveness
of interventions and combinations thereof [27–31]. However,
detailed models with explicit molecular details suffer from
redundancy in fitting parameters or challenges with estimating
parameters experimentally. On the other hand, simplistic
generalized models can fail to accurately emulate the exper-
imentally observed dynamics across a large class of viruses,
viral mutations and different host cells. Nevertheless, viral
dynamics models can be insightful if they universally capture
experimental observations while allowing sufficient inference
of molecular mechanisms across viruses. Apart from identify-
ing life cycle bottlenecks, they can be employed to predict the
effectiveness of broadly applicable anti-viral strategies.

Most prior intracellular +RNA viral dynamics models also
do not account for the slow formation kinetics of the membra-
nous vesicular compartments. Since this event coincides with a
period sensitive to stochastic fluctuations in viral RNA, it is
unclear how membrane reorganization influences the virus life
cycle. In this study, we extend previous viral dynamics models
[17,19,22] by incorporating the kinetics of vesicular compart-
ment formation post infection. We show that our model now
accurately captures several variants of experimentallymeasured
dynamics for hepatitis C virus (HCV) [22], Japanese encephalitis
virus (JEV) [32] andpoliovirus (PV) [19] infection from the litera-
ture. Indeed, incorporation of vesicular compartment formation
dynamics is able to explain thediscrepancy inPVviral dynamics
observed with earlier models. Our model further identifies
differences among virus life cycle properties and dynamics
including observed effect of viral mutations [5] and host factor
silencing [5,7] without modifications. Our results also reveal
that the dynamics of compartment formation is a critical kinetic
bottleneck for the viruses. Using our estimate of life cycle par-
ameters, we quantify the ability of the viruses to establish a
productive infection upon entry into the host cell that we refer
to here as ‘cellular infectivity’ (F). Apart from the formation of
CM, we recognize limiting replication, increased cytoplasmic
degradation of viral RNA and reduction in translation as
pan-viral inhibition strategies. Furthermore, we estimate the
synergy among these strategies that can limit cellular infectivity
providing opportunity to clear the viral infection.

2. Results
2.1. Cellular viral life cycle model for monopartite

(+)RNA viruses
We propose a mathematical model for cellular life cycle of
single stranded monopartite (+)RNA viruses (figure 1a;
details in electronic supplementary material, S1). We focus
on intracellular processes common to such viruses and it
is inspired by previous HCV and PV models [17,19,22]
(equations (2.2)–(2.7), table 1). Upon entry into the cell,
viral (+)RNA in cytoplasm (Rcyt) is translated (by host ribo-
somes) to produce structural (PS) and non-structural (PNS)
proteins at a rate kt (equations (2.3) and (2.4)).

Though translation occurs in the cytoplasm, replication is
mainly restricted to vesicular compartments (CMs) [1,2]. CM
formation occurs via extensive alteration to host intracellular
membranes [33,34] induced by viral and host proteins post
infection [1–3,35]. Although a slow and critical step con-
served across many (+)RNA viral life cycle, previous
models did not account for their gradual formation. We
hypothesized that this delay in formation of vesicular com-
partments will result in major limitation to viral growth
either due to early degradation of viral RNA or late onset
of replication dominant phase. Therefore, we incorporate
the CM formation dynamics explicitly in our model using a
functional form based on analysis of cellular ultrastructure
characterization (figure 1b; electronic supplementary material,
figure S1). Assuming that host membrane homeostasis
limits the extent of alterations, we use the popular Weibull
function [36] to model the normalized growth of vesicular
compartments, fCM (equation (2.1)):

fCM ¼ 1� e� t=tSð Þn : ð2:1Þ

τS parameterizes the time scale of the structural manifestation
of CMs whereas n defines the steepness of the function.
Figure 1b shows that increase in vesicular membranous
structures observed for (+)RNA viruses is indeed virus and
strain specific [37–40]. Though the value of τS does not vary
significantly, fitting improves as n increases from 2 to 4,
suggesting some level of synchrony in CM development
(electronic supplementary material, table S1). Interestingly,
τS estimates correlate with the time scale of cellular infection
across viruses and strains (as observed for the Zika strains
[41]) suggesting the central role of host membrane remodel-
ling in defining viral growth dynamics. Our estimate
for the τS for ZIKV (13.3 h for MR766 and 23.7 h for H/PF/
2013 strain) is also consistent with the time interval
(approx. 16 h post infection) beyond which addition of a
membrane reorganization inhibitor (K22) is ineffective as an
antiviral [9] further emphasizing the importance of CM
formation in viral dynamics.

In context of viral replication, one must consider the
ability of these sites to provide protective confinement for
the RNA replication complex but this aspect has not been
quantitatively characterized to date. We argue that the
structural and functional aspects of CM formation are likely
to be correlated. Therefore, we use the same functional
form (equation (2.1) with n = 4), but consider a different
time parameter (τF) to model the functional maturation of
CMs for replication hereon. Although not explicitly incorpor-
ated, τF also subsumes other delays associated with virus
entry and genome uncoating (see electronic supplementary
material, S2). However, such delays have been shown to be
comparatively smaller supporting our assertion that CM for-
mation forms the major bottleneck to viral growth upon
infection [19,22,42].

Cellular homeostasis (posed by host cell proteome and
lipid homeostasis) limits the number of available CMs and



PS

RCM

RCCM

VT

kt

CM

intracellular
membrane

PNS

kr

P
S

VT

0 16 32 48
10–2

1

102

106
total vRNA

m
ol

ec
ul

es
 p

er
 c

el
l

time (h)

104
PS –VT

VT  : extracellular virus
CM  : vesicular compartment
Rcyt   : (+)RNA in cytoplasm
PS   : structural protein in cytoplasm
PNS   : non-structural protein in cytoplasm
RCCM : compartmentalized replication complexes
RCM   : (+)RNA in CM

f C
M

0

0.5

1.0

MHV
EAV

HCV

ZIKVM

ZIKVH

1 16 32 64
time (h)

2 4 8
kc

ke

ka

mv

mr

mp
mp

Rcyt

hs

t–1
S/F

(b)(a)

(c)

Figure 1. Viral life cycle model and compartment formation dynamics. (a) Schematic of the viral life cycle model. In the cytoplasm, the (+)RNA (Rcyt) is translated
by the host ribosomes to produce viral structural (PS) and non-structural proteins (PNS). Intracellular membrane is reorganized to form compartments (CM) which
harbour viral replication complex (RCCM) that produce new (+)RNA strands, which are exported out into the cytoplasm. ηS copies of PS associate with Rcyt to
assemble virus particles (VT). (b) Normalized dynamics of compartment formation ( fCM) observed for different (+)RNA viruses fitted (lines) using equation (2.1)
(n = 4) is shown. Data are derived from [37–40] for mouse hepatitis virus (MHV), equine arteritis virus (EAV), MR766 and H/PF/2013 strains of Zika virus (ZIKVM and
ZIKVH) and hepatitis C virus (HCV). (c) Virus life cycle model fit for HCV infection in Huh7 cells [22]. Circles and error bars correspond to data and coloured lines
represent respective fits. Thin lines (lightly coloured in background) represent the dynamics predicted using a set of best parameter combinations (250 sets) from
iABC and thick lines denotes their corresponding average.
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hence replication complexes (formed by Rcyt and PNS)
compete for the unoccupied compartments given by [ fCM
− (RCCM/NC)], where RCCM denotes the number of
compartmentalized replication complexes and NC is the car-
rying capacity for RCCM (table 1). Therefore, we model the
compartmentalization of replication with a logistic function
(equations (2.2), (2.4), (2.5)). RCCM synthesize new (+)RNA
strands at a rate, kr (equation (2.6)). The (+)RNA in the com-
partments (RCM) are exported out into the cytoplasm at rate,
ke (equations (2.2) and (2.6)), where it can re-participate in the
cycle. While the viral RNA and proteins degrade in the cyto-
plasm, we ignore degradation in the compartments [2,4,26].
Finally, viral assembly occurs in cytoplasm where a Rcyt

associates with ηS molecules of PS to produce extracellular
viral particles (VT) at an overall rate of ka (equations (2.2),
(2.4), (2.7)).

Cellular life cycle model

dRcyt

dt
¼ ke :RCM � ka :PS :Rcyt � mR :Rcyt � kc :PNS :Rcyt

fCM � RCCM

NC

� � ð2:2Þ

dPNS

dt
¼ kt :Rcyt � mP :PNS � kc :PNS :Rcyt : fCM � RCCM

NC

� �
ð2:3Þ
dPS

dt
¼ kt :Rcyt � hS : ka :PS :Rcyt � mP :PS ð2:4Þ

dRCCM

dt
¼ kc :PNS :Rcyt : fCM � RCCM

NC

� �
ð2:5Þ

dRCM

dt
¼ kr :RCCM � ke :RCM ð2:6Þ

and
dVT

dt
¼ ka :PS :Rcyt � mV :VT : ð2:7Þ
2.2. Model recapitulates observed hepatitis C virus life
cycle dynamics

Using an iterative approximate Bayesian approach (iABC; see
Methods and electronic supplementary material, SM1), we fit
our life cycle model to the dynamics of intracellular viral
RNA, proteins, and extracellular viruses observed previously.
In the iABC algorithm, we sample the current distribution
of estimates in the multi-dimensional parameter space effi-
ciently using Latin hyper-cube sampling [43]. We select a
subset of the sampled parameter combinations, whose pre-
dictions have lowest deviation from the experimental data,
to update the distribution. We report the distribution instead
of point estimates for the parameters and introduce uniform



Table 1. Life cycle model parameters.

parameter (units) description HCV in Huh7 JEV in PS PV in HeLaS3

free parametersa

τF (h) time constant for functional development of CMs 5.8 2.6 4.2

kt (h
−1) protein production rate per Rcyt 23.7 1.6 × 102 18.9

kc (molecules
−1 h−1) formation rate of RCCM 2.6 × 10−3 1.6 × 10−2 1.2 × 10−2

kr (h
−1) (+)RNA synthesis rate per RCCM 3.6 3.7 2.2 × 102

ke (h
−1) export rate of RCM into the cytoplasm 6.6 × 10−2 7.2 × 10−2 1.1

NC (number) RCCM carrying capacity of the host cell 8.8 × 101 1.21 × 103 1.62 × 103

ka (molecules
−1 h−1) effective virus generation rate 3.6 × 10−8 8 × 10−9 5.6 × 10−3

fixed parametersb

ηS number of PS per virus particle 180 180 60

μR (h
−1) degradation rate of Rcyt 0.25 0.25 0.25

μP (h
−1) degradation rate of PS and PNS 0.11 0.11 0.11

μV (h
−1) degradation rate of VT 6 × 10−3 6 × 10−3 6 × 10−3

aMedian of the distribution estimated from data fitting (figure 2c).
bFrom literature [22,56–58] or from analysis of [22], as shown in electronic supplementary material, S9.
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noise to the distribution in each iteration (electronic sup-
plementary material, SM1) making it less sensitive to
sampling biases and local minima. Starting with a uniform
prior distribution of parameter values, we first recover
model parameter estimates using this approach for the well-
characterized HCV infection in Huh7 cells [22] (figure 1c
and table 1; electronic supplementary material, table S2).
We find that new (+)RNA strands are produced at (kr =)
3.6 h−1 per compartmentalized replication complex (RCCM).
Using RNA polymerization rate of 150 nt min−1 [44], we pre-
dict that on average ≈4 simultaneous replication events occur
per RCCM. This is consistent with experimental observations
of synthesis of multiple viral RNA per replication intermedi-
ate (reported to be 5 for the closely related Dengue virus [45]).
Similarly, our prediction for the steady-state ratio of viral
(+)RNA to (−)RNA (=54 : 1) compares well with the
experimentally observed ratio of 30 : 1 [46,47].

While differences in parameter definitions limit exact
comparison, we find good agreement with previous efforts
to model HCV dynamics. For example, assuming that 10 ribo-
somes [48] translate the viral RNA at a time and kt = 23.7 h−1,
we predict the HCV protein production rate to be 2.4 h−1 per
RNA. This is comparable to the previous estimate of the
rate-limiting step in protein synthesis (polyprotein cleavage
rate, 1 h−1 [16,17]). Our prediction for (+)RNA export out of
vesicular compartments is also similar to previous estimates
[16]. However, virus production in our model is 50-fold faster
than previous estimates. We attribute this to the unaccounted
delay in CM formation in prior models that contributes to
reduction in their effective assembly rates [22]. Therefore, we
were able to recapitulate HCV experimental observations that
were not built a priori into the model as well as match previous
estimates for comparable parameters.

To further validate our model, we evaluate the life cycle
dynamics of subgenomic HCV (sgHCV) transfected into
Huh7 (Huh7-Lp) cells and its more permissive derivative
(Huh7-Lunet) cells [17] (electronic supplementary material,
figure S2). Our estimates for kt, kr and kc (the rate of formation
of RCCM) for the subgenomic viral transfection are similar
to corresponding estimates for full-genomic HCV infection
(electronic supplementary material, tables S2 and S3)
suggesting the robustness of our model across different
experimental systems for HCV. However, the sgHCV
system exhibits delayed RC formation and faster (+)RNA
export out of CM compared to the virus infection. This may
be likely due to lack of structural proteins, transfection
induced cellular artefacts or additional pre-processing of
transfected RNA [17]. When we compare the sgHCV
dynamics in the two cell lines, the highly permissive Huh7-
Lunet cells exhibit faster CM formation (1.9 fold lower τF)
and higher stability of viral dsRNA replication intermediate
(11.8 fold larger NC) compared to Huh7-Lp cells [49],
suggesting efficient replication compartmentalization is cor-
related with higher cellular permissivity of HCV infection
(electronic supplementary material, table S3). This again
emphasizes that CM formation dynamics should be con-
sidered a critical aspect of (+)RNA viral dynamics models.

2.3. Comparative analysis of monopartite (+)RNA
viruses

To understand the differences in life cycle properties among
(+)RNA viruses, it is pertinent to compare same model par-
ameters across viruses. Attempts at such comparisons have
been challenging due to vast differences among the dynamics
of different viruses. Since our model explicitly accounts for
observed kinetics of vesicular compartment formation that
can be dramatically different among viruses, we asked if
our model can capture viral growth dynamics of two
additional families of viruses for which comprehensive viral
dynamics data exist, namely Enteroviridae (PV [19]) and
Flaviviridae (JEV [32]). Our model fits the dynamics of viral
RNA, proteins and extracellular virus well for both these
viruses from two independent studies (figure 2a,b). Compari-
son of life cycle process parameters (estimated distributions
shown in figure 2c, and summarized in table 1 and electronic
supplementary material, table S2) shows that the replication
rate (kr) and export rate of (+)RNA from compartment (ke)
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exhibit virus family specific trends (figure 2c). For example,
PV RNA replicates rapidly (60-fold higher kr) and
re-enters the cytoplasmic pool faster (16-fold higher ke) than
Flaviviridae family (HCV and JEV). Using our estimate of
kr = 210 h−1 for PV (similar to 133 h−1 estimated earlier [19])
and assuming PV genome replication takes 100 s [50], we
predict 5.8 simultaneous replication events occur perRCCM clo-
sely matching previously measured values of 6.5–7 [51,52]. On
the other hand, JEV displays ≈3.8 simultaneous replications
per RCCM (assuming RNA elongation rate of 150 nt min−1

[44]) comparable to HCV and Dengue as discussed above.
This further shows that ourmodel captures the nowwell recog-
nized fact that CMs are sites of multiple parallel replication
reactions without explicitly assuming it [2].

Protein synthesis rate kt = 18.9 h−1 for PV is comparable to
HCV and similar to a previous report [19] but JEV protein syn-
thesis is seven times faster. Although polyprotein processing
and host cell features affect kt, we attribute the high kt values
for JEV to its RNA cap-dependent translation initiation [53]
compared to the IRES mediated mechanism employed by
HCV and PV [54,55]. Faster protein production and an associ-
ated early induction of membrane reorganization could also
contribute to the faster functional maturation of CM for JEV
consistent with our estimates for τF.

Virus assembly and generation defined by ka is signifi-
cantly (greater than 105 fold) faster for PV compared to the
Flaviviridae viruses (HCV and JEV) reflecting their
corresponding complexity in assembly and maturation.
While the detailed mechanisms of virus assembly remain
poorly understood, HCV and JEV are enveloped viruses
made of 180 copies of three different structural proteins
[56,57] that require maturation post assembly whereas PV is
a smaller non-enveloped virus [58].

Since it is a common concern in multi-parameter fitting,
we tested whether the parameter estimates for each virus
were sensitive to the initial guesses or the choice of the
prior distribution. Compared to figure 2c that depicts
the estimated parameter distributions when a uniform prior
distribution is employed, we also estimated the posterior dis-
tributions for JEV and PV life cycle parameters but using a
HCV posterior distribution (as obtained in figure 2c) as the
prior distribution. Despite employing a highly skewed prior
distribution, we find that the parameter estimates for
both JEV and PV are largely unaffected (electronic sup-
plementary material, figure S6). This confirms that the
observed differences in parameter estimates are specific to
the corresponding viral life cycle dynamics.

The differences in virus life cycle parameters are also robust
to alternative model formulations (electronic supplementary
material, S5). For example, whetherwe consider amore gradual
rise in compartments (Weibull exponent, n = 2) for vesicular
compartment formation (electronic supplementary material,
figure S7) or pre-formed CM (fCM = 1) (electronic supple-
mentary material, figure S8), high rates for JEV translation,
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and rapid replication and assembly of PV set them apart
(electronic supplementary material, table S4). Similarly, stoichi-
ometry of PNS in formation of RCCM (electronic supplementary
material, figure S9), or consideration of replication coupled
assembly of viral particles [22] (electronic supplementary
material, figure S10) does not alter our virus-specific parameter
estimates. While goodness of fit based on cumulative AIC
values for the three viruses (electronic supplementary material,
table S4) demonstrates only a marginal advantage in favour of
our main model, measured CM formation dynamics [33,34]
support our choice of the model. Corroboration with indepen-
dent experimental data like recovery of steady-state levels of
replication intermediate [17,59,60] and steady-state positive/
negative RNA ratios [46,47] (electronic supplementarymaterial,
table S4) further supports ourmodel. Due to the lack ofmolecu-
lar details for virus assembly, our model only qualitatively
captures the virus assembly and release dynamics and we
cannot discriminate between alternative sites (CMs versus
cytoplasm) for virus assembly.

2.4. Conserved and virus-specific determinants shaping
viral life cycle

With the ability to describe viral dynamics across a broad
range of (+)RNA viruses, we evaluated how perturbations
in life cycle model parameters affect the viral dynamics
using temporal sensitivity analysis (TSA) with the eFAST
algorithm [61]. TSA profiles for RCCM, the key intermediate
and a surrogate for viral replication, highlight three distinct
phases for the viruses (figure 3a). The initial establishment
(E) phase is sensitive to the delay in formation of CM (τF),
and displays minimal replication due to shortage of CM.
The next growth (G) phase represents the rapid increase in
viral RNA production and is influenced by parameters gov-
erning the increase of (+)RNA in the cytoplasm, and thus
the formation of dsRNA replication intermediate. Growth
phase is sensitive to changes in viral replication rate (kr),
the kinetics of (+)RNA export from CM (ke) and the rate of
cytosolic degradation of (+)RNA (μR). The final saturation
(S) phase is defined by the pseudo-steady state behaviour
primarily regulated by the carrying capacity for RCCM (NC).
Though the TSA trends are qualitatively similar, the time
associated with each phase varies with the virus. The
length of the E phase correlates with the estimate for τF,
and time span of growth phase reflects k�1

r and k�1
e . There-

fore, while the G phase is comparable for HCV and JEV, it
is very short for PV as is evident with the rapid increase in
PV RNA in a short window of 2 h [19].

Differences in the TSA profiles across the viruses are more
evident when VT (figure 3b) and Rcyt (electronic supplemen-
tary material, figure S11) are considered. The profiles
associated with VT are particularly informative in identifying
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‘choke points’ and their effectiveness for different viruses. We
postulate that perturbations to replication (kr) would be more
effective than translation (kt) against JEV but vice versa for
inhibiting PV growth. For HCV, viral dynamics is influenced
by viral RNA degradation (μR) to a large extent followed by
translation and replication. μR is critical for HCV life cycle
as its (+)RNA has a large dwell time in the cytoplasm (due
to its large τF, k�1

t and k�1
c ). Thus, the model parameter sensi-

tivity can generate virus-specific insights into life cycle
intervention strategies that can be examined in the future.

2.5. Changes in NC and τF mimic the effect of
perturbations to compartment formation

Among the critical parameters discussed above, τF, ke and NC

are reflective of the CM formation dynamics and its architec-
ture. Various viral [1,2,4,7,35,62] and host perturbations
[63–66] and drug interventions [8–10] have been reported to
alter membrane reorganization, which ultimately affects
infection kinetics as well as the steady state achieved in the
later stages. To test how the dynamics of CM generation
defines the virus life cycle, we emulate some of these pertur-
bations by varying τF (for kinetics) and NC (for steady state)
and compare it to experimental observations.

Reticulon 3 (RTN3), an endoplasmic reticulum (ER) shap-
ing host protein, is involved in ER membrane reorganization
during various (+)RNA viral infections [63,64]. Silencing
RTN3 in host cells reduces viral replication of flaviviruses
[7] and enteroviruses [6], but increases it in the case of
HCV [5]. In our model, NC is the sole parameter that affects
the steady state levels of viral (− )RNA levels (RCCM),
which is perturbed upon RTN3 silencing in host cells [7].
By just varying NC, we are able to reproduce correlated fold
changes in (−)RNA levels, viral titre and PNS with respect
to viral RNA as observed for various flaviviruses [7] and
HCV [5] upon silencing RTN3 (figure 3c-inset, c,d ). This
also confirms that the model appropriately emulates the
steady-state level correlations among the various virus
constituents.

Our steady-state level relations for levels of virus and viral
protein with viral (+)RNA are distinct for the three viruses con-
sidered here. For HCV and PV, PNS varies linearly with viral
(+)RNA level; however it is sub-linear in the case of JEV
(figure 3d). The increase in VT with viral (+)RNA levels is
super-linear and sub-quadratic for JEV and HCV, respectively,
whereas it is linear for PV (figure 3d). These trends are corrobo-
rated by steady-state analysis of the model (see electronic
supplementary material, S3). Efficient assembly for PV (ka
Rcyt >> μP) leads to Rcyt-independent level of PS (PS≈ kt/ηS
ka), resulting in linear relation between VT and (+)RNA (VT≈
kr NC/μR≈Rcyt kt/μRηS). The analysis also suggests that
when comparing HCV and JEV, higher kt.ka estimate contrib-
utes to faster assembly of Rcyt. Thus, Rcyt (and consequently
PNS = kt Rcyt/μP) increases sub-linearly with NC for JEV.

To evaluate the effect of the compartment formation kin-
etics on the viral dynamics, we compare viral polyprotein
dynamics of HCV NS4B mutants, shown to be defective in
inducing membrane reorganization [35,62]. Using τF as the
sole fitting parameter (details in electronic supplementary
material, SM3), the model is able to accurately recapitulate
the normalized protein dynamics observed for these sgHCV
mutants [5] (figure 3e). The estimated τF for the NS4B sgHCV
mutants R52D, Y63A and R52DY63A are 63, 101 and 80 h,
respectively, compared to 5.8 h for the WT virus highlighting
how increased delay in CM formation affects viral dynamics.

2.6. Compartmentalization of replication defines the
fate of virus infection

Compartmentalization of viral replication establishes sites
for efficient (+)RNA replication, protected from cytoplasmic
degradation in the infected cell and leading to the rapid repli-
cation of the viral RNA. However, compartmentalization
is not guaranteed upon virus entry, with the possibility of
degradation of viral genome in the host cytoplasm before
membrane reorganization. Previous models that assume
pre-existing CMs do not envision this scenario. We posit
that the infection outcome of viral seeding event is an all-
or-none phenomenon that is determined at the onset of the
infection by the opposing effects of cytoplasmic viral
RNA degradation and the formation of RCCM (figure 4a).
Indeed, stochastic simulations of the HCV life cycle demon-
strate these two outcomes akin to a previous report [26]
(figure 4b). All realizations where RCCM is formed before
the complete degradation of viral RNA result in a productive
infection, otherwise the infection extinguishes.

Predictions of PV (+)RNA dynamics during infection using
a semi-stochastic simulation (see Methods) also support CM
formation delay acting as a major bottleneck to viral dynamics
(figure 4c). Compared to our main model (M1

4), similar simu-
lations with the pre-formed CM model (M

0
, using its estimate;

electronic supplementary material, table S4) do not match the
observed dynamics (figure 4c). Such discrepancy is not expli-
citly evident when comparing the two models for HCV and
JEV dynamics. Unlike PV, a very small lag is predicted by the
main model as τF for HCV and JEV is a small fraction of their
total cellular infection time-span. Furthermore, due to their
small replication rates (kr, compared to that of PV) the effect
of the lag in CM formation is not amplified (discussed in elec-
tronic supplementary material, S5). Yet our main model is
able to capture the dynamics for all viruses considered here
where other models fail.

We define the likelihood of productive infection establish-
ment (as observed in figure 4b) as the ‘cellular infectivity’, F.
F ranges between zero (complete extinction of infection)
and one (establishment of productive infection). We find
that this infectivity is influenced by virus–host factors that
are critical in the early stages of virus life cycle. For example,
F increases monotonically until saturation to one with
increasing viral seeding (N, the effective number of viral gen-
omes present in the cell upon entry) (figure 4d ). Similarly, it is
modulated by the kinetics of viral processes contributing to
the compartmentalization of replication (kt, t�1

F , kc) and the
stability of viral genome in the host cytoplasm (m�1

R ) (figure
4d,f; electronic supplementary material, figures S12 and
S14). Similar reduction in infection success rate has been
reported when CM formation is hindered by phosphatidyl-
inositol 4-kinase III alpha silencing [11] or in the case of
enterovirus mutations [6]. When compartment formation
dynamics is not considered (M

0
model), cellular infectivity

predicted is comparable for HCV and JEV but for PV it
suggests that negligible infection can be achieved even with
multiple infectious viruses per cell (F , 0:15 at N = 4).

While universally predicted for many RNA viruses that
employ some form of effective sequestering to achieve effi-
cient replication, we can now estimate cellular infectivity
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(F), based on their life cycle parameters from our model
(figure 4d ). For example, we determine that F for JEV >
PV >HCV and estimate the fraction of non-productive,
single virus JEV and HCV infections are 40% and 85%,
respectively. At larger viral seeding of N = 8, F for HCV is
0.95, closely matching the 95.3% infection success rate
observed during an infection with 8 genomes per cell (as
measured in the cell at 3 hpi [22]). Interestingly, while
infection success rate with 10 seeding genomes remains
unaffected when τF is increased by 2-fold, it drops by 50%
for a single virus infection (figure 4f ). This mirrors the
larger reduction in fraction of productive PV infected cells
observed due to action of membrane reorganization
inhibitor PIK93 [67] at low multiplicity of infection [12].
This effect may also explain the enhanced activity
observed when entry inhibitors (that would decrease effec-
tive virus seeding) are used in combination with other
antiviral agents, like protease inhibitors, membrane re-
organization inhibitors and cyclophilin inhibitors against
HCV [68,69].
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2.7. Synergy among strategies reducing cellular
infectivity

Since the life cycle parameters that limit F collaborate in
complex ways, we conjectured that their interdependence
would give rise to synergy in their effect. We use the Bliss
independence criterion [70] to evaluate this synergy (C)
since these early life cycle events are likely to occur indepen-
dently at the molecular level. Apart from reducing F

independently, τF and μR positively synergize (CtF ,mR
. 1)

when combined for the viruses (figure 5a; electronic sup-
plementary material, figure S16a,b). For example, doubling
of both τF and μR values resulted in an eightfold reduction
in F compared to the product of their independent actions
in the case of HCV. Positive synergism is also predicted
using the Loewe additivity model [71] (CI < 1; electronic sup-
plementary material, figure S17). In our formalism, synergy
stems from enhanced delays in the formation of compart-
ments leading to increased exposure of viral RNA to
cytosolic degradation. By extension, other RNA viruses that
employ compartmentalization to stabilize replication should
also display such behaviour.

At first glance, the quantitative relationship for τF− μR
synergy varies with the virus–host system and seeding den-
sity, in addition to the level of inhibition in a complicated
fashion (figure 5b). However, we find that when F ! 1 or
is close to extinction of infection (F ! 0), perturbations do
not influence F, individually or in combination. More impor-
tantly, figure 5c shows that CtF ,mR

decreases with {(1− p0) +
p12}, a surrogate for how far the system is from either of the
two deterministic limits (electronic supplementary material,
S4), where p0 and p12 denote F in unperturbed and doubly
perturbed conditions, respectively. Similar synergy and
associated negative correlation with {(1− p0) + p12} is also pre-
dicted for τF− kt (electronic supplementary material, figure
S16c-g). Therefore, interventions that target membrane reor-
ganization can be combined with other antiviral inhibitors
to target early life cycle events to achieve efficient viral
clearance.
3. Discussion
We incorporated the dynamics of CM formation accompany-
ing cellular infection into a simplified intracellular life cycle
description for monopartite (+)RNA viruses. This allowed
us to capture observed dynamics for viruses spanning mul-
tiple (+)RNA virus families, decipher the diverse effects of
antivirals, host cell susceptibility, host factor silencing, virus
mutations, as well as identify stochasticity associated with
establishment of (+)RNA virus infection upon cell entry.

Based on temporal dependencies among model par-
ameters, the viral life cycle can be categorized into three
phases—establishment, growth and saturation (pseudo-
steady state). High translation efficiency and fast CM for-
mation, as observed for JEV, result in a short establishment
phase. Following the compartmentalization of replication, the
life cycle enters the growth phase that is marked by positive
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feedback from the newly synthesized RNA fuelling the replica-
tion process. Kinetics of replication (kr), (+)RNA export from
CM (ke) and (+)RNA degradation in cytoplasm shape this
phase, which is short-lived for PV, owing to its high replication
and export rates. We attribute the significantly large virus gen-
eration and release rate (ka) for PV compared to the Flaviviridae
members to differences in virus structural complexity, assem-
bly and egress mechanisms [72,73]. Replicative fitness (partly
defined by kr and NC) and viral RNA stability (m�1

R ) determine
the steady state levels of cytoplasmic (+)RNA and viral titre in
the final saturation phase for all viruses. Not surprisingly, kr,
which is targeted by nucleoside inhibitors, remains a promis-
ing pan-viral drug target. Additionally, temporal sensitivity
profiles suggest that the replication kinetics for JEV ismore sen-
sitive to inhibition compared to translation while the reverse is
true for PV. Virus production is robust against reduction in
assembly rate (ka) for all the three viruses. Combined with
steady-state analysis, this suggests that genomes are packaged
efficiently compared to their effective synthesis and degra-
dation and hence targeting early viral life cycle events is
likely to be a prudent approach.

In our formalism, we also identify dynamics of CM for-
mation (broadly defined by τF and kc) to be a key kinetic
barrier in the early stage of the (+)RNA virus life cycle and it
has been aptly described as the ‘load and choke point’ [17].
We demonstrate that the ability of viruses to successfully estab-
lish an infection in the host cell is stochastic and this ‘cellular
infectivity’ (F) is determined at the onset of the infection.
Such early stochastic extinction of viral infection has been simi-
larly suggested due to biological noise [13,14,26]. Using our
model-based characterization of the viral life cycle, we are
able to estimate this effect for the viruses. For synchronous
co-infection, we predict that multiple genome infections are
more likely to result in productive infection than single copy
infection (as observed for PV [74]).

In a cell population, F quantifies the fraction of cells suc-
cessfully infected upon entry of infectious viral particle(s)
and correlates with the multiplicity of infection (MOI). As
with MOI (discussed in [73]), F also depends on seeding den-
sity (N) and virus–host determinants. Factors like viral
genome stability in cytoplasm (m�1

R ) and kinetics of viral pro-
cesses antecedent to formation of RCCM affect productive
infection. Indeed, drop in viral titres measured for trans-
lation-defective PV strains has been attributed to reduction
in infectivity rather than growth defects [75]. Infectivity is
highly sensitive to τF (compared to kt or kc). This agrees
with the reduction in F observed when membrane reorganiz-
ation is hindered independently [6,11]. Similarly, we
speculate that the infectivity of a virus in a host cell can
define its permissiveness [17,76,77].

Some of the early-infection parameters can also control
cellular infectivity effectively in combination, displaying
higher order effects due to their mutual action on common
viral entities or processes. Our predictions are consistent with
enhancements in antiviral activity observed for membrane re-
organizing inhibitor at lower MOI [12] as well as synergy
observed between cell entry inhibitors and several classes of
antiviral agents against HCV [68,69]. Thus, strategies or
drugs inhibiting CM formation, slowing translation, increasing
viral degradation and reducing viral seeding, are expected to
synergize in reducing infectivity. Host and viral heterogeneity
would further accentuate this all-or-none dimorphism due to
this intrinsic interdependence [13,15].
Decrease in overall viral production due to lower infectivity
can reduce viral seeding for the subsequent rounds of infection.
Due to its dependencyon viral seeding, such reduction in infec-
tivity can manifest in a compounding effect that reduces the
effective basic reproduction numberR0 and leads to viral clear-
ance. Therefore, cellular antiviral strategies that target cellular
infectivity can be used in conjunction with other interventions
(including action of innate immune response) that reduce the
virus load. Overall, our general theoretical framework serves
as a starting point for analysis of novel viruses with limited
molecular level characterization, to generate insights into life
cycle properties and bottlenecks, design of experimental
studies and evaluate antiviral strategies.
4. Methods
4.1. Experimental data
All experimental datasets used were curated from literature. Data
for estimation of τS were retrieved from [37–40]. Cellular life cycle
dynamics data forHCV, JEVandPVwere obtained from [19,22,32],
respectively. JFH1 (sgHCV strain) transfection dynamics and poly-
protein dynamics of HCV NS4B mutants were obtained from
[5,17], respectively. Effect of RTN silencing on viral dynamics
was curated from [5,7]. Figure digitization and data extraction
were done using WebPlotDigitizer [78].

4.2. Model fitting
Estimation of parameter values was done using iterative approxi-
mate Bayesian computation (iABC) algorithm. It iteratively
improves upon the current (or the prior) distribution of parameter
values, based on the convergence of the χ2 statistics, to fit model to
the observed data (described in electronic supplementarymaterial,
SM1). Briefly, we use Latin hyper-cube sampling [43] to efficiently
sample current parameter distribution in the multi-dimensional
parameter space. The deviation between the model prediction
(based on sampled parameters) and observed data is computed
as x2 ¼ PððPrediction�DataÞ2=VarðDataÞÞ [19,79]. To increase
robustness against sampling bias, we add uniform noise to the dis-
tribution while sampling at every iteration. A sub-set of the
parameter combinations with lowest χ2 values is picked to
update the parameter distribution estimation. For parameter esti-
mation, we start with a uniform distribution, over the range of
interest, as our prior estimate. However, to test the validity of par-
ameter estimation and check for robustness against initial guess,
we use the posterior estimated for HCV (during its unbiased par-
ameter estimation) to bias the prior estimate for fitting themodel to
JEV and PV life cycle. We observe that estimated distributions are
not very sensitive to the prior used (electronic supplementary
material, figures S6 and S5).

Practical identifiability is defined as the pairwise correlation
in values of parameter combinations derived from the final
iteration of estimation [19]. In case variance was missing,
we assumed a 25% relative error in the reported data to calculate
χ2 values. Further details on the algorithm, implementation and
diagnostic analysis are provided in the electronic supplementary
material, Methods.

4.3. Temporal sensitivity analysis
We used extended Fourier amplitude sensitivity test (eFAST)
[61,80] to estimate the corresponding temporal sensitivity profile.
Sensitivity indices for RCCM, VT and Rcyt, corresponding to a
change of up to 10% in parameter values, were evaluated
every 1.5 min through the course of the infection to generate
the temporal profile.
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4.4. Infectivity calculation and the semi-stochastic
framework

To estimate cellular infectivity (F), stochastic realizations of the
life cycle were implemented using the Gillespie algorithm [81],
and classified as (a) successful infection (IS) if RCCM is formed,
(b) failed infection (IF) if all viral (+)RNA degrade and (c) incon-
clusive if neither happen within a stipulated time. Since the fate
of infection was decided in all stochastic realizations for HCV life
cycle (slowest of the three viruses) by 12 h, this was used for the
simulation run time. We consider only the ‘conclusive’ realiz-
ations and define F as #(IS)/(#(IS) + #(IF)). Dynamics of fCM is
incorporated by updating it at every event or at steps of 0.05τF
(whichever is shorter). This limits the error due to discretization
of fCM to 6.5%.

As the life cycle starts with a few molecules and reaches
almost 105 copy number at saturation, we adopt a semi-stochastic
framework to make the simulations computationally tractable.
The initial part of the life cycle is simulated in the stochastic
domain, but when system size crosses a threshold we shift to
the deterministic (ODE based) framework. We define system
size as minimum of the copy number of the different viral
RNA species, namely Rcyt, RCCM and RCM. Here, we use RNA
species to define the system size as protein levels are higher
than RNA, and viruses are produced only in the late infection
phase. Varying the threshold for transition to deterministic fra-
mework, the mean predicted HCV viral RNA dynamics is
identical when using threshold of 50, 250 or 105 (equivalent to
a fully stochastic simulation for HCV life cycle; electronic
supplementary material, figure S15), implying that a choice of
threshold of 50 is sufficiently accurate to predict the system
dynamics in our semi-stochastic simulations. In our simulations,
unless explicitly mentioned, we use a transition of threshold of
50, and consider 104 independent realizations during analysis.
4.5. Bliss synergy (C) calculation
To calculate synergy (C) between two parameters, a1 and a2, that
reduce F, we estimate p0, p1, p2 and p12 as F corresponding to no
change, change in parameter a1, parameter a2, and in both par-
ameters, respectively. Synergy among parameters is given by
C ¼ g1:g2=g12 where gX denotes pX/p0 for X∈ 1, 2, 12 (Bliss cri-
terion [70]).

Data accessibility. Codes for iABC fitting can be downloaded from our
Github repository: https://github.com/hcharsh/iABC_fit/tree/
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