
Federated Deep Unfolding for Sparse Recovery

Komal Krishna Mogilipalepu?, Sumanth Kumar Modukuri?, Amarlingam Madapu, and Sundeep Prabhakar Chepuri
Indian Institute of Science, Bangalore, India

Abstract—This paper proposes a federated learning technique
for deep algorithm unfolding with applications to sparse signal
recovery and compressed sensing. We refer to this architecture
as Fed-CS. Specifically, we unfold and learn the iterative shrink-
age thresholding algorithm for sparse signal recovery without
transporting the training data distributed across many clients
to a central location. We propose a layer-wise federated learning
technique, in which each client uses local data to train a common
model. Then we transmit only the model parameters of that layer
from all the clients to the server, which aggregates these local
models to arrive at a consensus model. The proposed layer-wise
federated learning for sparse recovery is communication efficient
and preserves data privacy. Through numerical experiments on
synthetic and real datasets, we demonstrate Fed-CS’s efficacy and
present various trade-offs in terms of the number of participating
clients and communications involved compared to a centralized
approach of deep unfolding.

Index Terms—Algorithmic unrolling, compressed sensing, dis-
tributed learning, federated learning.

I. INTRODUCTION

Compressed sensing (CS) is a signal processing paradigm,
which allows acquisition and recovery of non-bandlimited
signals by utilizing the prior knowledge of the signal [1].
Specifically, CS ensures exact or almost exact recovery of
sparse signals from far fewer linear measurements than that
is needed for Nyquist sampling [2], thus reducing the costs
and time associated with data acquisition. CS has attracted
significant attention among researchers from various fields like
computational and medical imaging, communication systems,
and localization and positioning, to list a few [3].

The CS framework can be modeled using a linear system
of equations as y = Ax, where y ∈ RM is the measurement
vector, A ∈ RM×N is the sensing matrix with M � N
(hence the name compressed sensing). The inverse problem of
recovering x from y is ill-posed, and the recovery depends on
the compression ratio M/N and the sensing matrix. However,
we can incorporate any available prior information about
x ∈ RN in solving this ill-posed inverse problem. In CS,
the focus is on recovering a sparse vector x with very few
nonzero entries given A and y.

Over the last decade, a plethora of algorithms have been
proposed to recover a sparse x from y [3]. Majority of
the algorithms are based on iterative optimization approaches
such as orthogonal matching pursuit (OMP) [4], compres-
sive sampling matching pursuit (CoSaMP) [5], iterative soft
thresholding algorithm (ISTA) [6], and approximate message
passing algorithm (AMP) [7], to name a few. These approaches

This work was supported in part by the Pratiksha Trust Fellowship and
RBCCPS, IISc grant. ?These authors contributed equally to this work.

are developed from the knowledge of the model (e.g., prior
knowledge about the sensing matrix), and their performance
heavily depends on the proper choice of hyperparameters. The
iterative optimization-based approaches typically require tens
to hundreds of iterations to achieve an acceptable performance.

Different from such iterative optimization-based algorithms,
in [8], learning-based or data-driven approaches have also been
proposed for sparse recovery. These approaches learn a non-
linear mapping between the input and output from the training
dataset {xi,yi}Si=1, where S is the number of training exam-
ples. Often, these data-driven approaches outperform iterative
optimization algorithms. However, the network architecture in
these approaches is empirically determined, and it is hard to
interpret the network functionality.

In [9], Gregor and LeCun introduced a novel technique
called deep unfolding that leverages the advantages from both
iterative and data-driven approaches. In other words, they
investigated a principled framework for expressing traditional
iterative algorithms (e.g., ISTA) as a neural network with an
architecture that is interpretable. In particular, each iteration
was represented as one layer of a neural network. A deep
neural network (DNN) was formed by concatenating such
layers. The trained network takes measurements as input
and outputs a sparse vector, thereby mimicking the iterative
algorithm. There have been many recent advances in develop-
ing neural network architectures based on unrolling iterative
algorithms for problems such as sparse recovery [10], image
deblurring [11], signal recovery from one-bit quantization [12],
and one-bit CS [13].

The availability of large volumes of data makes the algo-
rithm unrolling useful and practical. Nowadays, in most of
the applications such as social media apps, medical equipment,
business platforms, internet of things (IoT) devices and mobile
phones are being used for collecting data. Mostly, the data in
these domains are privacy sensitive as it involves the personal
information (e.g., health records) of the users. Since the data is
privacy sensitive and distributed, the cloud-centric approaches
for training a neural network may not be useful [14], where
the raw data is collected from all clients in a cloud to train
a model. Alternatively, for training a complex collaborative
machine learning (ML) model by guaranteeing that the training
data remains on personal devices, a decentralized ML ap-
proach called federated learning (FL) was introduced in [15].
An important advantage of FL is the decoupling of model
training from the requirement of direct access to the entire
training data [14].

Existing learning-based sparse recovery approaches are

1950ISBN: 978-9-0827-9706-0 EUSIPCO 2021

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 12,2023 at 09:31:51 UTC from IEEE Xplore. Restrictions apply.

developed for a centralized setting, where the decoding of
the underlying sparse vector is done centrally. For many
IoT devices that require on-the-edge decision making, algo-
rithm unrolling using concepts from FL becomes imperative.
Therefore, in this paper, we propose a federated algorithm
unfolding approach for learning the iterations of ISTA. We
refer to this as Fed-CS. Precisely, we propose an algorithm
that leverages advantages from algorithm unfolding and FL,
and present a communication-efficient layer-wise federated
learning procedure to arrive at a consensus model. While there
are works on layer-wise federating standard neural network
models (e.g., convolution or recurrent neural networks) [16],
the algorithmic unrolling network model for sparse recovery
is fundamentally different. So is the considered layer-wise
training procedure.

The proposed framework finds application in medical imag-
ing (e.g., compressed sensing-based MRI systems [17]) or
radio astronomy (square kilometer array - SKA), where large
volumes of data are naturally generated in a distributed setting,
and one solves a sparse recovery problem. In addition, we
emphasize that distributed does not necessarily mean that data
needs to geographically far apart, and that network models
may be trained using different compute clusters in a parallel
manner by splitting the examples.

Our contributions are two-fold: i) We propose a novel
algorithm for a layer-wise federation and training to reduce the
communication cost, and ii) we demonstrate the performance
of our method with numerical experiments on synthetic and
real datasets and compare with state-of-the-art approaches.

II. PRELIMINARIES

In this section, we give a brief description of algorithm
unfolding for sparse recovery.

A. Learning sparse recovery iterations

We can recover the sparse vector x from the compressed
observations y = Ax by solving the convex program [1]

minimize
x∈RN

‖y −Ax‖22 + λ‖x‖1, (P1)

where ‖x‖1 =
∑N
i=1 |xi| is the `1 norm and λ is a hy-

perparameter that controls the sparsity. The problem (P1)
does not admit a closed-form solution and hence is solved
iteratively. ISTA [6] is one of the commonly used algorithms
to iteratively solve the problem (P1). The update equation of
ISTA is given by

x(i+1) = σλt

[
x(i) + tAT

(
y −Ax(i)

)]
(1)

where σθ[·] is the elementwise soft thresholding function. Its
jth entry when applied on x is defined as [σθ(x)]j := [|xj | −
θ]+ sign(xj) and t is an appropriate stepsize.

Learned ISTA (LISTA) [9] unfolds the ISTA iterations
and trains each iteration as a layer of DNN by replacing
tAT ∈ RN×M with V(i), I−tATA ∈ RN×N with W(i), and
λt ∈ R+ with θ(i), and treating {V(i),W(i), θ(i)} as trainable

parameters of the ith network layer. Specifically, the ith layer
of the LISTA network is expressed as

x(i+1) = σθ(i)
[
V(i)y + W(i)x(i)

]
, (2)

where Φ(i) = {V(i),W(i), θ(i)} collects the network param-
eters of the ith layer that is learnt from the training data and
σθ(i) [·] is the nonlinearity.

Let us define the trainable network parameters Θ(L) for a
network with L layers as Θ(l) = {Φ(i)}li=1. Then the LISTA
network with L layers can be interpreted as an estimator x̂ =
G(y,x(0);Θ(L)), parameterized by Θ(L), that estimates the
unknown sparse signal x given y and an initial point x(0).
Given the training dataset {(xs,ys)}Ss=1, the LISTA network
is trained by minimizing the loss function

f(Θ(L)) =
1

|S|
∑
s∈S
‖xs − G(ys,x(0)

s ;Θ(L))‖22

=
1

|S|
∑
s∈S

fs(Θ
(L)), (3)

where S = {1, 2, · · · , S} and G(y,x(0);Θ(i)) =: x̂(i) is the
estimated sparse vector at ith layer of the network. We can
train the LISTA network by minimizing the loss f(Θ(L)) with
respect to the network parameters Θ(L), e.g., using stochastic
gradient descent as Θ(L) ← Θ(L) − α∇f(Θ(L)). Here, α is
the learning rate.
B. Layer-wise training for LISTA

Layer-wise training is a commonly used technique for
training unfolded neural networks [10]. Let us define the initial
learning rate as α0 and the decayed learning rates α1 < α0

and α2 < α1. The layer-wise training is performed in 3
stages, and the lth layer is trained as follows: First, we train
the network parameters Φ(l) by minimizing the loss function
f(Φ(l)) with the initial learning rate α0. Next, use the pre-
trained weights to form Θ(l) = {Θ(l−1),Φ(l)}, and train the
network by minimizing the loss f(Θ(l)) with learning rates
α1 and then with α2. Finally, we multiply each weight in
Θ(l) with a decaying rate β. We then proceed to training the
weights of the next layer (See Algorithm 1 that we discuss later
for details). While decaying (adaptive) learning rates inhibit
significant changes in the previous layers, the weight decay
acts as a regularizer and prevents overfitting [10].

Next, we describe the proposed architecture for a feder-
ated algorithm unfolding for sparse recovery (Fed-CS), in
which we depart from a centralized learning procedure to a
distributed learning approach based on federated averaging.

III. FED-CS ARCHITECTURE

[t] Federated learning enables a collaborative approach to
train machine learning (ML) models, where multiple col-
laborators, referred to as clients, train the same model in
parallel on their local dataset. Further, each client sends their
updated models to a central server, which then aggregates
these client models into a consensus model. The server then
sends back the consensus model to all clients for further
training or deployment. This process is depicted in Fig. 1. Each
iteration of this process or the so-called communication round

1951

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 12,2023 at 09:31:51 UTC from IEEE Xplore. Restrictions apply.

Client 1

Client K

Aggregation serverClient 2

Fig. 1: Layer-wise federated learning for sparse recovery.

includes parallel training at clients, aggregating at servers and
distributing back the model to the clients. In this work, we
specialize federated learning for learning ISTA by performing
a layer-wise model consensus to reduce the communications
overhead. We restrict ourselves to the case where all the clients
participate synchronously.

Consider a setup with K clients and a server, as shown in
Fig. 1. Let us partition the set S into mutually disjoint non-
empty sets Sk such that S =

⋃K
k=1 Sk and Sk ∩ Sl = ∅ for

k 6= l. Suppose the training data available at the kth client is
{(xs,ys),∀s ∈ Sk}. At each client, we train a local network
of the form (2), i.e.,

x(i+1) = σ
θ
(i)
k

[
V

(i)
k ys + W

(i)
k x(i)

s

]
(4)

with s ∈ Sk, trainable parameters of the ith layer V
(i)
k ∈

RN×M , W
(i)
k ∈ RN×N , and θ

(i)
k ∈ R+. Let us collect

these parameters related to the kth client for the ith layer
and all the L layers in Φ

(i)
k = {V(i)

k ,W
(i)
k , θ

(i)
k } and

Θ
(L)
k = {Φ(i)

k }Li=1, respectively. The network parameters at
the kth client are computed by minimizing the loss function
Fk(Θ

(L)) = 1
|Sk|

∑
s∈Sk fs(Θ

(L)).
The gradient of f(Θ(L)) in (3) with respect to Θ(L) can be

expressed as

∇f(Θ(L)) =
1

|S|
∑
s∈S
∇fs(Θ(L)) =

K∑
k=1

|Sk|
|S|
∇Fk(Θ(L)),

where the gradients computed at the clients based on
their local data, denoted by Gk = ∇Fk(Θ(L)) =
1
|Sk|

∑
s∈Sk ∇fs(Θ

(L)) can be aggregated at the server to
compute the consensus gradient ∇f(Θ(L)). Now we can
compute the update Θ by aggregating the local updates at
the clients as

Local training: Θk ← Θk − αGk (5)

Aggregation: Θ ←
K∑
k=1

|Sk|
|S|

Θk. (6)

In other words, each client computes the current model param-
eters with its local data, and the server then takes a weighted

Algorithm 1: Local layer-wise training at the client

1 training(k, l, Θ
(l−1)
k , Φ(l), α0, α1, α2, β, E)

2 Φl
k ← Φ(l)

3 for e = 1 to E do
4 Φ

(l)
k ← Φ

(l)
k − α0

1
|Sk|

∑
s∈Sk ∇fs(Φ

(l)
k)

5 end
6 Θ

(l)
k ← Θ

(l−1)
k ∪Φ

(l)
k

7 for e = 1 to E do
8 Θ

(l)
k ← Θ

(l)
k − α1

1
|Sk|

∑
s∈Sk ∇fs(Θ

(l)
k)

9 end
10 for e = 1 to E do
11 Θ

(l)
k ← Θ

(l)
k − α2

1
|Sk|

∑
s∈Sk ∇fs(Θ

(l)
k)

12 end
13 Θ

(l)
k ← βΘ

(l)
k

14 Return {Θ
(l−1)
k ,Φ

(l)
k }

Algorithm 2: Fed-CS: layer-wise training
Input: K: number of clients, C: number of

communication rounds, E: number of local
epochs, α0, α1, α2: learning rates and
β: decaying rate.

1 Initialize {Θ(0)
1 ,Θ

(0)
2 , · · · ,Θ(0)

K }
2 for l = 1 to L do
3 Initialize Φ(l)

4 for c = 1 to C do
5 for k = 1 to K do
6 {Θ(l−1)

k ,Φ
(l)
k } ← training(k, l, Θ

(l−1)
k ,

Φ(l), α0, α1, α2, β, E)
7 Θ

(l)
k ← {Θ

(l−1)
k ,Φ

(l)
k }

8 Send Φ
(l)
k to server

9 end
10 Φ(l) ←

∑K
k=1

|Sk|
|S| Φ

(l)
k

11 end
12 end
13 for k = 1 to K do
14 Send Θ

(L)
k to the server

15 end
16 Θ←

∑K
k=1

|Sk|
|S| Θ

(L)
k

average of all the client’s model parameters and sends it back
to the clients.
A. Layer-wise federated learning for sparse recovery

In an unfolded neural network, every layer represents an
iteration [9], and the number of model parameters that
we have to communicate to the server will be significantly
more for an unrolled network with L layers. To alleviate this
communication overhead, we propose a layer-wise federation
protocol in which we communicate model parameters related
to only one layer. To do so, without loss of generality, we fix
the number of communication rounds per layer to C and the

1952

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 12,2023 at 09:31:51 UTC from IEEE Xplore. Restrictions apply.

number of local epochs at each client to E. The three-stage
layer-wise training at each client is described in Algorithm 1.

Next, we communicate the locally trained lth layer param-
eters in Φ

(l)
k , k = 1, 2, . . . ,K from all the clients to the

server, which then aggregates these parameters to arrive at the
consensus model for the lth layer. To arrive at a consensus the
aggregation is performed over C communication rounds. After
training L layers in this distributed fashion, we perform one
final aggregation step that aggregate Θ

(L)
k , k = 1, 2, . . . ,K

to arrive at the consensus model Θ. The entire procedure is
summarized as Algorithm 2.

IV. NUMERICAL EXPERIMENTS

In this section, we present results from numerical ex-
periments on synthetic and real datasets. The software for
reproducing the experimental results is publicly available 1.

Synthetic dataset: We consider a sensing matrix A with
M = 250 and N = 500. The elements of A are i.i.d. and
generated using a Gaussian distribution, i.e., aij ∼ N (0, 1

M).
The columns of the sensing matrix A are normalized to have
a unit `2 norm. We use this A for all the experiments. To
generate a sparse vectors x, we choose its entry to be non-zero
according to the Bernoulli distribution with p = 0.1 (i.e., on
average we generate sparse vectors with 10% non-zero entries)
and the values of the non-zeros are sampled from the standard
normal distribution. A test set of 1000 and validation set of 500
and training set of 70 samples are generated and fixed for all
the experiments as in [10]. We consider the number of clients
K = 10, communications C = 10, and evaluate the model for
L = 10 layers. We use the tuned learning rates α0 = 5e−4,
α1 = 0.2α0, α2 = 0.02α0, and the decaying rate β = 0.3. We
consider normalized mean squared error (NMSE) in dB, i.e.,
10 log10(E‖x − x̂‖22/E‖x‖22) as the performance metric for
sparse recovery. For a comparative analysis, LISTA [9] and
ISTA [6] (with best thresholding value 0.2) are considered.
For a fair comparison, we set the number of iterations for
ISTA equals to L, as in LISTA and Fed-CS. For training
and testing the LISTA network, we follow the implementation
in [10].

For evaluating the performance with respect to the number
of clients, we train Fed-CS by varying K from 1 to 10, where
each client has a fixed number |Sk| = 7 of training examples.
We train Fed-CS for different number of local epochs E =
100, 500, 1000. Fig. 2a, shows the test NMSE, averaged over
the considered test data points for different number of clients.
We see that the performance of Fed-CS improves with the
number of clients. Further, from Fig. 2a, the results indicates
that the performance of the proposed Fed-CS improves as
the number of local epochs E per client increases.

Next, we present the performance of the model with re-
spect to the number of layers. Note that for evaluating the
performance of the network we compute the averaged test
NMSE of the model after each layer is trained. In Fed-CS, the
number of communication rounds are fixed per layer, hence the
performance can be visualized in terms of the communication

1 https://github.com/sumkumar/Fed-CS

rounds. Fig. 2b shows the performance of the Fed-CS im-
proving with number of layers or total communication rounds.
To understand the client level training of the model, we show
the train, test and validation loss at one of the clients in Fig. 2c.
From Fig. 2c, we can observe that test and validation losses
are comparable to the training loss, and all the losses are
decreasing with an increase in the number of communication
rounds or number of layers. We also observe that for an
increase in the layer, the train, validation and test losses spike
and then decreases. Adding a layer to the network after C
communication rounds result in new parameters that need to
be trained due to which the train, validation, and test losses
spike at intervals related to C.

Finally, we compare Fed-CS with the traditional ap-
proaches, namely, ISTA (with the best thresholding value
0.025) and LISTA. Here, we set E = {100, 500, 1000},
and the communication rounds C = {10, 20, 25}. Fig. 2d
shows the test NMSE of the trained model for L = 10.
For fair compression with LISTA, we consider number of
epochs equals to E×C for all the experiments. From Fig. 2d,
we can observe that the proposed Fed-CS can outperform
the traditional ISTA [6] and comparable to LISTA [9] at
L = 10 (that demonstrates the performance of the trained
network with ten layers). Furthermore, from Fig. 2d, we can
see the performance improves with the increase in the number
of communication rounds. It indicates that the performance of
Fed-CS improves with communication rounds.

Real dataset: We consider the natural image dataset
BSD500 [18], which contains 500 natural images, each of
size 256×256. We use 400 images for training, 50 images for
validation, and 50 images for testing. As natural images are not
sparse in the spatial domain, we construct a dictionary D ∈
R256×512 using the block proximal gradient algorithm [19].
For training the dictionary D, we extract 10000 patches of
size of 16×16 from each image of the training set and convert
each patch to 256 × 1 vector. We consider A = ΨD, where
Ψ ∈ RM×256 is now the sensing matrix, which is generated as
described before for the synthetic dataset. We equally divide
the training data among all the clients for training the model
locally, and we use the same test and validation data across
all the clients. We consider E = 500, C = 10, K = 5, and
test the trained Fed-CS model for L = 10 layers.

To evaluate Fed-CS on the real dataset, we consider about
40% compression with M = 102 for training and testing.
For illustration, we consider two example images from the
test set. Fig. 3, illustrates the recovered images using the
proposed Fed-CS and baseline approaches. We can see that
the recovery of the proposed approach is comparable to
LISTA and outperforms ISTA, where LISTA and ISTA
use a centralized training technique. We compute PSNR by
averaging over 50 test images. The averaged PSNR values
for ISTA, LISTA, and Fed-CS are 21.16, 28.60, and 23.42,
respectively. In terms of the average PSNR, the performance
of Fed-CS is again comparable to LISTA.

Before concluding this section, we emphasize that Fed-CS
is not a competing technique to LISTA, but using more

1953

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 12,2023 at 09:31:51 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9 10

-24

-22

-20

-18

-16

-14

-12

E=100

E=500

E=1000

(a)

1 2 3 4 5 6 7 8 9 10

-25

-20

-15

-10

-5

0

E=100

E=500

E=1000

10 20 30 40 50 60 70 80 90 100

-25

-20

-15

-10

-5

0

(b)

1 2 3 4 5 6 7 8 9 10

-25

-20

-15

-10

-5

0

Train loss

Validation loss

Test loss

10 20 30 40 50 60 70 80 90 100

-25

-20

-15

-10

-5

0

(c)

C E LISTA Fed-CS ISTA
10 1000 −29.05 −22.22

−4.62

20 1000 −29.25 −23.36
25 1000 -29.26 -23.72
10 500 −26.5 −20.44
20 500 −29.05 −22.23
25 500 -29.16 -23.69
10 100 −19.11 −15.89
20 100 −21.91 −18.94
25 100 -22.96 -19.59

(d)

Fig. 2: Evaluation of Fed-CS on synthetic data with respect to different number of clients K, layers L, communication rounds C, and local
epochs E.

(a) Ground truth (b) ISTA (c) LISTA (d) Fed-CS

(e) Ground truth (f) ISTA (g) LISTA (h) Fed-CS

Fig. 3: Reconstructed sample images using ISTA, LISTA and FED-CS approaches with 40% compression rate.

local epochs, clients, or communication rounds, the consensus
model may benefit from distributed data.

V. CONCLUSIONS

We presented a layer-wise federated learning technique
for sparse signal recovery via deep unfolding. The proposed
method is useful in scenarios with many training examples that
are distributed in different locations. Unlike the centralized
deep unfolding methods, the proposed federated deep unfold-
ing method does not require transporting all the training data
to a central location. We also have demonstrated using real
and synthetic datasets that the consensus model obtained by
aggregating the locally trained models performs on par with
the centrally trained models for sparse recovery.

REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory, vol.
52, no. 4, pp. 1289–1306, Apr. 2006.

[2] R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal
Process. Mag., vol. 24, no. 4, pp. 118–121, Aug. 2007.

[3] M. Rani, S. B. Dhok, and R. B. Deshmukh, “A systematic review
of compressive sensing: Concepts, implementations and applications,”
IEEE Access, vol. 6, pp. 4875–4894, Jan. 2018.

[4] T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal
recovery with noise,” IEEE Trans. Info. Theory, vol. 57, no. 7, pp.
4680–4688, June 2011.

[5] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comp. Harmonic Anal., vol.
26, no. 3, pp. 301–321, May 2009.

[6] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
mun. Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, Aug. 2004.

[7] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing
algorithms for compressed sensing,” Nat. Acad. Sci., vol. 106, no. 45,
pp. 18914–18919, 2009.

[8] A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach
to structured signal recovery,” in Proc. Allerton Conf. Commun. Control
Comput., Monticello, IL, USA, 2015, pp. 1336–1343.

[9] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proc. Int. Conf. Machine Learning, Haifa, Israel, 2010,
pp. 399–406.

[10] X. Chen, J. Liu, Z. Wang, and W. Yin, “Theoretical linear convergence
of unfolded ista and its practical weights and thresholds,” in Proc. Adv.
Neural Inf. Process. Syst., Montrèal, Canada, 2018, pp. 9061–9071.

[11] Y. Li, M. Tofighi, J. Geng, V. Monga, and Y. C Eldar, “Efficient and
interpretable deep blind image deblurring via algorithm unrolling,” IEEE
Trans. Comput. Imag., vol. 6, pp. 666–681, Jan. 2020.

[12] S. Khobahi, N. Naimipour, M. Soltanalian, and Y. C. Eldar, “Deep
signal recovery with one-bit quantization,” in Proc. IEEE Int. Conf.
on Acoustics, Speech and Signal Process., Brighton, United Kingdom,
2019, pp. 2987–2991.

[13] S. Khobahi, A. Bose, and M. Soltanalian, “Deep one-bit compressive
autoencoding,” arXiv preprint arXiv:1912.05539, 2019.

[14] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Commun. Surveys Tut., vol. 22, no. 3,
pp. 2031–2063, Apr. 2020.

[15] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Stat., Fort Lauderdale, Florida,
USA, 2017, pp. 1273–1282.

[16] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khaza-
eni, “Federated learning with matched averaging,” arXiv preprint
arXiv:2002.06440, Feb. 2020.

[17] J. C. Ye, “Compressed sensing mri: a review from signal processing
perspective,” BMC Biomedical Engineering, vol. 1, no. 1, pp. 1–17,
2019.

[18] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. IEEE Int. Conf.
Computer Vision, Vancouver, BC, Canada, 2001, pp. 416–423.

[19] Y. Xu and W. Yin, “A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM J. Imag. Sci., vol. 6, no. 3, pp.
1758–1789, Sep. 2013.

1954

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 12,2023 at 09:31:51 UTC from IEEE Xplore. Restrictions apply.

