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Abstract— It is highly desirable for robots that work along-
side humans to be able to understand instructions in natural
language. Existing language conditioned imitation learning
models directly predict the actuator commands from the image
observation and the instruction text. Rather than directly pre-
dicting actuator commands, we propose translating the natural
language instruction to a Python function which queries the
scene by accessing the output of the object detector and controls
the robot to perform the specified task. This enables the use
of non-differentiable modules such as a constraint solver when
computing commands to the robot. Moreover, the labels in this
setup are significantly more informative computer programs
that capture the intent of the expert rather than teleoperated
demonstrations. We show that the proposed method performs
better than training a neural network to directly predict the
robot actions.

I. INTRODUCTION

A robot that can operate alongside humans and perform
a variety of tasks in unconstrained environments is a long
standing vision of robotic learning. These robots need to
be capable of understanding instructions in natural language
from untrained users[1]. In this paper, we address the prob-
lem of programming robots using natural language.

Imitation learning has been used in recent years to learn
end-to-end visuomotor policies that directly map pixels to
robot actuator commands[2][3][4][5][6][7]. However, this is
not the only way neural networks can be used for controlling
robots. It is also possible to use sensor data such as the
camera feed to construct a vector space representation of
the world and then to plan a path in this space[8]. For
example, an object detector can be used to find all the
objects in the scene. The locations of the detected objects
are used to determine the robot motion necessary to move
the objects to particular positions. Although this introduces
rigidity in the representation of the world, the advantages
of this approach include modularity (the object detector can
be replaced without modifying the rest of the system) and
interpretability (the output of the object detector can be
examined separately).

The majority of recent works on imitation learning have
used some input device such as game controller[9], VR
controller[3], visual odometry based 6-DoF position tracking
using smartphones[10][11], space mouse[12], etc. to record
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Fig. 1. The robot receives an instruction in natural language, say “Topple
the lock”, observes the scene through the camera, localizes the objects in
front of it, translates the natural language instruction to a Python function
block, and then executes the function.

Fig. 2. The instruction in natural language is translated into a Python
function block, and the output of the object detector is passed as arguments
to the function.

experts teleoperating a robot. In this work, we take a different
approach to collect expert demonstrations. We give a natural
language instruction prompt and have experts write a Python
function that controls the robot to accomplish the task
specified in the instruction (Fig. 1). This function takes the
output of an object detector as its argument and moves the
end-effector of the robot arm to perform the specified task
(Fig. 2). The dataset collected in this manner is used to train
a neural network that takes a natural language instruction as
input and predicts a Python function block which controls
the robot when executed.

A few examples of the tasks we consider are: (a) Push
the orange towards the apple, (b) Place the apple between
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the orange and the apple, (c) Pick up the orange and use
it to push the bottle off the edge of the table. Although our
robot does not use a force sensor and can only move the end-
effector using position control, it is possible to expand the
set of primitive instructions of the robot to include complex
macro instructions such as peg-in-hole insert instruction
that may invoke a separately trained policy network[12].
Our approach is most suitable for “gluing” together simpler
commands to compose a more complex program. A potential
application for our method is in augmenting teach pendants
to accept instructions in natural language.

There are several advantages of having expert demonstra-
tions in the form of program code. One is that the expert
program can invoke complex subroutines such as a constraint
solver. It can be difficult to train an end-to-end neural
network to copy the behavior of such complex modules.
The other advantage is that the intention of the expert is
clearer and less ambiguous in the program representation
than in teleoperated demonstrations. For example, to “push
the orange off the table”, the program to perform this task
clearly indicates the robot motion for different possible
positions of the orange, whereas, we would need many more
teleoperated demonstrations each corresponding to a different
position of the object to be able to train a neural network
to reliably copy the expert behavior. Finally, the program
representation is more interpretable and amenable to analysis
before it is executed.

Our contributions are:
• We propose an imitation learning setup where the expert

demonstrations are in the form of program code and
use a neural translation model to translate instructions
in English to Python code that controls the robot.

• We show that the proposed method performs better
than directly mapping natural language instructions to
actuation commands.

The rest of this paper is organised as follows. In the
following section, related work is discussed. Section 3 de-
fines the problem statement. In Section 4, the neural network
architecture that we use is described in detail. Experimental
results are discussed in Section 5, and Section 6 concludes
the paper.

II. RELATED WORK
Several recent papers have demonstrated that it

is possible to learn visuomotor skills from human
demonstrations[6][13][14][12][5][9][7]. Input devices
such as VR controller[3], space mouse[12], visual odometry
for 6-DoF position tracking using smartphones[10][11], etc.
have been used to gather expert demonstrations. What is
common to all of these approaches is that some input device
is used to enable human experts to teleoperate the robot. In
this work, we deviate from that approach by having experts
indirectly control the robot by writing Python programs.

Understanding natural language in the context of the visual
scene of the robot has been addressed by several papers. In
[15], a robot system to pick and place common objects is
built where the object is inferred from the input image and

grounded language expressions. Understanding instructions
provided in spoken language with incomplete information
based on the context of the input image and common sense
reasoning is addressed in [16]. The authors in [17] propose
a synthetic dataset for visual question answering to debug
and understand weaknesses in different grounded natural
language reasoning models. In [18], the Blocks dataset is
proposed to evaluate grounded spatial reasoning capabilities
of neural networks. Our work also has an emphasis on spatial
reasoning, but we go beyond moving a single object.

Unlike the above mentioned works, the Learning from
Play (LfP) approach in [1] is goal-based imitation learning
with the neural network directly controlling the actuators.
Rather than conditioning on the target image, [1] replaces
it with a latent vector derived from the natural language
input. In this paper, we use the more traditional imitation
learning approach and have experts translate natural language
instructions into Python code. In Concept2Robot[19], a large
dataset of human demonstrations (not teleoperated) is used
to learn a reward function that is then used for training a
policy network using reinforcement learning. In this work,
we do not use reinforcement learning or a reward function
and instead use the programs written by the expert in a fully
supervised learning setting.

Much attention is devoted to object detection in the com-
puter vision literature[20][21][22][23][24]. Although end-to-
end imitation learning does not use object detection, it is also
possible to use a pipelined approach where object detection
is one module. For example, in [25], the pick-and-place task
is performed by picking up the object at a grasp point and
then bringing it near the camera for classifying to which bin
the object should be placed in. In this paper, we use a fully
convolutional object detector inspired by [21] to detect the
positions and sizes of all the objects in the scene.

The problem of answering queries in natural language
using data from a table is addressed in [26]. There are
broadly two approaches to this problem. One way is to
approach this as a semantic parsing problem and to generate a
logical form or a SQL query from the natural language input.
The other way is to process the natural language instruction
along with the contents of the table to directly predict the
answer. The latter approach subsumes the process of running
the query into the neural network itself. In this paper, we
generate Python function blocks rather than SQL statements
from natural language.

In [27], the authors propose generating code from docu-
mentation strings. In [28], a pre-trained model for program-
ming languages is proposed. A “transpiler” that translates
code from one language to another is proposed in [29].
Although this paper also proposes generating program code
from natural language, the end goal of controlling the robot
is different. As a result, the evaluation metrics and baselines
also differ. Moreover, our primary objective in this work is
not to improve on code generation methods, but to show that
generating code can outperform direct prediction of actuator
commands.
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Fig. 3. A sample function for the arrange task that takes the width and
height of all the objects and determines the positions of the objects on the
table as specified by the natural language instruction (which is shown in
the docstring). The Cassowary constraint solver is used to determine the
positions of the objects. Note that the extents of the table on which the
objects are to be placed is normalized to be in the range [−1, 1].

Fig. 4. A sample function for arrange task that uses the output of the
constraint solver before deciding to add additional constraints.

III. TASK DESCRIPTION

We consider two different tasks where the task is specified
using natural language.

A. Arrange task

This task involves taking objects from a tray and placing
them at different positions on the table. The instruction in
natural language along with the width and height of all the
objects are the inputs and the goal is to predict the positions
of the objects on the table. The motion planning to pick up
the object from the tray and place it at the specified location
is performed separately (this is not learned).

Figures 3 and 4 show sample programs that compute the
positions of the objects for the given natural language in-
struction. The program uses the Cassowary constraint solver
(which uses the simplex method) to declaratively specify
constraints for the positions of the objects. Note that it’s
not entirely declarative and the program can access the

Fig. 5. A sample function for the manipulation task that takes the positions
and sizes of all the objects on the table and determines the sequence of robot
actions to accomplish the goal specified by the natural language instruction
(which is shown in the docstring). The program can control the robot by
specifying the end-effector position and the suction gripper state (on/off).

Fig. 6. A sample function for manipulation task that uses trigonometric
functions in the Python standard library to compute the trajectory of the
end-effector of the robot.

intermediate solution before declaring additional constraints
(Fig. 4). After the program is executed, the positions of all
the objects determined by the constraint solver are used to
plan the pick-and-place motion of the robot arm.

B. Manipulation task

This task involves manipulating objects on the table as
specified by the natural language instruction. Typical tasks
involve reaching for an object, pushing an object somewhere,
and picking-and-placing an object. To control the robot, the
action space is (a) to move the end effector of the robot to the
specified position (x, y, z, r), and (b) to control the suction
gripper (on/off). The robot can be controlled by emitting
a sequence of end effector poses and grip commands. An
object detector makes available the positions and sizes of
all the objects. The goal is to take the positions and sizes
of all the objects on the table and to emit a sequence of
end-effector positions and gripper on/off commands.

Figures 5 and 6 show sample programs that control the
robot to accomplish the task specified by the natural language
instruction. Unlike the previous task, the objects are already
on the table. Moreover, the program must not merely specify
the desired state, but it must also directly control the robot
to get to the desired state. So, the current positions of the
objects are used to compute the appropriate actions.
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Fig. 7. Illustration of the system architecture. The natural language instruction is translated into the tokens of a Python program using neural machine
translation. These tokens are assembled into an anonymous Python function. The list of objects in the scene from the object detector are passed as arguments
to this function. Object classes that are not present in the scene are set to “None” when calling the generated function and will cause an exception if the
generated function attempts to read their properties. When the function is executed, it communicates with the robot via a simple API consisting of “move”
and “grip” commands.

Fig. 8. The proposed neural machine translation architecture. The recurrent cells used are a single layer of LSTM cells with hidden state dimension of
1024. In the decoder, the context vector ct is concatenated with ht and passed through fully connected layers (FC1024-ReLU-FC100-Softmax) to predict
the target sequence.

IV. NETWORK ARCHITECTURE

The overall system architecture is depicted in Fig. 7 with
an example in Fig. 2. The image from the camera and the
instruction in natural language are the inputs, and a Python
program that drives the robot is the output. The image from
the camera is processed by an object detector to obtain a
list of objects in the scene. For each object in the scene, the
object detector provides its position and size. We use a single
shot detector[30] fine-tuned to detect the objects we use, but
any object detector can be used without affecting the rest of
the system. The natural language instruction is processed
by a neural machine translation model described in the
following paragraphs to translate the instruction into tokens
of a Python function body (Fig. 8). The Python function is
constructed by listing all the detected objects as arguments to
the function and concatenating the generated tokens to form
the function body. When executed, this function drives the
robot to perform the task specified by the natural language
instruction. Note that the objects that can be detected are
fixed, and the translation model can only generate tokens
corresponding to the known objects (present in the training
set). However, the translation model can potentially generate
arbitrarily complex programs.

We use an LSTM based neural machine translation model
with attention[31]. Unlike most language vision models, our
translation model does not take the image observation as an
input. Rather, the program generated by the network accesses
the attributes of the objects detected and controls the robot
based on that.

The input natural language instruction is tokenized, and
the embeddings for the tokens are obtained using a pre-
trained BERT model[32]. Note that the BERT layers are
frozen and remain unchanged during training. The input se-
quence embeddings are processed by an encoder LSTM with
hidden states h̄s. After all the input tokens are processed,
a decoder LSTM predicts the target sequence that is used
to construct the Python function body. Our choice of using
an LSTM on top of frozen BERT layers was dictated by
concerns about being able to access a desktop workstation
for the experiments.

At each step of the decoder, the decoder state ht is used
to attend to the input states and infer the context vector ct
that is used to predict the output yt.

The variable length alignment vector at of size equal to
the number of steps in the input sequence is obtained by
comparing the decoder hidden state ht with each of encoder
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hidden states h̄s:

ât(s) = hT
t Wah̄s (1)

at(s) =
exp(ât(s))∑
s′ exp(ât(s′))

(2)

The context vector ct is computed as the weighted average
of the hidden states of the encoder h̄s:

ct =
∑
s

at(s)h̄s (3)

The context vector ct and the decoder state ht are concate-
nated and passed through fully connected layers to predict
the target sequence token yt.

V. RESULTS

There are several parts in the proposed system, and each of
them can cause the robot to fail in performing the specified
task. The object detector might be inaccurate, the generated
program might be incorrect, or the end-effector might not
successfully pick an object (for example, suction fails to lift
an object). Although we are ultimately interested in whether
the robot can successfully complete the task specified, it is
useful to isolate the proposed machine translation model
and analyze it independently. For this, we assume that
the object detector is perfectly accurate and the robot is
always successful in moving and picking objects. Under
this ideal scenario, we first evaluate the proposed approach.
Subsequently, we discuss the performance of the complete
system on a real robot arm.

The proposed method is evaluated using a desktop work-
station with Intel Core i7-4790K processor, 32 GB RAM,
and nVidia RTX 2080Ti GPU. The models are trained using
Tensorflow 1.14. A USB webcam (Logitech C310) attached
to the workstation is used to capture images. The single shot
object detector (from Tensorflow hub) finds the objects in
the scene, and the translation model generates the program
from the natural language instruction. We wrote a thin
custom wrapper around the “pydobot” package to provide
a simple Python API that the generated program uses to
control the Dobot Magician robot arm which is connected
to the workstation via USB. The pre-trained BERT model,
which we use in our translation moel, is obtained from the
HuggingFace Transformers library[33].

A. Datasets

1) Arrange Dataset: The arrange task involves arranging
objects on the table as specified by the instruction in natural
language. For this task, we have collected the arrange dataset,
a parallel corpus of instructions in English and Python
functions. The function takes the object sizes as arguments
and sets the position of the objects as indicated in the
instruction. Some examples are shown in Figs. 3 and 4.
Note that in addition to the object sizes, the function is also

Fig. 9. Sample generated program (incorrect) from the test set for the
arrange task. The input instruction is in the docstring. The underlined code
is incorrect. The neural network seems to have overfit for instructions with
multiple phrases, and the generated code resembles a sample in the training
set.

given the Cassowary linear constraint solver1 to specify the
positions of objects as constraints to be solved. The arrange
dataset has training / development / test split of 102 / 11
/ 11 samples. These samples are augmented by randomly
changing the object(s) simultaneously in both the instruction
text and the program.

We also execute each ground truth program in the corpus
for 20 different random initializations of the sizes of the
objects to obtain the positions of the objects given those
sizes. This secondary dataset is used for fair comparison
with baseline models that directly predict the positions of
the objects given the instruction and sizes of the objects.

2) Manipulation Dataset: This task involves manipulating
objects already present on the table as specified by the
instruction in natural language. Typical manipulation tasks
in this dataset are reaching for an object, pushing an object
somewhere, and picking-and-placing an object. For this task,
we have collected the manipulation dataset, a parallel corpus
of instructions in English and Python functions. The function
takes the positions and sizes of all the objects on the table and
controls the robot through an API that allows it to specify a
sequence of end-effector poses and gripper states (on/off). A
few examples are shown in Figs. 5 and 6. The manipulation
dataset has training / development / test split of 122 / 12 /
12 samples. These are augmented by randomly changing the
object(s) simultaneously in both the instruction text and the
program.

For each sample in the manipulation corpus, the ground
truth Python program is executed for 20 random initializa-
tions of the positions and sizes of the objects on the table
and with a mock robot that records the sequence of end-
effector positions and gripper state changes. This is used for
fair comparison with baseline models that directly predict
the sequence of end-effector poses given the instruction text
and the sizes and positions of the objects.

1The Cassowary algorithm is used by Apple UIKit to place UI elements
in GUIs
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Fig. 10. Sample generated program (correct) from the test set for the
manipulation task. The input instruction is in the docstring. The program
moves the end-effector to push the object to the intended location.

Fig. 11. Sample generated program (incorrect) from the test set for the
manipulation task. The input instruction is in the docstring. The underlined
code is incorrect. The network seems to have overfit since the incorrect
generated program resembles a sample in the training set.

Fig. 12. Sample generated program (correct) from the test set for the
manipulation task. The input instruction is in the docstring. The program
successfully controls the robot to perform the task.

B. Baselines

For the arrange dataset, we use LSTM+FC layers[18] as
the baseline. The LSTM encodes the instruction text into a
fixed size vector. This is concatenated with the sizes of all
the objects and passed through several fully connected layers
to directly predict the positions of all the objects.

For the manipulation dataset, we use an encoder LSTM
to encode the instruction and a decoder LSTM that, at every
timestep, concatenates the decoder state and the attention
context vector at that timestep along with the positions
and sizes of all the objects on the table, and passes this
concatenated vector through fully connected layers to predict
the end-effector pose and grip state[5].

C. Evaluation Metric

Evaluating a machine translation model that generates
programs is challenging. Traditionally used metrics for trans-
lation models such as the BLEU score that measures the
similarity between the predicted and ground truth tokens do

Fig. 13. Visualization of attention over the natural language instruction
when predicting the token denoted by “?”. When predicting the y-coordinate
of the move function call, the attention layer is focusing on the “bottom”
edge of the table to emit the “-1” token.

not work well for measuring similarity of program code. The
slightest change (a ‘+’ to a ‘-’) might give a high BLEU score
but result in catastrophic failure, whereas dis-similar looking
programs might actually be expressing the same logic[29].
We could simply check to see if the generated program is
syntactically valid. But, this overestimates performance since
many generated programs that are syntactically valid might
still not accomplish the specified task. On the other hand, if
we check to see if the generated program exactly matches
the ground truth, we would underestimate performance since
the same logic can be expressed in myriad ways. So, the best
way to evaluate the generated code is to execute it and to
check what it does[29]. Thus, we choose an extrinsic metric
to evaluate the goodness of the generated program.

We use accuracy as the evaluation metric. Each of the
predicted programs are executed 20 times with randomized
object positions and sizes. Our custom robot API allows us
to capture the actuator commands generated by the Python
program driving the robot. During training and validation,
the robot API calls (such as “move” and “grip”) along
with the arguments are merely recorded and not sent to the
robot. Thus, we can execute both the generated program
and the ground truth program and compare the resulting
end-effector trajectories. For the arrange dataset, we treat
the prediction to be “correct” if the absolute difference
between the predicted position and ground truth position is
less than 10% of the width of the table (on both x and y
axes). Although the natural language instruction might admit
multiple solutions (for example, “place the apple to the left
of the orange” is under-specified), all the labelled data have
a canonical, unambiguous target position, which eliminates
any difficulty in measuring accuracy. For the manipulation
dataset, the prediction is considered accurate if the absolute
difference between the predicted trajectory and the ground
truth trajectory is less than 10% of the width of the table
at every timestep. This is merely an easy-to-evaluate proxy
for whether the robot is truly accomplishing the task in the
instruction. A more thorough evaluation that properly tests
whether the task specified was performed successfully is
conducted on a few samples with a real robot arm (Section V-
E).

D. Discussion of Results

Table I compares the results of the proposed method with
the baselines. All the architectures are trained using the
Adam optimizer (learning rate 1e-3) for 10 epochs with
batch size of 16. For both tasks, the proposed method
of generating a Python program and then executing that
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Fig. 14. Visualization of attention over the natural language instruction
when predicting the token denoted by “?”. When predicting the y-coordinate
of the move function call, the attention layer is focusing on the “orange”
in the input instruction to emit the “orange” token.

TABLE I
COMPARISON OF THE PERFORMANCE OF BASELINES (SECTION V-B)

AND THE PROPOSED MODEL (SECTION IV)

Model Arrange Task Manipulation Task
Baseline ([18] / [5]) 14.2% 9%
Proposed Seq2Seq model 80.8% 93.2%

program outperforms the baselines which directly regress the
object positions (arrange dataset) or end-effector poses (ma-
nipulation dataset). The percentage of generated programs
that were malformed (due to syntax errors) and could not
be run were 0.6% and 2.81% in the arrange dataset and ma-
nipulation dataset respectively. The baseline models perform
significantly worse on our dataset than other datasets[18] and
also compare poorly with the translation model because we
are attempting to train, with limited training data, a neural
network to learn to solve linear constraints (Fig. 4). However,
in the proposed method, the constraint solver is presented
as a readily available tool which the translation model only
needs to learn how to employ. In the manipulation task, the
same instruction text can result in very different robot end-
effector trajectories depending on the positions of the objects
(for example, “push the bottle off the edge of the table”). The
program captures all possible trajectories concisely and also
the switch-over points when the trajectory changes because
the location of the relevant object has changed (Fig. 6). In
contrast, the teleoperated expert demonstrations capture the
trajectory only for the position of the object in that sample
and offer no clue as to when a different trajectory is suitable
for the same instruction text.

Figures 9-12 show a few programs generated from the
test set. Figures 13 and 14 show the attention weights for
different tokens of the input instruction text when predicting
a particular output token. We see that the attention mecha-
nism is focusing on the relevant part of the instruction when
predicting the program.

We have also experimented with replacing words in the
instruction text with synonyms. We found that replacing
“put” with “keep”, “place”, and “put down” always resulted
in correct predictions. Likewise, we found that removing the
word “the” does not change the output. Similarly, replacing
“right-top corner” with only “right-top” or “top right” results
in no changes to predicted sequence. However, substituting
the words for objects, such as replacing “bottle” with “flask”
or “pitcher” and “cup” with “chalice”, caused incorrect
predictions. Also, deleting the object from the instruction

text resulted in incorrectly generated programs that had
syntax errors. Although our datasets are small, these findings
suggest that it is worth investigating the proposed method of
using neural machine translation for code generation with
larger datasets. Similar recent efforts using GPT-3[34] to
generate code also bolster the case for further investigation.

We also found that the generalization worsens as the
number of phrases in the input sequence increases (Figs. 9
and 11). There are only a few samples in the training set
with 4 phrases (such as “place the orange at the bottom-
right, the apple at the top-right, banana at the center, and the
lemon to the right of the apple”). The model overfits on such
long phrases and gives incorrect predictions that resemble
the training data. However, if the input instruction is split at
the commas into multiple short phrases, the model correctly
predicts the positions for each of the phrases. But, this is not
a viable solution because there are many instructions where
such a split is not possible since the latter phrases refer to
objects in the former (for example, “place the apple at the
center, the orange at the top-right, and the banana in between
them”).

E. Demonstration on the Robot Arm

We demonstrate the complete pipeline with a Dobot
Magician (Fig. 1). Common objects such as fruits, cups,
magnets, etc. are used. An object detector[30] is trained
to detect the position and size of these objects, but the
depth (tallness from the table surface) of the object is
measured beforehand and hard coded. The camera feed from
an overhead camera is passed through the object detector
whose output is passed as arguments to the Python function
generated by the proposed method from the natural language
instruction, and the function is executed. Out of 25 trials, 19
were successful with the robot accomplishing the task. All
the failures were due to inaccuracies in the object detector
or the suction gripper failing to pick up the object (the few
longer instructions which systematically caused translation
errors were not present in the small sample of instructions
tested with the real robot). A video of the robot in operation
is available at: https://youtu.be/usCvsDIgWOM

VI. CONCLUSIONS

We find that programs are rich representations of the ex-
pert demonstrations and are beneficial for learning to control
robots. Moreover, the predicted programs are interpretable
and easier to analyse than end-to-end neural networks that
directly predict robot actions. Although this approach is nec-
essarily constrained to those problems for which the solution
can easily be expressed as a program, the proposed approach
may find use in augmenting teach pendants for industrial
robots to generate programs based on verbal instructions. The
proposed method of generating programs is promising, so it
could be worth investigating if performance can be improved
by pre-training the program generator on a large corpus of
source code. The proposed approach could also be useful in
enabling an easily interpretable conversational system where
the robot can ask clarifying questions.
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