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Abstract—In Multi-Agent Reinforcement Learning (MARL),
multiple agents interact with a common environment, as also
with each other, for solving a shared problem in sequential
decision-making. In this work, we derive a novel law of iterated
logarithm for a family of distributed nonlinear stochastic
approximation schemes that is useful in MARL. In particular,
our result describes the convergence rate on almost every sample
path where the algorithm converges. This result is the first of
its kind in the distributed setup and provides deeper insights
than the existing ones, which only discuss convergence rates
in the expected or the CLT sense. Importantly, our result
holds under significantly weaker assumptions: neither the gossip
matrix needs to be doubly stochastic nor the stepsizes square
summable.

I. INTRODUCTION

An archetypical setup of MARL has a directed graph
G with m distributed nodes and a matrix W ≡ (Wij) ∈
[0, 1]m×m whose ij-th entry denotes the strength of the edge
j → i in G. The update rule at agent i is given by

xn+1(i) =
∑
j∈Ni

Wijxn(j) + αn[hi(xn) +Mn+1(i)], (1)

where xn ∈ Rm×d is the joint estimate at time n, its j-th
row, i.e., xn(j) denotes1 the estimate obtained at agent j, Ni

represents the set of in-neighbors of node i in G, αn is the
stepsize, hi : Rm×n → Rd is the driving function at agent i,
and Mn+1(i) ∈ Rd is the noise in the evaluation of hi(xn).

The joint update rule of all the agents is

xn+1 = Wxn + αn[h(xn) +Mn+1], (2)
where Mn+1 is the m×d matrix whose i-th row is Mn+1(i),
and h is the function that maps x ∈ Rm×d to the m × d
matrix whose i-th row is hi(x). Let E(x∗) := {xn → x∗}.

II. ASSUMPTIONS AND MAIN RESULT

We make the following four technical assumptions, i.e.,
A1, . . . ,A4, in relation to the DSA scheme given in (2).
A1) Property of the Gossip Matrix: W is an irreducible

aperiodic row stochastic matrix.
A2) Nature of h near x∗: There exists a neighbourhood U

of x∗ such that, for x ∈ U ,

h(x) = −1′π(x−x∗)A+1′πf1(x)+(I−1′π)(B+f2(x)),

1By default, all our vectors are row vectors. We use ′ for transpose.

where A and f1 have certain regularity properties.
A3) Stepsize Behaviour: There exists some decreasing

positive function α defined on [0,∞) such that the
stepsize αn = α(n). Further, α is either of Type 1
or Type γ.

A4) Noise Attributes: With Fn = σ(x0,M1, . . . ,Mn) and
Mn+1 is martingale difference sequence with certain
regularity properties.

These regularity conditions are detailed in [1] and
generalize the standard assumptions [2], [3], [4]. Our
main result can now be stated as follows. This generalizes
Theorem 1 from [2].
Theorem II.1 (Main Result: Law of Iterated Logarithm).
Suppose A1, . . . , A4 hold and γ > 2/b. Then, there exists
some deterministic constant C ≥ 0 such that

lim sup[αn log tn+1]
−1/2∥xn − x∗∥ ≤ C a.s. on E(x∗).

Remark II.2. Our result shows that, a.s. on E(x∗),
∥xn − x∗∥ is O(

√
n−1 log log n) in the Type 1 case, and

O(
√

n−γ log n) in the Type γ case.

III. PROOF OF THE MAIN RESULT: A SKETCH

The key steps in the proof of Theorem II.1 follow. The
complete details can be found in [1]. With Q = I− 1′π, ob-
serve that 1′πx∗ = x∗ and, hence, xn−x∗ = 1′π(xn−x∗)+
Qxn. The first and second terms are referred as the agreement
and disagreement components. This decomposition differs
from the standard approaches [5], [6], [7], wherein xn − x∗
is split into (1′1/m)(xn − x∗) and (I− (1′1/m))xn.

Lemma III.1. (Agreement Error) Almost surely on E(x∗),

lim sup
n→∞

∥1′π(xn − x∗)∥√
αn log tn+1

≤ C. (3)

Lemma III.2. (Disagreement Error) Almost surely on E(x∗),
for any δ > 0

lim sup
n→∞

∥Qxn∥
αn(log n)1+δ

≤ C. (4)

IV. FUTURE DIRECTIONS

While our DSA framework is fairly general, the limitation
on matrix A, dynamic communication protocols and two-
timescale DSA schemes hold potential for future research.
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