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Abstract— We propose an automata theoretic learning algo-
rithm for the identification of black-box switched linear systems
whose switching logics are event-driven. A switched system
is expressed by a deterministic finite automaton (FA) whose
node labels are the subsystem matrices. With information about
the dimensions of the matrices and the set of events, and
with access to two oracles, that can simulate the system on
a given input, and provide counter-examples when given an
incorrect hypothesis automaton, we provide an algorithm that
outputs the unknown FA. Our algorithm first uses the oracle
to obtain the node labels of the system run on a given input
sequence of events, and then extends Angluin’s L∗-algorithm to
determine the FA that accepts the language of the given FA. We
demonstrate our learning algorithm on a numerical example.

I. INTRODUCTION

Cyber-physical systems that consist of software controlled
physical systems have transformed today’s transportation,
energy and healthcare sectors. Rigorous analysis of these
systems has become inevitable given the safety critical
environments in which they are deployed. Formal analysis
requires a formal model of the system to be analyzed. Often,
a model of the system is unavailable, due to, for instance,
unknown dynamics or proprietary software, or a complex
model maybe available, which is unamenable to analysis.
In either case, it is necessary to have techniques to learn
such models, from minimalistic knowledge of the system,
and some basic operations that are feasible as in a black box
setting. In this paper, we investigate the learning problem
for certain subclasses of models for cyber-physical systems,
wherein, the digital logic (cyber part) is captured as a event-
driven deterministic finite state automaton, and the physical
system is captured using discrete-time linear dynamics.

In general, switched systems consist of a finite set of
subsystems governed by a time-varying switching signal
[8, §1.1.2]. We focus on linear subsystems and sets of
switching logic that are event-driven in the sense that the
active subsystem at any time instant depends on the active
subsystem at the previous time instant and the event that
was carried out at that time instant. Such switched systems
arise naturally in, for example, the setting of a robot-aided
neurosurgery [3]. Consider, for instance, a robot that has
five modes of operation: (i) Homing, (ii) Autonomous, (iii)
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Hands-on, (iv) Tele-operation, and (v) Steady. In each mode,
it has a certain dynamics, and the mode can change based on
certain events. The surgeon is provided with a GUI interface
where she can perform an event by pressing a button or
touching the robot. Based on the current mode of operation
of the robot (subsystem) and the event carried out by the
surgeon, the next mode of operation of the robot (subsys-
tem) is selected. To have successful coordination between
the human and the robot, it is imperative to understand
the functioning of the robot. Hence, we are interested in
developing system identification techniques for event-driven
switched linear systems by employing automata theoretic
learning techniques.Note that we can assume that we have
the ability to stimulate the robot with input event sequences,
and observe its behavior (execution). We are interested in
an algorithm that allows one to compute a ”hypothesis”
switched system based on such observations on appropriate
input event sequences. In addition, if we have the ability
to check if the hypothesized system is correct, and obtain
a counter-example execution in case it is incorrect, such an
algorithm can learn the correct system in finite time.

In general, system identification techniques for switched
systems are widely studied, see e.g., [5], [9], [4] for detailed
surveys. The problem is known to be NP-hard [7] and is
typically performed by collecting input (possibly controlled)
- output (possibly noisy) data during the operations of the
system. The available techniques can be classified broadly
into two categories: offline methods and online methods.
In case of the former, access to all data at once is as-
sumed, while in case of the latter, data are available in
a streaming (online) fashion. The offline methods include:
algebraic method, mixed integer programming method, clus-
tering method, Bayesian method, bounded error identification
method, and sparse optimization method. The online methods
receive data at each time step and perform two tasks:
identification of the subsystem whose dynamics is being
followed at that time step and updation of the estimates
of the subsystems parameters. In this paper we consider a
paradigm shift and explore active learning techniques for
system identification of switched systems.

We express an event-driven switched system as an event-
deterministic finite automaton (FA), whose node labels are
the subsystem matrices. The execution of a switched system
depends on an initial (continuous) state and a sequence of
input events, and consists of the sequence of states obtain by
applying the discrete-time linear dynamics associated with
(discrete) state labels that are encountered along the path in
the finite automaton induced by the input event sequence. We
assume that the set of events that causes switches between
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the subsystems and the dimension of the subsystems matrices
are known to the Learner. In addition, she has access to two
Oracles: (a) An IO-generator, which given an initial state and
an input (sequence of events) outputs the execution. Such
a IO-generator is typically available for any black box for
which an input can be provided and output observed. (b)
An Equivalence Checker, which given a hypothesis finite
automaton, checks if the language of the hypothesized finite
automaton is the same as that underlying the black box
automaton, and if they are not equal, provides an input on
which the two automata have different outputs. While such
an equivalence checker/counter-example generator might be
challenging to build, it might still be possible to generate
counter-examples by running multiple IO-generator queries
and observing the output. Under the above assumptions,
our learning algorithm has the following phases: First, the
Learner performs a constant number of IO-generator queries
to obtain the matrix labeling the last node of the automaton
path corresponding to an input, referred to as the Output. The
switched system learning problem is then reduced to a finite
automaton learning problem with multiple labels. We provide
an extension of Angluin’s L∗-algorithm [1] to the multiple
labels setting, using the notion of Output as our observation.
The key insight of our algorithm is that we are able to
separate the learning tasks into a dynamics identification
task and an automata learning tasks. We are able to provide
guarantees that our learning algorithm terminates in bounded
time and outputs a correct language equivalent switched
system. Our algorithm is tested on a numerical example.

The remainder of this paper is organized as follows:
In §II we formulate the problem under consideration. Our
results appear in §III. We also discuss various features of
our learning algorithm in this section. A numerical example
is presented in §IV. We conclude in §V with a brief mention
of future research directions. Owing to space limitations, we
omit proofs of our results and refer the reader to a longer
version [6] for the same.

Notation. R will denote the set of real numbers, Id the
d-dimensional identity matrix and Ikd its k-th column. For
a finite set A, its cardinality is denoted by |A|. A (finite)
sequence over a set A is denoted by listing elements from
A, e.g., w = a1a2 · · · an, where ai ∈ A, i = 1, 2, . . . , n. ε
denotes an empty sequence. We employ Last(w) to denote
the last element of the sequence w, i.e., Last(w) = wn. Also,
w[i · · · j] represents the sequence ai · · · aj . Let A∗ denote the
set of all finite sequences over A.

II. PROBLEM STATEMENT

We first define a finite automaton and its language.
Definition 1: An event-deterministic labelled finite au-

tomaton (FA) is a tuple D = (Q, q0,Σ,Λ, δ, γ), where Q is
the set of nodes or (discrete) states, q0 ∈ Q is the initial node,
Σ is a set of events, Λ is a set of node labels, δ : Q×Σ→ Q
is the node transition function, and γ : Q → Λ is the node
labelling function.

In the sequel, we will refer to an event-deterministic
labelled finite automaton, as just a finite automaton. The

components of a finite automaton will be identified by using
subscripts indicating the automaton, such as, D will refer to
the nodes of automaton QD. When the automaton is clear
from the context, the subscripts will be dropped. Note that
the transition function of our automaton is deterministic.
We will refer to a sequence of event, that is, an element
of Σ∗, as an input (word or sequence). We overload δ to
also denote the function δ : Q × Σ∗ → Q that given
a state and an input word and outputs the state reached
on taking the sequence of transitions corresponding to the
input word, and is inductively defined as δ(q, ε) = q and
δ(q, ua) = δ(δ(q, u), a) for all u ∈ Σ∗ and a ∈ Σ. Similarly,
we overload γ to a function γ : Q∗ → Λ∗ given by
γ(q0q1 . . . qn) = γ(q0)γ(q1) . . . γ(qn) for all q ∈ Q∗. We
will define the semantics of an FA as a mapping from input
words to corresponding sequence of state labels generated
by them. We will refer to this mapping as a ”language”.

Definition 2: Given w = e1e2 · · · en ∈ Σ∗, run of w on D
is given by RunD(w) = q0q1 · · · qn for any w ∈ Σ∗, where
qi+1 = δ(qi, ei+1), for i = 0, 1, . . . , n− 1.

Definition 3: The language of D is a function LD : Σ∗ →
Λ∗ given by LD(w) = γ(RunD(w)).

In the sequel, for learning, we will need the label of the last
node reached on reading a word. We will refer to this as the
output. This is a generalization of the notion of acceptance of
a word by a traditional deterministic finite automaton, where
the labels are ”final” and ”non-final”.

Definition 4: Given w = e1e2 . . . en ∈ Σ∗, the output
of w in D is the label of the last node of Run(w). More
specifically, OutputD(w) = Last(LD(w)).

We consider switched systems consisting of a finite num-
ber of discrete-time dynamical systems, each of which is
specified by a matrix Ai, with the intended dynamics being
x(t + 1) = Aix(t), and a switching logic specified using a
finite automaton. We capture the switched system holistically
as a finite automaton with the matrices being the node labels.

Definition 5: A switched system is a FA D, whose set of
node labels, ΛD, is an indexed set of matrices of dimension d
represented as ΛD = {Aj}Nj=1, where Aj ∈ Rd×d for every
j.
In the sequel, we will occasionally refer to the elements of
the set {Aj}Nj=1 as subsystem matrices. An execution of
D from an initial (continuous) state x ∈ Rd on an input
sequence of events w, denoted ExecD(x,w), is the sequence
of states reached by applying the dynamics represented by
the matrices labelling the nodes in the run of the finite
automaton on the input sequence. In the sequel, we will need
a general definition of executions from a finite number of,
say, k initial states, stored as a d×k-dimensional matrix, each
of whose columns represents a state. The execution will be
a sequence of d × k-dimensional matrices, where the i-th
column of these matrices represents the execution starting
from the i-th column of the initial matrix.

Definition 6: An execution of D, on a state matrix X ∈
Rd×d, and a sequence of events, w = e1e2 · · · en ∈ Σ∗, is
given by ExecD(X,w) = X0X1 · · ·Xn+1, where X0 = X ,
Xi+1 = AiXi, i = 0, 1, . . . , n, and LD(w) = A0A1 . . . An.
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Note that given a state x ∈ Rd, ExecD(x,w) denotes the
execution from a d×1 matrix. We use states to refer to both
elements of Rd, which are continuous states, and nodes in
Q, which are discrete states. When there is ambiguity, we
will use the prefix ”discrete”/”continuous”. As before, when
the finite automaton or the switched system is clear from the
context, we will drop the subscript D from Output, Run, L
and Exec.

Our broad objective is to learn a switched system, which
is provided as a black box system.

Problem 1: Consider a switched system D =
(QD, q0,D,Σ,ΛD, δD, γD). Suppose that we know the
set of events, Σ, and the dimension, d, of the elements of
ΛD. In addition, we have access to two oracles that can
perform the following tasks: (a) IO-generator: Given input
(x,w) ∈ Rd × Σ∗, the IO-generator outputs ExecD(x,w).
Note that we can find ExecD(X,w) for any d × k-matrix
by k calls to the IO-generator. (b) Equivalence-checker
(counter-example generator): Given a (hypothesis) FA
D′ = (Q′, q′0,Σ,Λ

′, δ′, γ′) as input, the equivalence
checker checks the equivalence of the languages of D
and D′, that is, it outputs if LD = LD′ . If not, then
it also outputs a (counter-example) w ∈ Σ∗ such that
OutputD(w) 6= OutputD′(w). Our objective is to design an
algorithm that uses the above oracles to output an automaton
D′ such that LD = LD′ .

In the sequel, we will also refer to a call to IO-generator
on an input word and a continuous state for obtaining
an execution of the black box switched system, as an
observation query, and the call to the equivalence checker
with a hypothesis automaton, an equivalence query. Towards
solving Problem 1, we will assume that the matrices {Aj}Nj=1

are full-rank, and devise a learning algorithm that relies
on the principles of Angluin’s L∗ algorithm. Our solution
approach broadly consists of the following steps: (i) We
use the IO-generator to compute OutputD(w) for a given w,
thereby reducing the learning problem to that of learning an
event-deterministic labelled finite automaton. (ii) We extend
the L∗-algorithm for deterministic finite automata (with two
labels, namely, final and non-final) to the setting of learning
event-deterministic finite automata with potentially multiple
labels.

III. SWITCHED SYSTEM LEARNING ALGORITHM

We begin with an algorithm to compute OutputD(w) for a
given w by making a sequence of IO-generator queries that
provide ExecD(x,w′) as output for a given initial state x
and input w′. Then we provide an algorithm that learns the
underlying finite automaton that has access to the equivalence
checker and the algorithm for computing OutputD(·).

The computation of OutputD relies on the fact that a
matrix A can be uniquely computed given a set of basis
vectors and their transformation on the application of A,
when A is full-rank. Let GetMatrix be a function that takes
as input a matrix X whose columns form a basis, and
the transformation of those vectors on a matrix A, given
by a matrix X ′ = AX , and returns A. More precisely,

GetMatrix(X,X ′) takes as input two matrices X,X ′ ∈ Rd×d

whose columns form a basis, and solves the systems of linear
equations AX = X ′ for A ∈ Rd×d, and returns A. Such a
matrix can be constructed effectively by solving the system
of linear equations, and the uniqueness of the solution is
guaranteed by well-known results from linear algebra.

To obtain OutputD(w), we need to find two sets of basis
vectors, where the second one corresponds to a transforma-
tion of the first using the matrix Last(γD(RunD(w))). The
algorithm is quite straight forward. Consider Id, a d × d
identity matrix, whose columns form a basis. Let X =
Last(ExecD(Id, w[1 · · ·n−1])), where w is a sequence of n
events. Note that the columns of matrix X also form a basis,
because all the matrices in γD(RunD(w)) are full rank matri-
ces. Similarly, let X ′ = Last(ExecD(Id, w[1 · · ·n])), which
again represents a basis. Moreover, X ′ = OutputD(w)X .
Hence, OutputD(w) is given by GetMatrix(X,X ′). This
construction of OutputD(w) is outlined in Algorithm 1.

Algorithm 1 Computation of OutputD(w)

Input: The dimension of the subsystems matrices, d and a
sequence of events, w ∈ Σ∗.

Output: OutputD(w).
1: if w = ε then
2: Output ExecD(Id, ε) and terminate.
3: else
4: Set X = Last(ExecD(Id, w[1 · · ·n− 1]))
5: Set X ′ = Last(ExecD(Id, w[1 · · ·n]))
6: Output GetMatrix(X,X ′) and terminate.
7: end if

Lemma 1: Given w ∈ Σ∗, Algorithm 1 outputs
OutputD(w).

Armed with Algorithm 1, we proceed towards extending
L∗-algorithm from the learning literature to the learning of
a FA D∗ that accepts the language of D.

Let us fix an unknown finite automaton D, for which we
know the set of events Σ and the dimension of the matrices in
ΛD. Our objective is to output a finite automaton D′ such that
LD = LD′ . We have access to an algorithm for computing
OutputD(w) for any given input w, from Algorithm 1.

The broad framework of our learning approach based on
Angluin’s L∗ algorithm is as follows: at each step of the
learning algorithm, the Learner maintains two sets of input
words (sequences over Σ): Q, a set of access words, and T ,
a set of test words. Intuitively, the set Q represents a set of
input words that reach distinct states in any minimal finite au-
tomaton D∗ representing the language to be learnt. Note that
for any two distinct states of D∗, there is an input word, that
will distinguish the behaviors from those states. T is a finite
set of input words that can distinguish any pair of states in
Q. This property is referred to as (Q,T ) being D-separable.
The algorithm consists of judiciously expanding Q and when
required T , so that (Q,T ) separability is maintained. In
each step, a hypothesis automaton is constructed from Q
by possibly adding states to ”close” the automaton, that is,
to ensure that there is a next state on every event from every
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state. The language of the closed automaton is compared
with D using an equivalence query, and a counter-example if
returned, is used to identify a state that has not been captured
by the set Q and added. The process is repeated until a finite
automaton which passes the equivalence query is found.

First, we define when two input words are equivalent with
respect to a set of test words T .

Definition 7: Given a set T ⊆ Σ∗, and two words
u, v ∈ Σ∗, we say that u, v are T -equivalent with re-
spect to D, denoted by u ≡DT v, if OutputD(uw) =
OutputD(vw) for all w ∈ T .

Given a finite T and input words u, v, we can algorithmi-
cally check if u, v are T -equivalent, by iterating over words
w ∈ T and using Algorithm 1 to check if OutputD(uw) =
OutputD(vw). Note that if u, v are not T -equivalent, then
some word w from T distinguishes them, in terms of the
label of the last state reached after reading w from the
states reached after reading u and v, respectively. This leads
us to the notion of separability, which guarantees that the
states reached by words in a set Q of access strings are
distinct, using a finite set of test strings T that witness the
distinguishability.

Definition 8: The pair (Q,T ) is called D-separable, if no
two distinct words in Q are T -equivalent with respect to D.

Again, given that we can check if u, v are T -equivalent for
a finite T , we can also algorithmically check if (Q,T ) D-
separable, when Q is also finite. Given a set of access strings
Q that reach distinct states of D, we want to hypothesize a
finite automaton that captures the language of D. We need to
identify the states and transitions of this automaton. We can
consider Q to represent the states, with the interpretation that
they represent the states reached in D when given themselves
as input. In order to define the edge, for every q ∈ Q and
e ∈ Σ, we need to identify a word in Q that corresponds to
qe. We can search for a word in Q, that is T -equivalent to
qe. Note that there is at most one such word in Q if (Q,T )
is separable. However, no such word might exist. Hence,
we add those words to Q, until Q is closed with respect to
the ”next step” operation. Next, we formalize the notion of
closure, and the hypothesis automaton constructed when a
closed pair (Q,T ) is given.

Definition 9: The pair (Q,T ) is called D-closed, if for
every q ∈ Q and e ∈ Σ, there exists q′ ∈ Q such that
qe ≡DT q′.

Definition 10: Consider a D-separable and D-closed pair
(Q,T ). A hypothesis automaton for (Q,T ) is a finite au-
tomaton D′ = (Q′, q′0,Σ,Λ

′, δ′, γ′), where Q′ = Q with
the empty sequence of events, ε, being the initial node,
that is, q′0 = ε, Λ′ = {OutputD(q) | q ∈ Q}, for any q, e,
δ(q, e) = q′, where q′ ∈ Q is such that qe ≡DT q′, and for
any q, γ(q) = OutputD(q).

Note that our definition of hypothesis automaton is well-
defined, since, in the definition of δ′, there is at most one
q′ ∈ Q satisfying qe ≡DT q′, because of the separability
property of (Q,T ). Also, checking for whether a pair of finite
sets (Q,T ) is closed and the construction of the hypothesis
automaton for (Q,T ) are computable.

Our learning algorithm is summarized in Algorithm 2.
The details and correctness of the algorithm depend on the
following results.

Algorithm 2 Learning a minimal FA whose semantics is LD
Input: The set of events, Σ and the dimension of the

subsystems, d, Algorithm for computing OutputD and
Counter-example generator for the language LD

Output: A FA D′ whose language is LD
1: Set Q = T = {ε}.
2: Apply Lemma 4 to find Q̃ ⊇ Q such that (Q̃, T ) is
D-separable and D-closed.

3: Set Q = Q̃
4: Construct a hypothesis automaton, D′ for the pair (Q,T )
5: Check equivalence of D′ and D
6: if a counter-example w ∈ Σ∗ is returned then
7: Apply Lemma 5 to expand Q and T towards obtaining

a D-separable pair (Q̃, T̃ )
8: Set Q = Q̃ and T = T̃
9: Go to Line 2

10: else
11: Output D′ and terminate.
12: end if

First, we show that there is an upper-bound on the size of
Q for any (Q,T ) pair that is D-separable. Intuitively, since,
each access string in Q, necessarily reaches a different state
in any minimal finite automaton for LD, due to the fact that
some string (from T ) distinguishes it from any other string
in Q, the size of Q can be at most the number of states of a
minimal finite automaton, which is less than ND, the number
of states of D.

Lemma 2: If the pair (Q,T ) is D-separable, then |Q| is
at most ND.

The next result states that if (Q,T ) is not closed, then Q
can be expanded, while keeping T and the D-separability
of (Q,T ) intact. Note, however, that from Lemma 2, there
is an upper bound on the size of Q, so, the next Lemma
also implies that by expanding Q at most ND times, we
can obtain a pair (Q,T ), that is both closed and separable.
Also, the expansion at each step is computable. Line 2 of
Algorithm 2 uses this to compute a closed and separable
pair (Q,T ).

Lemma 3: If the pair (Q,T ) is D-separable but not D-
closed, then there is a q ∈ Q and e ∈ Σ such that (Q ∪
{qe}, T ) is D-separable.

Lemma 4: For every D-separable pair (Q,T ), we can
compute a D-closed and D-separable pair (Q̃, T ), where
Q ⊆ Q̃, in time at most O(ND)

Next, we present the details of the algorithm for expanding
(Q,T ) if the hypothesis automaton is incorrect. We will use
a counter-example returned by the equivalence checker to
expand the pair (Q,T ) such that separability is still main-
tained. This will be again followed by a closure operation
to obtain the next hypothesis automaton, and the loop will
continue until a hypothesis automaton whose language is that
of D is found.
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Definition 11: A counter-example for D′ with respect to
D is an input word w ∈ Σ∗ for which the languages of the
two automata have different outputs, that is, OutputD(w) 6=
OutputD′(w).

Lemma 5: Suppose that the pair (Q,T ) is D-separable
and D-closed, and D′ be the corresponding hypothesis FA.
Given a counter-example w for D′ with respect to D, we
can compute q ∈ Σ∗ \ Q and t ∈ Σ∗ such that the pair
(Q∪{q}, T ∪{t}) is D-separable using at most O(log(|w|))
IO-generator queries.

Next, we state the correctness of the finite automaton
learning algorithm.

Theorem 1: Algorithm 2 always terminates and outputs a
finite automaton whose language is LD.

Remark 1: Our algorithm is similar to Angluin’s algo-
rithm, however, the technical development is performed using
the notion of Output that generalizes two labels to multiple
labels, and Output can be computed using IO-generator
queries for our subclass of linear switched systems.

To wrap up, let us discuss the problem of learning the
switched system. Given a switched system D with d and Σ
known, Algorithm 2 outputs a switched system D′ whose
executions coincide with that of D.

Corollary 1: Algorithm 2 outputs a switched system D′
such that ExecD(x,w) = ExecD′(x,w) for every x ∈ Rd

and w ∈ Σ∗.
Remark 2: Given the set of events, Σ, the dimension

of the subsystems matrices, d, and the IO-generator and
counter-example generators, Algorithm 2 learns an FA that
accepts the semantics of the underlying FA of the un-
known switched system under consideration. The learning
technique employed in Algorithm 2 is an extension of the
L∗-algorithm. In the L∗-algorithm, the Learner learns an
event-deterministic unlabelled finite automaton that accepts
a certain language L, with the aid of an Oracle called
the minimally adequate teacher (MAT). An automaton A
under consideration in [1] is a tuple (P, p0,Γ, F, µ), where
P is a finite set of nodes, p0 ∈ P is the unique initial
node, Γ is a finite set of alphabets, F ⊆ P is a finite
set of accepting (or final) nodes, and µ : P × Γ → P
is the node transition function. The language of A is the
set of all finite words (strings of alphabets) such that the
automaton reaches a final node on reading them, i.e., a word
w = w1w2 · · ·wm, wk ∈ Γ, k = 1, 2, . . . ,m, belongs to the
language of A, if µ(· · · (µ(µ(p0, w1), w2), · · · , wm) ∈ F .
The MAT knows L and answers two types of queries by the
Learner: membership queries, i.e., whether or not a given
word belongs to L, and equivalence queries, i.e., whether a
hypothesis automaton specified by the Learner is correct or
not. If the language of the hypothesis automaton differs from
L, then the MAT responds to an equivalence query with a
counter-example, which is a word that is misclassified by
the hypothesis automaton. The class of automata considered
in this paper differs structurally from the class of automata
considered in [1] in the following ways: (a) D has 0-
many accepting nodes, and (b) the nodes of D are labelled
with matrices. In Algorithm 2 we modify the L∗-algorithm

to cater to learning of D. At this point, it is important
to highlight that throughout this paper we have employed
notations, terminologies and concepts from the version of
L∗-algorithm presented in [10]. Loosely speaking, the IO-
generator and counter-example generator together play the
role of a MAT. Indeed, the IP-generator provide the Learner
with finite traces of state trajectories of the unknown D
under consideration. The Learner then uses this information
to compute OutputD(w) for w ∈ Σ∗ that satisfy certain
conditions. In addition, the the counter-example generator
facilitates checking correctness of an FA hypothesized by
the Learner.

Remark 3: Earlier in [2] the role of labels on the nodes
of an automaton were employed in the setting of the L∗-
algorithm to aid the learning process. The authors allow
the MAT to make an automaton easier to learn by adding
binary scalar labels to its nodes, either carefully or randomly
chosen. When the Learner performs a membership query for
a string, then she not only receives whether it is accepting
or not, but also is provided with the label of the node that
the automaton reaches on its application. It is shown that
if the node labels are distinct, then the learning process
becomes easier, and if all the node labels are same, then
the learning may require an exponential number of queries.
The above set of observations does not extend readily to our
setting due to the structural difference of our FA’s with the
class of automata considered in the L∗-algorithm described
above. Indeed, our FA’s do not have final nodes and labelling
of the nodes with matrices is governed by the underlying
switching rules of the system under consideration. Beyond
identification of switched systems, our learning algorithm
is applicable to the general setting of learning deterministic
finite automaton with 0-many final nodes and all nodes
labelled with full-rank matrices.

Remark 4: Notice that the IO-generator and the counter-
example generator can be thought of as a simulation model
of the unknown switched system, D. In modern industrial
setups, simulation is of prior importance. Such models for
complex systems are often provided by the system manufac-
turers. The mathematical models of the system components
and the constraints on their operations underlying the simu-
lation model are typically not made known explicitly to the
user, but the model can be used to study the system behaviour
with respect to various sets of inputs prior to their application
to the actual system. Given a simulation model that allows
the set of operations by the user required for our setting, the
Learner can generate finite traces of trajectories of a switched
system with respect to sets of initial states and sequences
of events. This serves for the purpose of Algorithm 1. For
the generation of a counter-example, the Learner can apply
sequences of events of increasing length (up to a sufficiently
large number) and match the labels of the nodes reached on
D and D′.

IV. A NUMERICAL EXAMPLE

We construct a MATLAB (R2020a) routine
fa-oracle.m that knows D and can perform the
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following task: accept an input (x,w) and output
ExecD(x,w). Our Learner routine fa-learn.m uses
fa-oracle.m as both an IO-generator and a Counter-
example generator. Using fa-oracle.m as an IO-
generator is straightforward. Towards using it as a
Counter-example generator, fa-learn.m performs the
following tasks: (a) it fixes a hypothesis automaton D′, (b)
chooses a large number L, (c) computes OutputD(w) for
all possible w of increasing length, one at a time, by means
of Algorithm 1 and the routine fa-oracle.m, and (d)
matches OutputD(w) with OutputD′(w). This procedure is
continued until either a counter-example w is obtained or
all w of length i = 1, 2, . . . , L are exhausted.

We consider a linear plant with 3 modes of operations.
Under a healthy condition, the plant follows a pre-specified
schedule for mode selection. Whenever a fault occurs, the
plant continues to dwell on the current mode of operation
until the fault is cleared. This setting can be expressed as
an internally event-driven switched system for which D is

as shown in Figure 1. Let A1 =

0.2 0.4 0.8
0.3 0.6 0.9
0.5 1.5 1.5

, A2 =−1 0.1 0.2
0.3 −1 0.4
0.5 0.6 −1

, A3 =

−0.1 −0.2 0.3
−0.1 −0.4 0.6
0.8 0.7 −0.6

.

Notice that the matrices A1, A2 and A3 are full-rank. The
following steps are carried out: 1) Set Q = T = {ε}.
2) Apply Algorithm 1 to all w ∈ {ε, fault, ideal}. It
is observed that (Q,T ) is D-separable but not D-closed.
Indeed, OutputD(ε · ideal) 6= OutputD(ε). Update Q =
{ε, ideal}.
3) Apply Algorithm 1 to all w ∈ {ideal·fault, ideal·ideal}.
It is observed that (Q,T ) is D-separable and D-closed.
Construct the hypothesis FA D′ shown in Figure 2. Checking
for correctness of D′ with the counter-example generator,
yields a counter-example w = ideal · ideal · ideal. Update
Q = {ε, ideal, ideal · ideal} and T = {ε, ideal}.
4) Apply Algorithm 1 to all w ∈ {ideal · fault, ideal ·
ideal, fault · ideal, ideal · fault · ideal, ideal · ideal ·
ideal, ideal · ideal ·fault, ideal · ideal ·fault · ideal, ideal ·
ideal·ideal·fault}. It is observed that (Q,T ) is D-separable
but not D-closed. Indeed, OutputD(ideal · ideal · ideal) 6=
OutputD(ε), OutputD(ideal·ideal·ideal) 6= OutputD(ideal),
OutputD(ideal · ideal · ideal) 6= OutputD(ε · ε). Update
Q = {ε, ideal, ideal · ideal, ideal · ideal · ideal}.
5) Apply Algorithm 1 to all w ∈ {ideal · ideal · ideal ·
fault, ideal · ideal · ideal · fault · ideal, ideal · ideal ·
ideal · ideal, ideal · ideal · ideal · ideal · ideal}. It is
observed that (Q,T ) is D-separable and D-closed. Construct
the hypothesis FA D′ shown in Figure 3. Checking for
correctness of D′ with the counter-example generator does
not yield a counterexample. We conclude that D′ is a FA
that accepts the language, LD.

Remark 5: The FA considered above resembles the au-
tomata used to implement L∗-algorithm in [10, §2] without
final nodes and with node labels. We note that the total
number of membership queries and equivalence queries

A1 A2 A2 A3

faultfault fault fault

idealidealideal

ideal

Fig. 1. FA

A1 A2

fault, idealfault

ideal

Fig. 2. Hypothesis automaton D′ in Step 3.

required for the learning task in [10, Section 2] matches
the total number of calls to Algorithm 1 and the check for
correctness of hypothesis FA in our setting.

V. CONCLUSION

In this paper, we presented a learning algorithm for
the identification of event-driven switched linear systems.
Our future research directions include the design of active
learning techniques for large-scale switched systems whose
subsystems dynamics are not restricted to be linear structures
and/or the available state-trajectories are noisy.

REFERENCES

[1] D. ANGLUIN, Learning regular sets from queries and counterexam-
ples, Inform. and Comput., 75 (1987), pp. 87–106.

[2] D. ANGLUIN, B. BECERRA-BONACHE, A. H. DEDIU, AND
L. REYZIN, Learning finite automata using label queries, Proceedings
of the 20th International Conference on Algorithmic Learning Theory,
(2009), pp. 171–185.

[3] M. D. COMPARETTI, E. BERETTA, M. KUNZE, E. D. MOMI,
J. RACZKOWSKY, AND G. FERRIGNO, Event-based device-behavior
switching in surgical human-robot interaction, IEEE International
Conference on Robotics and Automation (ICRA), (2014), pp. 1877–
1882.

[4] Z. DU, L. BALZANO, AND N. OZAY, A robust algorithm for online
switched system identification, IFAC Symposium on System Identifi-
cation (SYSID), (2018), pp. 293–298.

[5] A. GARULLI, S. PAOLETTI, AND A. VICINO, A survey on switched
and piecewise affine system identification, IFAC Symposium on Sys-
tem Identification, (2012), pp. 344–355.

[6] A. KUNDU AND P. PRABHAKAR, Learning event-driven switched
linear systems, 2020. arxiv: 2009.12831.

[7] F. LAUER, On the complexity of switching linear regression, Automat-
ica J. IFAC, 74 (2016), pp. 80–83.

[8] D. LIBERZON, Switching in Systems and Control, Systems & Control:
Foundations & Applications, Birkhäuser Boston Inc., Boston, MA,
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