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Abstract: Adaptation and survival of cancer cells to various stress and growth factor conditions is
crucial for successful metastasis. A double-negative feedback loop between two serine/threonine
kinases AMPK (AMP-activated protein kinase) and Akt can regulate the adaptation of breast cancer
cells to matrix-deprivation stress. This feedback loop can significantly generate two phenotypes
or cell states: matrix detachment-triggered pAMPKhigh/ pAktlow state, and matrix (re)attachment-
triggered pAkthigh/ pAMPKlow state. However, whether these two cell states can exhibit phenotypic
plasticity and heterogeneity in a given cell population, i.e., whether they can co-exist and undergo
spontaneous switching to generate the other subpopulation, remains unclear. Here, we develop a
mechanism-based mathematical model that captures the set of experimentally reported interactions
among AMPK and Akt. Our simulations suggest that the AMPK-Akt feedback loop can give rise to
two co-existing phenotypes (pAkthigh/ pAMPKlow and pAMPKhigh/pAktlow) in specific parameter
regimes. Next, to test the model predictions, we segregated these two subpopulations in MDA-MB-
231 cells and observed that each of them was capable of switching to another in adherent conditions.
Finally, the predicted trends are supported by clinical data analysis of The Cancer Genome Atlas
(TCGA) breast cancer and pan-cancer cohorts that revealed negatively correlated pAMPK and pAkt
protein levels. Overall, our integrated computational-experimental approach unravels that AMPK-
Akt feedback loop can generate multi-stability and drive phenotypic switching and heterogeneity in
a cancer cell population.

Keywords: phenotypic plasticity; bistability; double negative feedback loop; AMPK; Akt; matrix
deprivation; anchorage independence

1. Introduction

Despite major advances in cancer research, metastasis remains clinically unsolved
and claims the vast majority of cancer-related deaths. Metastasis is a highly inefficient
process with extremely high (>99.8%) rates of attrition. A hallmark of cancer cells that can
successfully metastasize is their ability to dynamically adapt to their changing microenvi-
ronments, called phenotypic plasticity or switching [1,2]. Thus, understanding the rules
of phenotypic plasticity and identifying therapeutic perturbations to reduce the fitness of
metastasizing cells can be crucial for restricting the disease aggressiveness.

Metastasizing cells can often display phenotypic plasticity along multiple intercon-
nected axes. Two of the most well-characterized axes are epithelial-mesenchymal plasticity
(EMP) and cancer stem cell (CSC) plasticity [3,4]. More recently, the axes of metabolic
plasticity (i.e., switching between more glycolytic vs. more oxidative phosphorylating
states) [5,6] and drug resistance (i.e., switching between drug-resistant and drug-sensitive
states) [7,8] are being investigated. A hallmark of networks involved in plasticity along
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these axes is the presence of double negative or mutually inhibitory feedback loops that
can generate two (or more) phenotypes that cells can acquire. In the context of EMP, ZEB1
forms such loops with miR-200 and GRHL2, thus giving rise to multiple states–epithelial
(high miR-200 and GRHL2, low ZEB), mesenchymal (low miR-200 and GRHL2, high ZEB),
and hybrid epithelial/ mesenchymal (medium levels of miR-200, GRHL2 and ZEB) [9].
Similarly, for CSC plasticity, LIN28 and let-7 inhibit each other [10], and for metabolic
plasticity, HIF-1α and AMPK (AMP-activated protein kinase) can inhibit each other [5].
The emergent dynamics of the above mentioned loops has been thoroughly investigated,
and they have been shown as capable of exhibiting multi-stability (i.e., co-existence of mul-
tiple phenotypes). Such multi-stability has been posited to underlie phenotypic switching;
disrupting such loops can restrict phenotypic switching, as witnessed for feedback loops of
ZEB1 with GRHL2 and miR-200 [11,12].

Recent work from our laboratory has uncovered a double-negative feedback loop
between two serine/threonine kinases AMPK and Akt operating in the adaptation of breast
cancer cells to matrix-deprivation [13]. In epithelial cells, matrix-deprivation usually drives
programmed cell death known as “anoikis” [14], but few detached epithelial cells can
develop resistance to anoikis [15,16]. AMPK (AMP-activated protein kinase) is activated in
cells facing bioenergetic or metabolic stress and can switch on energy-generating catabolic
processes such as glycolysis and inhibit energy-consuming anabolic processes such as
lipid and protein synthesis [17]. Conversely, upon growth factor stimulation, Akt becomes
activated, promoting anabolic processes of lipid and protein synthesis, driving cell growth
and proliferation [18]. Upon matrix deprivation, AMPK is activated which drives upregu-
lation of PHLPP2 protein levels which can inactivate Akt. On the other hand, upon matrix
(re)attachment, Akt is activated which can repress AMPK activity through PP2Cα [13].
Thus, while adherent cells showed a (re)attachment-triggered pAkthigh/pAMPKlow state,
matrix-deprived cells demonstrated a detachment-triggered pAMPKhigh/pAktlow state.
However, because this analysis was done at a population (or bulk) level, two questions
remain to be answered: (a) can these cell states/phenotypes co-exist in the same cell popu-
lation?, and (b) can these two subpopulations ‘spontaneously’ switch between themselves
to give rise to one another?

Here, we adopt an integrative computational-experimental approach to answer these
questions. First, we develop a mechanism-based mathematical model that captures the
set of experimentally reported interactions among AMPK, Akt, PHLPP2 and PP2Cα.
Simulations reveal that the AMPK–Akt feedback loop can give rise to two phenotypes–
pAkthigh/ pAMPKlow, and pAMPKhigh/pAktlow–that can co-exist in specific parameter
regimes, and switch between one another under the influence of biological noise. Next,
we segregated the two subpopulations in MDA-MB-231 cells and observed that, under
adherent conditions, each of them was capable of giving rise to another, thus validating our
model prediction. Finally, clinical data analysis revealed a negative correlation between
pAMPK and pAkt protein levels in The Cancer Genome Atlas (TCGA) breast cancer and
pan-cancer cohorts. Overall, our results suggest that the AMPK–Akt feedback loop can
be bistable, and therefore drive phenotypic switching and non-genetic heterogeneity in a
cancer cell population.

2. Materials and Methods
2.1. ODE Model of The AMPK-Akt Network

The dynamics of the species in the regulatory network (Figure 2A) are represented
using a system of Ordinary differential equations (ODEs) given below:

d
dt
[AMPK] = kacAMPK × (totalAMPK − [AMPK])− kdacAMPK × H

(
nPP2Ca, λPP2ca, PP2ca0, PP2cα

)
× [AMPK]) (1)

d
dt
[AKT] = kacAKT × (totalAKT − [AKT])− kdacAKT × H

(
nPHLPP2, λPHLPP2, PHLPP20, PHLPP2

)
× [AKT]) (2)
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d
dt [PHLPP2] = kacPHLPP2 × (totalPHLPP2− [PHLPP2]) × H(nAMPK ,λAMPK ,AMPK0,AMPK)−kdacPHLPP2

× [PHLPP2]) (3)

d
dt
[PP2Ca] = kacPP2Ca × (totalPP2Ca − [PP2Ca]) × H

(
nAKT , λAKT , AKT0, AKT

)
− kdacPP2Ca × [PP2Ca]) (4)

Here, each equation represents the rate of change of the active levels of the entity
given in the left-hand side of the equation. The total levels of the entities are constant and
only switch between active and inactive states. The activation and deactivation rates of
the species, given as kac(X) and kdac(X), (X ∈{AMPK,AKT,PHLPP2,PPCA}), respectively,
are taken in units of t-1; all other parameters are in arbitrary units. The regulatory interac-
tions are represented using shifted hill function form [19] as given below:

H
(

n, λ, A0, A
)

=

(
1 + λ×

(
A
A0

)n)
(

1 +
(

A
A0

)n) (5)

where A is the effector species, n is the Hill’s coefficient that represents the non-linearity
of the regulatory interaction, λ is the maximum fold change in activation/deactivation
rate caused by A. λ > 1 indicates activation and λ < 1 indicates inhibition, A0 is the Activa-
tion/Inhibition threshold level of A. The parameter value ranges, with the corresponding
dimensions, are given in Table 1 and Table S1. Assumptions made in the model are
given below:

• Total levels of each molecule are taken as a constant value of 100 arbitrary units (A.U.)
and do not change throughout the simulation. However, the concentration of active
and inactive molecular species can change.

• Only the active state of the molecule affects another molecule’s conversions between
its active and inactive forms.

• Each molecule has its intrinsic activation and deactivation rate. The influence of
interaction with other protein causing state changes is accounted by multiplying the
corresponding rate term with a hill function.

2.2. Temporal Profiles and Steady State Estimation

10,000 Parameter sets were randomly sampled from the ranges mentioned in Table S1.
For each parameter set, the ODE system was simulated using 1000 randomly generated
initial conditions between the range (0–total molecules). The temporal profiles for each
initial condition were computed numerically using the ode23 function of Matlab R2019A
until 1000 time-steps. Initial conditions across distinct parameter sets reach steady state
values by 1000 time-steps (Figure S1), thus the final state reported after 1000 time steps
was considered to be the steady state value. For each parameter set, unique steady states
of the system are taken from 1000 temporal profiles. Z-score calculation was performed
across all the parameter sets for all the molecules. Based on the Z-score values of AMPK
and Akt, parameter sets are grouped into four categories (LL, LH, HL, HH). Positive
Z-score is considered as high state (H) and negative Z-score is considered as low state (L).
A heatmap was generated based on the Z-scores obtained for all parameter sets using the
ComplexHeatmap package in R [20].

2.3. Nullcline, Bifurcation and Phase Plane Analysis

For a given parameter set for the ODE system, nullclines for AMPK and Akt were
obtained by setting their respective rates of change to zero and thus using constant value for
the active level of that species. The corresponding steady state of the other three variables
was obtained by temporal simulations of the modified ODE system as described above.
Bifurcation analysis was done using the software package MATCONT [21]. Phase planes
were obtained by combining multiple bifurcation diagrams.
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Table 1. Parameter values, their description and ranges used for random circuit perturbation simulation.

Parameter Description Value Range

totalAMPK Total level of AMPK 100

totalAKT Total level of AKT 100

totalPHLPP2 Total level of PHLPP2 100

totalPP2Cα Total level of PP2Cα 100

kac_AMPK Activation rate of AMPK (0.02–0.2)

kac_AKT Activation rate of AKT (0.02–0.2)

kac_PHLPP2 Activation rate of PHLPP2 (0.02–0.2)

kac_PP2Cα Activation rate of PP2Cα (0.02–0.2)

kdac_AMPK Deactivation rate of AMPK (0.02–0.2)

kdac_AKT Deactivation rate of AKT (0.02–0.2)

kdac_PHLPP2 Deactivation rate of PHLPP2 (0.02–0.2)

kdac_PP2Cα Deactivation rate of PP2Cα (0.02–0.2)

λPP2cα Effect of PP2Cα on AMPK (5–10)

λPHLPP2 Effect of PHLPP2 on AKT (5–10)

λAKT Effect of AKT on PP2Cα (5–10)

λAMPK Effect of AMPK on PHLPP2 (5–10)

nPP2Cα
Hill coefficient of PP2Cα for

deactivation of AMPK 4, 5, 6

nPHLPP2
Hill coefficient of PHLPP2 for

deactivation of AKT 4, 5, 6

nAKT
Hill coefficient of AKT for

activation of PP2Cα
4, 5, 6

nAMPK
Hill coefficient of AMPK for

activation of PHLPP2 4, 5, 6

PP2Cα0 Threshold value of PP2Cα for
deactivation of AMPK (0.25–0.75) × totalPP2Cα

PHLPP20 Threshold value of PHKLPP2
for deactivation of AKT (0.25–0.75) × totalPHLPP2

AMPK0 Threshold value of AMPK for
activation of PHLPP2 (0.25–0.75) × totalAMPK

AKT0 Threshold value of AKT for
activation of PP2Cα

(0.25–0.75) × totalAKT

AMPK: AMP-activated Protein Kinase, PHLPP2: Plectistin Homology Domain And Leucine Rich Repeat Protein
Phosphatase 2, PP2Cα: Protein Phosphatase 2C alpha.

2.4. Noise Induction

We used a simple formalism to induce noise which introduces a white noise sampled
from a normal random distribution of mean 0 and variance η, η ∈ {20,30,40}. This noise is
added to the species levels at fixed intervals (tstep = 100) in the simulation, representing the
additive stochasticity to the species levels in the time period of simulation (ttotal = 5000).
The fixed time interval is based on the observation that the mean time taken by different
initial conditions across diverse parameter sets to attain equilibrium is around 100 timesteps
(Figure S1B).

2.5. Clinical Data

Reverse Phase Protein Array (RPPA) dataset for TCGA- Pan Cancer 32, Breast Cancer
and Sarcoma were downloaded from https://www.tcpaportal.org/tcpa/download.html.

https://www.tcpaportal.org/tcpa/download.html
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Pearson’s correlation analysis between phosphorylated AMPK (pT172) and phosphorylated
AKT (pT308 and pS473) levels were calculated using cor.test() function from stats package
and scatterplot was generated using plot() function in R 3.6.1.

2.6. Cell Line and Culture Condition, Fluorescence Activated Cell Sorting (FACS) Sorting and
Analysis of The Plasticity

Breast cancer cell line MDA-MB-231 was procured from The American Type Culture
Collection (ATCC) and validated subsequently by STR analysis. These cells were cultured
in DMEM (Sigma-Aldrich) supplemented with 10% FBS (fetal bovine serum) containing
penicillin and streptomycin, at 37 ◦C in 5% CO2 incubator. Cells were trypsinised and
counted before seeding for every experiment. For FACS sorting purposes, MDA-MB-231
cells stably expressing EGR1promoter-TurboRFP (readout for the ERK activity; RFP: Red
Fluorescent Protein) were sorted into high and low RFP cells after culturing on 90 mm
tissue culture dish. These sorted cells were cultured in attached condition for the indicated
time-points. Analysis of the high and low RFP sorted cells for their ability to attend
the original heterogeneity was performed after the indicated time point of the culture in
attached condition. Representative data were analysed using Summit software V5.2.1.12465
(Beckman Coulter, Miami, FL, USA).

2.7. Markov Chain Modelling and Simulations

To study the transition dynamics between the phenotypes observed in FACS data,
the phenotypic transition is modelled as a Markov chain. In this formalism, a population
of cells consists of 3 phenotypes, namely, the green phenotype (low EGR), red phenotype
(high EGR) and black phenotype. Therefore, at any time t, the population is represented as:

Ft = [ fRt , fGt , fBt ] (6)

where fRt (fGt, fBt) is the fraction of the red (green, black) phenotype in the cell population
at time t. Because the population size is large, these fractions are approximated to be the
probabilities of a cell in the population showing the corresponding phenotype. The tran-
sition rates are defined as the conditional probabilities of a cell switching to a phenotype
at time t+1 given its phenotype at time t. These transition rates build a transition matrix
as follows:

Tm =

PR|R PG|R PB|R
PR|G PG|G PB|G
PR|B PG|B PB|B

(7)

The transition matrix is assumed to be constant over time. Following the Markov
chain property, the population at t+1 is obtained as follows:

Ft+1 = Ft × Tm (8)

The R package CellTrans is used to infer the transition matrix from the FACS data.
Briefly, the package makes use of the above mentioned property of Markov chains and
back calculates Tm using the information of Ft and F(t+1) from the FACS data. More details
of the methodology are provided in [22].

Using the transition matrix, we simulated the trajectories of sorted cell populations.
In each instance of the simulations, we start with a sorted population of size 10,000 cells.
At each time step, the transition of a given cell from its current phenotype to a new
phenotype is decided using a uniform random number and the row of the transition matrix
corresponding to the current phenotype of the cell. 1000 such simulations were performed
to obtain a distribution of the population fractions of cell phenotypes at each time point.
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3. Results

3.1. AMPK-Akt Feedback Loop Can Give Rise To Two States: pAkthigh/ pAMPKlow and
pAMPKhigh/pAktlo

First, we gathered experimentally curated information about interconnections among
AMPK and Akt. AMPK and Akt can antagonistically regulate common downstream
effectors such as mTOR signaling and FOXO signaling through differential phosphory-
lation [23]. Moreover, they can affect the activation status of one another. For instance,
AMPK activating agents such as AICAR and phenformin can reduce the phosphorylation
of Akt [24]. Adiponectin-activated AMPK can dephosphorylate Akt by increasing the ac-
tivity of protein phosphatase 2A (PP2A) through dephosphorylating PP2Ac at Tyr307 [25].
On the other hand, upon insulin treatment, Akt is activated and it phosphorylates Ser487
of the serine/threonine rich loop (ST loop) in AMPK-α1 subunit, thus reducing subsequent
phosphorylation and LKB1- or CAMKKβ-dependent AMPK activation at Thr172. Also,
GSK3, another substrate of Akt, can phosphorylate the AMPK-α1 subunit at Thr481 and
Ser477, further inhibiting AMPK activation by Thr172 phosphorylation [26]. Thus, AMPK
and Akt pathways seem to inhibit the activity of one another.

Such a double negative association between AMPK and Akt was also reported in
breast cancer cells during matrix attachment and detachment. The activation of AMPK
upon matrix-deprivation drove upregulation of PHLPP2 protein levels, which can in-
activate Akt. On the other hand, when cells were (re)attached to the matrix, Akt was
activated which repressed AMPK activity through PP2Cα [13] (Figure 1). Put together,
the abovementioned interactions reveal a mutually inhibitory feedback loop between the
AMPK and Akt. This loop is reminiscent of “toggle switches” formed by various ‘master
regulators’ of two (or more) diverse cell states, seen during embryonic development and
disease progression [27]. Such feedback loops can occur at transcriptional [28,29], post-
transcriptional [30,31], and cell-cell communication levels [32,33]. Here, a ‘toggle switch’
is observed between two kinases. For further analysis, we have focused on interactions
known in the context of matrix-deprivation in breast cancer cells (Figure 2A).

Figure 1. AMPK-Akt feedback loop. Regulatory network between AMPK and Akt. Green arrows and
associated green ‘P’ circles denote activation by phosphorylation. Red arrows indicate deactivation
by phosphorylation, and red hammerheads show deactivation by dephosphorylation. Solid lines
show known molecular mechanisms, and dashed lines show scenarios where such information is
not available.

Next, we investigated the emergent dynamics of the AMPK-Akt feedback loop. For the
sake of simplicity, we considered the set of interactions reported for breast cancer cells dur-
ing matrix-deprivation (Figure 2A): (a) AMPK and Akt can switch back and forth between
their phosphorylated (active) and dephosphorylated (inactive) forms, (b) phosphorylated
AMPK (pAMPK) can upregulate the levels of PHLPP2 which promote the dephospho-
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rylation of Akt, and (c) phosphorylated Akt (pAkt) can upregulate the levels of PP2Cα

associated with AMPK, thus enhancing AMPK dephosphorylation. These interactions are
represented via a set of four coupled ordinary differential equations (ODEs). Each ODE
tracks temporal evolution of the levels of AMPK, Akt, PHLPP2, PP2Cα, and the set of
ODEs is solved numerically to obtain the steady state values for each of these four variables.
To identify the robust dynamic features of this set of experimentally identified interactions,
the kinetic parameters were chosen from a biologically relevant range of values (Table 1;
see Section 2 (Materials and Methods)). We chose 10,000 such unique parameter sets
to represent the effects of cell-to-cell heterogeneity and 1000 initial conditions for each
parameter set to characterize all the possible phenotypes across parameter sets.

Figure 2. Dynamics of AMPK-Akt feedback loop. (A) Reduced network considered in the model containing a total of eight
species – each of the four molecules (AMPK, Akt, PHLPP2, PP2Cα) has an active (rectangle) and an inactive (oval) form.
Black arrows show the conversion of species from active to inactive and vice-versa. Red hammerheads represent inhibition,
green arrows represent activation. Unless stated otherwise, further analysis shows the levels of only active species of the
four molecules. (B) Heatmap of steady states attained by 10,000 random parameter sets generated from 1000 random initial
conditions of the active levels of AMPK, Akt, PHLPP2, and PP2Cα. Color is based on the z-score calculated for the whole
set of simulations across all parameter sets, orange represents positive z-score (high) and purple represents negative z-score
(low). LL, HL, LH and HH denote the four states when considering the steady state levels of pAMPK, pAKT - pAMPKlow/
pAktlow, pAMPKhigh/pAktlow, pAMPKlow/ pAkthigh and pAMPKhigh/pAkthigh. (C) Scatter plot of z-scores of AMPK and
Akt steady state values represented in heatmap showing the state distribution. Pearson correlation coefficient, p-value
are reported.

We collated the levels of AMPK, Akt, PHLPP2 and PP2Cα obtained from all param-
eter combinations and plotted them using a heatmap. We observed the emergence of
four major clusters – pAMPKlow/pAktlow, pAMPKhigh/pAktlow, pAMPKlow/pAkthigh

and pAMPKhigh/pAkthigh state with pAMPKhigh/ pAkthigh state being the least frequent
and pAMPKlow/ pAktlow state being the most frequent (Figure 2B and Figure S2). A scatter
plot between the pAMPK and pAKT levels revealed a significantly negative correlation
(Figure 2C, Figure S2), suggesting that pAMPKhigh/pAktlow and pAMPKlow/pAkthigh

states can be the dominant outputs of the network. The other nodes of the network also
showed expected correlations trends (Table S2). However, the model also suggests the
possible existence of pAMPKlow/pAktlow and pAMPKhigh/ pAkthigh states; the biological
evidence for their existence still remains inconclusive. The occurrence of these four states
associated with respective ratios of activation and deactivation of AMPK and Akt as identi-
fied from parameter sampling. The pAMPKlow/pAktlow state was observed in parameter
cases where the net activation rate of AMPK or Akt was quite low, independent of the
AMPK or Akt activities (i.e., the effects of PHLPP2 or PP2Cα) (Figure S3). Relatively low
levels of pAMPK and/or pAKT have been reported in certain experimental reports [34,35].
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However, here in the context of breast cancer, we focused our attention to pAMPKhigh/
pAktlow and pAMPKlow/pAkthigh states [13], and the parameter sets that converged to
them. In particular, we focused on parameter sets that enabled a co-existence of these two
states (bistability).

3.2. The Two States (pAkthigh/ pAMPKlow and pAMPKhigh/pAktlow) Can Co-Exist and
Stochastically Switch Between One Another

To better understand bistability in this system, we performed nullcline and bifur-
cation analysis on the parameter sets showing bistability. First, for each parameter set,
we constructed nullclines for pAMPK and pAKT. For a two-component system such as
this, a nullcline represents the steady state levels of one component obtained over a range
of values of the second component with its (i.e., the second component’s) rate of change
over time being set to zero. The intersections of nullclines are, therefore, the points at
which the rate of change for both the components is zero, i.e., a steady state of the system.
The advantage of this approach over dynamical ODE-based simulations is that we can
also identify unstable steady states that act as tipping points for transition from one stable
steady state to another. In other words, for these parameter states, the two identified stable
states can co-exist and can transition from one to another.

Here, for a given parameter set, we first calculated the steady state levels of ac-
tive Akt (pAKT) for different constant values of active AMPK (pAMPK) (green curve
in Figure 3A(I). Next, we calculated the steady state levels of pAMPK for different fixed
levels of pAkt (red curve in Figure 3A(I)). These two curves are called as nullclines and
their intersections identify the steady states of the system, two of which are stable (filled
circles), and one unstable (hollow circle). The two stable states are pAkthigh/pAMPKlow

and pAMPKhigh/pAktlow. The unstable state acts as a ‘tipping point’ beyond which a
perturbation can allow switch from one state to another. Similar dynamical behavior
was seen for other parametric combinations too, suggesting underlying bistability of the
AMPK-Akt feedback loop (Figure 3A(II-III) and Figure S4).

To investigate how this feature of bistability may depend on various kinetic parameters
in the model, we plotted a bifurcation diagram that tracks the levels of pAKT at varied
values of activation rate of AMPK (kac AMPK). We chose kac AMPK as the bifurcation
parameter to reflect the cases where the activation rate of AMPK can be altered by cell-
intrinsic or cell-extrinsic factors. At low kac AMPK values (<0.05), pAkt levels are relatively
higher, because the dephosphorylation of Akt by AMPK is weaker. Similarly, at high kac
AMPK values (>0.13), pAkt levels are relatively lower, because of strong inactivation of
Akt by AMPK. However, at intermediate range of these values (area bounded between
dotted blue lines), a cell can exhibit bistability in terms of pAMPK levels, i.e., it can exist in
either a pAkthigh/pAMPKlow or pAMPKhigh/pAktlow state (Figure 3B(I)). Similar trends
are seen for other parameter sets shown earlier (Figure 3B(II-III)).

To quantify the range of bistability in the bifurcation diagram and its dependence on
other kinetic parameters besides kac AMPK, we plotted this bifurcation at different values
of activation rate of Akt (kac Akt) and observed that these curves (blue and magenta curves
in Figure 3C(I) largely overlapped with that seen earlier (green curve in Figure 3C(I)). Next,
we varied each parameter, one at a time, by +/− 10% and calculated the percentage change
in the range of kac AMPK values enabling bistability, i.e., the distance between the dotted
vertical lines. This sensitivity analysis suggested that the percentage change in this range
was above 10% for only a few parameters such as those defining the effect of PP2Ca on
AMPK (Figure 3C(II), Figures S5 and S6). These results underscore that the existence
of bistability in AMPK-Akt feedback loop can be considered as largely robust to small
parameter variations. Consequently, cells in an isogenic population may exist in two
distinct states: pAkthigh/pAMPKlow and pAMPKhigh/pAktlow.
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Figure 3. Nullcline, bifurcation and sensitivity analysis. (A) Nullclines for three representative bistable parameter sets
(rows 1–3 in Table S3). Green curve is AMPK Nullcline (d/dt (AMPK)=0). Red curve is Akt Nullcline (d/dt (AKT)=0).
Blue circles represent stable states, white circles represent unstable steady state. (B) Bifurcation of Akt steady state levels
with respect to the activation rate of AMPK (k_ac AMPK) for three representative bistable parameter sets (rows 1–3 in
Table S3). Green curves denote stable states and red curves denote unstable states. Region bound by the blue dashed line
represents the bistable region, where both states can co-exist. (C) (I) Representative bifurcation of Akt levels with respect to
activation rate of AMPK (k_ac AMPK), drawn for three different levels (control, ±10% change in deactivation rate of AMPK
(k_dac AMPK). Green curve shows the control case, blue curve for +10% and magenta Curve for −10% of k_dac AMPK. (II)
Sensitivity analysis of the width of the bistable region (length of the segment of the x axis between the black dotted lines
in bifurcation diagram) for a parameter set (row #1 in Table S3) with changes in individual parameter by ±10% from the
original value. Blue dotted line represents the ±10% change. Arrows show possible transitions between the different states.

Next, we varied two parameters simultaneously, to map the two-dimensional pa-
rameter region in terms of (co-)existence of the two states. At high kac AMPK and low
kac Akt, only the pAMPKhigh/pAktlow state was observed. Similarly, low kac AMPK and
high kac Akt allowed only the pAkthigh/pAMPKlow state. Both these states co-existed in
a parameter region lying between these extremes (yellow region in Figure 4A(I)). These
trends were reinforced based on bifurcation diagrams drawn for an intermediate value
of kac Akt (= 0.15), with kac AMPK as the bifurcation parameter. Bistability existed for
intermediate values of kac AMPK; while higher or lower values led to monostable regions
where only one state existed (Figure 4A(II)). Bifurcation diagram with kac Akt as the pa-
rameter confirmed the trend (Figure 4A(III)). Similar characteristics dynamics was seen for
other parameter sets (Figure S7).

The co-existence of two (or more) states in a bifurcation diagram indicates that they
may ‘spontaneously’ switch among one another. Thus, we performed stochastic simula-
tions to examine for state switching under the influence of biological noise. These simu-
lations revealed that cells can switch back and forth between the pAkthigh/ pAMPKlow

and pAMPKhigh/pAktlow states for varying strengths of noise parameter (Figure 4B and
Figure S8), highlighting that spontaneous state switching may be an outcome of the AMPK-
Akt loop.

Such state switching implies that, when a cell population is sorted into subpopula-
tions, it is possible for a subpopulation to give rise to another and potentially generate a
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population distribution similar to that seen in the parental population [36,37]. The rates of
switching to and from a subpopulation to/from another one may be unequal, depending
on the relative stability of the two (or more) states, evidenced by different mean residence
times in a given state [38].

Figure 4. Phase plots and stochastic simulations. (A) (I) Phase diagram for two parameters –activation rates of AMPK and
Akt – showing monostable and bistable regions. All other parameter values correspond to those given in row #1 in Table S3.
(II) Bifurcation diagram of AMPK levels with respect to k_ac AMPK for a constant value of k_ac Akt = 0.15. (III) Same as (II)
but with respect to k_ac Akt for a constant value of k_ac AMPK=0.15. Green curve shows stable states, red curve shows
unstable states. Blue dotted lines show region of bistability. (B) Stochastic simulations showing trajectories of AMPK, Akt
values under the influence of noise for three representative parameter sets (rows 1–3 in Table S3). Noise parameter value
η = 20.

3.3. Experimental and Clinical Data Supports The Model Predictions of Bistability in
AMPK-Akt Loop

To experimentally interrogate our observations of spontaneous state switching be-
tween pAkthigh/pAMPKlow and pAMPKhigh/pAktlow states, we performed FACS based
cell sorting experiments in MDA-MB-231 cells stable for EGR1(promoter)-TurboRFP (EGR1
promoter-reporter system). In this approach, EGR1 promoter is used as a readout for
AMPK activity, where high EGR activity (assessed by RFP intensity) corresponds to low
AMPK activity and vice-versa [39]. Cells were grown in attached condition and sorted into
high and low RFP group by FACS. These cells were cultured again for the indicated times in
attached condition and we observed that these cells regained their original heterogeneous
nature with time (Figure 5A and Figure S9A).

To quantify the observed phenotypic transitions between low and high AMPK (red
and green populations respectively) cells, we constructed a discrete time Markov chain
model [31]. The model assumes that transition rates between these cell types are in-
dependent of each other and do not change with time. We further assumed that the
non-expressing cells (black population in the FACS distributions) do not transition into
any other cell type. Using the R package CellTrans [22], we obtained the transition ma-
trix, an ordered collection of transition rates (Figure 5B and Figure S9B). Using these
transition rates, we simulated the evolution of population composition starting from
homogeneous populations (Figure 5C and Figure S9C). The model predicts a higher tran-
sition rate from pAkthigh/pAMPKlow to pAMPKhigh/pAktlow phenotype, than that of
pAMPKhigh/pAktlow to pAkthigh/pAMPKlow, suggesting that the pAMPKhigh/pAktlow

population may be relatively more stable.
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B C I II

A

Figure 5. Stochastic state transitions. (A) Experimental validation of AMPK-Akt feedback loop using MDA-MB-231
EGR1-Turbo RFP cell lines sorted for high and low RFP expressing population using FACS. The RFP high population
(red) corresponds to low pAMPK and high pAkt, and RFPlow (green) population corresponds to low EGR activity, high
pAMPK, and low pAkt. Grey population correspond to cells that have lost the vector. Histograms show the population
composition after 1, 7 and 9 days when started with distinct RFPhigh (red, top panel) and RFPlow (green, bottom panel)
populations. (B) State transition graph: each node is a cell phenotype colored the same as FACS data for representative
purposes, and each edge represents transition between the corresponding phenotypes. Transition rates (per day) calculated
from the Markov model are shown on the corresponding arrows. (C) Predicted evolution of population heterogeneity
when started from the initial population fractions, equivalent to distinct populations in the FACS data, using the transition
probabilities calculated here. Error bars represent mean ± standard deviation from 1000 such simulations.

Figure 6. Clinical validation of AMPK-Akt double negative feedback loop. Scatter plot of active levels of AMPK (AMPK
pT172) and Akt (pT308 and pS473) in (A) Breast cancer cohort (TCGA-BRCA) (n = 901), (B) Pan Cancer cohort of 32 cancer
types (n = 7694) and (C) Sarcoma cohort (TCGA-SARC) (n = 221). Each dot represents one patient and coordinates
correspond to the protein expression levels capture using RPPA (reverse phase protein array) with Akt and AMPK active
forms (AMPK-pT172, Akt-pT308 and Akt-pS473). Pearson’s correlation coefficients and p-value are reported.
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4. Discussion

Phenotypic switching can play crucial roles during cancer progression, as seen across
cancer types. Prostate cancer cells can switch to a neuroendocrine-like state that is refractory
to various therapies [40]. Similarly, in small cell lung cancer, cells under therapy-induced
stress can reversibly switch to a hybrid neuroendocrine/mesenchymal state [41]. Besides
these specific examples, EMP and CSCs are archetypal examples of phenotypic switching
reported in many carcinomas [42,43] and non-epithelial tumors [44–47]. Recent progress
in collecting high-throughput spatiotemporal data and mapping the regulatory networks
underlying these axes of plasticity has led to developing complex mechanism-based and
population-based mathematical models to decode dynamical traits of phenotypic switching
such as dose-dependence, reversibility, hysteresis and transition rates among the cell
states [48–56].

A hallmark of regulatory networks enabling phenotypic switching in cancer cell pop-
ulations is multi-stability, i.e., the ability of isogenic cells to reversibly acquire diverse
phenotypes [5,11,12,57–61], as reported earlier also for bacterial [62] and viral [63] popula-
tions. Multi-stability can enable ‘spontaneous’ switching among cell phenotypes (different
attractors in the Waddington’s landscape) due to biological noise (that can operate at
multiple levels including transcriptional or conformational [64,65]), and thus facilitate non-
genetic heterogeneity [8,66]. For instance, in the context of EMP, PMC42-LA cells showed a
bimodal distribution of EpCAM, and either subpopulation (EpCAM-high or EpCAM-low)
was capable of generating the other without any exogenous overt induction [53]. Simi-
lar observations have been reported in maintaining a dynamic equilibrium of CSCs and
non-CSCs in breast cancer [67].

Here, we demonstrate breast cancer cells switching between pAkthigh/pAMPKlow

and pAMPKhigh/pAktlow states in adherent cell populations. Together with reinforcing
observations of switching among these subpopulations in matrix-detached conditions
using the same reporter construct in MDA-MB-231 cells [39], our results strongly support
the existence of multi-stability in AMPK-Akt double negative feedback loop, as predicted
by our mechanism-based mathematical model. A limitation of our mathematical model
is the limited set of interactions between AMPK and Akt that we incorporated for the
purpose of characterizing their dynamics in the context of matrix-deprivation. Other
context-dependent interactions between AMPK and Akt have been reported, for instance,
AMPK can activate Akt in acute lymphoblastic leukemia [68]. Also, AMPK mediated
phosphorylation of Skp2 at S256 can activate the Skp2 SCF complex, driving K63-linked
ubiquitination and eventual activation of Akt [69]. However, these interactions have not
been yet observed in matrix-deprivation conditions. Such context-specific differences may
allow for other dynamics for AMPK and Akt, such as oscillations seen in MCF10A cells
upon inhibition of glycolysis and mitochondrial ATPase [70]. Intriguingly, AMPK can
form double negative feedback loops with other molecules such as mTORC1 [71], which is
involved in a similar feedback loop with ULK1 [72]. Coupling of such “toggle switches”
can influence the emergence of multi-stability [73].

Another salient feature of multi-stability is hysteresis, as observed for bacterial
cells [74] and for EMP in cancer cells [11]. Future experiments should investigate the
possibility and implications of hysteresis in AMPK-Akt feedback loop driving the adapta-
tion of breast cancer cells to matrix-deprivation (in other words, anchorage-independence)
stress. Also, anchorage-independence has been shown to be associated with other axes
of phenotypic plasticity: EMP [75–77], CSCs [78], and metabolic reprogramming [79–81].
However, a systems-level understanding of coordination of cell states along these inter-
connected axes remains elusive. Future integrative computational-experimental efforts,
similar to the approach taken here, can be critical in investigating such coupled dynamics
of phenotypic plasticity during the challenging metastatic cascade and identify therapeutic
targets that can impact multiple axes of plasticity simultaneously.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2077-038
3/10/3/472/s1, Table S1: Shows the literature reported values of parameter values. Table S2: Shows
the Pearson’s correlation values and corresponding p values for the comparisons between AMPK,
Akt, PHLPP2 and PP2Cα for three replicates, Table S3: Shows the 10 representative parameter sets
used in the study, Table S4: Shows the Pearson’s correlation values and p values between AMPK
(pT172) and Akt (pT308 and pS473) for 32 different TCGA cancer cohorts.
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