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Abstract
This study highlights the importance of the information contained extreme value 
ratios (or returns) in the volatility estimation of financial assets. Most popular 
extreme value estimators like Parkinson (Journal of Business, 61–65, 1980), Gar-
man Klass (Journal of business, 67–78, 1980), Rogers Satchell (The Annals of 
Applied Probability, 504–512, 1991) and Yang Zhang (The Journal of Business, 73 
(3), 477–492, 2000) use a subset of all available extreme value ratios but not the full 
set. We examine if there are other extreme value ratios which contain more infor-
mation than the most widely used ratios. This study shows empirically how much 
information is contained in various extreme value ratios of financial assets, using 
both real and simulated data. Using information theory, we find out their variability 
in relation to a uniform distribution in each quarter. We then rank them using the 
Kullback–Leibler metric (in accordance with a scoring methodology we developed 
in this study) to ascertain which set of ratios are more variable than others and thus 
may provide better estimation in computing volatility. We also calculate the rank of 
the matrix to identify the set of linearly independent ratios, for ascertaining the num-
ber of ratios that would be enough to generate a class of volatility estimators. The 
empirical results demonstrate that the need for incorporating other ratios in volatil-
ity estimation. We also observe that each dataset has other more informative ratios 
which are uniquely attributed to that dataset.
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Introduction

Finance involves the study of time and chance. Chance is defined by the states of 
nature whose occurrence is subject to probability. If these states of nature are quan-
tifiable, it essentially becomes a study of risk. The Risk and portfolio selection, 
which still dominate the discourse in modern finance theory was given a mathemati-
cal framework by Markowitz (1952), which essentially said that the first and the 
second order moments were enough to make a portfolio choice that was optimal. 
The economic justification for the same came a few years later when Samuelson 
(1970) proposed an approximation theorem which held the higher order moments 
as redundant in making portfolio choices. Subsequent developments in the literature 
have revolved around the study of volatility though the measurement of volatility 
still remains an issue of much disagreement among academicians and practition-
ers alike. The simplest measure of volatility in finance is defined as the variance of 
returns. It is given by:

Volatility, despite being a very important summary statistic, suffers from a major 
drawback, as it does not convey anything about the direction of change. Apart from 
this, asset returns are anything but well behaved and issues arrives when we deal 
with a multi period setting (which distorts the Variance- Covariance structure of 
asset returns) and extreme events. The measurement of volatility is broadly divided 
into two classes: the Conditional and the Unconditional methods. The Conditional 
methods are dependent on the information set and the underlying model which cap-
tures the behavior of volatility.

where Ω is the information set. It is also important to note that the different measures 
of volatility have been developed in response to the deviance from what is observed 
empirically. One such phenomenon is volatility clustering which Mandelbrot (1963) 
describes as large changes tend to be followed by large changes, of either sign, and 
small changes tend to be followed by small changes. Put in other words, this essen-
tially means that while returns themselves might be independent of their lagged val-
ues, the absolute returns |rt | or squared returns might show some correlations which 
might also be decaying in nature. That is, corr(|rt|,|rt+τ|) > 0, for τ ranging from very 
short to longer time intervals. This empirical property was observed in the 90′s by 
Granger and Ding (1996) among others. Ding and Granger (1996) point to long-
range time series dependence in volatility.

There has been an increasing consensus about treating financial volatility as a 
latent factor, something which cannot be observed directly. One way of doing this 
is to derive the volatility of the asset from its option’s value using numerical meth-
ods. Ross (1981) suggests that option prices have expectations of future value of 
the underlying asset embedded in them. Transforming this to an eigenvalue problem 
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can help in recovering the probabilities of the expected state prices and hence the 
expected volatility of the asset. Moreover, assuming that markets are efficient, the 
expected volatility of the asset should reflect itself in the actual volatility of the 
asset. All these methods, in principle, convey the basic idea that volatility in finan-
cial markets can only be indirectly estimated using its imprint on an underlying mar-
ket process. With increasing complexity and the inclusion of market microstructure 
noise effects, the results lack clarity. By lack of clarity, we mean that as markets 
processes become increasingly integrated, traditional methods of computing volatil-
ity become less efficient in incorporating information from the market. In incorpo-
rating the dynamic nature of the price discovery process and hence the time varying 
volatility in financial markets, the Generalized Autoregressive Conditional Heter-
oskedasticity (GARCH) family of models (Engle 1982; Bollerslev 1986), and the 
stochastic volatility (SV) models (Taylor 1986) are two commonly used alternatives 
that estimate and model time-varying conditional volatility of asset returns. These 
models however, come with their own flaws. Diebold (2002), and a few other author 
have come up with the objection that since the GARCH and SV models are formu-
lated on the basis of only the closing prices, of the period under consideration, they 
fail to use the information that is embedded in the path of the pricing process, there-
fore rendering them inaccurate and inefficient. Illustrating this with an example, let 
us consider a turbulent day of trading in the financial markets. Information has flown 
into the market and since the spread of this information might not be as instantane-
ous as the Efficient Market Hypothesis would suggest, coupled with the noise in 
this process, it leads to high levels of intra-day volatility. In such a scenario, with 
frequent drops and recoveries of the markets, the traditional Close-to-Close volatil-
ity measure indicates a low level of volatility while the daily price range is more 
accurate in indicating that the volatility is high.

Among the class of unconditional volatility measures, the traditional volatility 
estimates are calculated using Close-to-Close or Open-to-Close returns. This kind 
of estimation does not incorporate the information contained in that particular day’s 
price trajectory. Parkinson (1980) accounted for “High and Low prices” in its esti-
mation and thus extended the regular volatility calculation. Beckers (1983) demon-
strated empirically that daily price ranges contain new information when compared 
to the traditional measures. This was a significant improvement over the previously 
used estimators because of the superior quantum of information that it incorporated. 
The stochastic process usually assumed for a stock price is geometric Brownian 
motion which is given by the equation:

Under such assumptions, Ozturk et al. (2016) show that the extreme value esti-
mators of volatility are substantially more efficient than the traditional methods. A 
major drawback of the Parkinson’s estimator was that it did not take opening and 
closing prices into account. This issue was resolved by Garman and Klass (1980) 
as they considered those prices along with highs and lows into their estimation. 
Despite their superior information content, the two estimators were unable to handle 
non-zero drift. Rogers and Satchell (1991) developed an estimator which allowed 
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for non-zero drift. However, a major disadvantage of these three estimators is the 
fact that they are not robust for opening jumps in prices. Yang-Zhang extended the 
Garman-Klass method called as GKYZ that allows for opening jumps hence it is a 
fair estimate, but assumes zero drift. Yang and Zhang (2000) derived the volatility 
estimator which has minimum estimation error. It is a weighted average of Rogers-
Satchell, the Close-to-Open volatility and the Open-to-Close volatility and is a drift 
independent estimator (Yang and Zhang 2000). A common feature among all these 
estimators is the assumption that the security price follows a geometric Brownian 
motion, but with minor differences. Calculating volatility estimation makes use of 
extreme values. The input variables are  (Ct-1,  Ot,  Ht,  Lt,  Ct). Here  Ct-1 denotes the 
previous day’s closing price.  Ot,  Ht,  Lt and  Ct denote the Opening, High, Low and 
Closing prices of the current day.

In the present study, we constructed 10 ratios out of five input variables or the 
prices of today’s trading day (making a unique pair out of each of these variables). 
These ratios are listed below:

Out of these ten ratios, we considered pairs of any two ratios at a time and arrived 
at 45 cross product ratios. Existing literature has used ratios R2, R3, R4, R8, etc. 
(R1could be multiplied to R2 and so on. Doing so, we arrive at ratios such as R1R2, 
R2R3, etc.) Added to the squared product of the ratios (such as R1R1, R2R2, etc.), we 
get 55 new ratios. The different unconditional Volatility estimators have used com-
binations of the different subsets of these 55 ratios. It is important to note that the 
current literature has not yet considered all possible combinations of these ratios and 
hence their efficacy in terms of conveying information remains untested. Hence, the 
hypothesis we propose is that the other ratios may contain more information and 
therefore more useful in estimating volatility. Thus, as a natural consequence of the 
current literature, it becomes important to investigate about the information content 
of the other ratios, that have not yet been assessed. Moreover, empirical evidence 
suggests that observed extreme values can provide a significant amount of informa-
tion about the volatility within the trading period.

Review of Literature

The literature on extreme value volatility estimators begins with Parkinson (1980) 
who incorporated extreme values of price movements. His estimate of day to day 
volatility yielded more details of the intraday movements. This made his estimate a 
superior one in terms of efficiency (that is, the information content was higher) effi-
cient than the widely used Close-to-Close estimator. The Parkinson estimator was 
based on the high and low values attained by the price process during the course of 
the day.

where Ht and Lt are log transformed prices (we shall use the same convention for 
other estimators as well.) It is evident from the above formula that as the spread 
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between the high and low values of the price increases indicates higher levels of vol-
atility. Acknowledging the many sided advantages of the Close- to-Close estimator 
such as its simplicity of usage (which is as important to a practitioner as to an aca-
demic) and its freedom from obvious sources of error and bias on the part of mar-
ket activity, Garman and Klass (1980) pointed out that the crippling disadvantage 
of this estimator is its inability to incorporate Open, High, Low and Closing prices 
which could have contributed to higher efficiency in estimating volatility. Building 
on the Parkinsons estimator, they developed a volatility estimator that incorporated 
the high and low prices, and was an optimal combination of the Close-to-Close and 
the Parkinson volatility estimators. To illustrate this point, the Garman-Klass esti-
mator is given below:

A major advantage that this improved efficiency yields is that a significantly lesser 
number of observations (seven times fewer) are required to attain the same state of sta-
tistical precision as the Close-to-Close estimator. An important component of any price 
process that supposedly follows the Geometric Brownian Motion is the drift of the pro-
cess. A drift in the motion is similar in function to what a trend does in a time series 
model. Not accounting for the drift, one may end up overestimating the volatility of 
security prices. To capture this trend like behaviour of the price process, Rogers and 
Satchell (1991) devised an estimator that allows for an arbitrary drift, given by:

A major drawback of this estimator is that it provides less precision than the other 
estimators and is only limited in its usage when the process involves a drift component. 
The Meilijson estimator (Meilijson 2008) is a slightly improved version of the Garman-
Klass volatility estimator. The Meilijson estimator was observed to have a relatively 
higher efficiency compared to the Garman-Klass estimator. All of the studied estima-
tors except for the Rogers-Satchell are derived under the assumption of zero drift.

Attempts at improving the Garman Klass estimators have been made, though these 
new class of information augmented estimators face the same limitations as their pre-
decessors in the sense that they too, do not incorporate drift in their analysis. In an 
attempt to improve on this shortcoming of the estimators suggested by the previous lit-
erature, Yang and Zhang (2000) created a volatility measure that handles both opening 
jumps and drift. It is a combination of the Overnight volatility (defined as the Close-
to-Open volatility) estimator and a linear combination of the Rogers-Satchell and the 
Open-to-Close volatility es- timators. The assumption of continuous prices does mean 
the measure tends to slightly underestimate the volatility. The specification of the Yang-
Zhang estimator is given below:

where k is a constant. �2
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2
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volatilities. Empirical results suggest that variances measured by extreme value 
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estimators efficiently approximate the true daily variance. They are proven to be 
highly efficient (Shu and Zhang, 2006). Todorova and Husmann (2012) dem-
onstrated the same thing as above but they showed that estimators based on daily 
ranges are severely negatively biased due to discrete trading. The efficiency tests 
that are used to gauge the importance of and comparing the estimators are based 
on a simple intuition. The closer an estimator is to the historical volatility measure, 
the lesser is its information content and hence, it becomes less efficient. This idea is 
captured by the fact that the Relative Efficiency of an estimator is given by:

In the above formula, the numerator and denominator denote the variances of 
any two given unbiased estimators, denoted by EV and HV. An important issue that 
needs to be addressed is about the sensitivity of these efficiency tests to the prob-
ability distribution of the realization of a process. Physics and Information theory 
(developed by Claude Shannon in the 1940s), propose to analyze any message in 
terms of any kind of uncertainty or any disorder, using the concept of entropy which 
is defined on the basis of the value of the logarithm of the number of likely equiva-
lent messages. This concept has been used to address some of the fundamental ques-
tions in financial theory, especially in portfolio models, thus providing researchers 
with a kind of functional parallelism that can be used to study the working of finan-
cial markets in terms of relatively well defined natural processes. In this context, 
entropy has been described as an information measure by some researchers, in the 
sense that this measure gives an idea of what the true value of the information may 
be. Putting it in simpler terms, the entropy of a random variable can be defined as 
the amount of information required to describe it. Delving deeper into the notion 
of what entropy really means, one may ask that given the information that one may 
have about a certain random variable, is it possible to use it in some way to describe 
another random variable. To address this problem, one needs to be familiar with the 
idea of what is known as Relative Entropy in the Information Theory literature.

Relative entropy or the Kullback Leibler (KL) Distance (By distance, we do not 
mean the metric distance.) is defined as the distance between two probability distri-
butions. In statistics, one encounters this idea in the form of the expected logarithm 
of the likelihood ratio. Another way of understanding this idea is to interpret the 
relative entropy D(P||Q) as the inefficiency in estimating the true distribution p as 
the erroneous distribution q. To further illustrate this point, if a code of descrip-
tion length H(p) is used to describe a certain message, one could use a code of 
description length H(q) instead, adding the term D(P||Q) to account for the distance 
between the two. These ideas about entropy and information have found use in the 
literature on financial theory spanning fields such as market microstructure theory, 
asset pricing and risk management. Philippatos and Wilson (1972) were the first 
two researchers who applied the concept of entropy for portfolio selection. Using 
the mean entropy approach, possible efficient portfolios were constructed from 
a randomly selected sample of monthly closing prices of 50 securities using data 
over a period of 14 years. Ong (2015) employed information theory to examine the 
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dynamic relationships between stock returns, volatility and trading volumes for SP 
500 stocks. Literature in this context has shown evidence that the information con-
tained in the level of the extreme returns (which is lost while using the observed 
ranges for inferences) can also contribute to more efficient estimation of volatility 
(Horst et al., 2012).

The present study makes use of Shannon entropy and KL distance to measure the 
distance of the probability distribution of each ratio from the uniform distribution in 
each of the quarters. Unlike most information theoretic problems, this study does not 
address the issue of message extraction. The primary focus has been on developing 
a framework that is not parameter sensitive and could work well in terms of provid-
ing a ranking based on the information content. One thing that needs to be noticed is 
that most of the volatility estimators that are currently in usage (and have been ana-
lyzed in this study as well) address a statistical issue and do not capture any micro-
structure based signals that the price process may have incorporated. Thus, this dis-
crepancy compels us to develop only a ranking method and the scope for unraveling 
the implicit market process beneath the explicit volatility measure is limited.

Data and Methodology

This study uses both the real data as well as the simulation generated data for sev-
enty two quarters (on a daily basis) and two commodities viz. Crude Oil and Gold 
Futures. Two things need to be understood here. Firstly, the choice of assets is arbi-
trary here. That is, any other commodity could have been chosen and the applicabil-
ity of the KL distance is not sensitive to the choice of the asset. Secondly, the period 
under consideration is not fixed either. Any other time span would have worked well. 
The only reason to consider a sufficiently long time series data is to observe patterns 
that are stable and not subject to fluctuations that are often associated with the short 
run. The real data was extracted from the Investing.com website database which 
is a global financial portal. The simulation process used the Geometric Brownian 
Motion for simulating the price trajectories for these commodities (assuming that 
prices follow a random walk like movement in continuous time, thus allowing for 
market efficiency). Eventually, the data series was further divided into seventy two 
quarters. The commodities have been listed with their characteristics below.

Commodity Group Unit

Gold Futures-Jun 18(GCM8) Metal 1 Troy Ounce
Crude Oil WTI Futures (CLM 8) Energy 1 Barrel

Five key variables need to be defined in this context. Open is the price of the 
stock at the beginning of the trading day (it need not be the closing price of the 
previous trading day), High is the highest price of the stock on that trading day, 
Low the lowest price of the stock on that trading day, and Close the price of the 
stock at closing time. The ratios under assessment in our study have all been 
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derived from these five input variables namely  Ct-1,  Ot,  Ht,  Lt, and  Ct from which 
the estimators have been derived.

The present study examines various extreme value ratios developed in the vol-
atility estimation literature (as well as those which have not yet been analyzed) 
from an information theoretic point of view. The entropy of a random variable 
measures uncertainty in probability theory. One way of appreciating this idea, is 
to define something known as the occurrence probability of an event. A smooth 
pattern of price movement is less likely to yield us some news compared to a 
pattern where some shocks are visible. Since shocks are less likely to occur than 
less volatile price changes, they tend to carry more information and hence higher 
entropy. In a more formal setting in the field of information, entropy represents 
the loss of information of a physical system observed by an outsider, but within 
the system, it represents countable information. The purpose of entropy metric is 
to measure the amount of information. Its applications in finance can be regarded 
as extensions of both information and probability entropies. In our context, it is 
also very important to introduce another useful principle, which is known as the 
Minimum Cross-Entropy Principle (MCEP). This principle was developed by 
Kullback and Leibler (1951), and it has been one of the most important entropy 
optimization principles. Consider a data set that we have for which the actual sta-
tistical distribution is given by P = p(x). We propose a distribution Q = q(x) for 
modeling the data set (a traditional example would be to use a least-squares line 
fit for Q). We would prefer having a measure which can tell us something about 
how well our model matches the actual distribution.

Information theory defines information in terms of encrypted message in a 
given signal or message (which is expressed in terms of codes) and introduces 
Shannon entropy, i.e., entropy in the discrete case. Shannon entropy could both 
be defined as the “expected value of the information of the distribution” and the 
number of bits one would need to reliably encode a message. The Shannon

entropy of a probability measure on a finite set X is given by:

where, ∑P(x) = 1.
When dealing with continuous probability distributions, a density function is 

evaluated at all values of the argument. Given a continuous probability distribu-
tion with a density function f(x), we can define its entropy as:

Thus, the entropy of a probability distribution is just the expected value of the 
information of the distribution.

As discussed above, we essentially want to device a criterion that measures 
the extent to which our fitted model is close to the real world. In this context, we 
defined what is known as the Kullback Cross Entropy. It measures the distance 
between two probability distributions, P and Q. If we have no other information 
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other than that each  pi ≥ 0, and the sum of the probabilities is unity, we have to 
assume the uniform distribution due to Laplace’s principle of insufficient reasons. 
It is a special case of the principle of maximum uncertainty according to which 
the most uncertain distribution is the uniform distribution. Therefore in this 
study, we have taken the second distribution as the uniform distribution, which 
is the most random or uncertain distribution. Kullback and Leibler proposed the 
Kullback cross-entropy which is defined as:

Relative entropy (or KL divergence) proves to be the key to information theory in 
the continuous case, as the notion of comparing entropy across probability distribu-
tions retains value.

Kullback’s cross-entropy can be considered as an “entropy distance” between the 
two distributions p(x) and q(x). It is not a true metric distance, but it satisfies S(p, p) 
= 0 and S(p, q) > 0, whenever p is not equal to q. (Here, S(p,q) refers to the entropy 
distance between any two given distributions p and q. Similarly for S(p,p). It fol-
lows intuitively that S(p,p) = 0.) Kullback’s Principle of Minimum Cross- Entropy 
(MCEP) states that out of all probability distributions satisfying given constraints, 
we should choose the one that is closest to the least prejudiced posterior density 
p(x). In other words, the objective is to minimize the following expression:

When Q = U we have the following result:

Here, S(P) denotes the entropy distance. Coming back to the idea behind using 
the Uniform Distribution, one needs to revisit the notion of entropy. Maximum 
entropy principle emerged in statistical mechanics. If nothing is known about a dis-
tribution except that it belongs to a certain class, then distribution with the largest 
entropy should be chosen as the default. It is due to two reasons:

• Maximizing entropy minimizes the amount of prior information built in to the 
system.

• Many physical systems tend to move towards maximal entropy configurations 
over time.

Uniform distribution entropy calculation: Suppose we have P (X) = 1
N

 where X 
takes the values x1, x2, ..., xN.
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We should note that this is actually the maximum value for the entropy. This 
can be demonstrated using Gibbs’ inequality, or just by finding the maximum of 
the function f (x) = xlnx. Uniform distribution has the highest entropy and thus the 
maximal uncertainty and low information. The probability density function on x1, 
x2, …, xN with maximum entropy turns out to be the one that corresponds to the least 
amount of knowledge of x1, x2, …, xN which, in other words, is the Uniform distribu-
tion. A well-known result is that the Maximum Entropy method is the special case 
of MCEP in which the target distribution is uniform and in our study, we utilize this 
result.

A well-known result is that the Maximum Entropy method is the special case of 
MCEP in which the target distribution is uniform and in our study, we utilize this 
result.

In our study, we use the KL metric to know the extent of divergence from uni-
form distribution for each ratio. Then, we ranked the ratios on the basis of their dis-
tance from the uniform distribution. As known from the above discussed principles, 
a larger distance from the uniform distribution indicates a higher information con-
tent. And hence, a higher rank. This process is repeated for each quarter and we get a 
frequency distribution like ranking system (Since a ratio might attain different ranks 
and a single rank multiple times as well.) After developing a rank matrix for all the 
ratios, we calculate the rank of the matrix to know how many ratios are linearly 
independent as it tell us that how many ratios could be used to describe the entire 
family of ratios (for the sake of parsimony). Another way of addressing this issue 
would have been to use Principal Components Analysis (PCA) but since we are not 
interested in these linear combinations, finding the rank of the matrix suffices for our 
needs.

An important issue that needs to be addressed is that while we might rank a ratio 
higher on the basis of it having attained a rank of 1 on a few occasions, it might 
actually have performed badly in the other quarters. If that is the case, one needs to 
take into account the distributions of the rankings. In other words, rankings need to 
be weighted by their occurrences for each ratio. In the subsequent section, we pro-
pose a way to do so.

Empirical Evidences

Real Data

Our analysis focuses on two kinds of data. To find out the most informative ratios, 
we initially worked on a real data set. We first analyzed the crude oil futures data. 
For the simple ratios (that is, the 10 fundamental ratios) and cross and squared 
ratios, we have the following results (Table 1).

One way of ranking the ratios could be on the basis of the best ranks attained by 
them. This is done by counting the number of times any ratio attained a given rank 
from 1 to 10, during the 72 quarters in consideration. Table 2 provides an illustra-
tion for this methodology. The above table illustrates one way of doing that. But 
while Table 3 talks about the first two best ranks attained by a given simple ratio, it 
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Table 1  Defining the Ten 
Fundamental Ratios

Ratio Definition

R1 ln(Ct-1/Ot)
R2 ln(Ht/Ot)
R3 ln(Lt/Ot)
R4 ln(Ct/Ot)
R5 ln(Ct/Ht)
R6 ln(Ct/Lt)
R7 ln(Ct/Ct-1)
R8 ln(Ht/Lt)
R9 ln(Ht/Ct-1)
R10 ln(Lt/Ct-1)

Table 2  Ranking of Crude oil Ratios according to the KL Criterion

Ratios Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 Rank8 Rank9 Rank10

R1 72 0 0 0 0 0 0 0 0 0
R2 0 0 1 7 10 12 9 17 12 4
R3 0 0 1 11 24 13 9 8 5 1
R4 0 0 0 7 7 8 7 15 15 13
R5 0 0 1 2 0 2 6 5 12 44
R6 0 0 2 15 16 17 10 6 5 1
R7 0 0 2 16 5 9 20 11 6 3
R8 0 0 2 10 7 10 11 9 17 6
R9 0 49 23 0 0 0 0 0 0 0
R10 0 23 40 5 3 1 0 0 0 0

Table 3  Crude oil simple ratios 
summarized

Ratios Highest Rank Second Highest Rank

R1 Rank 1 None
R2 Rank 8 Rank 6/Rank 9
R3 Rank 5 Rank 6
R4 Rank 8 /Rank 9 Rank 10
R5 Rank 10 Rank 9
R6 Rank 6 Rank 5
R7 Rank 7 Rank 4
R8 Rank 9 Rank 7
R9 Rank 2 Rank 3
R10 Rank 3 Rank 2
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does not take into account the ranking distribution of the individual ratios across 72 
quarters. The problem remains the same with the derived ratios. Thus, for analyz-
ing the square and cross product ratios, we developed a scoring methodology. We 
shall illustrate this with an example. Suppose, that a ratio (named X) attained the 
first rank for 60 quarters, the second rank for 10 quarters and the third rank for the 
last two quarters. Now, we need to give weights to all of these ranks. So, for the sake 
of simplicity, let the weights be linearly decreasing in nature. (We must be mind-
ful of the fact that there are 55 ratios, and hence 55 rankings). Now, these rankings 
could be weighted by their frequencies of occurrence. Also, higher ranks need to be 
rewarded. This means that Rank 1 could be assigned a score of 55, Rank 2 with 54, 
and so on. So, X should be scored as1 (Tables 4, 5, 6, 7, 8, 9, 10, 11):

Table 4  Ranking of Gold Futures Ratios according to the KL Criterion

Ratios Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

R1 17 9 6 2 3 4 6 14 6 5
R2 35 6 6 6 4 0 1 3 9 2
R3 0 5 10 14 17 15 5 4 2 0
R4 4 8 19 8 4 5 6 9 9 0
R5 12 34 13 8 4 5 6 9 9 0
R6 0 1 3 11 20 21 6 8 2 0
R7 0 0 0 1 5 8 11 14 18 15
R8 2 3 3 10 6 10 2 1 4 31
R9 0 1 2 7 6 7 7 7 17 18
R10 2 5 10 5 4 1 27 12 5 1

Table 5  Gold Futures simple 
ratios summarized

Ratios Highest Rank Second Highest Rank

R1 Rank 1 Rank 8
R2 Rank 1 Rank 9
R3 Rank 5 Rank 6
R4 Rank 3 Rank 8/Rank 9
R5 Rank 2 Rank 3
R6 Rank 6 Rank 5
R7 Rank 9 Rank 10
R8 Rank 10 Rank 4/Rank 6
R9 Rank 10 Rank 9
R10 Rank 7 Rank 8

1 We could not include the ranking scores of all the ratios due to brevity. However it can be made avail-
able on request.
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Firstly, we carried out this procedure for the simple ratios. We found out that R1, 
R3, R6, R9 and R10 were the most informative ratios. We carried out this procedure 
for all the 55 ratios and found out that R1R1, R1R7, R1R9, R1R10, R2R2, R2R9, R4R8, 

60 ∗ 55 + 10 ∗ 54 + 2 ∗ 53

72
= 54.805

Table 6  Comparing ratios of 
both data sets

Common Simple ratios Common 
squared and 
cross ratios

R1 R2R2

R3 R2R9

R4R8

R7R8

R8R8

Table 7  Ranking of Crude oil Ratios according to the KL Criterion

Ratios Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

R1 71 0 1 0 0 0 0 0 0 0
R2 1 0 0 7 10 12 9 17 12 4
R3 0 0 1 11 24 13 9 8 5 1
R4 0 0 0 7 7 8 7 15 15 13
R5 0 0 1 2 0 2 6 5 12 44
R6 0 0 2 15 16 17 10 6 5 1
R7 0 0 2 16 5 9 20 11 6 3
R8 0 0 2 10 7 10 11 9 17 6
R9 0 49 23 0 0 0 0 0 0 0
R10 0 23 40 5 3 1 0 0 0 0

Table 8  Crude oil simple ratios 
summarized

Ratios Highest Rank Second Highest Rank

R1 Rank 1 Rank 3
R2 Rank 8 Rank 6/Rank 9
R3 Rank 5 Rank 6
R4 Rank 8 /Rank 9 Rank 10
R5 Rank 10 Rank 9
R6 Rank 6 Rank 5
R7 Rank 7 Rank 4
R8 Rank 9 Rank 7
R9 Rank 2 Rank 3
R10 Rank 3 Rank 2
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R7R8, R8R8, R8R9 and R8R10 were the most informative ratios (See Tables 12 and 13 
in Appendix A).

We did a similar exercise for Gold Futures data. The results are shown below:
Our analysis of the above two tables tells us that R1, R2, R3 and R5 are the most 

informative simple ratios (using the first two best ranks technique, discussed ear-
lier). We developed a ranking matrix for the derived ratios which was then used for 

Table 9  Ranking of Gold Futures Ratios according to the KL Criterion

Ratios Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

R1 16 9 6 2 3 4 6 14 6 6
R2 35 6 6 6 4 0 1 3 9 2
R3 0 5 10 14 17 15 5 4 2 0
R4 4 8 19 8 4 5 6 9 9 0
R5 12 34 13 8 4 5 6 9 9 0
R6 0 1 3 11 20 21 6 8 2 0
R7 0 0 0 1 5 8 11 14 18 15
R8 2 3 3 10 6 10 2 1 4 31
R9 0 1 2 7 6 7 7 7 17 18
R10 3 5 10 5 4 1 27 12 5 0

Table 10  Gold Futures simple 
ratios summarized

Ratios Highest Rank Second Highest Rank

R1 Rank 1 Rank 8
R2 Rank 1 Rank 9
R3 Rank 5 Rank 6
R4 Rank 3 Rank 8/Rank 9
R5 Rank 2 Rank 3
R6 Rank 6 Rank 5
R7 Rank 9 Rank 10
R8 Rank 10 Rank 4/Rank 6
R9 Rank 10 Rank 9
R10 Rank 7 Rank 8

Table 11  Comparing ratios of 
both data sets

Common Simple ratios Common 
squared and 
cross ratios

R1 R2R2

R5 R2R9

R4R8

R7R8

R8R8
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Table 12  Scores for Crude Oil 
Simple Ratios

Ratio Score

R1 10
R2 4.05
R3 5.07
R4 3.43
R5 1.38
R6 5.16
R7 4.93
R8 4.01
R9 8.68
R10 8.12

Table 13  Scores for 20 most 
informative Crude Oil derived 
ratios

Ratio Score Ratio Score

R1R1 55 R3R7 28.33
R1R7 40.14 R7R5 27.65
R1R9 39.29 R5R6 26.91
R1R10 37.81 R4R5 26.15
R2R2 36.56 R6R7 24.13
R2R9 34.37 R4R4 22.31
R4R8 33.12 R3R3 20.18
R7R8 31.87 R1R8 19.50
R8R9 31.85 R5R10 16.22
R8R10 30.51 R2R5 14.31

Table 14  Scores for Gold 
Futures Simple Ratios

Ratio Score

R1 6.03
R2 7.65
R3 6.05
R4 5.87
R5 8.52
R6 5.37
R7 2.97
R8 3.84
R9 3.42
R10 6.30
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formulating the scores for them. We observed that R1R1, R1R7, R1R9, R1R10, R2R2, 
R2R9, R4R8, R7R7, R7R8, R8R8 and R8R9 were the most informative ratios. Also, we 
found out that R1, R2, R4, R5 and R10 were the most informative simple ratios (See 
Tables 14 and 15 in Appendix A). After calculating the rankings, we developed the 
rank matrices.

To be able to compare patterns with one similarity threshold the data was normal-
ized. The scaling was done by dividing opening, highest, lowest, closing price for 
every day and closing price for previous day with the today’s opening. For the Crude 
Oil data. We then calculated the rank of the matrix comprising of 10 simple ratios. 
The rank was observed to be 5. Further, we calculated the rank of matrix compris-
ing of 55 squared and cross ratios. The rank was observed to be 11. Similarly for the 
Gold Futures Data, the rankings for the two corresponding matrices were found to 
be 5 and 11 respectively. We summarize below the most common informative ratios 
for both the data:

Simulated Data

We first analyzed the crude oil futures data. For the simple ratios (that is, the 10 fun-
damental ratios) and cross and squared ratios, we know that that the ranking tech-
nique remains the same. Also, we used the same scoring method. The reason behind 
using simulated data was to understand the behaviour of the ratios in the case of 
multiple realizations. (It should be noted that in theory, a time series data is just one 
of the infinite realizations of a process, each beginning infinitely long back in time 
and continuing in perpetuity) we got the following results:

Using the scoring technique, as discussed in the previous subsection, we found 
out that R1, R5, R6, R9 and R10 are the most informative among the simple ratios. 
Further, we proceeded to develop a ranking for the derived ratios and thereafter, the 
scores were formulated. We found that R1R1, R1R7, R1R9, R1R10, R2R2, R2R9, R4R8, 
R7R8, R8R8, R8R9 and R8R9 were the most informative ratios (See Tables 16 and 17 
in Appendix B).

Table 15  Scores for 20 most 
informative Gold Futures 
derived ratios

Ratio Score Ratio Score

R1R1 43.31 R3R7 29.33
R1R7 40.12 R7R5 27.35
R1R9 39.35 R5R6 26.92
R1R10 37.61 R4R5 26.10
R2R2 35.56 R6R7 24.31
R2R9 33.37 R4R4 22.32
R4R8 33.12 R3R3 18.10
R8R8 31.82 R1R8 15.40
R7R9 31.69 R5R10 12.88
R8R10 29.51 R2R5 11.21



17

1 3

Journal of Quantitative Economics (2021) 19:1–21 

It is evident from the crude oil data that there is a possibility for using other ratios 
in calculating new and more efficient (in terms of information content) volatility 
estimates That is, this finding opens up the scope for creating new combinations 
of ratios which remain hitherto untouched by the literature. Having developed the 
rankings for the crude oil data, it was important to see whether other assets show 
similar patterns (that is, the possibility of using other ratios in volatility estimation). 
Therefore, we did a similar exercise for Gold Futures data, and found out the follow-
ing results as shown below:

Having developed a ranking for the simple ratios, we intended to see if the square 
and cross product ratios provided us with some information. In other words, were 
there any derived ratios that ranked higher than the other ratios when ranked for 
seventy two quarters. If that indeed was the case, we could possibly incorporate 
them in estimating volatility. Therefore, we first developed a ranking for the derived 
ratios, and then the scores for each one of them. It was observed that R1R1, R2R7, 
R2R6, R1R10, R2R2, R2R9, R4R8, R7R8, R8R8, R8R9 and R8R10 were the most informa-
tive ratios. Similarly, for the Simple ratios, R1, R2, R3, R5 and R10 were found to be 

Table 16  Scores for Crude Oil 
Simple Ratios

Ratio Score

R1 9.97
R2 4.15
R3 5.06
R4 3.43
R5 1.18
R6 5.26
R7 4.93
R8 4.21
R9 8.38
R10 8.22

Table 17  Scores for 20 most 
informative Crude Oil derived 
ratios

Ratio Score Ratio Score

R1R1 42.21 R3R7 28.33
R1R7 41.87 R7R5 27.65
R1R9 40.01 R5R6 26.91
R1R10 36.85 R4R5 26.15
R2R2 36.56 R6R7 24.13
R2R9 34.37 R4R4 22.31
R4R8 33.12 R3R3 20.18
R7R8 31.87 R1R8 19.50
R8R9 31.85 R5R10 16.22
R8R10 30.51 R2R5 14.31
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the best ones in terms of their information content (See Tables 18 and 19 in Appen-
dix B). Further, we proceeded to calculate the rank of the matrices for the simu-
lated data for both of the commodities. We found out that the ranks were 5 and 11 
respectively for both the commodities. In other words, from a larger set of ratios, 
only a few could be termed as unique in the sense that no other ratios could be used 
to express them. Furthermore, we wanted to see if there was any commonality in the 
ranking patterns of the two commodities. In order to check that, we looked for the 
most common and informative ratios among the commodities. What we found out 
that the results were the same as that from the real data. We summarize below the 
most common informative ratios for both the assets:

Therefore, we can conclude that the real and the simulated data are not at vari-
ance with each other, to a large extent. This holds true for both the simple and the 
derived ratios. So, the rankings that we observe for both of the commodities could 
be expected to be stable. Also, one important thing that needs to be reiterated here 
is that these rankings are data dependent. Therefore, they might vary from commod-
ity to commodity. Thus, the rankings shown above only reflect the fact that more 

Table 18  Scores for Gold 
Futures Simple Ratios

Ratio Score

R1 6.03
R2 7.69
R3 6.15
R4 5.47
R5 8.42
R6 5.31
R7 2.91
R8 3.74
R9 3.12
R10 6.25

Table 19  Scores for 20 most 
informative Gold Futures 
derived ratios

Ratio Score Ratio Score

R1R1 42.81 R3R7 28.33
R1R7 40.12 R7R5 27.35
R1R9 39.35 R5R6 26.92
R1R10 37.21 R4R5 26.10
R2R2 35.46 R6R7 24.31
R2R9 33.37 R4R4 21.62
R4R8 33.12 R3R3 18.03
R8R8 31.82 R1R4 15.41
R7R9 31.69 R5R10 12.88
R8R10 29.51 R2R3 10.21
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informative ratios might exist (without strongly emphasizing on what these ratios 
might be).

Conclusion

The paper addresses certain issues regarding volatility estimation using extreme 
value estimators employing information theoretic measures which as never been rec-
ognized as a possible approach to information assessment of estimators in the lit-
erature. These include the use of entropy and and Kullback–Leibler distance. Kull-
back–Leibler (KL) divergence metric was used to give an estimate of the amount 
of information contained in extreme value ratios. Since uniform distribution has 
highest entropy value and contains least information, the extent of deviation from 
uniform distribution measured the degree of variability in the ratio (both simple and 
cross product ratios). The five input observations were employed to form a set of 
10 simple ratios and subsequently 55 squared and cross product ratios. We looked 
at the ratios which have minimum entropy and show greater divergence from maxi-
mum entropy distribution i.e., the uniform distribution. The empirical analysis was 
conducted on two simulated data sets for Gold futures and Crude oil futures. Both 
the data sets showed similar results in the following way: The results on the rank of 
matrix of both sets of ratios indicate that out of ten simple ratios, five are linearly 
independent and out of fifty-five ratios, only eleven are linearly independent. This 
was true for both the data sets. It shows that the eleven ratios cannot be represented 
as a linear combination of the remaining ratios in the set. Those eleven constitute the 
important ratios in the set of fifty five ratios. The widely used traditional estimators 
employed the subset of these 55 ratios (i.e. 55 squared cross product) and contained 
not more than six ratios in estimating volatility. On the basis of results arrived, we 
can conclude that the other ratios also contain more information and may be used in 
calculating extreme value estimators.)

In addition to that, both the results gave strikingly different results when we 
ranked these ratios according to the KL metric. The five more informative sim-
ple ratios in both data sets had only two ratios in common, namely R1 and R3. The 
eleven more informative squared and cross product ratios in both data sets had only 
five ratios in common namely, R2R2, R2R9, R4R8, R7R8 and R8R8. R8R8 is used in 
Parkinson estimator. R8R8 and R4R8 are used in GK estimator. What must be noted 
is that these results hold true for both the simulated and the real data, in this case. 
We cannot be certain about whether for different assets different sets of informative 
ratios exist or not. (Which also leads to the idea that there must be further investiga-
tion into the information content of different ratios on an asset to asset basis.) The 
traditional estimators used a single formula for all the stock prices which may not 
be the case. If one varies their data sets, the ratios for estimating volatility may be 
changed in computing

volatility for better efficiency. A question remains though. If we recognize the fact 
that there could more informative ratios on an asset to asset basis, what combina-
tions of them could give us more efficient estimators (and possibly lead to the crea-
tion of a family of estimators).
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Data availability The data that support the findings of this study are available from the corresponding 
author upon reasonable request.

Appendix

Appendix A: Score Tables for Real Data

See appendix Tables 12, 13, 14, 15, 16.

Appendix B: Score Tables for Simulated Data

See appendix Tables 16, 17, 18, 19.
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