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Abstract

We present a novel route for attaining unconventional superconductivity in a strongly
correlated system without doping. In a simple model of a correlated band insulator at
half-filling we demonstrate, based on a generalization of the projected wavefunctions
method, that superconductivity emerges for a broad range of model parameters when
e-e interactions and the bare band-gap are both much larger than the kinetic energy,
provided the system has sufficient frustration against the magnetic order. As the interac-
tions are tuned, the superconducting phase appears sandwiched between the correlated
band insulator followed by a paramagnetic metal on one side, and a ferrimagnetic metal,
antiferromagnetic half-metal, and Mott insulator phases on the other side.
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1 Introduction

The discovery of unconventional superconductivity in a variety of materials, such as high Tc su-
perconductivity in cuprates [1], iron pnictides and chalcogenides [2], in organic superconduc-
tors [3], in heavy fermions [4] and very recently in magic angle twisted bilayer graphene [5,6],
has always ignited worldwide interest owing to their rich phenomenonology, the theoretical
challenges they pose, scientific implications and broad application potential. In almost all
of these examples, superconductivity appears upon chemically doping the parent compound
away from commensurate filling [1, 2, 5–8], though in some cases inducing charge fluctu-
ations by changing pressure also leads to the superconducting phase [3, 8]. An important
experimental fact is that chemical doping inevitably induces disorder, as is clearly the case in
high Tc superconductors (SCs), which makes these materials very inhomogeneous [9–12]. It
is a theoretical and experimental challenge to come up with new mechanisms and materials
for clean high Tc SCs.

Theoretical analysis has shown that strong e-e correlations are crucial to achieve uncon-
ventional superconductivity. In most of the known unconventional SCs [1–3, 5–8] the low
temperature phase of the parent compound is either a strongly correlated AF Mott insulator
where charge dynamics is completely frozen, or a AF spin-density-wave phase with at least
moderately strong correlations. The unconventional superconductivity in many of these ma-
terials can be understood, at least qualitatively, in terms of the strongly correlated limit of the
paradigmatic Hubbard model (single or multi band) doped away from half-filling [7,8,13–16].
But the possibility of a SC phase in a strongly correlated band-insulator has been explored very
little so far, either theoretically or experimentally.

In this work, we show how a spin-exchange mediated SC can be realized without doping in
a simple model of a strongly correlated band insulator (BI), where the bare band gap and the
e-e interactions both dominate over the kinetic energy. As e-e interactions are increased (but
still remain of the order of the band-gap), the single particle excitation gap in the BI closes,
resulting in a metallic phase. Upon further increasing the e-e interactions, superconductivity
develops by the formation of a coherent macroscopic quantum condensation of electron pairs,
provided the metal has enough low energy quasiparticles and the system has enough frus-
tration against the magnetic order. The superconductivity, which survives for a broad range
of e-e interactions, features tightly bound short coherence length Cooper pairs with a Tc well
separated from the energy scale at which the pairing amplitude builds up. The phase diagram,
whose section with all model parameters fixed except for the interaction to band-gap ratio is
shown in Fig. 1, presents a plethora of exoctic phases, that we discuss further below, in the
vicinity of a broad region of the SC phase.

2 Ionic Hubbard model and the limit of strong correlations

Our starting point is a variant of the Hubbard model, known as the ionic Hubbard model
(IHM), where, on a bipartite lattice with sub-lattices A and B, a staggered ionic potential ∆/2
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Figure 1: Phase Diagram at a fixed t ′ . The zero temperature phase diagram for
the 2d square lattice for U = 10t and t ′ = 0.4t. For ∆� U � t, the system is a cor-
related band insulator without any magnetic order which is adiabatically connected
to the BI at U = 0. On increasing U , first the gap in the single particle excitation
spectrum closes, as shown by the non-zero single particle density of states (DOS)
at the Fermi energy ρ(ω = 0), resulting in a metallic phase. On further increasing
U/∆, superconductivity sets in and lasts over a broad range (∆ ∈ [9.3 : 10]t) be-
fore the ferrimagnetic order with a non-zero staggered magnetization (ms) and non
zero uniform magnetization (m f ) sets in via a first order transition. This is a Ferri
metal phase with ρ↑(ω = 0) 6= ρ↓(ω = 0) > 0. As U/∆ increases further, m f → 0
whence the magnetic order becomes AF. Furthermore, a spectral gap opens up for
the up-spin electrons such that ρ↑(ω = 0) = 0 while the down-spin electrons are
still conducting with ρ↓(ω = 0) being finite, resulting in a sliver of AF half-metal.
Eventually the system becomes a AF Mott insulator as U/∆ increases further. Note
that the SC phase is surrounded by metallic phases on both the sides.

is present in addition to electron hopping and coulomb repulsion (U):

H =−
∑

i, jσ

(t i jc
†
iσc jσ + h.c.)−µ

∑

i

ni

−
∆

2

∑

i∈A

ni +
∆

2

∑

i∈B

ni + U
∑

i

ni↑ni↓ . (1)

The amplitude for electrons with spin σ to hop between sites i and j is t i j = t for near-
neighbours and t i j = t ′ for second neighbours. The chemical potential µ is chosen to fix the
average site occupancy at n= 1, corresponding to half-filling. The staggered potential doubles
the unit cell, and (for t ′ < ∆/4) induces a gap between the two electronic bands that result,
making the system a BI at half-filling when the Hubbard on-site interaction U is zero. The
Hamiltonian in Eq. 1 under the particle-hole transformation c†

iAσ → −ciBσ and c†
iBσ → ciAσ

maps to H(−t ′). Thus, in this paper we restrict our attention to positive values of t ′. The
physics for negative values of t ′ is obtainable simply via the particle-hole transformation.

The parameter range of interest for this work is U ∼∆� t, t ′, where a theoretical solution
can be obtained based on a generalization of the projected wavefunctions method [13,17–23].
In this limit and at half-filling, holons are energetically expensive on the A sites (with onsite
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potential −∆2 ) and doublons are expensive on the B sites (with onsite potential ∆2 ); i.e., in the
low energy subspace hA and dB are constrained to be zero (with d representing a doublon and
h a holon). Consequently, we can carry out a similarity transformation to eliminate all hop-
ping processes connecting the low and high energy sectors of the Hilbert space. Nevertheless,
and unlike in the Hubbard model, in the half-filled IHM the system still has charge dynamics
through hopping processes which take place entirely within the low-energy Hilbert space, e.g.,
first neighbor processes such as |dAhB〉 ⇔ | ↑A↓B〉 and second neighbour hopping processes
which allow doublons to hop on the A sublattice and holons to hop on the B sublattice. Further
details can be found in Appendix A.

The effective low energy Hamiltonian at half-filling, He f f , is an extended t − t ′ − J − J ′

model acting on a projected Hilbert space:

He f f =− t
∑

<i j>,σ

P[c†
iAσc jBσ + h.c.]P − t ′

∑

<<i j>>,α,σ

P[c†
iασc jασ + h.c.]P

+ J ′
∑

<<i j>>

P
�

SiA.S jA−
1
4
(2− niA)(2− n jA)

�

+
�

SiB.S jB −
1
4

niBn jB

�

P

+ J
∑

<i j>

P(SiA.S jB − (2− niA)n jB/4)P +H0 +Hd +Ht r −µ
∑

i

ni + ... (2)

Here J = 2t2/(U + ∆) and J ′ = 4t ′2/U . H0 is the rescaled Hubbard interaction term in
the projected Hilbert space. Hd(Ht r) indicates other dimer (trimer) processes. We treat the
projection constraint in He f f using the generalised Gutzwiller approximation [22] and solve it
using a renormalized Bogoliubov mean field theory. Gutzwiller approximations [19,20,22] of
the sort we use have been well vetted against quantum Monte Carlo calculations [13, 18, 23]
and dynamical mean field theory [24]. Details of the Gutzwiller approximation and the various
terms in He f f are given in Appendix A.

3 Phase diagram and the order parameters

We solve the renormalized effective low energy Hamiltonian using a renormalized mean field
theory (RMFT), in which the spin-exchange terms and various dimer and trimer terms are
decomposed into the quadratic form both in the particle-particle and the particle-hole chan-
nels giving non-zero expectation value to the following mean fields: (a) pairing amplitude,
∆
γ
AB ≡ 〈c

†
iA↑c

†
i+γB↓ − c†

iA↓c
†
i+γB↑〉, where γ is x or y , considering d-wave pairing symmetry

(∆x
AB = −∆

y
AB ≡ ∆d) and extended s-wave pairing symmetry (∆x

AB = ∆
y
AB ≡ ∆s) separately;

(b) density difference between two sublattices, δ = (nA − nB)/2; (c) inter sublattice fock
shifts, χ(1)ABσ = 〈c

†
iAσc jBσ〉, j = i ± x , i ± y,χ(2)ABσ = 〈c

†
iAσc jBσ〉, j = i ± 2x ± y or i ± 2y ± x;

(d) intra sublattice fock shift on A(B) sublattice, with χαασ = 〈c
†
iασci±2x/2yασ+h.c.〉, and

χ
′

αασ = 〈c
†
iασci±x±yασ+h.c.〉; (e) and the magnetic order parameters, namely, the staggered

magnetization ms = (mA−mB)/2 and the uniform magnetisation m f = (mA+mB)/2, where
mA,B is the sublattice magnetization. We have kept the contribution of nearest neighbour spin-
exchange term, dimer (Hd) and trimer (Ht r) terms in the pairing amplitudes in order to study
the d-wave and the extended s-wave SC for which Cooper pairs live on the nearest -neighbour
bonds, though other mean fields mentioned above have contribution from the second neigh-
bour spin-exchange term as well. Details of the mean field Hamiltonian, and self consistent
equations for pairing gap and magnetic order parameters are given in Appendix B.

We basically study three different versions of the renormalized mean field theory (RMFT).
(1) To explore the SC phase, we use a generalised spin-symmetric Bogoliubov mean field the-
ory (i.e., with the magnetic order parameters set to zero), which basically maps onto a two-
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site Bogoliubov-deGennes (BdG) mean field theory for each allowed k point in the BZ. (2)
To explore the magnetic order and the phase transitions involved, we solve the renormalized
Hamiltonian using standard mean field theory allowing non-zero values of the sublattice mag-
netization mα = nα↑ − nα↓ with α = A, B, along with all other mean-fields mentioned above
except for the SC pairing amplitudes ∆s/d . (3) The third calculation, where we allow for both
the SC pairing amplitudes and the magnetization along with all other mean fields metioned
above, uses a standard canonical transformation followed up by the Bogoliubov transformation
to diagonalise the mean field Hamiltonian neglecting the inter-band pairing as weak. We solve
the resulting RMFT self-consistent equations on the square lattice for various values of U ,∆
and t ′ to obtain the phase diagram shown in Fig. 1 and Fig. 2 (See Appendix C for details). In
the parameter regime where solutions with nonzero SC pairing amplitudes and magnetization
(from the first two calculations) are both viable, we compare the ground state energy of the
two mean-field solutions to determine the stabler ground state. We finally compare the energy
of this state with the one obtained in the third calculation to determine the true ground state.

Our main findings are summarised in the phase diagram of Fig. 1, which shows a linear
section (along the U/∆ axis) of the full phase diagram in Fig. 2[e], for the IHM on a 2d
square lattice. The unconventional SC phase is sandwiched between paramagnetic and ferri-
magnetic metallic phases, which in turn are sandwiched between a correlated band insulator
and an AF Mott insulator (MI), along with an intervening sliver of AF half-metal. The corre-
lated band insulator, stable for ∆ � U � t, is paramagnetic and adiabatically connected to
the BI phase of the non-interacting IHM. As ∆ approaches U , the low energy hopping pro-
cesses (|dAhB〉 ⇔ | ↑A↓B〉) become more prominent, increasing charge-fluctuations such that
the gap in the single particle excitation spectrum closes, leading to a finite density of states
(DOS) ρ(ω = 0) at the Fermi energy, though for most of the parameter regime the result-
ing paramagnetic metallic (PM) phase is a compensated semi-metal with small Fermi pockets
as shown in detail in Fig. 3. This PM phase is adiabatically connected to the metallic phase
observed for weak to intermediate strength of U/t as long as U ∼ ∆ and the system is con-
strained to be paramagnetic, as shown in earlier work on the IHM using DMFT and other
approaches [25–28]. On further increasing U/∆, in the presence of sufficiently large t ′, super-
conductivity sets in for U ∼ ∆ (irrespective of the strength of U/t, as shown in Appendix D)
due to the formation of coherent Cooper pairs of quasi-particles which live near the Fermi
pockets, and survives for a broad range of U/∆.

The pairing amplitude ∆d/s for both the pairing symmetries we have studied, namely, the
d-wave and the extended s-wave, increases monotonically with U/∆ and drops to zero via a
first order transition at the transition to the ferrimagnetic metal. Though there is a metastable
state in which the SC phase coexists along with the ferrimagnetic order for a range of U/∆ after
the transition (see Appendix C for details), due to the really tiny Zeeman splitting (≤ 0.035t
for U = 10t) produced by the small uniform magnetization m f the possibility of a Fulde-Ferrel-
Larkin-Ovchinnikov (FFLO) state seems unlikely [29–31].

The ferrimagnetic metal (FM) phase is characterised by non-zero values of the staggered
magnetization ms as well as the uniform magnetization m f , along with a finite DOS ρσ(ω= 0)
at the Fermi energy. With further increase in U/∆ the FM evolves into an AF half-metal phase
in which the system has only staggered magnetization (i.e., m f = 0) and the single particle
excitation spectrum for up-spin electrons is gapped while the down-spin electrons are still in a
semi- metal phase. Eventually, for a large enough U/∆, both the spin spectra become gapped,
and the system becomes an AF MI. Though we have studied the IHM on a square lattice,
a qualitatively similar phase diagram is expected on any bipartite lattice, but with changes
involving appropriate symmetries, e.g., d + id pairing symmetry on a honeycomb lattice. We
would also like to emphasize that though most of the results presented in this work are for a
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Figure 2: Order Parameters and Complete Phase diagram. Top panels show the
staggered magnetization, ms and the uniform magnetization, m f as functions of U/∆
for several values of t ′ and U = 10t. With increasing t ′, the transition point at which
the magnetic order turns on first decreases for t ′ ≤ 0.12 and then starts increasing
again. The magnetic transition is of first order for t ′ = 0 as well as for large values of
t ′, though for intermediate values of t ′ the magnetization tuns on continuously. Panel
(c) shows the SC pairing amplitude∆d/s, for the d-wave and extended s-wave pairing
symmetry. With increasing t ′ the range in U/∆ over which the superconductivity is
stable gets wider, and the amplitudes of both d-wave and extended s-wave pairings
get enhanced. Note that the extended s-wave order turns on only for t ′ > 0.35t.
Panel (d) shows the SC order parameter Φd/s, which also gives an estimate of the SC
transition temperature, Tc . The bottom panel (e) shows the complete zero tempera-
ture phase diagram for U = 10t in the t ′-U/∆ plane. As we approach the SC phase
from either the correlated band insualtor or the MI phase, the charge fluctuations
build up gradually through metallic phases, and the superconductivity develops by
the formation of coherent Cooper pairs between electrons which reside on the Fermi
pockets of these metallic phases.

2d square lattice, the phase diagram obtained within the renormalized mean field theory for
higher dimensional lattices is qualitatively similar, as seen in the phase diagram for a 3d cubic
lattice shown in Appendix D.

We next discuss the changes in behavior of the system with increasing U/∆ for varying val-
ues of t ′, as depicted in Fig. 2. For t ′ = 0, the system shows a direct first order transition from
an AF ordered phase to a correlated band insulator with a sliver of a half-metallic AF phase
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close to the AF transition point. This is consistent with a variational quantum Monte Carlo
study of the half-filled IHM for t ′ = 0 [32] as well as with most other earlier work [33, 34].
When t ′ is non-zero, due to the breaking of particle-hole symmetry as well as the frustration
induced by the second neighbour spin-exchange coupling J ′, the system first attains ferrimag-
netic order characterized by non-zero values of both the staggered (ms) and the uniform (m f )
magnetizations, for a range of U/∆, beyond which it has pure AF order as shown in panel (a)
of Fig. 2. The magnetic transition occurs at increasingly larger values of U/∆ with increasing
t ′ (except for an initial decrease for small values of t ′) which helps in the development of a
stable SC phase.

To stabilize the superconducting phase, a minimum threshold value of t ′ (which is a func-
tion of U) is required, partly in order to frustrate the magnetic order as mentioned above, but
more importantly to gain sufficient kinetic energy by intra-sublattice hopping of holons and
doublons on their respective sublattices where they are energetically allowed. While a stable
d-wave SC phase turns on for t ′ > 0.1t for U = 10t, as shown in Fig. 2 superconductivity in
the extended s-wave channel gets stabilized for the much larger value of t ′ > 0.35t . In an
intermediate regime of U/∆ and t ′, states with both d-wave and extended s-wave symmetry
are viable solutions with energies that are very close (See Appendix C for details). As t ′ in-
creases, the pairing amplitude increases and the range of U/∆ over which the SC phase exists
becomes broader for both the pairing symmetries studied. Though t ′ helps in the formation
of the SC phase with pairing amplitudes living on the nearest neighbour bonds, there is no
significant second neighbour pairing induced by J ′.

The pairing amplitude discussed above signals the strength of Cooper pairing on a bond,
but the SC order parameter Φd/s is defined in terms of the off-diagonal long-range order in
the correlation function Fγ1γ2

(ri − r j) = 〈B
†
iγ1

B jγ2
〉 where B†

iγ creates a singlet on the bond
(i, i + γ). Fig. 2 shows the SC order parameter, which has been obtained after taking care of
renormalization required in Fγ1γ2

(ri − r j) in the projected wavefunction scheme. Since the SC
order parameter for this system is much smaller than the strength of the pairing amplitude,
with increase in temperature the superconductivity will be destroyed at Tc by the loss of coher-
ence among the Cooper pairs, leaving behind a pseudo-gap phase with a soft gap in the single
particle density of states due to the Cooper pairs which will exist even for T > Tc . Thus Φd/s
also provides an estimate of the SC transition temperature Tc . The maximum estimated Tc for
U = 10t on a square lattice is approximately 0.03t for the d-wave SC phase. For a hopping
amplitude t ∼ 0.4eV (which happens to be the scale for cuprates), our estimated transition
temperature is Tc ∼ 150K , and there is a considerable scope for enhancing Tc by tuning U/∆
as well as t ′.

We note that, in an earlier work [35] on the strongly correlated half-filled IHM with t ′ = 0,
(i.e., in the absence of any of the frustration effects we have discussed above,) using slave
bosons to represent the projection processes in Eq. 2, and using a slave-boson mean field theory
approach to treat the problem, SC was shown to exist when U ∼∆>> t. However, this result
is not consistent with the variational quantum Monte-Carlo study mentioned above [32]where
no SC phase was reported at half-filling in the absence of frustration against the magnetic order.
Within the Gutzwiller projection approach, while we do find regions of parameter space inside
the AFI region where SC pairing is viable even in the t ′ = 0 case, the SC phase has higher
energy than the AFI phase and is therefore metastable [24]; and as we have demonstrated
above, only in the presence of sufficient frustration against the magnetic order does SC exist
in this simple model of a band-insulator at half-filling.
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Figure 3: Spectral Functions. The top two rows show the spin resolved low en-
ergy spectral functions Aσ(k,ω ∼ 0) (integrated over |ω| ≤ (0.01 − 0.02)t for a
3000× 3000 system) in the full Brillouin Zone (BZ) for t ′ = 0.35t, U = 10t, to em-
phasize how the charge fluctuations evolve as we approach the SC regime from the
ferri metal side, with A↑(k,ω∼ 0)(A↓(k,ω∼ 0)) shown in the first (second) row. At
U/∆ = 1.09, the up spin channel has electron pockets while the down spin channel
has small hole pockets. As U/∆ decreases, these Fermi pockets become bigger, the
down spin spectral function gets additional electron pockets and the up-spin spectral
functions get additional hole pockets. The last row shows A(k,ω ∼ 0) (same for up
or down spins) for the para metal phase. Moving towards the SC phase by increas-
ing U/∆, Fermi pockets in the para metallic state go on expanding until they almost
start touching each other, at which point the superconductivity sets in by formation
of Cooper pairs between electrons close to the Fermi energy.

4 Spectral functions and single-particle density of states

A striking feature of the phase diagram in Fig. 2 is that, though the origin of superconductivity
in this model lies predominantly in the spin-exchange interactions (with a weaker contribution
from other dimer and trimer terms), superconductivity sets in only after the system has evolved
to a para metallic or a FM phase. In order to understand the charge dynamics as the system
approaches the SC phase with the tuning of U/∆, we have analysed the single particle spec-
tral functions which can be directly measured in angle resolved photoemission spectroscopy
(ARPES). Fig. 3 shows the low energy spin resolved spectral functions Aσ(k,ω∼ 0) averaged
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over the two sublattices, the non-zero value of which determine the energy contour on which
low energy quasiparticles live in the Brillouin zone (BZ) (see Appendix B for details). Panels
(a-c) show Aσ(k, w ∼ 0) in the FM phase for which the up-spin channel has electron pockets
around the points K = (±π/2,±π/2) in the BZ and the down spin spectrum has small hole
pockets around the points K′ = (±π, 0), (0,±π) in the BZ as shown in panel (a). As U/∆ de-
creases within the FM phase, and approaches the SC phase, the electron pockets (hole-pockets)
in the up-spin (down-spin) spectral function become bigger, the down-spin channel gets ad-
ditional electron pockets while the up-spin channel gets additional hole pockets as shown in
panel (c). In the PM phase, the low energy spectral functions have both electron pockets
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Figure 4: Spectral functions. Here we show the low energy spectral functions
Aσ(k,ω ∼ 0) (integrated over |ω| ≤ (0.01− 0.02)t on a 3000× 3000 lattice) in the
full Brillouin zone (BZ) for the ferrimagnetic phase at a fixed U/∆= 1.02 and for two
values of t ′. Upper panels show A↑(k,ω∼ 0), and the bottom panels A↓(k,ω∼ 0).

(around K) as well as the hole pockets (around K′). As U/∆ increases through the PM phase,
these Fermi pockets slowly expand such that they almost touch each other before the system
enters into the SC phase. Similar behaviour is seen with an increase of t ′ in the PM or the
FM phases. We note that the quasiparticle weight in the sublattice-averaged spectral function,
which is the one of experimental relevance and the one shown in Fig. 3, is essentially constant
throughout the Fermi pockets in the para metal phase and has a very weak variation over the
Fermi pockets in the ferri-metal phase (see Appendix B for details). However, the spectral
function for each sublattice evaluated separately does show a variation in the quasiparticle
weight over the Fermi pockets.

In order to understand the charge dynamics as the system approaches the SC phase with
the tuning of second neighbour hopping, t ′, we have analysed the single particle spectral
functions for a fixed U/∆ in the ferrimagnetic metallic phase. We can understand why the SC
phase does not get stabilized for small values of t ′ by looking at the evolution of Aσ(k,ω∼ 0)
for a fixed U/∆ as one tunes t ′. Fig. 4 shows Aσ(k,ω ∼ 0) close to the magnetic transition
point of t ′ = 0, that is, for U/∆= 1.02. For small values of t ′, at this value of U/∆ the system
is in the ferrimagnetic metal phase. As we increase t ′ inside the ferrimagnetic metal phase,
the up spin spectral functions get bigger electron pockets around K = (±π/2,±π/2) points
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while the down spin spectral functions get bigger hole pockets around K′ = (±π, 0), (0,±π)
points. In addition to this, as t ′ increases even the up-spin spectral functions get hole pockets
and the down spin spectral functions get electron pockets. As a result of both these effects, an
almost connected contour of Fermi pockets is formed, whence superconductivity emerges by
the formation of Cooper pairs of the corresponding low energy quasiparticles.
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k

y

kx

-π

-π/2

0

π/2

π

-π -π/2 0 π/2 π

k
y

kx

-π

-π/2

0

π/2

π

-π -π/2 0 π/2 π

(b)U/∆=0.91,t’=0.35t
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0.0 0.5 1.0

Figure 5: Momentum Distribution Function. Momentum distribution function
nσ(k) in the ferrimagnetic metal and the para metal phases for t ′ = 0.35t. In the
ferrimagnetic metal phase shown in panel (a) n↑(k)> 1/2 on (electron) pockets cen-
tered around the K points while n↓(k) < 1/2 on (hole) pockets centered around the
K′ points in the BZ. Panel (b) shows the results for the paramagnetic metal phase,
where the systen has spin symmetry and nσ(k) < 1/2 around the K′ points while
nσ(k) > 1/2 around the K points for both the spin components. Everywhere else in
the BZ nσ(k) = 1/2 in all the panels.

The electron and hole pockets mentioned above are best identified based on the momentum
distribution function nσ(k) as defined in Appendix A. nσ(k) is uniformly half in the entire BZ
for any insulating phase of the model studied here. When the system goes into a metallic
phase, at least one of the bands cross the Fermi level resulting in filled or empty Fermi pockets
depending on the curvature of the band. Filled Fermi pockets, also called electron pockets,
have nσ(k) > 1/2, while empty Fermi pockets, also called hole pockets, have nσ(k) < 1/2.
Fig. 5 shows nσ(k) for t ′ = 0.35t for two values of U/∆. Panel (a) shows the result for the
ferrimagnetic metal phase and panel (b) shows the results in the para metal phase. In the ferri-
metal phase, n↑(k) has filled pockets around the K points while the down-spin component has
hole pockets around the K′ points in the BZ. In the para-metal phase, shown in panel (b), there
is a spin symmetry and nσ(k) has electron and hole pockets for both the spin channels.

Fig. 6. shows the spin-resolved single particle density of states (DOS) ρσ(ω) which can be
measured directly in scanning tunneling spectroscopy (STS) experiments and provides addi-
tional evidence for the existence of various metallic phases as in the phase diagram in Fig. 2.
The DOS at ω= 0 for these phases was presented in Fig. 1 as a function of U/∆, and here we
present the full ρσ(ω) vs ω. The para metal, ferri-metal and the AF half-metal phases are all
compensated semi metals, which is reflected in the depletion in the DOS at the Fermi energy

10

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.009


SciPost Phys. Core 4, 009 (2021)

 0

 0.2

 0.4

 0.6

-0.8 -0.4  0  0.4  0.8

(a)

U/∆=1.04,
AF Half metalρ(

ω
)

ω

↑
↓

 0

 0.2

 0.4

 0.6

-0.8 -0.4  0  0.4  0.8

(b)

U/∆=1.03,
Ferri metalρ(

ω
)

ω

↑
↓

 0

 0.2

 0.4

 0.6

-0.8 -0.4  0  0.4  0.8

(c)

U/∆=0.95,
Para metalρ(

ω
)

ω

 0

 0.04

 0.08

 0.12

 0.16

-0.1 -0.05  0  0.05  0.1

(d)

U/∆=1.07

d-wave SCρ(
ω

)

ω

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0.24

-0.1 -0.05  0  0.05  0.1

(e)

U/∆=1.07

extd s-wave SC

ρ(
ω

)
ω

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 1  1.02  1.04  1.06  1.08

Gapd

2xGaps

(f)t’=0.4t

U/∆

Figure 6: Single particle Density of states. Panels (a)-(c) show the spin resolved
single particle density of states (DOS) ρσ(ω) for t ′ = 0.15t and U = 10t. At
U/∆ ∼ 1.04, ρ↓(ω = 0) is finite where as ρ↑(ω = 0) = 0 with a finite spectral
gap, corresponding to the AF half-metal phase. At U/∆ = 1.03, the DOS at the
Fermi energy is finite in both the spin channels but ρ↑(ω) 6= ρ↓(ω) corresponding
to the ferri metal phase. At U/∆ = 0.95, the DOS is spin symmetric with a finite
weight ρσ(ω = 0) at the Fermi energy and the system is a para metal. Panel (d)
shows ρ(ω) for the d-wave SC phase while panel (e) shows that for the extended
s-wave SC phase for U = 10t and t ′ = 0.4t. ρ(ω) shows a linear increase with |ω|
for ω ∼ 0 for both the SC phases. Panel (f) shows the gap in the DOS, which is
basically the peak to peak distance in ρσ(ω), for both the d-wave and the extended
s-wave pairing symmetries.

and is consistent with the small Fermi pockets shown in Fig. 3 (See Appendix E for details).
We have also analysed the DOS in the SC phase. As shown in Fig. 6[d], ρ(ω∼ 0)∼ |ω| which
is a signature of the gapless nodal excitations in the d-wave SC phase. Interestingly, even
for the extended s-wave SC phase ρ(ω ∼ 0) ∼ |ω| as the pairing takes place around small
Fermi pockets which are centered at K or K′ points in the BZ where the pairing amplitude
∆s(k) = ∆s(cos(kx) + cos(ky)) has nodes as well, resulting in gapless excitations. The gap,
which is the peak to peak distance in the DOS, is much larger in the d-wave SC phase than in
the extended s-wave phase, consistent with the former being the stable phase. Infact for the
extended s-wave phase, Gaps is only slightly larger than the SC order parameter Φs, which
indicates that the extended s-wave SC phase will have a narrower pseudogap phase above Tc ,
compared to the d-wave case.

5 Conclusions

As mentioned in the introduction, the origin as well as the basic features of unconventional SC
in most of the superconducting materials known today [3,5,7,8] can be understood, at least
at the broad qualitative level [7,8,13–16], in terms of the strongly correlated limit of the Hub-
bard model (single or multi band), but only upon doping the system away from half-filling.
In the theoretical model we have studied here, superconductivity appears even at half-filling,
and therefore without the disorder that inevitably accompanies doping, in the special strongly
correlated limit where U ,∆� t, t ′ and the second neighbour hopping is sufficiently strong. A
remarkable feature is that the SC phase in this model of a correlated band insulator is sand-
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wiched between paramagnetic metallic and ferrimagnetic metallic phases (Fig. 2[e]), which
makes the zero temperature phase diagram very different from that of the known uncon-
ventional superconductors like high Tc cuprates [7] or the more recent magic angle twisted
bilayer graphene [5]. We expect that the SC phase in this model has transition temperatures
comparable to those of cuprates and that it also has a pseudogap phase like in cuprates.

The question as to what are the possible experimental situations where this mechanism of
superconductivity at half-filling, with its promise of large transition temperatures and no in-
trinsic disorder, can be realized is of obvious importance. Since the IHM has been realized for
ultracold fermions on an optical honeycomb lattice [36], where the state-of-the art engineering
allows the parameters in the Hamiltonian to be tuned with great control, it will be interesting
and perhaps the easiest to explore our theoretical proposal in these systems. Due to the recent
developments in layered materials and heterostructures, it is indeed possible to think of many
scenarios where the IHM can be used as a minimal model, for example, graphene on h-BN
substrate and bilayer graphene in the presence of a transverse electric field [37], which plays
the role of the staggered potential. The limit of strong correlation, crucial for realizing the SC
phase, can be achieved in these materials by applying a strain or twist. Band insulating systems
with two inequivalent strongly correlated atoms per unit cell, frustration in hopping and an-
tiferromagnetic exchange, and lack of particle-hole symmetry, are likely tantalizing candidate
materials as well. Our work suggests that further theoretical and experimental exploration of
such novel possibilities where superconductivity can be realized with sufficiently high tran-
sition temperatures without doping in strongly correlated band insulators is an exciting and
worthwhile pursuit.
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A Details of strong correlation limit and Gutzwiller projection

We first describe the similarity transformation used to obtain the different terms in the low
energy effective Hamiltonian (Eq. 2). We then describe the generalized Gutzwiller projection
for obtaining the projected Hilbert space on which the low energy effective Hamiltonian acts,
along with the details of Gutzwiller factors which renormalize the various couplings in the low
energy Hamiltonian when the projection is implemented approximately.

We solve the model in Eq. 1, in the limit U ∼ ∆ � t, t ′. In this limit and at
half-filling, holons are energetically expensive on the A sites (with onsite potential −∆2 )
and doublons are expensive on the B sites (with onsite potential ∆

2 ); i.e., in the low
energy subspace hA and dB are constrained to be zero. We do a generalized similar-
ity transformation on this Hamiltonian, H̃ = e−iSHeiS , such that all first and second
neighbour hopping processes connecting the low energy sector to the high energy sec-
tor of the Hilbert space are eliminated. The similarity operator of this transformation is
S = − i

U+∆ (H
+
t A→B −H−t B→A)−

i
∆ (H

0
t A→B −H0

t B→A)−
i
U (H

+
t ′A→A−H−t ′A→A)−

i
U (H

+
t ′ B→B −H−t ′ B→B) where
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H+t/t ′ represents first or second neighbour hopping processes which involve an increase in
hA or dB by one and H−t/t ′ on the other hand represent hopping processes which involve a

decrease in hA or dB by one. H0
t processes do not involve a change in hA and dB. The

low energy effective Hamiltonian obtained by this transformation is given in Eq. 2, with
H0 =

U−∆
2

∑

i[niA↑niA↓ + (1 − niB↑)(1 − niB↓)]. Further details can be found in [22]. He f f
acts on a projected Hilbert space which consists of states |Φ〉= P |Φ0〉 where the projection op-
erator P eliminates components with hA ≥ 1 or dB ≥ 1 from |Φ0〉. We use here the Gutzwiller
approximation [13,19,22] to handle the projection, by writing the expectation value of an op-
erator Q in a state P |Φ0〉 as the product of a Gutzwiller factor gQ times the expectation value
in |Φ0〉 so that 〈Q〉 ' gQ〈Q〉0. The standard procedure [19] for calculating gQ has been gen-
eralised by us for the case where holons are projected out from one sublattice and doublons
from the other [22].

We thus obtain the renormalized effective Hamiltonian with the inter-sublattice kinetic en-
ergy 〈c†

iAσc jBσ〉 ≈ gtσ〈c
†
iAσc jBσ〉0, and intra-sublattice kinetic energy 〈c†

iασc jασ〉 ≈ gασ〈c
†
iασc jασ〉0.

The inter-sublattice spin correlation 〈SiA ·S jB〉 ≈ gsAB〈SiA ·S jB〉0 while the intra-sublattice spin
exchange term gets renormalized with a different factor of gsαα. The only other dimer term
which does not get rescaled under the Gutzwiller projection is

Hd = −
t2

∆

∑

<i j>,σ

[(1− niAσ̄)(1− n jB) + (niA− 1)n jBσ̄] , (3)

as it consists of only density operators [19,22].
Then we have the important trimer terms:

Ht r =−
t2

∆

∑

<i jk>,σ

[gAσc†
kAσn jBσ̄ciAσ + g2ciAσ̄c†

jBσ̄c jBσc†
kAσ]

−
t2

∆

∑

< jil>,σ

[gBσclBσ(1− niAσ̄)c
†
jBσ + g2clBσc†

iAσciAσ̄c†
jBσ̄]

+
t t ′(U +∆)

2U∆

∑

<k j>,<<ik>>σ

�

gtσc†
iAσ(1− nkAσ̄)c jBσ − gtσc†

jAσnkBσ̄ciBσ

+ gAABσc†
iAσc†

kAσ̄ckAσc jBσ̄ + gBBAσc†
jAσc†

kBσ̄ckBσciBσ̄

�

+ h.c. (4)

The various Gutzwiller factors involved (see [22] for details) are as follows:

• gAσ = 2δ/(1+δ+σmA), gBσ = 2δ/(1+δ−σmB) and gtσ =
p

gAσgBσ ;

• gsα1α2
= 4/
q

((1+δ)2 −m2
α1
)((1+δ)2 −m2

α2
) , and g2 = δgsAB ;

• gα1α1α2σ
= 4δ/
q

((1+δ)2 −m2
α1
)(1+δ+σmα1

)(1+δ+σmα2
) .

Superconducting order parameter Φd/s:
The SC correlation function is the two particle reduced density matrix defined by
Fγ1γ2

(ri−r j) = 〈B
†
iγ1

B jγ2
〉where B†

iγ , defined above, creates a singlet on the bond (i, i+γ). The
SC order parameter Φd/s is defined in terms of the off-diagonal long-range order in this correla-
tion Fγ1,γ2

(ri−r j)→ 〈B
†
iγ1
〉〈B jγ2

〉= Φγ1
Φγ2

as |ri−r j| →∞. Since Fγ1γ2
(ri−r j) also corresponds

to hopping of two electrons from ( j, j + γ2) to sites (i, i + γ1), in the projected wavefunction
scheme it scales just like the product of two hopping terms such that Fγ1γ2

≈ gA↑gB↓F
0
γ1γ2

.

Hence the rescaled form of the superconducting order parameter is Φd/s ≈
p

gA↑gB↓Φ
0
d/s where
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Φ0
d/s ≡∆d/s is the order parameter calculated in the unprojected wavefunction of the low en-

ergy effective Hamiltonian in Eq. 2.
Spectral Functions and Density of States:

In the paper we also discuss the single particle density of states (DOS) and the spectral func-
tions. In the Gutzwiller projection method, the Green’s function is rescaled with the appro-
priate Gutzwiller factor such that Gασ(k,ω) = gασG0

ασ(k,ω) where G0
ασ(k,ω) is calculated in

the unprojected basis. Here α represents the sublattice A or B and σ is the spin index. The
spectral function, Aασ(k,ω) which is imaginary part of the Green’s function also get rescaled
with the same Gutzwiller factors.

The single particle density of states is defined as, ρασ(ω) =
∑

k Aασ(k,ω). The results pre-
sented in the paper are for the single particle density of states (DOS) in the up spin and down
spin channels, defined as ρσ(ω) = (ρAσ(ω)+ρBσ(ω))/2.The zero temperature momentum dis-
tribution function, which helps in identifying whether a Fermi pocket is an electron pocket or
a hole pocket can also be obtained from the spectral function using nσ(k) =

∫ 0
−∞ dωAσ(k,ω).

B Details of renormalized mean field theory (RMFT)

The mean field quadratic Hamiltonian can be written as

HM F =
∑

k,σ

h1Aσ(k)c
†
kAσckAσ + h1Bσ(k)c

†
kBσckBσ + h2σ(k)[c

†
kAσckBσ + h.c.]

+ h3(k)[c
†
kA↑c

†
−kB↓ + h.c.]− h4(k)[c

†
kB↑c

†
−kA↓ + h.c.] . (5)

Here h1Aσ(k) = T0
Aσ(k) + T1

Aσ(k) and h1Bσ(k) = T0
Bσ(k)− T1

Bσ(k) with

T0
ασ(k) =−

U −∆
4

σmα +
t2

∆

�

gασγk2σ
mᾱ
2
− gᾱσ̄(dχᾱᾱσ̄ + 4d C2χ

′

ᾱᾱσ̄)
�

+
t2

U +∆
d gsABσmᾱ

− t ′γk3 gασ +
4t ′2

U
d C2 gsαασmα −

t ′2

2U

�

gsααχ
′

αασ + 2gsααχ
′

αασ̄ −χ
′

αασ

�

γk3

−
t t ′(U +∆)

2U∆

�

16d C2 gtσ̄

d
∑

i=1

χ
(i)
ABσ̄ + 4dG(α)χ(1)ABσ̄γk3

�

−µ . (6)

Here G(A) = gAABσ and G(B) = gBBAσ̄.

T1
ασ(k) =

U −∆
4
(1+δ)−

t2

∆

�

2d(1−2δ)+ gασγk2
(1−δ)

2

�

+
t2

U +∆
d(1−δ)+

4t ′2

U
d C2(1−δ) ,

(7)

h2σ(k) =
�

− t gtσ −
t2

∆

�

− 2χ(1)ABσ + 2(2d − 1)g2χ
(1)
ABσ̄

�

−
t2

2(U +∆)
gsABχ

(1)
ABσ −

t2

U +∆
gsABχ

(1)
ABσ̄

−
t2

2(U +∆)
χ
(1)
ABσ +

t t ′(U +∆)
2U∆

�

gtσ
mA+mB

2
γk3 − 2d C2 gAABσ̄χ

′

AAσ̄ − 2d C2 gBBAσχ
′

BBσ̄

��

γk1 .

(8)

The anomalous components are given by h3(k) = −T±↓ (cos (kx) ± cos (ky)) and
h4(k) = T±↑ (cos (kx) ± cos (ky)) where the + sign corresponds to the extended s-wave case
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and the − sign corresponds to the d-wave case. Furthermore,

T−σ =
�§

2t2

∆
−

2t2

U +∆

�

−
3gsAB

4
+

1
4

�

−
t2

∆

�

gAσ̄ + gBσ

�

−
2t2

∆
g2

ª

∆d

�

, (9)

T+σ =
�§

2t2

∆
−

2t2

U +∆

�

−
3gsAB

4
+

1
4

�

+
3t2

∆

�

gAσ̄ + gBσ

�

+
6t2

∆
g2

ª

∆s

�

. (10)

Here, γk1 = 2
∑

i
cos (ki), γk2 = 2

∑

i
cos (2ki) + 4
∑

i, j
i 6= j

[cos (ki + k j) + cos (ki − k j)] and

γk3 = 2
∑

i, j
i 6= j

[cos (ki + k j) + cos (ki − k j)] where i, j can take x,y or x,y,z values depending upon

whether it is square or cubic lattice. Also, d refers to the number of dimensions in the above
Hamiltonian. If α= A, then ᾱ= B and vice-versa.

In the spin-symmetric SC case, we used a generalized Bogoliubov transformation to solve
the mean field Hamiltonian described above, which results in a diagonal Hamiltonian
H =
∑

k E1(k) f
†

1k f1k − E1(k) f2k f †
2k + E2(k) f

†
3k f3k − E2(k) f4k f †

4k + const. The pairing ampli-
tude obeys the following self consistent equation

∆s,d =
1
N

∑

k

(v1ku3k + v2ku4k)(cos (kx)± cos (ky)) . (11)

Here (u1k, u3k,−v1k,−v3k) is the eigenvector corresponding to eigenvalue E1(k) and
(u2k, u4k,−v2k,−v4k) is the eigenvector corresponding to the eigenvalue E2(k). The rescaled
pairing amplitude, which is the product of coupling strengths and∆s,d is given by h4(k) which
decides the gap in the single particle density of states in the SC phase. Thus, the gap(s,d),
which gives peak to peak seperation in the single particle density of states, obeys the follow-
ing equation

gapd = 2
�§

2t2

∆
−

2t2

U +∆

�

−
3gsAB

4
+

1
4

�

−
t2

∆

�

gA+ gB

�

−
2t2

∆
g2

ª

∆d

�

, (12)

gaps =
1
2

�§

2t2

∆
−

2t2

U +∆

�

−
3gsAB

4
+

1
4

�

+
3t2

∆

�

gA+ gB

�

+
6t2

∆
g2

ª

∆s

�

. (13)

The spin symmetric spectral function obtained from the sublattice average retarded Green’s
function, 1

2

∑

α Giα, jα(t) where Giα, jα(t) = −iθ (t)〈{ciα(t), c†
jα(0)}〉 in this case is

A(k,ω) =
1
2
[(gAv2

1k + gB v2
3k)δ(ω− E1(k)) + (gAv2

2k + gB v2
4k)δ(ω− E2(k))

+ (gAu2
1k + gBu2

3k)δ(ω+ E1(k)) + (gAu2
2k + gBu2

4k)δ(ω+ E2(k))] . (14)

Summing of spectral function over the Brillouin zone gives the single particle density of states
shown in the manuscript ρ(ω) =

∑

k A(k,ω).
Non-pairing phase: In the non-pairing phase, the sublattice Green’s functions are given by

GAAσ(k,ω) =
α2

kσ

ω− E1σ(k) + iη
+

β2
kσ

ω− E2σ(k) + iη
,

GBBσ(k,ω) =
β2

kσ

ω− E1σ(k) + iη
+

α2
kσ

ω− E2σ(k) + iη
. (15)

Here, (αkσ,−βkσ) is the eigenvector corresponding to the eigenvalue E1σ(k) and (βkσ,αkσ)
is the eigenvector corresponding to the other eigenvalue E2σ(k). This gives the following
expression of the sublattice averaged spectral function

Aσ(k, w) =
1
2
[(gAσα

2
kσ + gBσβ

2
kσ)δ(ω− E1σ) + (gAσβ

2
kσ ++gBσα

2
kσ)δ(ω− E2σ)] . (16)

15

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.009


SciPost Phys. Core 4, 009 (2021)

In order to get the low energy spectral functions, we integrate Aσ(k,ω) over a small ω range
such that |ω| ≤ (0.01− 0.02)t.

The Gutzwiller factors gAσ = 2δ/(1+δ+σmA) and gBσ = 2δ/(1+δ−σmB) are different
in the ferrimagnetic phase but equal in the para and the AF phases. Thus from the normal-
ization condition of the eigenfunctions, one can see that in the para metal phase Aσ(k,ω)
does not vary over the Fermi pockets where it is non-zero. Even in the ferri-metal phase,
the quasiparticle weight changes only by a small amount over the Fermi pockets, though the
quasiparticle weights for the sublattice resolved spectral functions change significantly over
the Fermi pockets.

The sublattice magnetization is determined self-consistently by the following equation

mA =
1
N

∑

k

[α2
k↑Θ(−E1↑(k))−α2

k↓Θ(−E1↓(k))] + [β
2
k↑Θ(−E2↑(k))− β2

k↓Θ(−E2↓(k))] . (17)

mB is obtained by interchanging αkσ and βkσ in the above expression.
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Figure 7: Order parameters and the ground state energy. Left panels show var-
ious mean fields, namely, the staggered magnetization ms, uniform magnetization
m f , d-wave pairing amplitude ∆d and the extended s-wave pairing amplitude ∆s as
functions of U/∆ for different values of t ′ at U = 10t for the 2d square lattice. Right
panels show the ground state energies for the d-wave SC phase, extended s-wave SC
phase and the non-superconducting phase where only magnetic order is allowed, as
functions of U/∆.
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C Competing order-parameters and ground state energy
comparison

We solve the effective low energy Hamiltonian using three different versions of renormalized
mean field theory (RMFT), the first which allows for superconductivity but not magnetic order,
the second which allows for the magnetic order but not superconductivity, and the third which
allows for both, along with various other mean fields, as discussed in Section 3 of the paper.
When we compare the results from the first two calculations, we find that there is a significantly
broad regime of parameters over which the SC and magnetic orders both exist and compete
with each other. In order to determine the true nature of the ground state in this parameter
regime, we compare the ground state energies of the different RMFT solutions.
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Figure 8: Comparison of different renormalized mean field theories. Top left
panel shows several mean fields obtained from the third solution of the RMFT where
both SC pairing and magnetic order are allowed, namely, the staggered magnetiza-
tion ms, uniform magnetization m f , and the d-wave pairing amplitude ∆d as func-
tions of U/∆ for t ′ = 0.45t and U = 10t. Top right panel shows the ground state
energy of the non-superconducting phase where only magnetic order is allowed and
the energy for the third solution as functions of U/∆. Note that the phase with both
orders coexisting is only a metastable phase. Lower panels show similar results for
the extended s-wave SC order.

As shown in Fig. 7 , even for small values of t ′, the SC pairing amplitudes, in both the pair-
ing channels studied, turn on but the magnetic transition precedes the transition into the SC
phase. Once the magnetic order turns on, the ground state energy of the non-superconducting
solution becomes lower than that of both the SC phases studied as shown in the right panels
of Fig. 7. Thus for t ′ < 0.1t there is no stable SC phase, as shown in Fig. 2[e] of the main
paper. For larger values of t ′, as U/∆ increases superconductivity turns on before the mag-
netic order sets in. There continues to be a solution of the RMFT with pairing amplitudes, in
either of the symmetry channels, non zero even in the magnetically ordered regime, but the
non-superconducting magnetically ordered solution is lower in energy here. Thus the pure SC
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phase is a stable phase only before the magnetic transition point.
There is a third scenario possible where one can do a RMFT allowing for non-zero values

of both SC and magnetic order parameters along with other mean fields. Before the magnetic
order turns on, this theory is consistent with the spin-symmetric Bogoliubov theory described
above. After the magnetic order sets in, differences between the two calculations become
visible. In the third calculation, the SC order coexists with the ferrimagnetic order for a range
of parameters as shown in Fig. 8 though the pairing amplitudes decrease with increasing U/∆.
Comparing the energy of this phase with that of the ferrimagnetic metal phase, which was
found to be the stabler phase by comparing the energies in the first two calculations in this
regime, we find that the coexistence phase is also a metastable phase, and the system actually
stabilizes into the ferrimagnetic metallic phase as shown in Fig. 2 of the paper.

D Details of the Phase-diagram
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Figure 9: Phase diagram in U/t − U/∆ plane. Phase diagram of the half-filled
IHM on a 2d square lattice in U/t−U/∆ plane for t ′ = 0.4t. Note that the SC phase
always turns on for U ∼∆ irrespective of the value of U/t within the range of validity
of the calculation. As U/t increases, the range of U/∆ over which both the s-wave
and the d-wave SC phases are viable solutions and almost degenerate shrinks rapidly
while the range of U/∆ over which only the d-wave SC phase is stable reduces rather
slowly.

Earlier in this paper we have shown and discussed the phase-diagrams for the IHM on a
2d square lattice for a fixed value of U/t. Fig. 2[e] shows the phase diagram in t ′/t − U/∆
plane for a fixed U and Fig. 1 shows a section of this phase diagram for t ′ = 0.4t. In order
to understand how the different phases and the phase boundaries between them evolve with
varying U , here we show in Fig. 9 the phase diagram in U/t − U/∆ plane for a fixed t ′/t. As
is clear from the figure, superconductivity always turns on for U ∼∆ irrespective of the value
of U/t though with increase in U/t, the range of U/∆ over which both pairing symmetries
are almost degenerate solutions shrinks rapidly such that eventually, for large enough values
of U/t, the system has only a d-wave SC phase.

All the results presented so far in the paper are for the 2d square lattice. We would like to
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emphasize that within the renormalized mean field theory the phase diagram is qualitatively
similar for higher dimensional systems as well. This is clear from Fig. 10 which shows the
phase diagram for a cubic lattice.
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Figure 10: Phase diagram for cubic lattice. Phase diagram of the half-filled IHM on
a 3d cubic lattice for U = 12t and t ′ = 0.35t. Note that the phase diagram obtained
for cubic lattice is qualitatively similar to the one obtained for a 2d square lattice.

E Band dispersion and nature of Fermi pockets

Fig. 11 shows the band dispersion Enσ(k) for both the bands on paths along high symmetry
directions in the BZ. In the AF half-metal phase, the down spin channel has small hole pockets
around K′ and tiny electron pockets around K. In the ferrimagnetic metal phase, the down spin
band E1↓(k) crosses the Fermi energy around the K′ points resulting in small hole pockets and
E2↑(k) crosses the Fermi energy near the K points resulting in small electron pockets. In the
paramagnetic metal phase, E1(k) crosses the Fermi energy around the K′ points resulting in
hole pockets and E2(k) crosses the Fermi level around K resulting in electron pockets, where,
because of the spin symmetry, we have suppressed the spin indices.

Finally, we show the low energy spectral function Aσ(k,ω∼ 0) for the AF half-metal phase
(see Fig. 12), which is fully consistent with the band-dispersions shown above. The up-spin
channel is gapped while A↓(k,ω∼ 0) has tiny electron pockets at the K points and hole pockets
at the K′ points in the BZ.
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Figure 11: Band Dispersion. Band dispersion Enσ(k) on paths along high symme-
try directions in the BZ. Panel (a) shows bands in the AF half-metal phase where
both the down spin bands cross the Fermi level near the K and K′ points while the
up spin bands are fully gapped. Panel (b) shows bands in the ferrimagnetic metal
phase, where one down-spin band crosses the Fermi level near the K′ points while
one up-spin band crosses the Fermi level near the K point and the other two bands
are gapped. Panel (c) shows bands in the paramagnetic metal phase where there is
a spin symmetry and all the bands cross the Fermi level. The lower panels zoom in
close to the band crossing at the Fermi energy.
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