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Multi-Access Coded Caching Schemes From
Cross Resolvable Designs

Digvijay Katyal, Pooja Nayak Muralidhar, and B. Sundar Rajan , Fellow, IEEE

Abstract— We present a novel caching and coded delivery
scheme for a multi-access network where multiple users can have
access to the same cache (shared cache) and multiple caches
can be accessed by the same user. This scheme is obtained
from resolvable designs satisfying certain conditions which we
call cross resolvable designs. To be able to compare different
multi-access coded schemes with different number of users we
normalize the rate of the schemes by the number of users served.
Based on this per-user-rate we show that our scheme performs
better than the well known Maddah-Ali - Niesen (MaN) scheme
and the recently proposed (“Multi-access coded caching: gains
beyond cache-redundancy” by Serbetci, Parrinello and Elia) SPE
scheme. It is shown that the resolvable designs from affine planes
are cross resolvable designs and our scheme based on these
performs better than the MaN scheme for large memory size
cases. The exact size beyond which our performance is better is
also presented. The SPE scheme considers only the cases where
the product of the number of users and the normalized cache
size is 2, whereas the proposed scheme allows different choices
depending on the choice of the cross resolvable design.

Index Terms— Coded caching, multi-access, resolvable designs.

I. INTRODUCTION

CACHING techniques help to reduce data transmissions
during the times of high network congestion by prefetch-

ing parts of popularly demanded contents into the memories
of end users. The seminal work of [1] provided a coded
delivery scheme which performed within a constant factor
of the information-theoretic optimum for all values of the
problem parameters.

The idea of a placement delivery array (PDA) to represent
the placement and delivery phase of a coded caching problem
first appeared in [2]. These PDAs could represent any coded
caching problem with symmetric prefetching and the popular
Ali-Niesen scheme was also found to be a special case.
Recently, placement delivery arrays have found applications

Manuscript received July 26, 2020; revised November 27, 2020; accepted
January 8, 2021. Date of publication January 20, 2021; date of current
version May 18, 2021. This work was supported partly by the Science and
Engineering Research Board (SERB) of Department of Science and Technol-
ogy (DST), Government of India, through J.C. Bose National Fellowship to
B. Sundar Rajan. The associate editor coordinating the review of this article
and approving it for publication was G. Durisi. (Corresponding author:
B. Sundar Rajan.)

Digvijay Katyal is with Samsung Semiconductor India Research (SSIR),
Division of Samsung R&D Institute India, Bangalore Pvt. Ltd., Bengaluru
560048, Karnataka (e-mail: digvijayk@iisc.ac.in).

Pooja Nayak Muralidhar and B. Sundar Rajan are with the Department of
Electrical Communication Engineering, Indian Institute of Science, Bengaluru,
Bengaluru 560012, India (e-mail: poojam@iisc.ac.in; bsrajan@iisc.ac.in).

Digital Object Identifier 10.1109/TCOMM.2021.3053048

in different variants of coded caching scenarios like in
Device to device (D2D) networks as D2D placement delivery
array (DPDA) and in Combination networks as combinational
PDA (C-PDA) [4], [5].

Most of the works on coded caching consider scenarios
where each user has its own dedicated cache. However in
a variety of settings, such as different cellular networks,
multiple users share a single cache or users can conceivably
connect to multiple caches whose coverage areas may overlap.
The possibility of users to access more than one cache was
first addressed in [6]. This was motivated by the upcoming
heterogeneous cellular architecture which will contain a dense
deployment of wireless access points with small coverage
and relatively large data rates, in addition to sparse cellular
base stations with large coverage area and small data rates.
Placing cache at local access points could significantly reduce
the base station transmission rate, with each user being able
to access content at multiple access points along with the
base station broadcast. The work in [6] considered a K-user
shared-link broadcast channel where each user is assisted by
exactly L > 1 caches (with a cyclic wrap around), and where
each cache can serve exactly L users. The authors called this
as multi-access problem and derived an achievable rate and
information theoretic lower bound which differs by a multi-
plicative gap scaling linearly with L. Later in [7], [9], new
bounds for the optimal rate-memory trade-off were derived
for the same problem. Also a new achievable rate for general
multi-access setup which is order-wise better than the rate
in [6] is derived. The authors focus on the special case with
L ≥ K/2 and provide a general lower bound on the optimal
rate and establish its order optimal memory rate trade off under
the restrictions of uncoded placement. For few special cases
like L = K − 1; L = K − 2; L = K − 3 with K even, exact
optimal uncoded memory-rate trade off is derived.

The work of Serbetci et al. [8] gives yet another class of
coded caching schemes for the multi-access setup, where each
user in a K-user shared link broadcast channel is connected
to z > 1 caches (with a cyclic wrap around), and where each
cache can serve exactly z users. This was the first instance
where authors have analyzed this scenario in the context of
worst case delivery time and when the number of files in
server database is greater than equal to the number of users,
the proposed scheme experiences a larger gain than in [1].

In [11] authors consider the shared cache scenario where
multiple users share the same cache memory, and each user is
connected to only one cache. The work in [11] considers the
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Fig. 1. Problem setup for multi-access coded caching with K users, b caches
and each user, connected to z caches.

shared link network, with K users and Λ, Λ ≤ K helper
caches, where each cache is assisting arbitrary number of
distinct users. Also each user is assigned to single cache. For
this set up, the authors identify the fundamental limits under
the assumption of uncoded placement and any possible user to
cache association profile. The authors derive the exact optimal
worst-case delivery time.

In [12], the authors propose a coded placement scheme for
the setup where the users share the end-caches and showed that
the proposed scheme outperforms the scheme in [11]. In this
scheme the authors use both coded and uncoded data at the
caches, taking into consideration the users connectivity pattern.
Firstly, for a two-cache system, authors provided an explicit
characterization of the gain from coded placement, then the
scheme is extended to L−cache systems, where authors obtain
optimal parameters for the caching scheme by solving a linear
program.

The schemes so far mentioned above in context of
multi-access scenarios consider the special framework with
cyclic wrap around, while for shared cache problems cyclic
wraparound was not asked for. The cache placement followed
in the schemes proposed in these works, ensured that the
intersection of contents stored in the caches that a user is
connected to, is empty. In [13], the authors addressed a system
model involving a cache sharing strategy where the set of
users served by any two caches is no longer empty. In [13],
the authors consider the caching problem with shared caches,
consisting of a server connected to users through a shared link,
where a pair of users share two caches.

Various combinatorial designs have been used in different
setups of coded caching [14], [16], [17].

A. Multi-Access Coded Caching - System Model

Fig. 1 shows a multi-access coded caching system with a
unique server S storing N files W1, W2, W3, …, WN each
of unit size. There are K users in the network connected via
an error free shared link to the server S. The set of users is
denoted by K. There are b number of helper caches each of
size M files. Each user has access to z out of the b helper

caches. Let Zk denotes the content in the k-th cache. It is
assumed that each user has an unlimited capacity link to the
caches it is connected to.

There are two phases: the placement phase and the delivery
phase. During the placement phase certain parts of each file are
stored in each cache which is carried out during the off-peak
hours. During the peak hours each user demands a file and the
server broadcasts coded transmissions such that each user can
recover its demand by combining the received transmissions
with what has been stored in the caches it has access to. This
is the delivery phase. The coded caching problem is to jointly
design the placement and the delivery with minimal number
of transmissions to satisfy the demands of all the users. The
amount of transmissions used in the unit of files is called the
rate or the delivery time. Subpacketization level is the number
of packets that a file is divided into. Coding gain is defined
as the number of users benefited in a transmission.

B. The Maddah-Ali Niesen (MaN) Coded Caching Scheme

The framework of the seminal paper [1] considers a net-
work with K users, each equipped with memory of size
M and N files of very large size among which each user
is likely to demand any one file. The rate R achieved is
K
(
1 − M

N

)
1

(1+K M
N )

. The factor (1+K M
N ) which is originally

called global caching gain is also known as the coding gain or
the Degrees of Freedom (DoF). We refer to this scheme as the
MaN scheme henceforth. This original setup can be viewed
as a special case of the scheme corresponding to Fig. 1 with
b = K and z = 1 which may be viewed as each user having
a dedicated cache of its own.

C. Serbetci-Parrinello-Elia (SPE) Multi-Access Coded
Caching Scheme

In [8], a network consisting of K users connected via
an error free shared link to a server S storing N files
W1, W2, W3, . . . , WN is considered. Each user in the network
can access z caches out of K helper caches, each of size
M = Nγ (units of file), where γ ∈ { 1

K , 2
K , . . . , 1}. The setup

of this scheme, which we refer henceforth as the SPE scheme,
can be considered as a special case of the setup shown in Fig.1
where each user k ∈ K is associated with the caches,

Ck := (k, k + 1, . . . , k + z − 1)z ⊆ K.

In [8] the authors focus on the special case, Kγ = 2 and
provide a scheme which exceed the Ali-Niesen coding gain
Kγ + 1. Also, for the special case with access to an integer
number z = K−1

Kγ of caches of normalized size γ, the optimal
rate taking the form K 1−γz

Kγz+1 = 1
K corresponding to a degrees

of freedom (DoF) of Kγz+1 users served at a time is reported.

D. Comparing Different Multi-Access Coded Caching
Schemes

In any Multi-access Coded caching problem the design
parameters are the number of files N , number of users K ,
number of caches b, the memory size of the cache, M files and
number of caches a user has access to, z. For two Multi-access
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schemes the number of users may be different depending upon
the cache-user topology, keeping other parameters the same.
So comparing such two schemes with respect to rate R the
existing rate R may be misleading. Therefore to compare our
multi-access scheme with other existing schemes we introduce
a new term that normalizes the existing rate R with the number
of users K supported i.e., rate per user or per user rate R

K .
The lower the rate per user for a given b, M, N, z the better
the scheme.

E. Contributions

The contributions of this paper may be summarized as
follows:

• A subclass of resolvable designs (called cross resolv-
able designs) is identified using which new classes of
multi-access coding schemes are presented.

• To be able to compare different multi-access coded
schemes with different number of users we normalize the
rate of the schemes by the number of users served. Based
on this per-user-rate we show that our scheme performs
better than the MaN scheme and the SPE scheme for
several cross resolvable designs.

• It is shown that the resolvable designs from affine
planes [15] are cross resolvable designs and our scheme
performs better than the MaN scheme for large memory
size cases. The exact size beyond which our performance
is better is also presented.

• The resolvable designs from affine planes are a spe-
cial case of the affine resolvable designs from balanced
incomplete block designs (AR-BIBDs) parametrized by
an integer m ≥ 2, which are CRDs. The case affine
resolvable designs from affine planes corresponds to
m = 2. It is shown that the advantage in terms of
subpacketization holds for all values of m the advantage
in terms of per user rate holds only for m = 2 and m = 3
for large memory sizes.

• The SPE scheme [8] considers only the cases where
KM
N = 2, while the proposed scheme allows different

choices of KM
N depending on the choice of the cross

resolvable design.
The paper is organized as follows. Section II describes all
the details related to resolvable designs and defines a subclass
of resolvable designs termed in this paper as cross resolvable
designs (CRDs). Our proposed scheme associated with CRDs
is described in Section III. Comparisons of performance of
our scheme with the MaN and the SPE schemes constitute
Section IV. In Section V we discuss schemes obtained from
resolvable designs for which the number of caches is equal
to the number of users. This includes coded caching schemes
from resolvable designs that are not cross resolvable. Conclud-
ing remarks constitute Section VI and the proof of correctness
of our delivery algorithm is given in the Appendix. For a
positive integer n, [n] denotes the set {1, 2, . . . , n}.

II. CROSS RESOLVABLE DESIGNS

We use a class of combinatorial designs called resolvable
designs [15] to specify placement in the caches.

Definition 1 [3]: A design is a pair (X,A) such that

• X is a finite set of elements called points, and
• A is a collection of nonempty subsets of X called blocks,

where each block contains the same number of points.

Definition 2 [3]: A parallel class P in a design (X,A) is a
subset of disjoint blocks from A whose union is X . A partition
of A into several parallel classes is called a resolution, and
(X,A) is said to be a resolvable design if A has at least one
resolution.

Example 1: Consider a design specified as follows.

X = {1, 2, 3, 4}, and

A = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.
It can be observed that this design is resolvable with the
following parallel classes.

P1 = {{1, 2}, {3, 4}}, P2 = {{1, 3}, {2, 4}}, and

P3 = {{1, 4}, {2, 3}}.
Note that in above example, P1, P2, P3 forms a partition

of A. If A = {{1, 2},{1, 3},{3, 4},{2, 4}}, we get another
resolvable design with two parallel classes P1 and P2.

Example 2: Consider a design specified as follows.

X = {1, 2, 3, 4, 5, 6}, and

A = {{1, 2, 3}, {4, 5, 6}, {1, 4, 5}, {2, 3, 6}}.
It can be observed that this design is resolvable with the
following parallel classes.

P1 = {{1, 2, 3}, {4, 5, 6}} and P2 = {{1, 4, 5}, {2, 3, 6}}
For a given resolvable design (X,A) if |X | = v, |A| = b,
block size is k and number of parallel classes is r, then there
are exactly b

r blocks in each parallel class. Since the blocks
in each parallel class are disjoint, therefore number of blocks
in each parallel class is = b

r = v
k .

A. Cross Resolvable Design (CRD)

Definition 3 (Cross Intersection Number): For any resolv-
able design (X,A) with r parallel classes, the ith cross
intersection number, μi where i ∈ {2, 3, . . . , r}, is defined
as the cardinality of intersection of i blocks drawn from any i
distinct parallel classes, provided that, this value remains same
(μi �= 0), for all possible choices of blocks.

For instance, in Example 1, μ2 = 1, as the intersection
of any 2 blocks drawn from 2 distinct parallel classes is
always at exactly one point. But we cannot define μ3 as the
intersection of 3 blocks drawn from 3 distinct parallel classes
takes elements from the set {0, 1}.

Definition 4 (Cross Resolvable Design): For any resolv-
able design (X,A), if there exist at least one i ∈ {2, 3, . . . , r}
such that the ith cross intersection number μi exists, then the
resolvable design is said to be a Cross Resolvable Design
(CRD). For a CRD the maximum value for i for which μi

exists is called the Cross Resolution Number (CRN) for that
CRD. A CRD with the CRN equal to r is called a Maximal
Cross Resolvable Design (MCRD).
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Note that the resolvable design in Example 2 is not a CRD
as μ2 does not exist.

Example 3: For the resolvable design (X,A) with

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8},
{3, 6, 9}}.
The parallel classes are

P1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} and

P2 = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}
and μ2 = 1.

Example 4: For the resolvable design (X,A) with X =
{1, 2, 3, 4, 5, 6, 7, 8}, and A = {{1, 2, 3, 4}, {5, 6, 7, 8},
{1, 2, 5, 6}, {3, 4, 7, 8}, {1, 3, 5, 7}, {2, 4, 6, 8}}, the parallel
classes are

P1 = {{1, 2, 3, 4}, {5, 6, 7, 8}},
P2 = {{1, 2, 5, 6}, {3, 4, 7, 8}}, and

P3 = {{1, 3, 5, 7}, {2, 4, 6, 8}}.
In this case μ2 = 2 and μ3 = 1.

Example 5: For the resolvable design (X,A) with
X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, and
A = {{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12},

{1, 2, 3, 7, 8, 9}, {4, 5, 6, 10, 11, 12}} the parallel classes are

P1 = {{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}}, and

P2 = {{1, 2, 3, 7, 8, 9}, {4, 5, 6, 10, 11, 12}}.
We have μ2 = 3.

Example 6: Consider the resolvable design (X,A) with
X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and
A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8},

{3, 6, 9}, {1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8},
{2, 4, 9}, {3, 5, 7}}. The parallel classes are

P1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
P2 = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}},
P3 = {{1, 5, 9}, {2, 6, 7}, {3, 4, 8}}, and

P4 = {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}.
Here μ2 = 1 and μ3, μ4 does not exist.

From Example 6 one can see that μr need not always exist
for a CRD.

Lemma 1: For any given CRD (X,A) with r parallel
classes and any cross intersection number μi for i ∈
{3, 4, . . . , r} we have, μi−1 = μi

v
k .

Proof: From any i parallel classes, let us choose a block
from each parallel class denoted as A1,1,A2,1,A3,1, . . . ,Ai,1.
Let

A1,1 ∩ A2,1 ∩A3,1 ∩ · · · ∩ Ai,1 = M1

A1,1 ∩ A2,1 ∩A3,1 ∩ · · · ∩ Ai,2 = M2

...

A1,1 ∩ A2,1 ∩A3,1 ∩ · · · ∩ Ai, v
k

= M v
k

From the definition of cross resolvable design,

|M1| = |M2| = |M3| = · · · = |M v
k
| = μi.

It is also easy to see that, any Mk ∩ Ml = φ where k,
l ∈ {1, 2, . . . , v

k}. Now,

M1 ∪M2 ∪ · · · ∪M v
k

= A1,1 ∩A2,1 ∩ A3,1 ∩ · · · ∩ Ai−1,1

∩
⎧⎨
⎩
⋃

l∈[ v
k ]

Ai,l

⎫⎬
⎭

= A1,1 ∩A2,1 ∩ A3,1 ∩ · · · ∩ Ai−1,1

since
⋃

l∈[ v
k ]

{Ai,l} = X . We have |M1∪M2∪· · ·∪M v
k
| = μi

v
k

and hence
|A1,1 ∩ A2,1 ∩ A3,1 ∩ · · · ∩ Ai−1,1| = μi

v
k leading to

μi−1 = μi
v
k .

III. PROPOSED SCHEME

Given a cross resolvable design (X,A) with v points, r

parallel classes, b blocks of size k each, br
def
= b

r blocks in
each parallel class, we choose some z ∈ {2, 3, . . . , r} such that
μz exists. Let Aj denote the jth block in A, assuming some
ordering on the blocks of A. We associate a coded caching
problem with K =

(
r
z

)
( b

r )z number of users, N files in server
database, b number of caches, M

N = k
v fraction of each file

at each cache and subpacketization level v. There is a one to
one correspondence between the blocks of the CRD and the
caches. A user is connected to distinct z caches such that these
z caches correspond to z blocks from distinct parallel classes.
We denote the set of K users K as, K := {UH : |H | = z}
where, H is a z sized set containing cache indices from distinct
parallel classes.

A. Placement Phase

In the caching placement phase, we split each file Wi, ∀i ∈
[N ] into v non-overlapping subfiles of equal size i.e.,

Wi = (Wi,k : k ∈ X), i = 1, 2, . . . , N.

The placement is as follows. In the jth cache, the indices
of the subfiles stored in Zj is the jth block in the design.
We assume symmetric batch prefetching i.e.,

Zj ={Wi,k : k ∈ Aj}, ∀i ∈ {1, 2 . . . , N}, ∀j ∈ {1, 2 . . . , b}
Therefore the total number of subfiles for each file in any
cache is block size k of the resolvable design i.e., M

N = k
v .

Let M ′
N denote the fraction of a file each user has access to.

We have

M ′

N

=
z∑

i=1

|Ai|
v

−
z∑

1≤i1<i2≤z

|Ai1 ∩ Ai2 |
v

+ · · · + (−1)t+1

z∑
1≤i1<···<it≤z

|Ai1∩. . .∩ Ait |
v

+. . .+(−1)z+1|A1∩. . .∩Az |
v
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where Ai, i ∈ [z] are z blocks from z distinct parallel classes.
Using Lemma 1 we get,

M ′

N
=

z∑
i=1

M

N
−

z∑
1≤i1<i2≤z

μ2

v
+ · · · +

(−1)t+1
z∑

1≤i1<···<it≤z

μt

v
+ · · · + (−1)z+1 μz

v
,

which simplifies to

M ′

N
=

zM

N
+

z∑
t=2

(−1)t+1

(
z

t

)
μt

v
.

From the above expression it is clear that for cross resolvable
design M ′ �= zM . All the cases considered in [8], [10]
corresponds to the case that M ′ = zM, i.e., the size of the
memory that a user has access to is an integer multiple of the
size of the cache. From this it follows that the cases considered
in [8] do not intersect with the cases considered in this paper.

Lemma 2: The number of users having access to any par-
ticular subfile is exactly

(
r
z

)
(bz

r − (br − 1)z).
Proof: There are

(
r
z

)
possible ways of choosing z parallel

classes out of r parallel classes. Fix some point l ∈ [v]. In each
parallel class there will be (br−1) blocks that does not contain
l. So there are totally (br−1)z users which do not have access
to l. Hence the number of users which have access to l is given
by (bz

r − (br − 1)z). So, taking all possible combinations of z
parallel classes we have

(
r
z

)
(bz

r − (br − 1)z).
Lemma 3: The number of users having access to a subfile

of a specific cache is exactly
(

r−1
z−1

)
(br)z−1.

Proof: Any user is connected to z parallel classes. First we
fix a subfile accessible to the user by fixing a cache accessible
to the user. Once we fix a cache we also fix a parallel class.
Then other z−1 parallel classes can be chosen in

(
r−1
z−1

)
ways.

Since there are br blocks in each of these parallel classes,
we have total number of users equal to

(
r−1
z−1

)
(br)z−1.

B. Delivery Phase

For delivery, we first arrange the users in lexicographical
order of their indices S, establishing a one-to-one correspon-
dence with the set {1, 2, . . . , K}. At the beginning of the
delivery phase, each user requests one of the N files and
let the demand vector be denoted by d = (d1, d2, . . . , dK).
To derive an upper bound on the required transmission rate,
we focus our attention on the worst case scenario i.e., each
user requests for distinct files. The delivery steps are presented
as an algorithm in Algorithm 1.

The proof of correctness of the Algorithm 1 is given in the
Appendix. We have

Theorem 1: For N files and K users each with access to z
caches of size M in the considered caching system, if it N ≥
K and for the distinct demands by the users, the proposed
scheme achieves the rate R given by

R =
μz

(
br

2

)z(r
z

)
v

Proof: The first for loop of the delivery algorithm runs(
r
z

)
times. The second for loop of the delivery algorithm

Algorithm 1 Algorithm for Delivery

1: for u = 1 to u =
(

r
z

)
do

2: Choose a set of z out of r parallel classes
3: which is different from the sets chosen before.
4: Let this set be

P1 = {C1,1, C1,2, . . . , C1,i1 , . . . , C1,br},
P2 = {C2,1, C2,2, . . . , C2,i2 , . . . , C2,br},

...

Pz = {Cz,1, Cz,2, . . . , Cz,iz , . . . , Cz,br}.
5: for v = 1 to v =

(
br

2

)z
do

6: Choose a pair of blocks from each of the z
7: parallel classes P1,P2, . . . ,Pz . This set of 2z
8: blocks must be different from the ones chosen
9: before. Let the chosen set be

{C1,i1 , C1,j1 , C2,i2 , C2,j2 , . . . , Cz,iz Cz,jz}
10: where, is, js ∈ [br] and js �= is, ∀s ∈ [z].
11: There are 2z users corresponding to the 2z blocks
12: chosen above. Denoting this set of user indices by
13: X , we have X = {(C′

1, C
′
2, . . . , C

′
z) : C′

s ∈
{Cs,is , Cs,js}}

14: Calculate: Calling the user connected to the
15: set of caches {C1,a1 , C2,a2 , . . . , Cz,az},
16: where ak ∈ {ik, jk}, k = 1, 2, · · · , z, to be
17: the mth user calculate the set fm as fm = C1,e1 ∩

C2,e2 ∩ · · · ∩ Cz,ez

18: where ek = {ik, jk} \ ak. We have |fm| = μz . Let
fm := {ym,1, ym,2, . . . , ym,μz}.

19: Calculate fm as above for all the 2z users in X .
20: Transmit: Now do the following μz transmissions

⊕
m∈X

Wdm,ym,s , ∀s ∈ [μz]

21: Note that there are μz transmissions for X .
22: end for
23: end for

runs
(
br

2

)z
times. The transmit step of the delivery algorithm

runs μz times. So we see that totally there are μz

(
br

2

)z(r
z

)
transmissions and subpacketization level is v. Hence, the result
from the definition of rate.

Lemma 4: The number of users benefited in each transmis-
sion, known in the literature as coding gain and denoted by
g, is given by g = 2z.

Proof: From second for of the delivery algorithm it can
be observed that, there are totally 2z users benefited from a
transmission. So the coding gain by definition is 2z .

IV. PERFORMANCE COMPARISON

For both the MaN and the SPE schemes, the number of
users and the number of caches are equal. Whereas, for the
schemes proposed in this paper the number of users K and
the number of caches b need not be same. So, when we
compare our scheme with the MaN scheme, we will keep the
number of caches and fraction of each file stored at each cache
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TABLE I

COMPARISON BETWEEN MAN AND PROPOSED SCHEME FOR THE CLASS OF CROSS RESOLVABLE DESIGN DERIVED FROM AFFINE
GEOMETRY FOR THE CASE z = 2, WHERE q IS A PRIME OR PRIME POWER AND m ≥ 2

same. When we compare our scheme with the SPE scheme,
the number of caches and the number of caches a user is
connected to is kept same.

A. Comparison of Our Schemes Obtained From CRDs From
Affine Resolvable BIBDs

In this subsection, we focus on the schemes obtained
using the resolvable designs from affine resolvable balanced
incomplete block designs (BIBDs) [15](Chapter 5, Resolvable
BIBDs) which are CRDs. We will compare the resulting
schemes with the MaN scheme. One such infinite class of
affine resolvable BIBDs is derived from affine geometry. Such
CRDs exists for all q and m, where q is a prime or a power of
a prime number and m ≥ 2. For any such q and m, the CRD
resulting from an affine resolvable BIBD has the number of
points v = qm, the number of points in a block k = qm−1,
the number of blocks b = q(qm−1)

q−1 , the number of parallel

classes r = qm−1
q−1 . It is known that any two blocks drawn

from different parallel classes always intersect at exactly k2

v
points [15] i.e., z = 2 and μz = qm−2.

For the multi-access coded caching scheme from the CRDs
with parameters q and m, we have K = (br)z

(
r
z

)
=

q3(qm−1)(qm−1−1)
2(q−1)2 users, b = q(qm−1)

q−1 caches each having a

cache size of M
N = k

v = 1
q and M ′

N = (2q−1)
q2 .

1) Comparison With the MaN Scheme: Since bM
N = b

q =
qm−1
q−1 is a integer, we have the corresponding MaN scheme

with N files, q(qm−1)
q−1 number of users and each user has 1

q
fraction of each file stored at its corresponding cache. The
two schemes have been compared by keeping the number
of caches and fractions of each file at each cache equal
in Table I. It is seen that our scheme performs better than
the MaN scheme in terms of the number of users supported
and the subpacketization levels at the cost of increased rate
and decreased gain.

Fig. 2. Per user rate for the codes in Table II.

2) Comparison With the SPE Scheme: For comparison with
SPE scheme we will use m = 2. The special case of m = 2 is
the class of CRDs from affine planes. For the subpacketization
value in SPE scheme to be an integer, given by K(K−2z+2)

4 [8],
where K is the number of users and z is the number of caches
a user has access to, we consider the SPE scheme with N files,
q(q + 1) users, M

N = 2
q(q+1) fraction of each file stored at

each cache and each user has access to exactly z = 2 caches,
which gives a subpacketization level equal to q(q−1)(q+1)(q+2)

4 .
Since b(b−2z+2)

4 = q(q−1)(q+1)(q+2)
4 is an integer, we have the

comparable SPE scheme with N files, q(q + 1) number of
users. The comparison is given in Table II and also shown
in Fig.3. The rate expression in [8] is complicated (given
in Theorem 1, page 2 of [8]). So for comparison with the
proposed scheme we plot the rate versus the number of users
for the two schemes in Fig. 3. In Fig.2 we plot the per user
rate R

K against the fraction of each file stored at each cache M
N

and see that our scheme performs better than the SPE scheme
for small cache sizes and matches the performance at large
cache sizes.

Another such infinite class of affine resolvable BIBDs is
derived from Hadamard matrices. Such CRDs exists for all m,
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TABLE II

COMPARISON BETWEEN SPE AND PROPOSED SCHEME FOR THE CLASS OF CRDS FROM AFFINE PLANES WHERE q IS A PRIME OR PRIME POWER

Fig. 3. Rate R for the schemes in Table II.

if there exists a Hadamard matrix of order 4m. For an m, the
CRD resulting from an affine resolvable BIBD has the number
of points v = 4m, the number of points in a block k = 2m,
the number of blocks b = 2(4m − 1), the number of parallel
classes r = 4m − 1. It is known that any two blocks drawn
from different parallel classes always intersect at exactly k2

v
points [15] i.e., z = 2 and μz = m.

For the multi-access coded caching scheme from the CRDs
with parameter q and m, with N files we have K =
(br)z

(
r
z

)
= 4(2m − 1)(4m − 1) users, b = 2(4m − 1) caches

each having a cache size of M
N = k

v = 1
2 and M ′

N = 3
4 .

Since bM
N = b

2 = 4m − 1 is a integer, we have the
corresponding MaN scheme with N files, 2(4m− 1) number
of users and each user has 1

2 fraction of each file stored at its
corresponding cache. The two schemes have been compared
by keeping the number of caches and fractions of each file
at each cache equal in Table III. It is seen that our scheme
performs better than the MaN scheme in terms of the number

Fig. 4. Comparing subpacketization level for m = 2 and m = 3 between
MaN and Proposed scheme for the class of resolvable designs derived from
affine resolvable BIBD’s, where q is a prime or prime power.

of users supported and the subpacketization level at the cost
of increased rate and decreased gain.

Fig. 4 shows the subpacketization v verses the parameter q.
The plot in Fig. 5 shows the per user rate R

K verses the fraction
of each file stored at each cache M

N . Since M
N = 1

q and R
K =

(q−1)2

(q)(qm+q−2) in case of MaN scheme, R
K = (q−1)2

4q2 in case of

proposed scheme is a function of q, we plot R
K vs M

N keeping
m constant for different values of q, where q is a prime or
prime power number. The points between any two achievable
(M

N , R
K ) pairs through this scheme, can be obtained as well

through memory sharing. When the cross intersection number
is minimal, i.e, μ2 = 1, we see that our scheme performs
better than MaN scheme.

B. Two Examples Outperforming the MaN Scheme

In this subsection, we present two instances of our schemes
using CRDs (not from affine planes) which outperform the
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TABLE III

COMPARISON BETWEEN MAN AND PROPOSED SCHEME FOR THE CLASS OF CROSS RESOLVABLE DESIGN DERIVED
FROM HADAMARD MATRICES FOR THE CASE z = 2

Fig. 5. Performance Analysis between MaN and Proposed scheme for the
class of cross resolvable design derived from affine resolvable BIBD’s for the
case z = 2, where q is a prime or prime power and m ≥ 2.

MaN scheme in all aspects, namely in rate, gain as well as
in subpacketization level simultaneously. The first instance
is our scheme obtained using the CRD given in Example 3
and the second one is that obtained from the CRD given
in Example 4. The performances of these two schemes in
comparison with the comparable MaN schemes is presented
in Table IV. The performance of our scheme for these two
instances is shown pictorially in Fig. 6

C. Comparison With SPE Scheme

In this subsection, we show some examples (not necessarily
from affine planes) for the comparison between two schemes.

Example 7: Consider the resolvable design with parameters
v = 8, b = 8, r = 4, k = 4 and μ2 = 2 specified as follows.
X = {1, 2, 3, 4, 5, 6, 7, 8}, and
A = {{1, 2, 3, 4}, {5, 6, 7, 8}, {1, 2, 5, 6}, {1, 3, 5, 7}, {2, 4,

6, 8}, {3, 4, 7, 8}, {1, 4, 5, 8}, {2, 3, 6, 7}}. The parallel classes
are

P1 = {{1, 2, 3, 4}, {5, 6, 7, 8}},
P2 = {{1, 2, 5, 6}, {3, 4, 7, 8}},

Fig. 6. Pictorial representation of Table IV.

P3 = {{2, 4, 6, 8}, {1, 3, 5, 7}} and

P4 = {{1, 4, 5, 8}, {2, 3, 6, 7}}.
The comparison between the SPE scheme and proposed
scheme in Table V shows that more users can be supported in
a multi-access setup, and certain choices of cross resolvable
designs can yield better subpacketization levels and even better
gains than the comparable SPE scheme at the cost of increased
storage in each cache.

V. SCHEMES FROM RESOLVABLE DESIGNS (z = 1)

So far, we have considered the multi-access coded caching
problems from CRDs where a user is associated with z, z ∈
{2, 3, . . . , r} distinct caches such that these z caches cor-
respond to z blocks from distinct parallel classes. In this
section we describe multi-access coded caching schemes from
resolvable designs that are not CRD. For such resolvable
designs we define z = 1. We see that this case is nothing but
the case where each user is associated with its own dedicated
cache, i.e., the number of users is equal to the number of
blocks.

For a given resolvable design (X,A) with v points, r paral-
lel classes, b blocks of size k each, br blocks in each parallel
class, now we have the coded caching problem with N files
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TABLE IV

COMPARISON BETWEEN MAN AND PROPOSED SCHEME

TABLE V

COMPARISON BETWEEN SPE AND THE PROPOSED SCHEME

in server database, b be the number of caches, K =
(

r
z

)
bz
r =

rbr = b users, M
N = k

v fraction of each file at each cache and
subpacketization level v.

A. Placement and Delivery Phase

The placement phase remains the same as described in
Section II for schemes from CRDs and the Delivery steps
are same as in as Algorithm 1 with taking μ1 = k. It can be
checked that the proof of correctness of Algorithm 1 holds
for the case included with z = 1 and μ1 = k. Now Theorem 1
and Lemma 4 can be restated for the case z = 1 as follows
with the proofs remaining valid.

Theorem 2: For multi-access coded caching schemes from
resolvable designs with z = 1, N files and K users each
with access to one cache of size M in the considered caching
system, with N ≥ K , the proposed scheme achieves the worst

case rate R with distinct demands given by R =
rk(br

2 )
v and

the number of users benefited in each transmission i.e gain,
is 2.

B. Performance Comparison: MaN Scheme Vs Schemes
From Resolvable Designs From Affine Planes With z = 1

Consider the coded caching schemes from the resolvable
design derived from the affine plane treating them with z = 1.
We have b = K = n(n + 1) and M

N = 1
n . Since KM

N = n + 1
is an integer, we have the corresponding MaN scheme with N
files, n(n+1) number of users and each user having 1

n fraction
of each file stored at it’s corresponding cache. Comparison of
proposed scheme with MaN scheme is given in Table VI.

C. Comparison of Proposed Scheme for Different Values of z

In this subsection, we analyze the proposed scheme for
different values of z ∈ {2, 3, . . . , r}. We will analyze a CRD
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TABLE VI

COMPARISON BETWEEN MAN AND PROPOSED SCHEME FOR THE
CLASS OF RESOLVABLE DESIGNS DERIVED FROM

AFFINE PLANES WITH z = 1

TABLE VII

COMPARISON FOR DIFFERENT VALUES OF z FOR A RESOLVABLE

DESIGN GIVEN IN EXAMPLE 8

for different values of z with respect to rate per user
(

R
K

)
.(

R
K

)
z(

R
K

)
z−1

=
1
2

(
1 − k

v

)
, z ∈ {3, 4, . . . , r} (1)

(
R
K

)
z(

R
K

)
z−1

=
μ2

2k

(v

k
− 1
)

, z = 2 (2)

Example 8: Consider the resolvable design with parameters
v = 27, b = 9, r = 3, k = 9, μ2 = 3 and μ3 = 1.
In Table VII, we compare the resolvable design for different
values of z.

Example 9: Consider the resolvable design with parameters
v = 16, b = 8, r = 4 and k = 8 with X =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, and
A = {1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15, 16},
{1, 2, 3, 4, 9, 10, 11, 12}, {5, 6, 7, 8, 13, 14, 15, 16}
{1, 2, 5, 6, 9, 10, 13, 14}, {3, 4, 7, 8, 11, 12, 15, 16},
{1, 3, 5, 7, 9, 11, 13, 15}, {2, 4, 6, 8, 10, 12, 14, 16}.

The parallel classes are

P1 = {{1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15, 16}},
P2 = {{1, 2, 3, 4, 9, 10, 11, 12}, {5, 6, 7, 8, 13, 14, 15, 16}},

P3 = {{1, 2, 5, 6, 9, 10, 13, 14}, {3, 4, 7, 8, 11, 12, 15, 16}},
P4 = {{1, 3, 5, 7, 9, 11, 13, 15}, {2, 4, 6, 8, 10, 12, 14, 16}}

It can be easily observed that μ2 = 4, μ3 = 2 and μ4 = 1.
In Table VIII, we compare the resolvable design for different
values of z.

From Table VII, we can see that though one would expect
more z, to give more improvement in overall rate, this need not
be the case. For z = 1 and for z = 2 the overall rate remains
same, though gain improves from 2 to 4. This is because the
number of users supported improved from 9 to 27. Comparing
in terms of rate per user, in both the examples we see that as
z increases, rate per user decreases. At the same time, it need
not be the case that increasing value of z, yields increase in
number of users that can be supported. This is evident from
Table VIII. We see a drop in number of users supported from
32 to 16 when z changes from z = 3 to z = 4.

D. Subpacketization

Lemma 5: For a given resolvable design with parameters
v, b, r, k and for the chosen value of z, with K being
the number of users supported, the subpacketization level v
is given by

v = k

(
K(
r
z

)
)1/z

. (3)

Proof: Since for a given resolvable design and for a chosen
value of z, number of users K is equal to K =

(
r
z

)
(br)z =(

r
z

) (
v
k

)z
rearranging which gives (3).

From the above lemma, it is not hard to see that the
subpacketization level v grows slower than the number of users
K i.e., the subpacketization level growth is sublinear with K
for the different classes of cross resolvable designs discussed
in this paper.

VI. DISCUSSION

We have identified a special class of resolvable designs
called cross resolvable designs which lead to multi-access
coded caching schemes. While combinatorial designs have
been used in the literature for coded caching problems ours
is the first work to use them for multi-access coded caching.
Our results indicate that using CRDs in multi-access setups can
help attain gains beyond cache redundancy at low subpacke-
tization levels while supporting a large number of users. Our
scheme outperforms MaN scheme in terms of rate per user,
gains and subpacketization simultaneously. It can perform
better than SPE scheme in terms of users supported, rate per
user and subpacketization levels which are important design
parameters for any coded caching scheme. Our scheme also
supports a wide range of choices of KM/N as opposed to
SPE scheme. We have shown that the schemes presented in
the paper using resolvable designs from affine planes perform
better than the MaN scheme for large memory sizes using
the metric per-user-rate. This is the only class of resolvable
designs that we could identify which is cross resolvable.
It will be interesting to construct or identify new cross
resolvable designs and study the performance of the resulting
multi-access coded caching schemes.
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TABLE VIII

COMPARISON FOR DIFFERENT VALUES OF z FOR A RESOLVABLE DESIGN GIVEN IN EXAMPLE 9

APPENDIX

PROOF OF CORRECTNESS OF THE DELIVERY ALGORITHM

The proof of correctness of the delivery phase given by
Algorithm 1 is provided by the sequence of the following
three lemmas.

Lemma 6: Let Ym, m ∈ K be the set of indices of
subfiles accessible to the mth user. It is easily seen that
|Ym| = vM ′

N . The set of subfiles which is available with
every user in X , other than m is ∩

t∈X\m
Yt, ∀m ∈ X .

Consider the transmission corresponding to the set X and a
user m ∈ X as in Algorithm 1. Then the following equality
holds.

fm = ∩
t∈X\m

Yt, ∀m ∈ X (4)

Proof: In Algorithm 1 consider the combination of 2z
blocks (caches)

C1,i1 , C1,j1 , C2,i2 , C2,j2 , . . . , Cz,iz , Cz,jz , where is, js ∈
[br] and js �= is, ∀s ∈ [z] and the mth user which has
access to z blocks C1,a1 , C2,a2 , . . . , Cz,az , where as ∈
{is, js}, s ∈ [z]. The sequence of equations (5) to (13),
as shown at the bottom of the next page, constitute the proof
for (4).

Lemma 7: At the end of each transmission corresponding
to set X in Algorithm 1, each user is able to decode one
sub-file.

Proof: Consider a user m, m ∈ X and any user m′, m′ �=
m, m′ ∈ X . The set fm′ represents the set of subfiles
which is available with every user in X , other than m′. From
Lemma 6 we know that the user m has access to all the subfiles
in fm′ . Consider the transmission ⊕

m∈X
Wdm,ym,s , s ∈ [μz]

corresponding to set X . The mth user is able to get the

subfile Wdm,ym,s from this transmission since it has every
other subfile Wdm′ ,ym′,s , ∀m′ ∈ X , m′ �= m.

Lemma 8: At the end of all the transmissions in Algo-
rithm 1 each user is able get all subfiles of the demanded
file Wdm , m ∈ K.

Proof: In Algorithm 1 it can noted that there
are in total (br − 1)z transmissions from which the
mth user gets μz(br − 1)z subfiles. Now consider a
combination of 2z blocks (caches) given as C1,i1 , C1,j1 ,
C2,i2 , C2,j2 , . . . , Cz,iz , Cz,jz , where is, js ∈ [br] and js �=
is, ∀s ∈ [z], and the mth user having access to z blocks
(caches), C1,a1 , C2,a2 , . . . , Cz,az , where as ∈ {is, js}, ∀s ∈
[z]. We have Ym = C1,a1∪C2,a2∪· · ·∪Cz,az and the mth user
is able to receive subfile indices of the demanded file Wdm

from the transmission corresponding to 2z caches (considered
above) given by

⋂
ls = {is,js}, ∀s ∈ [z]

(l1,l2,...,lz) �= (a1,a2,...,az)

{C1,l1 ∪ C2,l2 ∪ · · · ∪ Cz,lz}

which, using Lemma 6 is same as {C1,e1 ∩C2,e2 ∩· · ·∩Cz,ez}
where, es = {is, js} \ as, ∀s ∈ [z]. In order to find subfile
indices that mth user get from all (br − 1)z transmissions,
we have to vary the value of es such that es �= as, ∀s ∈ [z].

The mth user is able to receive subfile indices given by⋃br
es = 1,
es �= as

∀s ∈ [z]

{C1,e1 ∩ C2,e2 ∩ · · · ∩ Cz,ez}. In addition to this

using Ym, the mth user gets the subfile indices shown in the
sequence of expressions numbered (14) to (20), as shown at
the top of the page 13. Notice that the last expression in (17)
is the union of all the blocks in a parallel class. So from the
property of resolvable designs the above set is equal to the set
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∩
t∈X\m

Yt =
⋂

ls = {is,js}, ∀s ∈ [z]
(l1,l2,...,lz) �= (a1,a2,...,az)

{C1,l1 ∪ C2,l2 ∪ · · · ∪ Cz,lz} (5)

=

⎧⎪⎪⎨
⎪⎪⎩

⋂
ls = {is,js},
∀s ∈ [2,z]

{C1,e1 ∪ C2,l2 ∪ · · · ∪ Cz,lz}

⎫⎪⎪⎬
⎪⎪⎭
⋂
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋂
ls = {is,js},
∀s ∈ [2,z]

(l2,l3,...,lz) �=
(a2,a3,...,az)

{C1,a1 ∪ C2,l2 ∪ · · · ∪ Cz,lz}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= C1,e1

⋂
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋂
ls = {is,js},
∀s ∈ [2,z]

(l2,l3,...,lz) �=
(a2,a3,...,az)

{C1,a1 ∪ C2,l2 ∪ C3,l3 ∪ · · · ∪ Cz,lz}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

= C1,e1

⋂
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1,a1

⋃
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋂
ls = {is,js},
∀s ∈ [2,z]

(l2,l3,...,lz) �=
(a2,a3,...,az)

{C2,l2 ∪ C3,l3 ∪ · · · ∪ Cz,lz}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

= C1,e1

⋂
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋂
ls = {is,js},
∀s ∈ [2,z]

(l2,l3,...,lz) �=
(a2,a3,...,az)

{C2,l2 ∪ C3,l3 ∪ · · · ∪ Cz,lz}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

= {C1,e1 ∩ C2,e2}
⋂
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋂
ls = {is,js},
∀s ∈;[3,z]

(l3,l4,...,lz) �=
(a3,a4,...,iz)

{C3,l3 ∪ C4,l4 ∪ · · · ∪ Cz,lz}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

(proceeding as to arrive at the previous step)

= {C1,e1 ∩ C2,e2 ∩ C3,e3}
⋂
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋂
ls = {is,js},
∀s ∈ [4,z]

(l4,l5,...,lz) �=
(a4,a5,...,az)

{C4,l4 ∪ C5,l5 ∪ · · · ∪ Cz,lz}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

... (11)

= {C1,e1 ∩ C2,e2 ∩ · · · ∩ Cz−1,ez−1}
⋂
⎧⎪⎪⎨
⎪⎪⎩

⋂
lz = {iz ,jz},
(lz) �= (az)

{Cz,lz}

⎫⎪⎪⎬
⎪⎪⎭ (12)

= {C1,e1 ∩ C2,e2 ∩ · · · ∩ Cz,ez} = fm. (13)
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Ym

⋃
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

br⋃
es = 1,
es �= as

∀s ∈ [z]

{C1,e1 ∩ C2,e2 ∩ · · · ∩ Cz,ez}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(14)

= {C1,a1 ∪ C2,a2 ∪ · · · ∪ Cz,az}
⋃ br⋃

es = 1,
es �= as

∀s ∈ [z−1]

⎧⎨
⎩C1,e1 ∩ C2,e2 ∩ · · · ∩

⎧⎨
⎩ br∪

ez=1
ez �= az

Cz,ez

⎫⎬
⎭
⎫⎬
⎭ (15)

⊇ {
C1,a1 ∪ C2,a2 ∪ · · · ∪ Cz−1,az−1

}⋃ br⋃
es = 1,
es �= as

∀s ∈ [z−1]

{C1,e1 ∩ C2,e2 ∩ · · · ∩ Cz,az}
⋃ br⋃

es = 1,
es �= as

∀s ∈ [z−1]

⎧⎨
⎩C1,e1 ∩ C2,e2 ∩ · · · ∩

⎧⎨
⎩ br∪

ez=1
ez �= az

Cz,ez

⎫⎬
⎭
⎫⎬
⎭

=
{
C1,a1 ∪ C2,a2 ∪ · · · ∪ Cz−1,az−1

}⋃ br⋃
es = 1,
es �= as

∀s ∈ [z−1]

{
C1,e1 ∩ C2,e2 ∩ · · · ∩

{
br∪

ez=1
Cz,ez

}}
(16)

=
{
C1,a1 ∪ C2,a2 ∪ · · · ∪ Cz−1,az−1

}⋃ br⋃
es = 1,
es �= as

∀s ∈ [z−1]

{
C1,e1 ∩ C2,e2 ∩ · · · ∩ Cz−1,ez−1

}
(17)

(Continuing with similar steps we get),

⊇ {
C1,a1 ∪ C2,a2 ∪ · · · ∪ Cz−2,az−2

}⋃ br⋃
es = 1,
es �= as

∀s ∈ [z−2]

{
C1,e1 ∩ C2,e2 ∩ · · · ∩ Cz−2,ez−2

}
(18)

...

⊇ {C1,a1 ∪ C2,a2}
⋃
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

br⋃
es = 1,
es �= as

∀s ∈ [2]

{C1,e1 ∩ C2,e2}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19)

⊇ {C1,a1}
⋃
⎧⎪⎪⎨
⎪⎪⎩

br⋃
e1 = 1,
e1 �= a1

C1,e1

⎫⎪⎪⎬
⎪⎪⎭ (20)

containing all the subfile indices of all the files and therefore
it also contains all the subfiles of the demanded file Wdm .
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