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Abstract—A variant of the index coding problem (ICP),
the embedded index coding problem (EICP) was introduced
in [A. Porter and M. Wootters, “Embedded Index Coding,”
ITW, Sweden, 2019] which was motivated by its application
in distributed computing where every user can act as sender
for other users and an algorithm for code construction was
reported. The construction depends on the computation of min-
rank of a matrix, which is computationally intensive. In [A.A.
Mahesh, N. S. Karat and B. S. Rajan, “Min-rank of Embedded
Index Coding Problems,” ISIT, 2020], the authors have provided
an explicit code construction for a class of EICP - Consecutive
and Symmetric Embedded Index Coding Problem (CS-EICP). We
introduce the idea of sub-packetization of the messages in index
coding problems to provide a novel code construction for CS-
EICP in contrast to the scalar linear solutions provided in the
prior works. For CS-EICP, the normalized rate, which is defined
as the number of bits transmitted by all the users together
normalized by the total number of bits of all the messages, for
our construction is lesser than the normalized rate achieved by
Mahesh et al., for scalar linear codes.

I. INTRODUCTION

Index coding problem (ICP) is a canonical problem in
network information theory, that provides a simple yet rich
model for several important engineering problems in network
communication, such as content broadcasting, peer-to-peer
communication, distributed caching, device-to-device relaying,
distributed storage, and interference management [1]–[5]. The
authors of [6] introduced a variant of ICP, called embedded
index coding problem (EICP), where each node can be both
sender and user at the same time. This problem is motivated by
applications in distributed computation and distributed storage.
It is a special case of multi-sender ICP [7]–[9], where the set
of users and senders are the same. It has got application in
vehicular ad-hoc networks (VANETs) which have gained pop-
ularity with their importance in intelligent transport systems
[10]. In [11], scalar linear index coding techniques have been
applied to reduce the number of transmissions required for data
exchange during the Vehicle to Vehicle (V2V) communication
phase which is an integral part of collaborative message
dissemination in VANETs.

EICP consists of a set of users where each user already has
a subset of messages and demands another subset of messages.
Each user is fully aware of the content available at all other
users and can communicate to all its peers through an error-
free broadcast channel. The goal is to minimize the number of
bits transmitted by all the users such that each user retrieves
whatever they have demanded. There are no separate senders

involved in this setting. Some results establishing relationships
between single sender (centralized) index coding and EICP
have been provided in [6]. In particular, it is shown that, the
optimal code length for an EICP is only a factor of two worse
than the optimal code length for a single sender index coding
problem with the same setting. A heuristic algorithm has also
been proposed for EICP. In [12], for EICP, a notion of side-
information matrix was introduced. The length of an optimal
scalar linear index code was derived to be equal to the min-
rank of the side-information matrix.

In this paper, we consider a specific class of embedded
index coding problem, defined as Consecutive and Symmetric
Embedded Index Coding Problem (CS-EICP). We assume that
the cardinality of the side-information is same for all the users.
The normalized rate is defined as the total number of bits
transmitted by all the users together normalized by the total
bits of all the messages.

In [6], the proposed heuristic algorithm for EICP involves
calculating min-rank of a graph, by searching over all pos-
sible fitting matrices, which is computationally complex. In
[12], the CS-EICP was studied as ‘one-sided neighboring
side-information problem’. The authors had characterized the
length of the optimal scalar linear index code for CS-EICP to
be N−s+1, where N represents the number of users as well as
messages and s represents the cardinality of side-information
available at each user. A scalar linear code achieving this
length was also constructed. Hence the normalized rate is
N−s+1

N . In this paper, we provide an explicit code construction
for the CS-EICP by appropriately invoking sub-packetization
of the messages. The normalized rate achieved in our scheme

is 1

d s
N−se

, if s > N
2 and dN−s

s−1 e
1+dN−s

s−1 e
, if s ≤ N

2 . For certain

ranges of values of s, we prove that it is less than N−s+1
N .

One of the special cases of EICP is when the users demand
all the messages which are not in the side-information. This
special case was studied as Cooperative Data Exchange (CDE)
problem in [13], where there is a set of M messages and N
users which demand the whole message set. Each user already
has a subset of the messages available as side-information.
Upper and lower bounds on the minimum number of trans-
missions are provided in [13]. For the case when all the users
have the same number of messages, i.e. s, as side-information,
the lower bound on the number of transmissions required is
M − s + 1, i.e., the normalized rate is lower bounded by
M−s+1

M . If our scheme is specialized to CDE problem, then the
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normalized rate achieved in our scheme is 1

d s
N−se

, if s > N
2

and dN−s
s−1 e

1+dN−s
s−1 e

, if s ≤ N
2 . Here also, for some cases, we prove

that it is less than M−s+1
M .

A. Vector linear code and sub-packetization scheme.

An index coding scheme is said to be linear if the trans-
mitted index code symbols are linear combinations of the
messages. A scalar linear code uses only one instant of the M
message symbols to obtain the index code symbols whereas
a vector linear code uses multiple instants of M messages
to obtain the index code symbols. For example, if the sender
uses two instants of M messages and sends n linear index
code symbols, then it means that n linear combinations of
2M messages are broadcast and the code is a vector linear
code.

In sub-packetization scheme that we introduce in this paper
for index coding problems, we do not use multiple instants of
messages. We use only one instant of the M message symbols
while we split each message of size d bits into z blocks. We
assume that d is sufficiently large such that this splitting of
message into z blocks of equal sizes is possible. The size of
each block is d1 = d

z bits and each block is assumed to be from
a finite field F2d1 . The coded symbols transmitted are a linear
combination of these blocks rather than the linear combination
of the entire messages. Sub-packetization is extensively used
and studied in the coded caching literature.

B. Our Contributions

The contributions of this paper is summarized as follows.
• We introduce the idea of sub-packetization in index

coding problems to provide code construction for a
special class of EICP, namely Consecutive and Symmetric
Embedded Index Coding Problem (CS-EICP).

• We show that, for CS-EICP, the normalized rate achieved
in our scheme is 1

d s
N−se

, if s > N
2 and dN−s

s−1 e
1+dN−s

s−1 e
, if

s ≤ N
2 . We prove that, when (s− 1) divides (N − 1) or

(N−s) divides (N−1) or s > 2N+1−
√
4N+1

2 , this is less
than the normalized rate N−s+1

N achieved in [12] using
scalar linear code, where N represents the number of
users as well as messages and s represents the cardinality
of side-information available at each user.

• One of the special cases of EICP is when it is specialized
to cooperative data exchange problem. For such cases
also, the normalized rate achieved in our case is 1

d s
N−se

,

if s > N
2 and dN−s

s−1 e
1+dN−s

s−1 e
, if s ≤ N

2 . We prove that, when

(s− 1) divides (N − 1) or (N − s) divides (N − 1) or
s > 2N+1−

√
4N+1

2 , this is less than the lower bound on
the normalized rate, which is M−s+1

M , for scalar linear
solutions to CDE problem [13].

The rest of the paper is organized as follows. The background
and preliminaries are provided in Section II. In Section III,
we define the specific class of EICP considered in this paper,
namely, Consecutive and Symmetric Embedded Index Coding

Problem (CS-EICP). Our main result is summarized in the
same section. Comparison of our results with the prior works
is also done in the same section. The proof of this result is
deferred to Section IV. Section V concludes this paper.

Notations: The finite field with q elements is denoted by
Fq. The set of all integers is denoted by Z. [n] represents the
set {1, 2, . . . , n}. [a, b] represents the set {a, a+1, . . . , b}, and
(a, b] represents the set {a+1, . . . , b}. The bit wise exclusive
OR (XOR) operation is denoted by ⊕. bxc denotes the largest
integer smaller than or equal to x. dxe denotes the smallest
integer greater than or equal to x. All the message indices are
taken modulo M while the user indices are taken modulo N .
a|b implies a divides b and a6 | b implies a does not divide b,
for integers a and b.

II. BACKGROUND AND PRELIMINARIES

Consider a system consisting of N users

S = {S0, S1, . . . , SN−1}

and M messages of d bits each,

X = {x0, x1, ..., xM−1}, xl ∈ F2d ,∀l ∈ [0,M − 1].

Let Kj ⊆ X represent the subset of messages held by the user
Sj and Wj ⊆ X represent the subset of messages demanded
by the user Sj , j ∈ [0, N−1]. We assume that ∪j∈[0,N−1]Kj =
X . Each user Sj broadcasts a set of yj coded symbols each
of size d1 = d

z bits, for some z ∈ Z. Let Yj , j ∈ [0, N − 1],
represent the set of all coded symbols transmitted by the user
Sj ,

Yj = ∪
yj

i=1Y
i
j , : Y i

j ∈ F2d1 ,

where Y i
j , i ∈ [yj ], represents the ith coded symbol of length

d1 bits, transmitted by the user Sj .
The embedded index coding problem (EICP) [6] is to

minimize the number of bits broadcast by all users such that
each user gets all the messages they have demanded, from the
messages available with them and the coded symbols broadcast
by the other users. That is, to minimize the normalized rate,
which is defined as the total number of bits broadcast by all the
users together normalized by the total bits of all the messages.

The decoding function, for embedded index coding prob-
lem, associated with some user Sj , is of the form

Dj : {∪i∈{[0,N−1]\j}F2yid1 ,F2|Kj |d} → F
2|Wj |d .

III. CONSECUTIVE AND SYMMETRIC EMBEDDED INDEX
CODING PROBLEM

In this section, we define the specific class of EICP con-
sidered in this paper, in Definition 1. We summarize our key
result subsequently in Theorem 1. The proof of Theorem 1 is
provided in Section IV. We compare our results with that in
[6], [12] and [13]. We also illustrate our results using some
examples.

Definition 1. Consecutive and Symmetric Embedded Index
Coding Problem (CS-EICP): An EICP is said to be Con-
secutive and Symmetric Embedded Index Coding Problem if

2020 IEEE Information Theory Workshop (ITW)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 11,2023 at 09:35:25 UTC from IEEE Xplore.  Restrictions apply. 



the side-information of each user Sj , j ∈ [0, N − 1], can be
expressed as
Kj = {x(j+a) mod M , x(j+a+1) mod M , ..., x(j+a+s−1) mod M},
for some a ∈ [0,M − 1], s ∈ [1,M ].

A. Main Result

Without loss of generality, let the side-information set
of each user Sj , j ∈ [0, N − 1], for CS-EICP, be Kj =
{xj , x(j+1) mod M , . . . , x(j+s−1) mod M}, for some s ∈ [1,M ].

Theorem 1. For any CS-EICP, with M = N , s ∈ [2, N − 1],
and demand set of each user Sj , j ∈ [0, N − 1], expressed as
Wj ⊆ X\Kj , the following normalized rate is achievable by
using sub-packetization:

C(s) =


1

d s
N−se

, if s > N
2 .

dN−s
s−1 e

1+dN−s
s−1 e

, otherwise.
(1)

B. Comparison with the results in [6] and [12]

In [6], a heuristic algorithm, which provides a scalar linear
solution for the EICP, had been provided which involves
calculating computationally complex min-rank of a graph. In
[12], a scalar linear code achieving the length N − s + 1
was constructed explicitly in contrast to the computationally
complex algorithm presented in [6] to find a scalar linear
solution. We prove in Theorem 2 that for some range of
values of s, the normalized rate achieved in our scheme,
as in Theorem 1, using sub-packetization is lower than the
normalized rate achieved in [12] .

Theorem 2. For any CS-EICP, with M = N , and de-
mand set of each user Sj , j ∈ [0, N − 1], expressed as
Wj ⊆ X\Kj , when (s − 1)|(N − 1) or (N − s)|(N − 1)

or 2N+1−
√
4N+1

2 < s < N , the normalized rate achieved in
our scheme, as in Theorem 1, using sub-packetization is lower
than the normalized rate N−s+1

N achieved in [12] using scalar
linear index code.

The proof of Theorem 2 is provided in Section III in the
arxiv version [14].

Remark 1. For those ranges of values of s which are not
discussed in Theorem 2, i.e., when (s − 1) 6 | (N − 1),
(N − s) 6 | (N − 1) and N

2 < s ≤ 2N+1−
√
4N+1

2 , we
conjecture that the normalized rate achieved in our scheme,
as in Theorem 1, using the idea of sub-packetization is lower
than the normalized rate N−s+1

N achieved in [12] using scalar
linear index code.

Remark 2. One of the special cases of EICP, when the
users demand all the messages which are not available as
side-information, was studied as Cooperative Data Exchange
(CDE) problem in [13]. A lower bound on the minimum
number of transmissions, provided in [13] for the case when
all the users have the same number of messages, i.e. s, as
side-information, is M − s + 1, i.e., the normalized rate is
lower bounded by M−s+1

M . If our scheme is specialized to
CDE problem, when (s − 1)|(N − 1) or (N − s)|(N − 1)

or 2N+1−
√
4N+1

2 < s < N , the normalized rate achieved in
our scheme, as in Theorem 1, using sub-packetization is lower
than the lower bound on the normalized rate provided in [13]
(as proved in Theorem 2).

The following examples illustrate Theorem 1 and also the
idea of sub-packetization that is invoked in the proof.

Example 1. Let N = 5,M = 5, s = 3. Thus we have five
messages {x0, x1, x2, x3, x4}, each of size d bits, and five
users {S0, S1, S2, S3, S4}. Let the side-information set and the
demand set corresponding to each user Sj , j ∈ [0, 4], be Kj =
{xj , x(j+1) mod 5, x(j+2) mod 5} and Wj = {x(j+3) mod 5} re-
spectively.

K0 = {x0, x1, x2} K1 = {x1, x2, x3} K2 = {x2, x3, x4}
K3 = {x3, x4, x0} K4 = {x4, x0, x1}

W0 = {x3} W1 = {x4} W2 = {x0}
W3 = {x1} W4 = {x2}

We split each message into two disjoint blocks each of size d
2

bits, i.e.,

x0 = {x0
0, x

1
0} x1 = {x0

1, x
1
1} x2 = {x0

2, x
1
2}

x3 = {x0
3, x

1
3} x4 = {x0

4, x
1
4}

The coded symbols transmitted are linear combinations of
these blocks. Each user Sh, h ∈ [0, 4], transmits one coded
symbol Yh which includes 2 messages taken at an interval
of 2. The 0th block of the first message is taken while the
1st block of the second message is taken. That is, for each
h ∈ [0, 4], the user Sh transmits Yh = x0

h ⊕ x1
(h+2) mod 5. The

transmitted coded symbols are

Y0 = x0
0 ⊕ x1

2 Y1 = x0
1 ⊕ x1

3 Y2 = x0
2 ⊕ x1

4

Y3 = x0
3 ⊕ x1

0 Y4 = x0
4 ⊕ x1

1.

Now, each user Sj needs to retrieve the demanded message
x(j+3) mod 5. Let us first consider the user S0. The user S0

retrieves x0
3 from Y3 since x0 is available as side-information

while it retrieves x1
3 from Y1. The user S0 has decoded

the message x3 since it has retrieved all the blocks corre-
sponding to the message x3. Similarly all other users can
decode their demanded message. Table I illustrates the coded
symbols transmitted by each user and the coded symbols from
which each user retrieves all the blocks corresponding to the
demanded message. It can be noted from Table I that each
user transmits d

2 bits owing to a normalized rate of 1
2 . The

minimum number of bits required to transmit is 3d bits in [6],
[12] while we were able to reduce it to 2.5d bits by utilizing
the sub-packetization.

Example 2. Let us take an example for the case when s ≤ N
2

in Theorem 1. Let N = M = 4, s = 2 and the set of all
messages and users be {x0, x1, x2, x3} and {S0, S1, S2, S3}
respectively. Let the side-information set and the demand
set corresponding to each user Sj , j ∈ [0, 3] be Kj =
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Server
Si

Coded
symbols
transmitted
by Si

Message
de-
manded
by Si: xj

Message
blocks-
xi
j of

xj

Coded symbols
from which the
xi
j are decoded

by Si

S0 Y0 = x0
0⊕x1

2 x3 x0
3 Y3

x1
3 Y1

S1 Y1 = x0
1⊕x1

3 x4 x0
4 Y4

x1
4 Y2

S2 Y2 = x0
2⊕x1

4 x0 x0
0 Y0

x1
0 Y3

S3 Y3 = x0
3⊕x1

0 x1 x0
1 Y1

x1
1 Y4

S4 Y4 = x0
4⊕x1

1 x2 x0
2 Y2

x1
2 Y0

TABLE I
TABLE THAT ILLUSTRATES THE DECODING DONE BY EACH SERVER IN

EXAMPLE 1

{xj , x(j+1) mod 4} and Wj = {x(j+2) mod 4} respectively.

K0 = {x0, x1} K1 = {x1, x2}
K2 = {x2, x3} K3 = {x3, x0}

W0 = {x2} W1 = {x3} W2 = {x0} W3 = {x1}

We split each message into three blocks of equal sizes, xj =
{x0

j , x
1
j , x

2
j}, j ∈ [0, 3].

x0 = {x0
0, x

1
0, x

2
0} x1 = {x0

1, x
1
1, x

2
1}

x2 = {x0
2, x

1
2, x

2
2} x3 = {x0

3, x
1
3, x

2
3}

The coded symbols transmitted are linear combinations of
these blocks. For this case, the coded symbols are obtained
in 4 iterations. For each iteration h ∈ [0, 3], the users Sh

and S(h+1) mod 4 are involved in the transmissions, where the
coded symbols obtained by each user is by taking the first
and the last messages available at each user. The user Sh

transmits one coded symbol Y 0
h where the 0th block of the

first message and the 1st block of the last message available as
side information are taken to be included in the coded symbol.
The user S(h+1) mod 4 transmits one coded symbol Y 1

h , where
the 1st block of the first message and the 2nd block of the last
message available as side information are taken to be included
in the coded symbol. That is, for each h ∈ [0, 3], i ∈ [0, 1], the
user S(h+i) mod 4 transmits Y i

h = xi
(h+i) mod 4⊕xi+1

(h+i+1) mod 4.
The coded symbols transmitted are given below.

Y 0
0 = x0

0 ⊕ x1
1 Y 1

0 = x1
1 ⊕ x2

2 Y 0
1 = x0

1 ⊕ x1
2

Y 1
1 = x1

2 ⊕ x2
3 Y 0

2 = x0
2 ⊕ x1

3 Y 1
2 = x1

3 ⊕ x2
0

Y 0
3 = x0

3 ⊕ x1
0 Y 1

3 = x1
0 ⊕ x2

1

Now, each user Sj needs to retrieve the demanded message
x(j+2) mod 4. Let us first consider the user S0. The user S0

retrieves x0
2 from Y 0

2 ⊕Y 1
2 = x0

2⊕x2
0 since x0 is available as

side-information while it retrieves x1
2 and x2

2 from Y 0
1 and Y 1

0

respectively. The user S0 has decoded the message x2 since it
has retrieved all the blocks corresponding to the message x2.

Similarly all other users can decode their demanded message.
Here the total number of bits transmitted by all the users

together is 8d
3 bits which is less than 3d bits required to

transmit in [6], [12].

IV. PROOF OF THEOREM 1

In this section, we prove the achievability of Theorem 1 by
providing a sub-packetization scheme. We split this problem
into two disjoint cases depending on the value of s. We
construct code for the two cases separately in the coming
subsections. The proposed achievable schemes in both cases
involve splitting the messages and transmitting their linear
combination.

We split each message into z blocks, xl =
{x0

l , x
1
l , . . . , x

z−1
l }, l ∈ [0, N − 1]. The value of z is

given later in the coming subsections. We assume that d is
sufficiently large such that this splitting of message into z
blocks of equal sizes is possible. The size of each block is
d1 = d

z bits. Each block is from a finite field F2d1 . Each user
transmits a linear combination of these blocks rather than
the linear combination of the entire messages. All the users
should be able to retrieve all the blocks corresponding to the
demanded messages.

A. Case A: s > N
2 .

In this subsection, we provide an achievable scheme for
Case A.

Let z =
⌈

s
N−s

⌉
. We split each message into z blocks,

xl = {x0
l , x

1
l , . . . , x

z−1
l }, l ∈ [0, N − 1]. The coded symbols

transmitted are linear combinations of these blocks. Now, we
provide the code construction.

Construction 1. Each user Sj ,∀j ∈ [0, N −1], transmits one
coded symbol Yj , where

Yj =
⊕

k∈[0,z−1]

xk
(k(N−s)+j) mod N

Each user Sj transmits one coded symbol Yj which in-
cludes z messages taken at an interval of (N − s). Also,
z different blocks of these z messages are chosen, i.e.,
0th block of the first message is taken, 1st block of the
second message and so on. Since each of the messages in
{∪k∈[0,z−1]x(k(N−s)+j) mod N} is available with the user Sj ,
the coded symbol Yj can be transmitted by Sj .

We need to establish that all the users are capable of
retrieving all the demanded messages from the coded symbols
obtained by Construction 1 and the side-information.

Proof of Decoding: Now, we prove that each user Sj , j ∈
[0, N − 1], can retrieve each of its demanded message xl ∈
Wj , l ∈ [0, N − 1]\[j, (j + s− 1) mod N ].

It can be noted from Construction 1 that in any coded
symbol Yl′ , for some l′ ∈ [0, N − 1], if we take any
block of a message present in Yl′ which is needed by some
user Sh, h ∈ [0, N − 1], then it can safely retrieve that
block from Yl′ since all other blocks in Yl′ are available
as side-information for the user Sh. This is since all the z
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messages included in Yl′ are taken at an interval of N − s

and (z − 1)(N − s) < s(since z =
⌈

s
N−s

⌉
). Therefore, for

each i ∈ [0, z−1], the user Sj can retrieve xi
l from Yl′ , where

l′ = ((l− (N − s)i) mod N) as (i+ 1)th message chosen to
be included in Yl′ is xl and ith block of xl is chosen.

Yl′ =
⊕

k∈[0,z−1]

xk
(k(N−s)+l′) mod N

= x(i(N−s)+l′) mod N

⊕
k∈[0,z−1]\i

xk
(k(N−s)+l′) mod N

= xi
l

⊕
k∈[0,z−1]\i

xk
(k(N−s)+l′) mod N︸ ︷︷ ︸

available as side-information

B. Case B: s ≤ N
2 .

In this subsection, we provide an achievable scheme for
Case B. Let z = 1 +

⌈
N−s
s−1

⌉
. We split each message into z

blocks, xl = {x0
l , x

1
l , . . . , x

z−1
l }, l ∈ [0, N − 1]. The coded

symbols transmitted are linear combinations of these blocks.
The code construction for this case is given below.

Construction 2. For each iteration i ∈ [0, N − 1],
• each user S(k(s−1)+i) mod N , k ∈ [0, z− 2], transmits one

coded symbol Y i
k , where

Y i
k = xk

(k(s−1)+i) mod N ⊕ xk+1
((k+1)(s−1)+i) mod N .

The coded symbols are obtained in N iterations. During
each iteration i ∈ [0, N − 1], z messages at an interval of
s−1 are chosen,

(⋃
k∈[0,z−1] x(k(s−1)+i) mod N

)
, and we make

sure that z different blocks of these z messages are taken,
i.e., 0th block of the first message is taken, 1st block of the
second message and so on. And also, we choose z − 1 users
at an interval of (s− 1), i.e., S(k(s−1)+i) mod N , k ∈ [0, z− 2],
which are involved in the transmissions during iteration i,
where the coded symbols obtained by each user is by taking
the first and the last messages available at each user. Each
user S(k(s−1)+i) mod N transmits one coded symbol Y i

k where
the kth block of the first message x(k(s−1)+i) mod N and the
(k + 1)th block of the last message x((k+1)(s−1)+i) mod N

available as side information are taken to be included in the
coded symbol.

The proof that each user can decode their demanded mes-
sages using Construction 2 is provided in Section IV in the
arxiv version [14].

Proof of Theorem 1: The total number of bits transmitted is
Nd

d s
N−se

bits for Case A. Hence, the normalized rate is 1

d s
N−se

.

The total number of bits transmitted is d
N−s
s−1 eNd

1+dN−s
s−1 e

bits for Case

B. Hence, the normalized rate is d
N−s
s−1 e

1+dN−s
s−1 e

. This completes the
proof.

V. CONCLUSION

In this paper, we have explored a specific classes of EICP,
namely, consecutive and symmetric EICP. We have provided

code construction for this case. By efficiently utilizing the sub-
packetization scheme, we were able to achieve a normalized
rate lower than that of the state of the art [6], [12] for some
cases. For other cases, we conjecture that the normalized rate
achieved using our scheme is lower than that of the state of
the art [6], [12]. In this paper, we had only explored a specific
class of EICP. Explicit code construction for general EICP is
still open. Exploring techniques to find a general solution is
an interesting thing to work on.
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