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We work with FI-modules over a small preadditive category R, viewed as a ring 
with several objects. Our aim is to study torsion theories for FI-modules. We are 
especially interested in torsion theories on finitely generated FI-modules and the 
category of what we call “shift finitely generated” FI-modules. We also apply these 
methods to study inductive descriptions of FI-modules over R.
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1. Introduction

Let FI be the category of finite sets and whose morphisms are injective maps. If R is a ring, an FI-module 
over R is a functor from FI to the category of R-modules. The notion of FI-modules was introduced by 
Church, Ellenberg and Farb in [7], with a view towards a deeper understanding of the Church-Farb theory 
[8] of representation stability for Sn-representations. This was further developed by Church, Ellenberg and 
Farb [10], [11], by Church, Ellenberg, Farb and Nagpal [9], by Church and Ellenberg [12], by Putman [27], 
by Putman and Sam [28], and by Sam and Snowden [30], [31]. Since then, a wide variety of results on 
FI-modules has been developed by numerous authors, with applications to algebraic topology, algebraic 
geometry and representation theory (see, for instance, [13], [22], [23], [25], [29]).

In this paper, our aim is to study torsion theories for FI-modules. We are especially interested in torsion 
theories on finitely generated FI-modules and the category of what we call “shift finitely generated” FI-
modules (see Definition 3.9). We work with FI-modules over a small preadditive category R, viewed as 
a ring with several objects in the sense of Mitchell [24]. As such, the category FIR of FI-modules over 
R consists of functors from FI to the category Mod − R of right modules over R. We recall that a right 
module over R is a functor from Rop to the category of abelian groups. We mostly work with the case where 
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R is such that the category Mod −R is locally noetherian. When R is abelian, we have studied in [2] how 
torsion theories on R may be extended to certain classes of modules over R.

We begin with a hereditary torsion theory (T , F) on Mod − R. We show that τ induces a hereditary 
torsion class T on the subcategory FIfgR of finitely generated FI-modules as well as a hereditary torsion 

class T sfg on the category FIsfgR of shift finitely generated FI-modules. We then extend T and T sfg to Serre 

subcategories T̂ and T̃ respectively of FIR. In other words, we have T̂ ∩FIfgR = T and T̃ ∩FIsfgR = T sfg. 
We then describe functors from FIR to T̂ -closed and T̃ -closed objects of FIR. In fact, we show that an 
object in FIR is closed with respect to the Serre subcategory T̂ if and only if it is closed with respect to 
T̃ . Finally, we apply these methods to study inductive descriptions of FI-modules over R.

We begin in Section 2 with preliminary results on FI-modules over R, extending those from [9, § 2.1]. 
In particular, we show that FIR is a Grothendieck category with a set of finitely generated projective 
generators. We also recall that when R is such that Mod − R is locally noetherian, the category FIR of 
FI-modules over R becomes a locally noetherian category (see [9, Theorem A], [14], [28], [31] and [21, 
Theorem 9.1]).

For each n > 0, we set [n] := {1, 2, ..., n}, while we take [0] to be the empty set. For any FI-module 
V : FI −→ Mod −R and n ≥ 0, we will often write V ([n]) simply as Vn. For each a ≥ 0, the category FIR
is equipped with a shift functor defined by setting

Sa : FIR −→ FIR SaV (S) := V (S � [−a])

for each V ∈ FIR and each finite set S, where [−a] is a fixed set of cardinality a. In [9, § 2.3], an FI-module 
V over a ring R is said to be torsion if it satisfies

V =
⋃
a≥0

Ker(Xa : V �→ SaV ) (1.1)

Here, Sa is the a-th shift functor on FI-modules over R and Xa is the canonical morphism V −→ SaV

induced by the inclusion T ↪→ T � [−a] for each finite set T . In Section 3, we consider a torsion theory 
τ = (T , F) on Mod −R and the subcategory of finitely generated FI-modules determined by setting

Ob(T ) := {V ∈ Ob(FIfgR ) | Vn ∈ T for n � 0} (1.2)

Our first result describes the induced torsion theory on FIfgR and a formula for the torsion subobject of a 
finitely generated FI-module.

Theorem 1. (See 3.2 and 3.8.) Let R be a small preadditive category such that Mod −R is locally noetherian. 
Let (T , F) be a torsion theory on Mod −R.

(a) Then, T is a torsion class in the category FIfgR of finitely generated FI-modules over R. Additionally, 
if T is a hereditary torsion class, so is T .

(b) Suppose that T is hereditary. Then, for any V ∈ FIfgR , the torsion subobject of V with respect to the 
torsion class T is given by T (V ), where

T (V )(S) := colim
a≥0

lim (V (S) −−−−→ (SaV )(S) ←−−−− T ((SaV )(S))) (1.3)

for each finite set S.

In the category FIR, there are two kinds of finiteness conditions on objects. Other than finitely generated 
objects, there are the FI-modules that are generated in finite degree, i.e., generated by a (not necessarily 
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finite) collection of elements whose degree is bounded above (see Definition 2.2). The latter notion is related 
to the shift functor as follows (see Proposition 3.3 and Proposition 3.6)

{V is generated in finite degree} ⇒ {SdV is generated in finite degree for each d ≥ 0}

{V is generated in finite degree} ⇐ {SdV is generated in finite degree for some d ≥ 0}
(1.4)

For finitely generated objects in FIR, we have (see Lemma 3.10)

{V is finitely generated} ⇒ {SdV is finitely generated for each d ≥ 0} (1.5)

However, if V is an FI-module such that SdV is finitely generated for some d ≥ 0, it is not necessary 
that V is finitely generated. This suggests that we should study a larger class of objects, related to finitely 
generated objects, for which conditions similar to (1.4) hold. We will say that an FI-module V is shift 
finitely generated if there exists d ≥ 0 such that SdV is finitely generated (see Definition 3.9). We denote 
by FIsfgR the full subcategory of shift finitely generated FI-modules. It is clear that

{V is shift finitely generated} ⇒ {SdV is shift finitely generated for each d ≥ 0}

{V is shift finitely generated} ⇐ {SdV is shift finitely generated for some d ≥ 0}
(1.6)

In other words, the objects in FIsfgR are finitely generated up to some number of shifts. As described by 
Church and Ellenberg [12], there is an important analogy between FI-modules and the category Mod −C[T ]
of graded modules over the univariate polynomial ring C[T ]. In this set of analogies (see [12, Table 1]), the 
shift functor on FI-modules corresponds to the grading shift on Mod −C[T ]. However, as also pointed out 
by Church and Ellenberg (see [12, Remark 2.4]), there are some distinctions between the two theories: while 
the grading shift functor on Mod −C[T ] is invertible, the shift functor on FI-modules is not. This makes 
it interesting to study the effect of the shift functor on generators of FI-modules. In the case of graded 
modules over C[T ], we mention that an object M =

⊕
n∈Z

Mn is said to be quasi-finitely generated (see, for 

instance, [5, Definition 3.9.8], [18, Ex II.5.9]) if there exists some d such that 
⊕
n≥d

Mn is finitely generated. 

These graded modules which are finitely generated beyond some degree have also been studied by Serre [32, 
§ 56].

We begin our study of shift finitely generated FI-modules by showing how a torsion theory on Mod −R
leads to a torsion theory on FIsfgR . Given the torsion theory (T , F) on Mod −R, we now consider

Ob(T sfg) := {V ∈ Ob(FIsfgR ) | Every finitely generated W ⊆ V lies in T } (1.7)

The next result shows that FIsfgR is a Serre subcategory of FIR and that the formula in (1.3) may be 
extended to describe the induced torsion theory on FIsfgR . For this, we also obtain some intermediate 
results on torsion in locally noetherian Grothendieck categories.

Theorem 2. (See 3.11, 3.13 and 3.17.) Suppose that Mod −R is locally noetherian.
(a) Then, the full subcategory FIsfgR given by

Ob(FIsfgR ) := {V ∈ Ob(FIR) | SdV is finitely generated for some d ≥ 0} (1.8)

is a Serre subcategory of FIR, i.e., it is closed under extensions, quotients and subobjects.
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(b) If τ = (T , F) is a hereditary torsion theory on Mod −R, then T sfg is a hereditary torsion class in 

FIsfgR . For any V ∈ FIsfgR , the torsion subobject of V with respect to the torsion class T sfg is given by

T sfg(V )(S) := colim
a≥0

lim (V (S) −−−−→ (SaV )(S) ←−−−− T ((SaV )(S))) (1.9)

for each finite set S.

In the rest of this paper, we always suppose that τ = (T , F) is a hereditary torsion theory on Mod −R. 
In Section 4, we consider the subcategory T̂ of FIR defined by setting

Ob(T̂ ) := {V ∈ Ob(FIR) | Vn ∈ T for n � 0} (1.10)

It is clear that we have T̂ ∩ FIfgR = T . While T̂ is not a torsion class (it is not necessarily closed under 
direct sums), we observe that it is a Serre subcategory of FIR.

We recall that an object L in a Grothendieck category A is said to be closed with respect to a Serre 
subcategory C ⊆ A if Hom(u, L) : Hom(B, L) −→ Hom(A, L) is an isomorphism for every u : A −→ B in 
A such that Ker(u), Coker(u) ∈ C. We first develop a general result (see Proposition 4.4) that in a locally 
noetherian Grothendieck category, it suffices to check this criterion with A, B finitely generated.

Corresponding to each V ∈ FIR, we want to construct an object that is closed with respect to the Serre 
subcategory T̂ . In other words, we will describe a functor from FIR taking values in the subcategory Cl(T̂ )
of T̂ -closed objects. For this, we first express T̂ as a union T̂ =

⋃
a≥0

T̂ a where

Ob(T̂ a) := {V ∈ Ob(FIR) | Vn ∈ T for all n ≥ a} ∀ a ≥ 0 (1.11)

We will also need the functor Eτ which takes an FI-module V : FI −→ Mod −R to its composition with 
the torsion envelope in Mod −R. We obtain the following result.

Theorem 3. (See 4.11 and 4.12.) Let Mod −R be locally noetherian. Let τ = (T , F) be a hereditary torsion 
theory on Mod −R. Then, we have a functor Lτ : FIR −→ Cl(T̂ ) and a canonical morphism

lτ (V ) : V −→ Lτ (V ) := lim−−→
k≥0

Lk
τ (V ) (1.12)

for each V ∈ FIR. Here, Lk
τ = Tk ◦ Sk ◦ Eτ , where Tk : FIR −→ FIR is the right adjoint to the shift 

functor Sk : FIR −→ FIR.

In Section 5, our aim is to prove a result similar to Theorem 3 for shift finitely generated objects by 
considering the subcategory

Ob(T̃ ) := {V ∈ Ob(FIR) | Every finitely generated W ⊆ V lies in T } (1.13)

which satisfies T̃ ∩FIsfgR = T sfg. Unlike in the case of T̂ which is only a Serre subcategory, we will show that 
T̃ is actually a hereditary torsion class. Further, the T̃ -closed objects actually coincide with the T̂ -closed 
objects. In other words, we have the following result.

Theorem 4. (See 5.4 and 5.8.) Let Mod −R be a locally noetherian category and τ = (T , F) a hereditary 
torsion theory on Mod −R. Then:

(a) The full subcategory T̃ is a hereditary torsion class.
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(b) An object in FIR is closed with respect to T̃ if and only if it is closed with respect to T̂ , i.e., 
Cl(T̂ ) = Cl(T̃ ). In particular, we have a functor Lτ : FIR −→ Cl(T̂ ) = Cl(T̃ ).

In Section 6, we begin by providing an inductive description for finitely generated FI-modules over R. 
For this, we have to work with functors Ha : FIR −→ FIR, a ≥ 0, which are defined as homology groups 
of a complex similar to the construction in [9, § 2.4]. The following result is analogous to [9, Theorem C].

Theorem 5. (See 6.4.) Suppose that Mod − R is locally noetherian. Let V ∈ FIR be a finitely generated 
object. Then, there exists N ≥ 0 such that

colim
T ⊆ S

|T | ≤ N

V (T ) = V (S) (1.14)

for each finite set S.

We conclude by proving a result similar to Theorem 5 for shift finitely generated objects in FIR. For 
this, we apply the methods developed in previous sections to the zero torsion class on Mod −R. Our final 
result is as follows.

Theorem 6. (See 6.7 and 6.8.) Suppose that Mod −R is locally noetherian. Let V ∈ FIR be a shift finitely 
generated object.

(a) Fix a ≥ 0 and consider any finitely generated subobject W ⊆ Ha(V ). Then, there exists N ≥ 0 such 
that Wn = 0 for all n ≥ N .

(b) Let V ∈ FIR be a shift finitely generated object such that H0(V ) and H1(V ) are finitely generated. 
Then, there exists N ≥ 0 such that

colim
T ⊆ S

|T | ≤ N

V (T ) = V (S) (1.15)

for each finite set S.

2. Finitely generated FI-modules over rings with several objects

Let FI denote the category of finite sets and whose morphisms are injections. For each n > 0, we set 
[n] := {1, 2, ..., n} while [0] is taken to be the empty set. Then, FI is equivalent to its full subcategory 
consisting of the objects [n] for n ≥ 0. In particular, while FI is not a small category, we see that it is 
essentially small, i.e., equivalent to a small category.

We now let R be a small preadditive category, viewed as a ring with several objects. Then, a (right) 
R-module is a functor Rop −→ Ab, where Ab is the category of abelian groups. The category of right 
R-modules will be denoted by Mod −R. For each object r ∈ R, we set Hr := R(__, r) : Rop −→ Ab.

It is well known (see, for instance, [16, § 1.4]) that Mod −R is a locally finitely presented Grothendieck 
category, with the collection {Hr}r∈R being a family of finitely generated projective generators. We notice 
that since Mod −R is a Grothendieck category, it is well-powered (see, for instance, [33, Proposition IV.6.6]), 
i.e., the collection of (equivalence classes of) subobjects of any V ∈ Mod −R is a set.

Definition 2.1. Let R be a small preadditive category. An FI-module over R is a functor from FI to 
Mod − R. For any such V : FI −→ Mod − R, we set Vn := V ([n]) for each n ≥ 0. For any morphism 
φ : S −→ T in FI, we denote by φ∗ : V (S) −→ V (T ) the induced morphism V (φ).

The category of FI-modules over R will be denoted by FIR.
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Since FI is essentially small, it follows from [15, Theorem 14.2] that the category of FI-modules over R
is a Grothendieck category. In particular, for any morphism f̃ : V −→ V ′ in FIR, we have

Ker(f̃)(S) = Ker(f̃(S) : V (S) −→ V ′(S)) Coker(f̃)(S) = Coker(f̃(S) : V (S) −→ V ′(S)) (2.1)

for any S ∈ FI. In this paper, unless otherwise mentioned, by an FI-module, we will always mean an 
FI-module over R. For any V ∈ FIR, we set

el(V ) :=
∐
d≥0

∐
r∈R

Vd(r) (2.2)

Definition 2.2. Fix d ≥ 0. An FI-module V is said to be generated in degree ≤ d if there exists a (not 
necessarily finite) collection {fi|i ∈ I} ⊆

∐
e≤d

∐
r∈R

Ve(r) having the property that any subobject V ′ ⊆ V such 

that {fi|i ∈ I} ⊆ el(V ′) must satisfy V ′ = V .
We say that an FI-module over R is generated in finite degree if it is generated in degree ≤ d for some 

d ≥ 0.

Given finite sets S, T ∈ FI, we will denote by (S, T ) the set of injections S ↪→ T , i.e., the morphisms 
from S to T in the category FI. For any r ∈ R and d ≥ 0, we now define dMr ∈ FIR as follows:

dMr : FI −→ Mod−R S �→ H([d],S)
r (2.3)

where H([d],S)
r denotes the direct sum of copies of Hr indexed by the set ([d], S).

Lemma 2.3. Let V ∈ FIR. For any d ≥ 0 and any r ∈ R, we have a canonical isomorphism

FIR(dMr,V ) ∼= Vd(r) (2.4)

of abelian groups.

Proof. By Yoneda Lemma, an element f ∈ Vd(r) corresponds to a morphism f : Hr −→ Vd in Mod −R. For 
any finite set S, we can take a direct sum of copies of f to obtain a morphism f ([d],S) : H([d],S)

r −→ V
([d],S)
d

in Mod − R. Since V is a covariant functor from FI to Mod − R, each morphism φ ∈ ([d], S) induces a 
morphism V (φ) : Vd −→ V (S). Together, these determine a morphism V ([d],S)

d −→ V (S) from the direct 
sum V ([d],S)

d . Composing with f ([d],S) : H([d],S)
r −→ V

([d],S)
d , we obtain f̃(S) : dMr(S) = H

([d],S)
r −→ V (S)

in Mod −R. Since these morphisms are functorial with respect to S ∈ FI, the element f ∈ Vd(r) determines 
a morphism f̃ : dMr −→ V in FIR.

Conversely, suppose that we are given a morphism f̃ : dMr −→ V in FIR. In particular, this gives us a 
morphism f̃([d]) : dMr([d]) = H

([d],[d])
r −→ V ([d]) = Vd in Mod − R. Considering the identity morphism 

1d ∈ ([d], [d]) gives us an inclusion Hr −→ H
([d],[d])
r which when composed with f̃([d]) gives a morphism 

f : Hr −→ Vd in Mod −R, i.e., an element f ∈ Vd(r). It may be easily verified that these two associations 
are inverse to each other, which proves the result. �
Proposition 2.4. (a) For d ≥ 0 and r ∈ R, the object dMr is a finitely generated object of FIR.

(b) The collection {dMr}r∈R,d≥0 is a set of generators for the Grothendieck category FIR.
(c) An object V in FIR is finitely generated if and only if there is an epimorphism⊕

di
Mri −→ V (2.5)
i∈I
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for some finite collection {(di, ri)}i∈I with each di ≥ 0 and ri ∈ R.
(d) An object V in FIR is finitely generated if and only if there is a finite collection {f1, ..., fk} ⊆ el(V )

such that any subobject V ′ ↪→ V with {f1, ..., fk} ⊆ el(V ′) must satisfy V ′ = V .
(e) An object V in FIR is generated in degree ≤ d if and only if there is an epimorphism

⊕
i∈I

di
Mri −→ V (2.6)

for some collection {(di, ri)}i∈I with each 0 ≤ di ≤ d and ri ∈ R.

Proof. We consider a filtered system {Wj}j∈J in FIR connected by monomorphisms and set W := lim−−→
j∈J

Wj . 

By Lemma 2.3, any morphism f̃ : dMr −→ W corresponds to an element f ∈ Wd(r) = W ([d])(r). Since 
W ([d])(r) = lim−−→

j∈J

Wj([d])(r), we see that f̃ must factor through Wj0 for some j0 ∈ J . This proves (a).

We have noted before that FIR is a Grothendieck category. We consider some V ∈ FIR and some proper 
subobject V ′ � V . Since the full subcategory of objects [n], n ≥ 0 forms a skeleton of FI, we must have some 
d ≥ 0 such that V ′

d � Vd and therefore some r ∈ R such that V ′
d (r) � Vd(r). Since FIR(dMr, V ) ∼= Vd(r) by 

Lemma 2.3, it follows that there exists a morphism dMr −→ V in FIR which does not factor through V ′. It 
follows from [17, § 1.9] that {dMr}r∈R,d≥0 is a set of generators for FIR. This proves (b). The “only if part” 
of (c) is clear from [17, Proposition 1.9.1]. The “if part” follows from the fact that a quotient of a finitely 
generated object is always finitely generated. Parts (d) and (e) also follow easily by using Lemma 2.3. �

Similar to [9, Definition 2.4], we now consider the following functor: for V ∈ FIR, we define H0(V ) :
FI −→ Mod −R by setting

H0(V )(S) := Coker

⎛⎝⊕
V (φ) :

⊕
φ : T ↪→ S
|T | < |S|

V (T ) −→ V (S)

⎞⎠
= V (S)/

⎛⎝ ∑
φ : T ↪→ S
|T | < |S|

Im(V (φ) : V (T ) −→ V (S))

⎞⎠ (2.7)

From (2.7), it is clear that there is a canonical epimorphism V −→ H0(V ) and that for any φ : T −→ S in 
FI with |T | < |S|, we have H0(V )(φ) = 0. It follows that the functor H0 is idempotent, i.e., H2

0 = H0.

Lemma 2.5. (a) The functor H0 : FIR −→ FIR preserves colimits.
(b) For any V ∈ FIR, we have V = 0 if and only if H0(V ) = 0.
(c) A morphism f̃ in FIR is an epimorphism if and only if H0(f̃) is an epimorphism.

Proof. Part (a) follows from the fact that H0 is defined in (2.7) using cokernels. For (b), suppose we have 
V �= 0 in FIR such that H0(V ) = 0. Let n be the smallest integer ≥ 0 such that Vn �= 0. Then, for each 
finite set T with |T | < n, we have V (T ) = 0 and it follows from (2.7) that H0(V )n = Vn. This yields 
Vn = 0, which is a contradiction. This proves (b). Part (c) follows by using (a) and applying the result of 
(b) to the cokernel of f̃ . �

We now consider a functor

Gr : FIR −→ Mod−R V �→
⊕

Vn (2.8)

n≥0
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It is clear that Gr(V ) = 0 if and only if V = 0. We also note that Gr preserves cokernels, kernels and 
coproducts.

Proposition 2.6. Let V ∈ FIR. Then, the following are equivalent:
(a) V is finitely generated in FIR.
(b) H0(V ) is finitely generated in FIR.
(c) Gr(H0(V )) =

⊕
n≥0

H0(V )n is finitely generated in Mod −R.

Proof. (a) ⇒ (b): By definition, H0(V ) is a quotient of V . If V is finitely generated, so is its quotient 
H0(V ).

(b) ⇒ (a): By Proposition 2.4(b), we know that the collection {dMr}r∈R,d≥0 is a set of generators for 
the Grothendieck category FIR. This gives us an epimorphism⊕

i∈I

di
Mri −→ V (2.9)

for some collection {(di, ri)}i∈I with each di ≥ 0 and ri ∈ R. By Lemma 2.5(c), applying the functor H0
induces an epimorphism 

⊕
i∈I

H0(di
Mri) −→ H0(V ). Since H0(V ) is finitely generated, it follows that there is 

a finite subset J ⊆ I such that 
⊕
i∈J

H0(di
Mri) −→ H0(V ) is an epimorphism. Applying Lemma 2.5(c) again, 

we see that 
⊕
i∈J

di
Mri −→ V is an epimorphism. Each di

Mri is finitely generated by Proposition 2.4(a) and 

since J is finite, the result follows.
(b) ⇒ (c): Since H0(V ) is finitely generated and H0 is an idempotent functor, it follows from Proposi-

tion 2.4(c) that there is an epimorphism 
⊕
i∈I

H0(di
Mri) −→ H0(V ) for a finite set I. It suffices therefore to 

show that 
⊕
n≥0

H0(dMr)n is finitely generated in Mod −R for each d ≥ 0 and each r ∈ R. Since Hr is finitely 

generated in Mod −R for each r ∈ R, it is clear from the definitions in (2.3) and (2.7) that each H0(dMr)n
is finitely generated in Mod −R. We also notice that for n ≥ d +1, every morphism [d] −→ [n] in FI factors 
through a subset of [n] of cardinality ≤ n − 1. The quotient in (2.7) now shows that H0(dMr)n = 0 for 
n ≥ d + 1. This proves the result.

(c) ⇒ (b): Since {dMr}r∈R,d≥0 is a set of generators for the category FIR, we must have an epimorphism ⊕
i∈I

di
Mri −→ H0(V ). Since Gr(H0(V )) is finitely generated, we can find some finite subset J ⊆ I such that 

Coker

(⊕
i∈J

Gr(di
Mri) −→ Gr(H0(V ))

)
= 0. It follows that 

⊕
i∈J

di
Mri −→ H0(V ) is an epimorphism. �

Proposition 2.7. Let V ∈ FIR and fix d ≥ 0. Then, the following are equivalent:
(a) V is generated in degree ≤ d.
(b) H0(V ) is generated in degree ≤ d.
(c) H0(V )n = 0 for n > d.

Proof. (a) ⇒ (b): By definition, H0(V ) is a quotient of V . Hence, this is clear from Proposition 2.4(e).
(b) ⇒ (c): By reasoning similar to the proof of (b) ⇒ (c) in Proposition 2.6, it suffices to show that 

H0(d′Mr′)n = 0 when d′ ≤ d and n > d. This latter fact has also been established in the proof of 
Proposition 2.6.

(c) ⇒ (a): Since {dMr}r∈R,d≥0 is a set of generators for the category FIR, we must have an epimorphism

ẽ :
⊕

di
Mri −→ V (2.10)
i∈I
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We restrict to all pairs (di, ri)i∈I with di ≤ d and consider the induced morphism

f̃ :
⊕

i∈I,di≤d

di
Mri −→ V (2.11)

We claim that f̃ is an epimorphism. By Lemma 2.5, it suffices to show that H0(f̃) is an epimorphism, i.e., 
each H0(f̃)n is an epimorphism. For n > d we have

H0(f̃)n :
⊕

i∈I,di≤d

H0 (di
Mri)n −→ H0(V )n = 0 (2.12)

which must be an epimorphism. We now consider n ≤ d and examine the epimorphism

H0(ẽ)n :
⊕
i∈I

H0(di
Mri)n −→ H0(V )n (2.13)

induced by (2.10). By definition, H0(di
Mri)n is a quotient of H([di],[n])

ri . For any di > d, we must therefore 
have H0(di

Mri)n = 0 since n ≤ d < di. Hence, H0(f̃)n = H0(ẽ)n is an epimorphism for n ≤ d and the 
result follows. �

We now recall some generalities on objects in a Grothendieck abelian category A that we will use through-
out this paper (see, for instance, [1], [33] and [26]).

(a) An object X in A is said to be finitely generated if the functor HomA(X, __) : A −→ Ab preserves 
filtered colimits of monomorphisms.

(b) An object X in A is said to be finitely presented if the functor HomA(X, __) : A −→ Ab preserves 
filtered colimits.

(c) An object Y in A is said to be noetherian if every subobject is finitely generated.
(d) The category A is said to be locally noetherian if it has a set of noetherian generators.
In a locally noetherian Grothendieck category A, the finitely generated objects coincide with the finitely 

presented objects (see, for instance, [26, Chapter 5.8]) as well as with the noetherian objects. Further, the 
full subcategory of finitely generated objects in A forms an abelian category, which we denote by Afg.

We conclude this section by recalling the following result.

Theorem 2.8. (See [9, Theorem A], [14], [28], [31] and [21, Theorem 9.1].) Let A be a locally noetherian 
Grothendieck category. Then, the category Fun(FI, A) of functors from FI to A is locally noetherian.

In particular, if R is a small preadditive category such that Mod − R is locally noetherian, it follows 
from Theorem 2.8 that the category FIR is locally noetherian. In that case, if V is a finitely generated 
FI-module over R, any submodule of V is finitely generated.

3. Torsion theories and the positive shift functor

We recall that a torsion theory τ = (T , F) on an abelian category A consists of a pair of full and replete 
subcategories T and F of A such that HomA(T, F ) = 0 for any T ∈ T , F ∈ F and for any object X ∈ A
there exists a short exact sequence

0 −−−−→ T (X) −−−−→ X −−−−→ F (X) −−−−→ 0

with T (X) ∈ T , F (X) ∈ F (see, for instance, [4, § I.1]).
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Accordingly, we start with a torsion theory τ = (T , F) on Mod − R. Let R be a small preadditive 
category such that Mod −R is locally noetherian. From Theorem 2.8, we know that the category FIR is 
locally noetherian. We will show how to extend τ to a torsion theory (T , F) on the abelian category FIfgR
of finitely generated FI-modules over R. We let T be the full subcategory of FIfgR defined by setting

Ob(T ) := {V ∈ Ob(FIfgR ) | Vn ∈ T for n � 0} (3.1)

We need to show that T is a torsion class in FIfgR . If an abelian category is complete and cocomplete, it 
is well known (see, for instance, [4, § I.1]) that any full subcategory closed under quotients, extensions and 
arbitrary coproducts must be a torsion class. However, FIfgR being the subcategory of finitely generated 
FI-modules, does not contain arbitrary coproducts. As such, in order to identify torsion classes in FIfgR , 
we will use the following simple result from [3].

Proposition 3.1. (See [3, Proposition 4.8].) Let B be an abelian category such that every object in B is 
noetherian. Let C ⊆ B be a full and replete subcategory that is closed under extensions and quotients. Let 
C⊥ ⊆ B be the full subcategory given by

Ob(C⊥) := {N ∈ B | HomB(C,N) = 0 for all C ∈ C}

Then (C, C⊥) is a torsion pair on B.

Proposition 3.2. Let R be a small preadditive category such that Mod −R is locally noetherian. Let T be a 
torsion class on Mod −R. Then, T is a torsion class in the category FIfgR of finitely generated FI-modules 
over R. Additionally, if T is a hereditary torsion class, so is T .

Proof. Since FIR is locally noetherian, it follows that every object in the category FIfgR is noetherian. 
Applying Proposition 3.1, it suffices to show that T is closed under extensions and quotients. Accordingly, 
if 0 −→ V ′ −→ V −→ V ′′ −→ 0 is a short exact sequence with V ′, V ′′ ∈ T , we can choose N large enough 
so that V ′

n, V ′′
n ∈ T for all n > N . We have short exact sequences

0 −→ V ′
n −→ Vn −→ V ′′

n −→ 0 (3.2)

Since T is closed under extensions, it now follows that Vn ∈ T for all n > N . Hence, V ∈ T .
On the other hand, if V ′ −→ V is an epimorphism with V ′ ∈ T , we know that since T is closed under 

quotients, we must have Vn ∈ T for n � 0. This gives V ∈ T . By similar reasoning, it is clear that if T is 
a hereditary torsion class (i.e., closed under subobjects), so is T . �

Given V ∈ FIfgR , we would like to obtain an explicit description for its torsion subobject in T . For this, 
we will need to consider (positive) ‘shift functors’ on the category FIR in a manner analogous to [9, § 2.1]. 
For each a ≥ 0, we fix a set [−a] of cardinality a. Then, the category FI is equipped with a shift functor

Sa : FI −→ FI S �→ S � [−a] (3.3)

formed by taking the disjoint union with [−a]. For a morphism φ : S −→ T in FI, Sa(φ) is obtained 
by extending φ with the identity on [−a]. Then, Sa induces a “positive shift functor” on FIR, which we 
continue to denote by Sa

Sa : FIR −→ FIR V �→ V ◦ Sa (3.4)
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It is immediate that Sa preserves all limits and colimits. It is also clear that Sa does not depend on the 
choice of the set [−a] of cardinality a. Before we proceed further, we will collect some basic properties of 
the functor Sa.

Proposition 3.3. Fix a ≥ 0. If V ∈ FIR is generated in degree ≤ d, then Sa(V ) is also generated in degree 
≤ d.

Proof. Since Sa preserves coproducts and epimorphisms, it follows from the ‘if and only if’ condition in 
Proposition 2.4(e) that it suffices to prove the result for V = d′Mr with d′ ≤ d.

Given a finite set S, we notice easily that

([d′],Sa(S)) =
a⋃

j=0
([d′ − j], S) × ([j], [−a]) (3.5)

Therefore, we obtain

Sa(d′Mr) =
a⊕

j=0
d′−jMr

([j],[−a]) � (3.6)

Corollary 3.4. For any a ≥ 0, d ≥ 0 and r ∈ R, we have Sa(dMr) = dMr ⊕ dNr,a, where dNr,a is finitely 
generated in degree ≤ d − 1.

Proof. This is clear from Proposition 2.4 and the expression in (3.6). �
Lemma 3.5. Fix a ≥ 0. Then, for every V ∈ FIR and every n ≥ 0, there is an epimorphism H0(Sa(V ))n −→
H0(V )n+a in Mod −R.

Proof. By the definition in (2.7), we have

H0(Sa(V ))n = Coker

⎛⎜⎝ ⊕
φ : T ↪→ [n]

|T | < n

Sa(V )(T ) −→ Sa(V )n

⎞⎟⎠
= Coker

⎛⎜⎝ ⊕
φ � 1[−a] : (T � [−a]) ↪→ [n + a]

|T | < n

V (T � [−a]) −→ Vn+a

⎞⎟⎠
(3.7)

The morphism 
⊕

φ � 1[−a] : (T � [−a]) ↪→ [n + a]
|T | < n

V (T � [−a]) −→ Vn+a appearing in (3.7) factors through the canon-

ical morphism 
⊕

φ : T ↪→ [n + a]
|T | < n + a

V (T ) −→ Vn+a which gives us a factorization

Vn+a −→ H0(Sa(V ))n −→ H0(V )n+a (3.8)

of the canonical epimorphism Vn+a −→ H0(V )n+a. It follows that H0(Sa(V ))n −→ H0(V )n+a is an epi-
morphism. �
Proposition 3.6. Fix a ≥ 0. Suppose that V ∈ FIR is such that Sa(V ) is generated in degree ≤ d. Then, V
is generated in degree ≤ a + d.
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Proof. From Lemma 3.5, it is clear that H0(Sa(V ))n = 0 ⇒ H0(V )n+a = 0. The result is now a consequence 
of the equivalent statements in Proposition 2.7. �

We now return to the torsion theory τ = (T , F) on Mod −R. For any object P in Mod −R, we denote 
its torsion subobject by T (P ). For any V ∈ FIR and any finite set S, the canonical inclusion S ↪→ S � [−a]
induces a morphism V (S) −→ V (S � [−a]) and hence a morphism ψV

a : V −→ SaV in FIR. We now set

T (V )(S) := colim
a≥0

lim
(
V (S) ψV

a (S)−−−−→ (SaV )(S) ←−−−− T ((SaV )(S))
)

(3.9)

for each finite set S. It is clear that T (V ) is an FI-module and that T (V ) ⊆ V .

Lemma 3.7. Let R be such that Mod −R is locally noetherian. Let τ = (T , F) be a hereditary torsion theory 
on Mod −R. Then, for any V ∈ FIfgR , the subobject T (V ) belongs to the torsion class T .

Proof. Since V is finitely generated and T (V ) ⊆ V , we know that T (V ) is finitely generated and hence 
noetherian. As such, the increasing chain appearing in the definition of T (V ) in (3.9) must be stationary. 
In other words, we can find a > 0 such that

T (V )(S) = lim
(
V (S) ψV

a (S)−−−−→ V (S � [−a]) ←−−−− T (V (S � [−a]))
)

= lim
(
V (S) ψV

b (S)−−−−→ V (S � [−b]) ←−−−− T (V (S � [−b]))
) (3.10)

for every b ≥ a and every finite set S. For the sake of convenience, we put W := T (V ). The morphism 

W (S) −−−−→ V (S) ψV
b (S)−−−−→ V (S � [−b]) factors through ψW

b : W (S) −→ W (S � [−b]) as well as the 
subobject T (V (S � [−b])) ⊆ V (S � [−b]). Since W (S � [−b]) ⊆ V (S � [−b]) and τ is hereditary, it follows 
that

Im(ψW
b (S) : W (S) −→ W (S � [−b])) ∈ T (3.11)

We now consider any morphism φ : S −→ S′ in FI with |S′| − |S| = b ≥ a. Choosing a bijection between 
S � [−b] and S′, we obtain a commutative diagram

W (S � [−b])

W (S) W (S′)

∼=ψW
b (S)

W (φ)

(3.12)

Combining (3.11) and (3.12), we see that

Im(W (φ) : W (S) −→ W (S′)) ∈ T ∀ φ : S −→ S′, |S′| − |S| = b ≥ a (3.13)

Since W is finitely generated, we can choose some d such that W is finitely generated in degree d. By 
Proposition 2.7, we see that H0(W )n = 0 for n > d. From the definition of H0(W ) in (2.7), it is clear that

Wn =

⎛⎜⎝ ∑
φ : S ↪→ [n]

|S| ≤ d

Im(W (φ) : W (S) −→ Wn)

⎞⎟⎠ ∀ n > d (3.14)

Combining (3.13) and (3.14), we see that for n > a + d, we must have Wn ∈ T . Hence, W ∈ T . �



A. Banerjee / Journal of Pure and Applied Algebra 225 (2021) 106595 13
Theorem 3.8. Let R be such that Mod − R is locally noetherian. Let τ = (T , F) be a hereditary torsion 
theory on Mod −R. Then, for any V ∈ FIfgR , the torsion subobject of V with respect to the torsion class 
T is given by T (V ).

Proof. We set W = T (V ) and maintain the notation from the proof of Lemma 3.7. Then, we have a > 0
such that

W (S) −−−−→ T (V (S � [−b]))⏐⏐� ⏐⏐�
V (S) ψV

b (S)−−−−→ V (S � [−b])

(3.15)

is a fiber square for each b ≥ a and each finite set S. Now let W ′ ⊆ V be such that W ′ ∈ T . Then, there 
exists N such that W ′

n ∈ T for all n ≥ N . For n ≥ N + a, we consider the commutative diagram

W ′(S) ψW ′
n (S)−−−−−→ W ′(S � [−n]))⏐⏐� ⏐⏐�

V (S) ψV
n (S)−−−−→ V (S � [−n])

(3.16)

Then W ′(S � [−n])) ∈ T and it follows that the composed morphism W ′(S) −→ V (S � [−n]) appearing 
in (3.16) factors through T (V (S � [−n])). From the fiber square (3.15), it now follows that the inclusion 
W ′(S) ↪→ V (S) factors through a morphism W ′(S) −→ W (S). It follows that W ′ ⊆ W .

We have shown in Proposition 3.2 that T is a torsion class in FIfgR . From Lemma 3.7 we already know 
that W ∈ T . The reasoning above shows that W = T (V ) contains all torsion subobjects of V and the result 
follows. �

We will now apply similar methods to study torsion theories in the subcategory of what we call “shift 
finitely generated FI-modules.”

Definition 3.9. Let V ∈ FIR. Then, we will say that V is shift finitely generated if there exists d ≥ 0 such 
that SdV is finitely generated. The full subcategory of shift finitely generated objects will be denoted by 
FIsfgR .

Lemma 3.10. Let V ∈ FIR.
(a) If d ≥ 0 is such that SdV is finitely generated, so is SeV for any e ≥ d.
(b) If V is shift finitely generated, so is SaV for any a ≥ 0.
(c) Any V ∈ FIsfgR is generated in finite degree.

Proof. Since SdV is finitely generated, we can choose an epimorphism of the form 
k⊕

i=1
di

Mri −→ SdV . For 

e ≥ d, this induces an epimorphism Se−d

(
k⊕

i=1
di

Mri

)
−→ SeV . From Corollary 3.4, we know that each 

Se−d
di

Mri is finitely generated. This proves (a). The result of (b) is clear from (a). For (c), we proceed as 
follows: if SdV is finitely generated, it follows from Proposition 2.6 that H0(SdV )n = 0 for n � 0. Then, the 
epimorphism H0(SdV )n −→ H0(V )n+d in Lemma 3.5 shows that H0(V )m = 0 for m � 0. It now follows 
from Proposition 2.7 that V is generated in finite degree. �
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Proposition 3.11. Suppose that Mod −R is locally noetherian. Then FIsfgR is a Serre subcategory of FIR, 
i.e., it is closed under subobjects, quotients and extensions.

Proof. Let 0 −→ V ′ −→ V −→ V ′′ −→ 0 be a short exact sequence in FIR. Since S is exact, this gives a 
short exact sequence

0 −→ SdV ′ −→ SdV −→ SdV ′′ −→ 0 (3.17)

in FIR for each d ≥ 0. Since Mod −R is locally noetherian, it is clear from (3.17) and Theorem 2.8 that 
FIsfgR is closed under quotients and subobjects. It remains to show that FIsfgR is closed under extensions. 
We suppose that V ′, V ′′ ∈ FIsfgR and choose d large enough so that SdV ′ and SdV ′′ are finitely generated.

Consequently, we can choose epimorphisms P −→ SdV ′ and Q −→ SdV ′′, where P and Q are finite di-
rect sums of the family {dMr}r∈R,d≥0 of generators of FIR. Using Lemma 2.3, each object in {dMr}r∈R,d≥0
is projective and hence the epimorphism Q −→ SdV ′′ lifts to a morphism Q −→ SdV . It may be easily 
verified that the induced morphism P ⊕ Q −→ SdV is an epimorphism and the result follows. �

Our next objective is to define a torsion theory on FIsfgR starting from a torsion theory τ = (T , F) on 
Mod −R. For this, we need to identify the torsion objects in FIsfgR . For finitely generated objects in FIR, 
we already have that

Ob(T ) := {V ∈ Ob(FIfgR ) | Vn ∈ T for n � 0} (3.18)

as defined in (3.1). In the case of FIsfgR , we cannot proceed directly as in the proof of Proposition 3.2, 
because every object in FIsfgR is not necessarily noetherian. For a hereditary torsion theory τ = (T , F), we 
now set

Ob(T sfg) := {V ∈ Ob(FIsfgR ) | Every finitely generated W ⊆ V lies in T } (3.19)

Accordingly, we set

Ob(Fsfg) := {V ∈ Ob(FIsfgR ) | Hom(W ,V ) = 0 for every W ∈ T sfg} (3.20)

We will now show that (T sfg
, Fsfg) defines a torsion theory on FIsfgR .

Lemma 3.12. Suppose that Mod −R is locally noetherian and let τ = (T , F) be a hereditary torsion theory 
on Mod − R. For V ∈ FIsfgR , let T be the sum of all finitely generated subobjects of V which lie in T . 
Then, T ∈ T sfg.

Proof. Let T =
∑

i∈I Ti, where {Ti}i∈I is the collection of all finitely generated subobjects of V which lie 
in T . Then, we can express T as the filtered colimit T = lim−−→

J∈Fin(I)

∑
j∈J

Tj , where Fin(I) is the collection of 

finite subsets of I. We now consider some finitely generated T ′ ⊆ T . Then, there exists some finite J ⊆ I

such that T ′ ⊆
∑
j∈J

Tj , i.e., we have a monomorphism T ′ ↪→ Im 

(⊕
j∈J

Tj −→ V

)
. Since T is a hereditary 

torsion class, it follows from Proposition 3.2 that T is closed under extensions, quotients and subobjects. 
Since each Tj ∈ T , it is now clear that T ′ ∈ T . Hence, T ∈ T sfg. �
Proposition 3.13. Suppose that Mod − R is locally noetherian and let τ = (T , F) be a hereditary torsion 

theory on Mod −R. Then T sfg is a hereditary torsion class in FIsfgR .
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Proof. From the definition in (3.19), it is clear that T sfg is closed under subobjects. We take V ∈ FIsfgR
and let T ⊆ V be as in the proof of Lemma 3.12. From Lemma 3.12, we know that T ∈ T sfg. It suffices 
therefore to show that V /T ∈ Fsfg.

We consider therefore a morphism f : X −→ V /T with X ∈ T sfg. Since FIR is locally finitely 
generated, we can show that f = 0 by verifying that f ′ = f |X ′ : X ′ −→ V /T is zero for every finitely 
generated X ′ ⊆ X . First, we note that we can write Im(f ′ : X ′ −→ V /T ) = Y /T where T ⊆ Y ⊆ V . 
Since X ∈ T sfg, it follows that X ′ ∈ T . Since T is closed under quotients, it follows that Y /T ∈ T .

We now consider a finitely generated subobject Z ⊆ Y . Since T is closed under subobjects, we get 
Y /T ⊇ (Z + T )/T = Z /(Z ∩ T ) ∈ T . On the other hand, since FIR is locally noetherian, we know 

that Z ∩ T ⊆ Z must be finitely generated. Now since Z ∩ T ⊆ T and T ∈ T sfg, it follows that 
Z ∩ T ∈ T . Since T is closed under extensions, the short exact sequence

0 −→ Z ∩ T −→ Z −→ Z /Z ∩ T −→ 0 (3.21)

gives Z ∈ T . From the definition of T , it now follows that Z ⊆ T . Again since FIR is locally finitely 
generated, this gives Y ⊆ T . Hence, f ′ = 0. This proves the result. �

We will now compute an expression for the torsion submodule T sfg(V ) of V ∈ FIsfgR . This will be done 
in several steps. We denote by fg(V ) the collection of finitely generated subobjects of V .

Proposition 3.14. Suppose that Mod − R is locally noetherian and let τ = (T , F) be a hereditary torsion 
theory on Mod −R.

(a) Suppose V ∈ FIfgR . Then, T (V ) = T sfg(V ).
(b) For V ∈ FIsfgR , we have T sfg(V ) = lim−−→

V ′∈fg(V )
T sfg(V ′) = lim−−→

V ′∈fg(V )
T (V ′).

Proof. (a) It is immediate that T (V ) ⊆ T sfg(V ). Since V is finitely generated, we know that T sfg(V ) is 
finitely generated. Since T sfg(V ) ∈ T sfg, it follows that T sfg(V ) ∈ T . Hence, T sfg(V ) ⊆ T (V ) and the 
result follows.

(b) It is clear that lim−−→
V ′∈fg(V )

T sfg(V ′) ⊆ T sfg(V ). Conversely, we consider any finitely generated subobject 

W ⊆ T sfg(V ). Then, W ∈ T and hence W = T (W ) = T sfg(W ). It follows that W ⊆ lim−−→
V ′∈fg(V )

T sfg(V ′). 

Since FIR is locally finitely generated, we get T sfg(V ) ⊆ lim−−→
V ′∈fg(V )

T sfg(V ′) and the result follows. �

Lemma 3.15. Let B be a locally noetherian Grothendieck category and suppose that t = (T, F) is a hereditary 
torsion theory on B. Let M ∈ B and let i : N ↪→ M be a subobject satisfying the following properties:

(a) N ∈ T.
(b) If T ′ ∈ T is a finitely generated object, any morphism f ′ : T ′ −→ M factors through N .
Then, N is the torsion subobject of M , i.e., N = T(M).

Proof. We consider T ∈ T and a morphism f : T −→ M . Let fg(T ) be the collection of finitely generated 
subobjects of T . For any T ′ ∈ fg(T ), the induced map f ′ = f |T ′ : T ′ −→ M factors through some 
g′ : T ′ −→ N as f ′ = i ◦ g′. Since i is a monomorphism, this g′ is necessarily unique.

If j : T ′ ↪→ T ′′ is an inclusion with T ′, T ′′ ∈ fg(T ), we notice that i ◦ g′ = f ′ = f ′′ ◦ j = i ◦ g′′ ◦ j. 
Since i is a monomorphism, this gives g′ = g′′ ◦ j. These maps {g′ : T ′ −→ N}T ′∈fg(T ) together induce a 
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morphism from the colimit g : T = lim−−→
T ′∈fg(T )

T ′ −→ N . We notice that (i ◦ g)|T ′ = i ◦ g′ = f ′ = f |T ′ for each 

T ′ ∈ fg(T ). Since T = lim−−→
T ′∈fg(T )

T ′, it now follows that i ◦ g = f . This proves the result. �

Proposition 3.16. Let B be a locally noetherian Grothendieck category and suppose that t = (T, F) is a 
hereditary torsion theory on B. Let {Mi}i∈I be a filtered system of objects of B. Then, we have

lim−−→
i∈I

T(Mi) = T
(

lim−−→
i∈I

Mi

)
(3.22)

Proof. Since torsion classes are always closed under colimits, we know that lim−−→
i∈I

T(Mi) ∈ T. Considering 

the monomorphisms T(Mi) ↪→ Mi, the filtered colimit induces an inclusion lim−−→
i∈I

T(Mi) ↪→ lim−−→
i∈I

Mi. We 

now consider a finitely generated object T ′ ∈ T along with a morphism f ′ : T ′ −→ lim−−→
i∈I

Mi. Since B is 

locally noetherian, T ′ is also finitely presented. It follows that f ′ factors through some g′ : T ′ −→ Mi0 . 
Since T ′ ∈ T, g′ factors uniquely through the torsion subobject T(Mi0). Hence, f ′ : T ′ −→ lim−−→

i∈I

Mi factors 

through lim−−→
i∈I

T(Mi). The result now follows from Lemma 3.15. �
Theorem 3.17. Let R be such that Mod − R is locally noetherian. Let τ = (T , F) be a hereditary torsion 

theory on Mod −R. For any V ∈ FIsfgR , the torsion subobject of V with respect to the torsion class T sfg

is given by

T sfg(V )(S) := colim
a≥0

lim
(
V (S) ψV

a (S)−−−−→ (SaV )(S) ←−−−− T ((SaV )(S))
)

(3.23)

for each finite set S.

Proof. From Proposition 3.14, we know that

T sfg(V ) = lim−−→
V ′∈fg(V )

T (V ′) (3.24)

Since each V ′ ∈ fg(V ) lies in FIfgR , it follows from Theorem 3.8 that

T (V ′)(S) := colim
a≥0

lim
(
V ′(S) ψV ′

a (S)−−−−−→ (SaV ′)(S) ←−−−− T ((SaV ′)(S))
)

(3.25)

for each finite set S. Since Mod − R is locally noetherian and V = lim−−→
V ′∈fg(V )

V ′, it now follows from 

Proposition 3.16 that

T ((SaV )(S)) = lim−−→
V ′∈fg(V )

T ((SaV ′)(S)) (3.26)

for each a ≥ 0. The result of (3.23) is now clear from (3.24), (3.25), (3.26) and the fact that filtered colimits 
commute with finite limits. �
4. Torsion closed FI-modules

We continue with R being a small preadditive category such that Mod −R is locally noetherian. Given 
a torsion theory τ = (T , F) on Mod − R, we have described the induced torsion class T on finitely 
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generated FI-modules. In this section, we will always suppose that T is a hereditary torsion class. Then, 
from Proposition 3.2, we know that T is a hereditary torsion class on FIfgR .

We now consider the full subcategories T̂ and {T̂ a}a≥0 of FIR determined by setting

Ob(T̂ ) := {V ∈ Ob(FIR) | Vn ∈ T for n � 0}
Ob(T̂ a) := {V ∈ Ob(FIR) | Vn ∈ T for all n ≥ a} ∀ a ≥ 0

(4.1)

It is also clear that we have a filtration

T̂ 0 ⊆ T̂ 1 ⊆ T̂ 2 ⊆ . . . T̂ =
⋃
a≥0

T̂ a (4.2)

We observe that each T̂ a is closed under extensions, quotients, subobjects and coproducts, making it a 
hereditary torsion class in the category FIR (see, for instance, [4, § I.1]). However, we notice that T̂ need 
not be a torsion class in FIR, because it may not contain arbitrary coproducts. In fact, T̂ is only a Serre 
subcategory, i.e., it is closed under extensions, subobjects and quotients. The purpose of this section is to 
construct functors from FIR to T̂ a-closed objects and to T̂ -closed objects of FIR. For this, we will first 
develop some general results on locally noetherian Grothendieck categories.

Definition 4.1. (See, for instance, [19, Definition III.2.2].) Let A be a Grothendieck category and let C be a 
Serre subcategory. Then:

(1) A morphism u : A −→ B in A is said to be a C-isomorphism if both Ker(u) and Coker(u) lie in C.
(2) An object L in A is said to be C-closed if for every C-isomorphism u : A −→ B in A, the induced 

morphism Hom(u, L) : Hom(B, L) −→ Hom(A, L) is an isomorphism.
(3) A morphism f : A −→ AC in A is said to be a C-envelope if f is a C-isomorphism and AC is C-closed.

Let A be a Grothendieck category. From now onwards, for X ∈ A, we will denote by fg(X) the set of 
its finitely generated subobjects.

Lemma 4.2. Let A be a locally noetherian Grothendieck category and C be a Serre subcategory. Suppose that 
an object L ∈ A has the following property: for any C-isomorphism u′ : A′ −→ B′ with A′, B′ finitely 
generated, the induced morphism Hom(u′, L) : Hom(B′, L) −→ Hom(A′, L) is an isomorphism.

Then, for any C-isomorphism u : A −→ B that is an epimorphism in A, the induced morphism 
Hom(u, L) : Hom(B, L) −→ Hom(A, L) is an isomorphism.

Proof. We consider a C-isomorphism u : A −→ B that is an epimorphism in A. By definition, Coker(u) = 0
and Ker(u) ∈ C. Let A′ ⊆ A be a finitely generated subobject and let u′ : A′ −→ B denote the restriction 
of u to A′. Set B′ := Im(u′) ⊆ B. Since A′ is finitely generated, so is its quotient B′. Then, u′ : A′ −→ B′

satisfies Coker(u′) = 0 and Ker(u′) ⊆ Ker(u) ∈ C. Since C is a Serre subcategory, we get Ker(u′) ∈ C. It 
follows that u′ is a C-isomorphism.

Using the given property of L, we now obtain that the induced morphism Hom(u′, L) : Hom(B′, L) −→
Hom(A′, L) is an isomorphism. Since A is locally finitely generated, we know that A is the filtered colimit 
over all A′ ∈ fg(A). Since u is an epimorphism, we know that B is the filtered colimit over the corresponding 
objects {B′ = Im(u|A′ : A′ −→ B)}A′∈fg(A). It follows that

Hom(u, L) : Hom(B,L) = lim←−−
A′∈fg(A)

Hom(B′, L)
∼=−→ lim←−−

A′∈fg(A)
Hom(A′, L) = Hom(A,L) (4.3)

is an isomorphism. This proves the result. �
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Lemma 4.3. Let A be a locally noetherian Grothendieck category and C be a Serre subcategory. Suppose that 
an object L ∈ A has the following property: for any C-isomorphism u′ : A′ −→ B′ with A′, B′ finitely 
generated, the induced morphism Hom(u′, L) : Hom(B′, L) −→ Hom(A′, L) is an isomorphism.

Then, for any C-isomorphism u : A −→ B that is a monomorphism in A, the induced morphism 
Hom(u, L) : Hom(B, L) −→ Hom(A, L) is an isomorphism.

Proof. We consider a C-isomorphism u : A −→ B that is a monomorphism in A. Then, by definition, 
Ker(u) = 0 and Coker(u) ∈ C. Let B′ ⊆ B be a finitely generated subobject and let u′ : A′ := A ×B B′ −→
B′ be the pullback of u along B′ ↪→ B. Clearly, Ker(u′) = 0. Since A is locally noetherian and A′ ⊆ B′, it 
follows that A′ is finitely generated.

We now note that all the squares in the following diagram are pullback squares.

A′ u′
−−−−→ B′ −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�

A
u−−−−→ B −−−−→ B/B′

(4.4)

It follows that A′ = Ker(A u−→ B −→ B/B′) and hence we have a monomorphism A/A′ −→ B/B′. A 
simple application of Snake Lemma to the following diagram

0 −−−−→ A′ −−−−→ A −−−−→ A/A′ −−−−→ 0

u′
⏐⏐� u

⏐⏐� ⏐⏐�
0 −−−−→ B′ −−−−→ B −−−−→ B/B′ −−−−→ 0

(4.5)

now gives us the exact sequence 0 −→ Coker(u′) −→ Coker(u). Since C is a Serre subcategory, we now 
get Coker(u′) ∈ C. Using the given property of L, we now obtain that the induced morphism Hom(u′, L) :
Hom(B′, L) −→ Hom(A′, L) is an isomorphism. Since A is locally finitely generated, we know that B is the 
filtered colimit over all B′ ∈ fg(B). We notice that A is the filtered colimit over the corresponding objects 
{A′ = A ×B B′}B′∈fg(B). It follows that

Hom(u, L) : Hom(B,L) = lim←−−
B′∈fg(B)

Hom(B′, L)
∼=−→ lim←−−

B′∈fg(B)
Hom(A′, L) = Hom(A,L) (4.6)

is an isomorphism. This proves the result. �
Proposition 4.4. Let A be a locally noetherian Grothendieck category and C be a Serre subcategory. For an 
object L ∈ A, the following are equivalent.

(1) The object L is C-closed, i.e., for any C-isomorphism u : A −→ B, the induced morphism Hom(u, L) :
Hom(B, L) −→ Hom(A, L) is an isomorphism.

(2) For any C-isomorphism u′ : A′ −→ B′ with A′, B′ finitely generated, the induced morphism 
Hom(u′, L) : Hom(B′, L) −→ Hom(A′, L) is an isomorphism.

Proof. We only need to show that (2) ⇒ (1). Let u : A −→ B be a C-isomorphism. Then, we can factor u
uniquely as A 

f−→ C
g−→ B where f is an epimorphism and g is a monomorphism. We notice that

Ker(f) = Ker(u) ∈ C Coker(f) = 0 Ker(g) = 0 Coker(g) = Coker(u) ∈ C (4.7)

and hence both f and g are C-isomorphisms. The result is now clear from Lemma 4.2 and Lemma 4.3. �
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We now return to FI modules over R along with a hereditary torsion theory τ = (T , F) on Mod −R. 
Accordingly, there is a functor Eτ : Mod − R −→ Mod − R that takes any V ∈ Mod − R to its torsion 
envelope Eτ (V ). We refer the reader to [16, Theorem 2.5] for the explicit construction of this functor. Since 
Mod − R is a locally finitely presented Grothendieck category, we note that hereditary torsion classes in 
Mod −R are the same as localizing subcategories of Mod −R (see, for instance, [6, Theorem 1.13.5]).

By abuse of notation, we will also denote by Eτ the functor given by

Eτ : FIR −→ FIR Eτ (V )(S) := Eτ (V (S)) (4.8)

for any V ∈ FIR and any finite set S. The canonical morphisms V (S) −→ Eτ (V (S)) together induce a 
morphism iτ (V ) : V −→ Eτ (V ) in FIR. We also observe that from (4.8) it is clear that

EτS
a(V ) = SaEτ (V ) ∀ a ≥ 0 (4.9)

We will denote by Cl(T ) (resp. Cl(T̂ a), Cl(T̂ )) the full subcategory of Mod −R (resp. FIR) consisting of 
closed objects with respect to the Serre subcategory T ⊆ Mod −R (resp. T̂ a, T̂ ⊆ FIR).

Lemma 4.5. Let L ∈ FIR be such that L (S) is T -closed for each finite set S. Then, L is T̂ 0-closed.

Proof. Let u : A −→ B be a T̂ 0-isomorphism in FIR. Then, by definition, we have Ker(u), Coker(u) ∈ T̂ 0, 
i.e., for each finite set S, we must have Ker(u(S)), Coker(u(S)) ∈ T . We consider a morphism f : B −→ L

in FIR. If f ◦ u = 0, it follows that f(S) ◦ u(S) = 0 for each S ∈ FI. Since each L (S) is T -closed, we 
know that Hom(u(S), L (S)) : Hom(B(S), L (S)) −→ Hom(A (S), L (S)) is an isomorphism. This gives 
f(S) = 0 for each S ∈ FI, i.e., f = 0.

On the other hand, consider a morphism g : A −→ L in FIR. Each L (S) is T -closed, which gives us 
a unique morphism f(S) : B(S) −→ L (S) such that g(S) = f(S) ◦ u(S). We claim that {f(S)}S∈FI gives 
a morphism f : B −→ L , i.e., for any φ : S −→ T in FI, we have L (φ) ◦ f(S) = f(T ) ◦ B(φ) : B(S) −→
L (T ). For this, we notice that

f(T ) ◦ B(φ) ◦ u(S) = f(T ) ◦ u(T ) ◦ A (φ) = L (φ) ◦ f(S) ◦ u(S) : A (S) −→ L (T ) (4.10)

Since u(S) is a T -isomorphism and L (T ) is T -closed, we must have an isomorphism Hom(B(S), L (T )) −→
Hom(A (S), L (T )). From (4.10), it is now clear that L (φ) ◦ f(S) = f(T ) ◦ B(φ).

We have now shown that the induced morphism FIR(u, L ) : FIR(B, L ) −→ FIR(A , L ) is both a 
monomorphism and an epimorphism, i.e., an isomorphism. This proves the result. �
Proposition 4.6. Let L ∈ FIR. Then, L is T̂ 0-closed if and only if L (S) is T -closed for each finite set S.

Proof. Since T is a localizing subcategory of Mod −R, the functor Eτ : Mod −R −→ Cl(T ) is left adjoint to 
the inclusion Cl(T ) −→ Mod −R. The “unit” of this adjunction gives a canonical morphism V −→ Eτ (V )
for each V ∈ Mod − R. Taken together, such maps induce a canonical morphism iτ : L −→ Eτ (L ) for 
each L ∈ FIR.

From the construction in (4.8), it is clear that iτ (S) : L (S) −→ Eτ (L )(S) is a T -isomorphism in Mod −R
for each finite set S. In other words, Ker(iτ (S)), Coker(iτ (S)) ∈ T . Hence, Ker(iτ ), Coker(iτ ) ∈ T̂ 0 and 
it follows that iτ is a T̂ 0-isomorphism. From Lemma 4.5 and the definition in (4.8), it is clear that Eτ (L )
is T̂ 0-closed. By Definition 4.1, it follows that iτ : L −→ Eτ (L ) is a T̂ 0-envelope for L .

If we now suppose that L is T̂ 0-closed and T̂ 0 is a hereditary torsion class, it follows from the uniqueness 
of the T̂ 0-envelope that iτ : L −→ Eτ (L ) is an isomorphism. In particular, it follows that L (S) ∼=
Eτ (L (S)) is T -closed in Mod −R for each finite set S. This proves the “only if” part of the result. The “if 
part” is clear from Lemma 4.5. �
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From the definition of the subcategories {T̂ a}a≥0, it is clear that we have a descending filtration

Cl(T̂ 0) ⊇ Cl(T̂ 1) ⊇ . . . · · · ⊇ Cl(T̂ a) ⊇ Cl(T̂ a+1) ⊇ . . . (4.11)

In order to obtain functors going in the other direction, we will need to use the right adjoint of the shift 
functor S := S1.

Lemma 4.7. For each a ≥ 0, the functor Sa : FIR −→ FIR has a right adjoint Ta : FIR −→ FIR.

Proof. Since FIR is a Grothendieck category and S = S1 : FIR −→ FIR preserves colimits, it follows (see, 
for instance, [20, Theorem 8.3.27]) that it must have a right adjoint T = T 1 : FIR −→ FIR. Then, for each 
a ≥ 0, Ta is a right adjoint of Sa. �
Lemma 4.8. Let k ≥ 0 and let u : A −→ B be a T̂ k-isomorphism. Then, for each 0 ≤ a ≤ k, the induced 
morphism Sa(u) : Sa(A ) −→ Sa(B) is a T̂ k−a-isomorphism.

Proof. For any finite set S, we know that

Ker(Sa(u))(S) = Sa(Ker(u))(S) = Ker(u)(S � [−a])
Coker(Sa(u))(S) = Sa(Coker(u))(S) = Coker(u)(S � [−a])

(4.12)

Since u : A −→ B is a T̂ k-isomorphism, it is clear from (4.12) that when |S| ≥ k− a, both Ker(Sa(u))(S), 
Coker(Sa(u))(S) ∈ T . The result follows. �

Before we proceed further, we record here the following observation about the functor T .

Proposition 4.9. Let a, d ≥ 0 and r ∈ R. Then, for any V ∈ FIR, Vd(r) is a direct summand of Ta(V )d(r).

Proof. From Lemma 2.3, we know that Ta(V )d(r) = FIR(dMr, Ta(V )) for any d ≥ 0 and r ∈ R. Using 
the adjoint pair (Sa, Ta) and Corollary 3.4, we obtain

Ta(V )d(r) = FIR(dMr,T
a(V )) = FIR(Sa(dMr),V ) = FIR(dMr ⊕ dNr,a,V )

= Vd(r) ⊕ FIR(dNr,a,V ) �
Proposition 4.10. For any a, b ≥ 0, the right adjoint Ta : FIR −→ FIR restricts to a functor Ta :
Cl(T̂ b) −→ Cl(T̂ a+b).

Proof. We consider some L ∈ Cl(T̂ b) and u : A −→ B in FIR that is a T̂ a+b-isomorphism. We consider 
the commutative diagram:

FIR(B,TaL ) FIR(u,TaL )−−−−−−−−−→ FIR(A ,TaL )

∼=
⏐⏐� ⏐⏐�∼=

FIR(Sa(B),L ) FIR(Sa(u),L )−−−−−−−−−−→∼=
FIR(Sa(A ),L )

(4.13)

Here, it follows from Lemma 4.8 that the lower horizontal arrow is an isomorphism. This proves the re-
sult. �

We can now give functors that explicitly construct objects in Cl(T̂ k).
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Proposition 4.11. Let τ = (T , F) be a hereditary torsion theory on Mod −R. Then, we have functors

Lk
τ := Tk ◦ Sk ◦ Eτ : FIR −→ Cl(T̂ k) ∀ k ≥ 0 (4.14)

Additionally, there are canonical morphisms of functors lkτ : Id −→ Lk
τ such that lk+1

τ = ckτ ◦ lkτ , where 
ckτ : Lk

τ = Tk ◦ Sk ◦ Eτ −→ Lk+1
τ = Tk ◦ (T ◦ S) ◦ Sk ◦ Eτ is induced by the counit corresponding to the 

adjoint pair (S, T ).

Proof. For any V ∈ FIR, it is clear from Proposition 4.6 that Eτ (V ) ∈ Cl(T̂ 0). From (4.9), it is now clear 
that Sk(Eτ (V )) = Eτ (Sk(V )) ∈ Cl(T̂ 0). It now follows from Proposition 4.10 that Lk

τ (V ) = Tk ◦ Sk ◦
Eτ (V ) ∈ Cl(T̂ k). We recall that we have a canonical morphism iτ(V ′) : V ′ −→ Eτ (V ′) for each V ′ ∈ FIR. 
Using the adjunctions (S, T ), (Sk, Tk) and (Sk+1, Tk+1), we now have a commutative diagram

V

Lk
τ (V ) = TkSkEτ (V ) Tk(T ◦ S)SkEτ (V ) = Lk+1

τ (V )

lkτ (V )

ckτ (V )

lk+1
τ (V )

The result follows. �
We are now ready to construct a functor that gives objects that are closed with respect to T̂ .

Theorem 4.12. Let Mod −R be locally noetherian. Let τ = (T , F) be a hereditary torsion theory on Mod −R. 
Then, we have a functor Lτ : FIR −→ Cl(T̂ ) and a canonical morphism

lτ (V ) : V −→ Lτ (V ) := lim−−→
k≥0

Lk
τ (V ) (4.15)

for each V ∈ FIR.

Proof. For V ∈ FIR, it follows from Proposition 4.11 that the morphisms lkτ (V ) : V −→ Lk
τ (V ) combine 

to give a morphism lτ (V ) : V −→ Lτ (V ) = lim−−→
k≥0

Lk
τ (V ). We need to check that Lτ (V ) is T̂ -closed. For 

this, we will show that for any T̂ -isomorphism u : A −→ B, the induced morphism FIR(u, Lτ (V )) :
FIR(B, Lτ (V )) −→ FIR(A , Lτ (V )) is an isomorphism.

Using Proposition 4.4, we may restrict ourselves to the case where A , B are finitely generated. Since 
FIR is a locally noetherian category, it follows that A , B are also finitely presented, i.e., the functors 
FIR(A , __), FIR(B, __) preserve filtered colimits. We now consider the morphism

FIR(u,Lτ (V )) : FIR(B,Lτ (V )) = lim−−→
k≥0

FIR(B,Lk
τ (V )) −→ lim−−→

k≥0
FIR(A ,Lk

τ (V )) = FIR(A ,Lτ (V ))

Since u : A −→ B is a T̂ -isomorphism, we can choose N large enough so that Ker(u)(S), Coker(u)(S) ∈ T
for finite sets S of cardinality ≥ N . Hence, u : A −→ B is a T̂ k-isomorphism for each k ≥ N . Since Lk

τ (V )
is T̂ k-closed, it follows that FIR(B, Lk

τ (V )) −→ FIR(A , Lk
τ (V ) is an isomorphism for each k ≥ N . The 

result is now clear. �
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5. The torsion class T̃ and its closed objects

We continue with Mod −R being a locally noetherian category and τ = (T , F) being a hereditary torsion 
theory on Mod −R. In Section 3, we used this torsion theory to construct a torsion class T in the category 
FIfgR of finitely generated modules. In Section 4, we considered the Serre subcategory T̂ ⊆ FIR which was 
constructed so that T̂ ∩ FIfgR = T .

Additionally, in Section 3, we had also used the torsion theory τ = (T , F) to construct a torsion class 
T sfg in the category FIsfgR of shift finitely generated modules. As such, in this section, we will define a full 
subcategory T̃ ⊆ FIR such that T̃ ∩ FIsfgR = T sfg. For this, we define:

Ob(T̃ ) := {V ∈ Ob(FIR) | Every finitely generated W ⊆ V lies in T } (5.1)

The subcategory T̂ considered in Section 4 was a Serre subcategory. Hence, we would expect that its 
counterpart T̃ defined in (5.1) is also a Serre subcategory. We will now show that T̃ satisfies an even 
stronger property, i.e., it is a hereditary torsion class.

Lemma 5.1. The subcategory T̃ is closed under extensions.

Proof. Suppose that we have a short exact sequence

0 −→ V ′ −→ V −→ V ′′ −→ 0

in FIR with V ′, V ′′ ∈ T̃ . We consider a finitely generated subobject W ⊆ V . This gives two short exact 
sequences fitting into the commutative diagram

0 −−−−→ W ∩ V ′ −−−−→ W −−−−→ W /(W ∩ V ′) = (W + V ′)/V ′ −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ V ′ −−−−→ V −−−−→ V ′′ = V /V ′ −−−−→ 0

(5.2)

Since W is finitely generated, so is the subobject W ∩ V ′ and the quotient W /(W ∩ V ′). The vertical 
maps in (5.2) are all monomorphisms. Since V ′, V ′′ ∈ T̃ , we can find N large enough so that (W ∩ V ′)n, 
(W /(W ∩ V ′))n ∈ T for n ≥ N . Then, Wn ∈ T for all n ≥ N . Hence, V ∈ T̃ . �
Lemma 5.2. The subcategory T̃ contains all coproducts.

Proof. Let {Vi}i∈I be a family of objects in T̃ . Using Lemma 5.1, we know that every finite direct sum of 
objects from {Vi}i∈I lies in T̃ . We note that 

⊕
i∈I

Vi is equal to the filtered colimit of 
⊕
j∈J

Vj taken over all 

finite subsets J ⊆ I. Then, if W ⊆
⊕
i∈I

Vi is a finitely generated object, we can find some finite subset J ⊆ I

such that W ⊆
⊕
j∈J

Vj . It follows that Wn ∈ T for n � 0. This proves the result. �

Lemma 5.3. The subcategory T̃ is closed under quotients.

Proof. We consider an epimorphism f : V −→ W in FIR with V ∈ T̃ . We consider a finitely generated 
subobject W ′ ⊆ W . The finitely generated subobjects of f−1(W ′) ⊆ V form a filtered system and hence 
their images in W ′ form a filtered system of subobjects whose union is W ′. As such, we can find some finitely 
generated subobject V ′ ⊆ f−1(W ′) ⊆ V such that f |V ′ : V ′ −→ W ′ is an epimorphism. Since V ∈ T̃ , we 
know that V ′

n ∈ T for n � 0. Then, W ′
n ∈ T for n � 0. This proves the result. �
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Proposition 5.4. Let Mod −R be a locally noetherian category and τ = (T , F) a hereditary torsion theory 
on Mod −R. Then, the full subcategory T̃ ⊆ FIR defined by setting

Ob(T̃ ) := {V ∈ Ob(FIR) | Every f.g. W ⊆ V satisfies Wn ∈ T for n � 0} (5.3)

is a hereditary torsion class.

Proof. From the definition, it is clear that T̃ is closed under subobjects. From Lemma 5.1, Lemma 5.2 and 
Lemma 5.3 we know respectively that T̃ is closed under extensions, coproducts and quotients. Since FIR
is a Grothendieck category, it now follows from [4, I.1] that T̃ is a hereditary torsion class. �

Now that we know T̃ is a hereditary torsion class, our aim is to describe closed objects with respect to 
T̃ as well as a functor from FIR to Cl(T̃ ). This will be done in several steps.

For any V ∈ FIR and any n ≥ 0, we now denote by fgτn(V ) the collection of all finitely generated 
subobjects W ′ ⊆ V such that W ′

m ∈ T for every m ≥ n. Clearly, fgτn(V ) ⊆ T̂ n.

Proposition 5.5. Let Mod −R be a locally noetherian category and τ = (T , F) a hereditary torsion theory 
on Mod −R. Every V ∈ T̃ is equipped with an increasing filtration

F 0V ⊆ F 1V ⊆ ... ⊆ V (5.4)

with FnV ∈ T̂ n for each n ≥ 0.

Proof. We let FnV be the sum of all W ∈ fgτn(V ). Since V ∈ T̃ , every finitely generated subobject W ⊆ V

lies in fgτn(V ) for some n ≥ 0. Since V is the sum of its finitely generated subobjects, it follows that we 
have a filtration as in (5.4) whose union is V .

It remains to show that FnV ∈ T̂ n for each n ≥ 0. We note that any finite sum 
∑
j∈J

Wj of objects in 

fgτn(V ) is a quotient of the direct sum 
⊕
j∈J

Wj and hence lies in fgτn(V ). We also observe that FnV is the 

colimit of 
∑
j∈J

Wj as J varies over all finite collections of objects in fgτn(V ). Since T is closed under colimits 

(being a torsion class), the result follows. �
Lemma 5.6. Let u : A −→ B be an epimorphism in FIR with Ker(u) = K ∈ T̃ . Let L ∈ Cl(T̂ ). Then, 
the induced morphism FIR(u, L ) : FIR(B, L ) −→ FIR(A , L ) is an isomorphism.

Proof. Using Proposition 5.5, we can consider a filtration K 0 ⊆ K 1 ⊆ ... on K ∈ T̃ with each K i ∈ T̂ i. 
Since T̂ i ⊆ T̂ , we know that L ∈ Cl(T̂ ) lies in Cl(T̂ i) for each i. It follows therefore that we have an 
isomorphism FIR(A /K i, L ) −→ FIR(A , L ) for each i. We know that B = A /K . Taking limits, we 
therefore obtain an isomorphism

FIR(u,L ) : FIR(B,L ) = FIR(lim−−→
i≥0

A /K i,L ) = lim←−−
i≥0

FIR(A /K i,L )
∼=−→ FIR(A ,L ) �

Lemma 5.7. Let u : A −→ B be a monomorphism in FIR with Coker(u) = C ∈ T̃ . Let L ∈ Cl(T̂ ). Then, 
the induced morphism FIR(u, L ) : FIR(B, L ) −→ FIR(A , L ) is an isomorphism.

Proof. Using Proposition 5.5, we can consider a filtration C 0 ⊆ C 1 ⊆ ... on C ∈ T̃ with each C i ∈ T̂ i. This 
corresponds to a filtration B0 ⊆ B1 ⊆ ... on B such that Bi/A = C i.

Since T̂ i ⊆ T̂ , we know that L ∈ Cl(T̂ ) lies in Cl(T̂ i) for each i. It follows therefore that we have an 
isomorphism FIR(Bi, L ) −→ FIR(A , L ) for each i. Taking limits, we therefore obtain an isomorphism
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FIR(u,L ) : FIR(B,L ) = FIR(lim−−→
i≥0

Bi,L ) = lim←−−
i≥0

FIR(Bi,L )
∼=−→ FIR(A ,L ) �

Theorem 5.8. Let Mod −R be a locally noetherian category and τ = (T , F) a hereditary torsion theory on 
Mod −R. Then, Cl(T̂ ) = Cl(T̃ ). In particular, we have a functor Lτ : FIR −→ Cl(T̂ ) = Cl(T̃ ).

Proof. From the definitions in (4.1) and (5.1), we know that T̂ ⊆ T̃ , whence it follows that Cl(T̂ ) ⊇ Cl(T̃ ). 
We now consider a morphism u : A −→ B in FIR which is T̃ -closed. Then, u may be expressed as the 
composition

u : A
u′
−→ A /Ker(u) u′′

−−→ B (5.5)

where u′ is an epimorphism with Ker(u′) ∈ T̃ and u′′ is a monomorphism with Coker(u′′) ∈ T̃ . Let 
L ∈ Cl(T̂ ). From Lemma 5.6 and Lemma 5.7, it follows that FIR(u′, L ) and FIR(u′′, L ) are both 
isomorphisms. Hence, FIR(u, L ) is an isomorphism. Hence, L ∈ Cl(T̃ ). This proves the result. �
6. The functors Ha and properties of finitely and shift finitely generated modules

We return to the general case, i.e., R is a small preadditive category, but Mod − R is not necessarily 
noetherian. Fix a ≥ 0. Let V ∈ FIR. In a manner similar to [9, § 2], we define the functor

B−a : FIR −→ FIR B−a(V )(S) :=
⊕

φ:[a]↪→S

V (S, φ) =
⊕

φ:[a]↪→S

V (S − φ[a]) (6.1)

It is clear from (6.1) that B−a(V ) ∈ FIR. For each a ≥ 1, we consider the set {si : [a − 1] −→ [a]}1≤i≤a of 
standard order-preserving injections, where the image of si misses i. Then, for any φ : [a] −→ S, we have 
S − φ{a} � S − φ ◦ si{a − 1} which induces a morphism di(S, φ) : V (S − φ{a}) −→ V (S − φ ◦ si{a − 1}). 
Taking the alternating sum 

∑a
i=1(−1)idi of these maps in the usual manner, we obtain a complex

B−∗(V ) : · · · −→ B−a(V ) −→ B−(a−1)(V ) −→ · · · −→ B−1(V ) −→ B0(V ) = V −→ 0 (6.2)

Let Sa be the permutation group on a objects and consider the group ring Z[Sa]. We consider the small 
preadditive category R[Sa] defined by setting Ob(R) = Ob(R[Sa]) and

R[Sa](r, r′) := R(r, r′) ⊗Z Z[Sa] (6.3)

The composition in R[Sa] is the usual composition in R extended by the multiplication in Z[Sa]. Given a 
morphism f · σ ∈ R[Sa](r, r′), i.e., f ∈ R(r, r′) and σ ∈ Sa, we notice that we have a map

V (S, φ)(r′) = V (S − φ[a])(r′) V (S−φ[a])(f)−−−−−−−−−→ V (S − φ[a])(r) = V (S − φ ◦ σ[a])(r) = V (S, φ ◦ σ)(r) (6.4)

for each φ : [a] −→ S in FI. Using the maps in (6.4), it may be easily verified that B−a may be treated 
as a functor B−a : FIR −→ FIR[Sa]. On the other hand, the canonical R-R-bimodule given by morphism 
spaces in R may be extended to a left R[Sa] right R-module:

Hε
R : Rop ⊗R[Sa] −→ Ab (r′, r) �→ R(r′, r)

Hε
R(f1, f2 · σ) : Hε

R(r′, r) −→ Hε
R(r′′′, r′′) f �→ (−1)sgn(σ)f2 ◦ f ◦ f1

(6.5)

Here sgn(σ) is the sign of the permutation in Z2. This allows us to define a functor
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B̃−a : FIR −→ FIR B̃−a(V )(S) := B−a(V )(S) ⊗R[Sa] H
ε
R (6.6)

We observe that B̃−a(V )(S) ∈ Mod −R is a direct sum of all V (T ) as T varies over all the distinct subsets 
of S such that |T | = |S| − a. It may be verified by direct computation that the complex in (6.2) descends 
to a complex

B̃−∗(V ) : · · · −→ B̃−a(V ) −→ B̃−(a−1)(V ) −→ · · · −→ B̃−1(V ) −→ B̃0(V ) = V −→ 0 (6.7)

For V ∈ FIR, we set Ha(V ) := H−a(B̃−∗(V )) ∈ FIR. In particular, it is easy to observe that B−a(dMr) =
a+dMr. Since B−a is exact, it follows that for any V ∈ FIfgR , the object B−a(V ) is finitely generated. 
Further, since B̃−a(V ) is a quotient of B−a(V ), it follows that B̃−a(V ) ∈ FIfgR .

Proposition 6.1. Let V ∈ FIR. Fix a finite set S and consider the colimit colim
T�S

V (T ) taken over all proper 
subsets of S ordered by inclusion. Then, we have

H0(B̃−∗(V ))(S) = Coker

(
colim
T�S

V (T ) −→ V (S)
)

= H0(V )(S) (6.8)

H−1(B̃−∗(V ))(S) = Ker

(
colim
T�S

V (T ) −→ V (S)
)

= H1(V )(S) (6.9)

Proof. For any injection φ : T ′ ↪→ S with |T ′| < |S|, it is obvious that φ factors through a proper subset 

of S. Comparing with the definition in (2.7), we see that H0(V ) = Coker

(
colim
T�S

V (T ) −→ V (S)
)

. From 

the discussion above, we know that B̃−1(V )(S) ∈ Mod − R is a direct sum of all V (T ) as T varies over 
all the distinct subsets of S such that |T | = |S| − 1. Since the inclusion of any proper subset of S factors 
through a subset of size |S| − 1, we also observe that H0(B̃−∗(V ))(S) = Coker(B̃−1(V )(S) −→ V (S)) =

Coker

(
colim
T�S

V (T ) −→ V (S)
)

. This proves (6.8).

To prove (6.9), we proceed as follows: for each subset T ⊆ S of cardinality |S| − 2, there are exactly two 
subsets T1, T2 ⊆ S each of cardinality |S| −1 such that T ⊆ T1, T2. This induces maps V (T ) −→ V (T1) and 
V (T ) −→ V (T2). We now observe that

colim
T�S

V (T ) = Coeq

⎛⎜⎜⎝ ⊕
T ⊆ S

|T | = |S| − 2

V (T )
⊕

T ⊆ S
|T | = |S| − 1

V (T )

⎞⎟⎟⎠ (6.10)

From the definition of the differential in the complex in (6.7), it is clear that the expression in (6.10) is 
identical to Coker(B̃−2(V ) −→ B̃−1(V ))(S). It follows that

H−1(B̃−∗(V ))(S) = Ker(Coker(B̃−2(V ) −→ B̃−1(V ))(S) −→ V (S)) = Ker

(
colim
T�S

V (T ) −→ V (S)
)

�
Proposition 6.2. Let V ∈ FIR. Then, for each a ≥ 0, the canonical map Ha(V ) −→ S1Ha(V ) is zero.

Proof. We consider the system of maps

{G−b : B−bV −→ S1B−b−1V }b≥0 (6.11)

defined as follows: for a finite set S and a map φ : [b] −→ S, denote by φ̄ : [b + 1] −→ S � [−1] the map 
given by
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φ̄(i) =
{

∗ if i = 1
φ(i− 1) otherwise

(6.12)

where [−1] has been chosen to be the single element set {∗}. Then, the identifications

V (S, φ) = V (S − φ[b]) =−→ V (S � [−1] − φ̄[b + 1]) = V (S � [−1], φ̄) (6.13)

combine to determine the map G−b(S) : B−bV (S) −→ B−b−1V (S � [−1]) = S1B−b−1V (S). As in the proof 
of [9, Proposition 2.25], it may be verified that the maps G−b induce a homotopy equivalence between the 
zero map and the canonical map B̃−∗(V ) −→ S1B̃−∗(V ). �
Proposition 6.3. Suppose that Mod − R is locally noetherian. Let V ∈ FIR be a finitely generated object. 
Then, for each a ≥ 0, there exists N ≥ 0 such that Ha(V )n = 0 for all n ≥ N .

Proof. We have explained before that if V ∈ FIR is finitely generated, B̃−a(V ) is finitely generated. Since 
FIR is locally noetherian, it follows that Ha(V ) is also finitely generated. We consider the trivial torsion 
theory τ0 on Mod −R whose torsion class is 0. Using Proposition 3.2, this induces a torsion class on FIfgR
whose torsion class T 0 is given by

Ob(T 0) := {V ∈ Ob(FIfgR ) | Vn = 0 for n � 0} (6.14)

Using Theorem 3.8, we know that the torsion subobject of Ha(V ) is given by

T 0(Ha(V ))(S) = colim
b≥0

lim
(
Ha(V )(S)

ψ
Ha(V )
b (S)−−−−−−−→ SbHa(V )(S) ←−−−− T0(SbHa(V )(S))

)
= colim

b≥1
lim

(
Ha(V )(S)

ψ
Ha(V )
b (S)−−−−−−−→ SbHa(V )(S) ←−−−− 0

) (6.15)

From Proposition 6.2 and the expression in (6.15), it now follows that T 0(Ha(V ))(S) = Ha(V )(S). Hence, 
Ha(V ) ∈ T 0 and the result follows. �

We now have an analogue of [9, Theorem C].

Theorem 6.4. Suppose that Mod −R is locally noetherian. Let V ∈ FIR be a finitely generated object. Then, 
there exists N ≥ 0 such that

colim
T ⊆ S

|T | ≤ N

V (T ) = V (S) (6.16)

for each finite set S.

Proof. Using Proposition 6.3, we can choose N ≥ 1 such that H0(V )n = H1(V )n = 0 for all n ≥ N . It is 
clear that (6.16) holds for all S such that |S| ≤ N . We consider a set S with |S| > N and suppose that 
(6.16) holds for all finite sets U of cardinality < |S|. We observe that

colim
T ⊆ S

|T | ≤ N

V (T ) = colim
U�S

colim
T ⊆ U
|T | ≤ N

V (T ) (6.17)

Since each U appearing in (6.17) has cardinality < |S|, we have

colim
T ⊆ S

V (T ) = colim
U�S

V (U) (6.18)

|T | ≤ N
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Finally since |S| > N , we know that H0(V )(S) = H1(V )(S) = 0. The result is now clear from the expressions 
in Proposition 6.1. �

So far in this section, we have used the properties of Ha(V ) for V finitely generated. We will now consider 
the objects Ha(V ) when V is shift finitely generated.

Lemma 6.5. Let V ∈ FIR be shift finitely generated. Then, for any a ≥ 0, B−a(V ) is also shift finitely 
generated.

Proof. Since V ∈ FIsfgR , we choose d ≥ 0 such that SdV is finitely generated. We choose e ≥ a + d. We 
will show that SeB−a(V ) is finitely generated. For any finite set T , we see that

SeB−a(V )(T ) = B−aV (T � [−e])

=
⊕

φ:[a]→T�[−e]
V (T � [−e] − φ[a])

=
a⊕

j=0

⎛⎜⎝ ⊕
φ : [a] → T � [−e]

|Im(φ) ∩ T | = a − j

V (T � [−e] − φ[a])

⎞⎟⎠ =
a⊕

j=0

⎛⎜⎜⎜⎝ ⊕
φ = (φ′, φ′′)

φ′ : [a − j] → T
φ′′ : [j] → [−e]

V (T � [−e] − φ[a])

⎞⎟⎟⎟⎠
⊕(aj)

=
a⊕

j=0

⎛⎜⎝ ⊕
φ′ : [a − j] → T
φ′′ : [j] → [−e]

V ((T − φ′[a− j]) � ([−e] − φ′′[j]))

⎞⎟⎠
⊕(aj)

=
a⊕

j=0

( ⊕
φ′ : [a − j] → T

V ((T − φ′[a− j]) � [−(e− j)])
)⊕

(
(aj)·([j],[e])

)

=
a⊕

j=0

( ⊕
φ′ : [a − j] → T

Se−jV (T − φ′[a− j])
)⊕

(
(aj)·([j],[e])

)

=
a⊕

j=0

(
B−(a−j)(Se−jV )(T )

)⊕(
(aj)·([j],[e])

)

(6.19)

Since e ≥ a + d, we know that e − j ≥ d for each 0 ≤ j ≤ a. Hence, each Se−jV appearing in the direct 
sum in (6.19) is finitely generated. Then, each B−(a−j)(Se−jV ) is finitely generated and it is now clear from 
(6.19) that SeB−a(V ) is finitely generated. �
Proposition 6.6. Let Mod −R be locally noetherian. Let V ∈ FIR be shift finitely generated. Then, for any 
a ≥ 0, Ha(V ) is also shift finitely generated.

Proof. From Lemma 6.5, we know that B−a(V ) is also shift finitely generated. We have shown in Propo-
sition 3.11 that FIsfgR is a Serre subcategory. From the definitions, it is now clear that B̃−a(V ) and hence 
Ha(V ) lie in FIsfgR . �
Theorem 6.7. Suppose that Mod −R is locally noetherian. Let V ∈ FIR be a shift finitely generated object. 
Fix a ≥ 0 and consider any finitely generated subobject W ⊆ Ha(V ). Then, there exists N ≥ 0 such that 
Wn = 0 for all n ≥ N .
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Proof. Since V ∈ FIsfgR , we know from Proposition 6.6 that Ha(V ) is shift finitely generated. We consider 
the trivial torsion theory τ0 on Mod − R whose torsion class is 0. Using Proposition 3.13, this induces a 
torsion class on FIsfgR whose torsion class T sfg

0 is given by

Ob(T sfg

0 ) := {V ∈ Ob(FIsfgR ) | Every finitely generated W ⊆ V satisfies Wn = 0 for n � 0} (6.20)

Using Theorem 3.17, we know that the torsion subobject of Ha(V ) is given by

T sfg

0 (Ha(V ))(S) = colim
b≥0

lim
(
Ha(V )(S)

ψ
Ha(V )
b (S)−−−−−−−→ SbHa(V )(S) ←−−−− T0(SbHa(V )(S))

)
= colim

b≥1
lim

(
Ha(V )(S)

ψ
Ha(V )
b (S)−−−−−−−→ SbHa(V )(S) ←−−−− 0

) (6.21)

From Proposition 6.2 and the expression in (6.21), it now follows that T sfg

0 (Ha(V ))(S) = Ha(V )(S). Hence, 
Ha(V ) ∈ T sfg

0 and the result follows. �
We conclude with the following result.

Corollary 6.8. Suppose that Mod −R is locally noetherian. Let V ∈ FIR be a shift finitely generated object 
such that H0(V ) and H1(V ) are finitely generated. Then, there exists N ≥ 0 such that

colim
T ⊆ S

|T | ≤ N

V (T ) = V (S) (6.22)

for each finite set S.

Proof. Since H0(V ) and H1(V ) are finitely generated, it follows from Theorem 6.7 that there exists N ≥ 0
such that H0(V )n = H1(V )n = 0 for all n ≥ N . The rest of the proof now follows in a manner similar to 
that of Theorem 6.4: it is clear that (6.22) holds for all S such that |S| ≤ N . We consider a set S with 
|S| > N and suppose that (6.22) holds for all finite sets U of cardinality < |S|. We observe that

colim
T ⊆ S

|T | ≤ N

V (T ) = colim
U�S

colim
T ⊆ U
|T | ≤ N

V (T ) (6.23)

Since each U appearing in (6.23) has cardinality < |S|, we have

colim
T ⊆ S

|T | ≤ N

V (T ) = colim
U�S

V (U) (6.24)

Finally since |S| > N , we know that H0(V )(S) = H1(V )(S) = 0. The result is now clear from the expressions 
in Proposition 6.1. �
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