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Abstract: We propose a passive all optical device capable of transforming the orbital angular
momentum (OAM) state of light conditioned over the polarization states. The efficiency of this
device is ensured due to its linear optical nature. As applications of this device, we show CNOT
and SWAP operations between polarization and OAM qubits, non-interferometric OAM mode
sorter and generalized Pauli X operation on a four-dimensional subspace of OAM.
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1. Introduction

Quantum information processing (QIP) which includes quantum communication and quantum
computation is the fastest growing field in science and technology. QIP exploits the superposition
and measurement collapse of the quantum systems to gain higher speed up for computational
purposes and to make communication unconditionally secure [1,2]. Although, quantum compu-
tation can be performed using a large variety of systems such as trapped atom and ions [3–6],
superconducting circuits [7–9], nuclear magnetic resonance [10,11], defect centers in diamonds
[12–14], and photonic systems [15–19], photons are the only viable option for long distance
quantum communication because of their weak interaction with their environment. Photons
possess several degrees of freedom (DoFs) such as polarization, frequency, and orbital angular
momentum (OAM) which can be used for quantum communication tasks [19].

OAM states are the eigenmodes of the paraxial wave equation described by helical wavefronts,
which is characterized by the winding number −∞<ℓ<∞. OAM of light can serve as a multi-level
quantum system as it possess infinite number of orthogonal states [20]. However, implementing
a general unitary operation on these states can be resource intensive [21]. Furthermore, the
difficulty in manipulating and measuring the states of OAM restricts its usability.

An efficient and general unitary operation is known only on the subspace spanned by ℓ = ±1
[22]. Similarly, no efficient method to perform measurement on the OAM space is known
[23,24]. The most common methods to measure the OAM states of light involves cumbersome
interferometric setups in order to sort orthogonal OAM modes in different spacial modes [25,26],
or performing log-polar transformation [27] on them to convert the helical phase structure into
linear phase and sort them through the use of a convex lens [28] or use tilted lens [29] in order
to measure OAM states of light. Other methods which make use of log-polar transformation –
directly or indirectly – to sort LG modes include [30–32].

OAM along with polarization DoF of light can also be used as a hybrid quantum system for
QIP tasks such as Quantum walks [33] and Deutsch algorithm [34]. However, coupling the OAM
and polarization is a challenge on its own. Devices such as q-plate [35] and J-plate [36] can, for
instance, provide this coupling. However, generation of vector-vortex beams using such devices
have been only demonstrated for two superpositions [37,38], and generation of higher-order
superpositions remains a difficult process. Moreover, fabrication of such devices can be fairly
difficult.
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Protocols that require entanglement between the OAM and the polarization of a single photon
or a light beam will need operations such as the CNOT and the SWAP gates to achieve that
task. Such protocols are the quantum walks in the OAM space [33], characterizing quantum
channel using classical light [39], and fabrication of the vector-vortex beams [40,41]. Most of
the methods to implement these gates involve using interferometric setups which compromise
the scalability and efficiency of the protocol.

Here we propose an all optical device to couple the polarization and OAM DoFs. The action
of this device can be described as the action of Dove prism (DP) on the OAM DoF conditioned
over the polarization states of light; hence, we call it polarization sensitive dove prism (PSDP). It
consists of two half-wave-plates and a cube formed by gluing three negative uniaxial crystals
together in a specific manner. We discuss a few application of PSDP such as non-interferometric
OAM mode sorter, CNOT and SWAP operations between OAM and polarization states, and
generalized four-dimensional Pauli X operation on the OAM modes.

PSDP is a passive, all optical device which consists of linear optical elements, which makes
this device efficient and scalable, suitable for optical quantum computation and quantum
communication. The biggest advantage of this device is that a number of non-trivial operations
such as OAM sorting, CNOT operation, permutation operation can be performed without
interferometric method, as opposed to the currently available techniques to implement these
tasks. Furthermore, the difficulty in aligning PSDP is only as much as aligning a DP. This feature
of PSDP makes it an important device for quantum computation and communications. The linear
optical nature of PSDP allows efficient operations on both single-photons as well as classical
light.

The article is organized as follows: in Sec. 2 we present the relevant background required to
understand our result. Here we discuss vector-vortex beams, Dove prism, techniques used to sort
OAM modes, and generalized Pauli X operation. In Sec. 3 we present the details of PSDP. The
applications of PSDP are presented in Sec. 4. We conclude in Sec. 5.

2. Background

In this section, we introduce the concepts relevant for our results. We start with vector-vortex
beams – beams whose OAM and polarization DoF are non-separable. We describe the DP and
methods to sort OAM states. Finally, we end the section with describing generalized Pauli X
operation on the OAM DoF.

2.1. Vector-vortex beams

Orbital angular momentum states are the solutions of the paraxial wave equation in the polar
coordinates (r, ϕ, z) and are represented by Laguerre-Gaussian (LG) modes [42,43]. These OAM
modes can be characterized by two indices, (ℓ, p). While azimuthal index ℓ can assume any
integer value {. . . ,−1, 0, 1, . . .}, the radial index p can only take values {0, 1, 2, . . .}. LG mode
ψℓ

p (r, ϕ; z) is also an eigenmode of the angular momentum operator −iℏ∂/∂ϕ; hence, they carry
OAM of magnitude ℓℏ per photon [43]. To this end, we can write [44]

ψℓ
p (r, ϕ; z) = ⟨x, y|ψℓ

p (z)⟩, (1)

i.e., ψℓ
p (r, ϕ; z) is the position representation of the vector |ψℓ

p (z)⟩.
The state vectors {|ψℓ

p (z)⟩} form a complete orthonormal basis for the Hilbert space H of
the transverse modes of paraxial light [45]. Since, the transverse modes are independent of the
polarization, an arbitrary state vector for the polarization and the transverse modes can be written
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as [40]
|Ψ⟩ =

∑︂
ℓ,p

cℓ,p |ψ
ℓ
p (z)⟩ ⊗ |h⟩ +

∑︂
ℓ′,p′

c′ℓ′,p′ |ψ
ℓ′

p′ (z)⟩ ⊗ |v⟩, (2)

where cℓ,p and c′ℓ′,p′ are complex coefficients. It can happen that the mode |Ψ⟩ is entangled in the
spatial and polarization DoFs. Such modes are said to be “classically entangled” [46] and are
known as vector-vortex beams [37,38,40].

2.2. Dove prism

A DP is a reflective type prism which flips the image in one transverse direction and leaves the
other unchanged. Suppose a DP is placed along the z-axis (as shown in Fig. 1) and a paraxial
light field ψ(x, y; z) propagating in the z-direction passes through it. The action of the DP on this
light field can be written as

ψ(x, y; z) → ψ(−x, y; z). (3)

Fig. 1. Shown here is schematic of the DP placed in y-z plane. Paraxial light field
ψ(x, y; z) traveling in the z-direction first gets refracted by face F1, total internally reflected
by face F2, and finally gets refracted by face F3. The DP transforms the paraxial field as
ψ(x, y; z) → ψ(−x, y; z) [see (3)].

In other words, r→ r while ϕ→ −ϕ. As a result, the LG mode ψℓ
p (r, ϕ; z) transforms as

ψℓ
p (r, ϕ; z) → ψ−ℓp (r, ϕ; z). (4)

If we represent the DP action by the operatorUs where the subscript s denotes that the operator
U acts only on the spatial modes, then we can write

Us |ψ
ℓ
p ⟩ = |ψ

−ℓ
p ⟩. (5)

If the DP is rotated through an angle α about the z-axis anticlockwise, then the operator is
represented byUs(α) and the LG mode |ψℓ

p ⟩ transforms as [47]

Us(α)|ψ
ℓ
p ⟩ = ei2ℓα |ψ−ℓp ⟩. (6)

The reflection suffered by the light beam can result in the change of polarization. However,
DPs can be designed such that the polarization of the light remains unaffected [48], also known
as “idealized DP” [25].
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2.3. OAM sorting

Here, we briefly review some of the methods available in the literature to sort the LG modes
present in a paraxial light beam and thereby measure the OAM of the paraxial light field. We
assume that the paraxial light field ψ(r, ϕ; z) contains N number of LG modes with p = 0 alone,
and let |ψℓ

0 (z)⟩ ≡ |ℓ⟩. With this we can write the vector |ψ(z)⟩ (corresponding to the paraxial field
ψ(x, y; z)) as

|ψ(z)⟩ =
N−1∑︂
ℓ=0

cℓ |ℓ⟩, (7)

where cℓ’s are complex coefficients.
We first explain the interferometric method proposed in Ref. [25]. In this method, a setup that

consists of a Mach-Zehnder (MZ) interferometer embedded with two DPs is used in order to
sort even and odd OAM modes (Fig. 2). Sending |ψ(z)⟩ through the first beamsplitter BS1 in
the MZ setup in Fig. 2, we see that one of the light fields is reflected by mirror M2 and reaches
beamsplitter BS2. The other light field passes through two DPs, reflected by mirror M1, and
reaches beamsplitter BS2. These two DPs are kept such that the first one is rotated through an
angle α about the z–axis with respect to the second one. So the light field passing through the
DPs, say |ψ ′(z)⟩, transforms according to (6) as

|ψ(z)⟩ → |ψ ′(z)⟩ = UsUs(α)|ψ
ℓ
p ⟩ =

N−1∑︂
ℓ=0

cℓ ei2ℓα |ℓ⟩. (8)

On interfering the two light fields |ψ(z)⟩ and |ψ ′(z)⟩ on BS2, we obtain 1√
2
(|ψ(z)⟩ + |ψ ′(z)⟩)

and 1√
2
(|ψ(z)⟩ − |ψ ′(z)⟩) respectively. For the choice α = π/2, it is readily seen that even (|0⟩,

|2⟩, |4⟩, . . .) and odd (|1⟩, |3⟩, |5⟩, . . .) LG modes are sorted out and are available at the two
output ports of BS2.

Fig. 2. Mach-Zehnder (MZ) interferometric setup to sort linear combination of N LG modes
as given in Eq. (7). Balanced beamsplitter BS1 splits the input paraxial light field |ψ⟩ into
two fields which are both proportional to |ψ⟩. While one of them reaches beamsplitter BS2
after getting reflected by mirror M2, the other passes through 2 DPs (where the first one is
rotated through an angle α about the z-axis with respect to the second), reflected by mirror
M1, and reaches BS2. Interference of these two light fields, |ψ⟩ and |ψ′⟩ [see (8)], at BS2
results in the light fields (|ψ⟩ + |ψ′⟩)/

√
2 and (|ψ⟩ − |ψ′⟩)/

√
2 at the output ports. Choosing

the angle of rotation α to be π/2 yields the even and odd OAM modes on different output
ports.

Now the even LG modes can be sorted out using a similar MZ setup with the choice α = π/4
as two sets of LG modes {|0⟩, |4⟩, |8⟩, . . .} and {|2⟩, |6⟩, |10⟩, . . .}, respectively. Meanwhile, the
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odd LG modes can be sorted out using another MZ setup with the choice α = π/4 as two sets of
LG modes {|1⟩, |5⟩, |9⟩, . . .} and {|3⟩, |7⟩, |11⟩, . . .}, respectively. Hence, recursively one can
sort all N individual LG modes using N − 1 MZ interferometers with appropriate choice of α.
Sorting of 4 LG modes using 3 MZ interferometers has been illustrated in Fig. 3. Even though
this is a simple method to sort OAM states, alignment of N − 1 interferometers is a difficult task,
which restricts the scalability of this method.

Fig. 3. Demonstrating how a linear combination of four LG modes is sorted out using three
MZ interferometers described in the Fig. 2. MZ1 (with α = π/2) sorts even and odd OAM
modes. While the LG modes |0⟩ and |2⟩ are sorted by MZ2 (with α = π/4), |1⟩ and |3⟩ are
sorted by MZ3 (with α = π/4).

Another approach to sort OAM modes is based on Cartesian to log-polar coordinate transforma-
tion which was proposed and experimentally demonstrated by Berkhout et al. [28]. This optical
transformation maps the azimuthal phase profile pertaining to an LG mode to a tilted planar
wavefront. Now a convex lens focuses individual LG modes to a different position and thereby
sorting the LG modes. However, the separation efficiency was just 77%. By introducing refractive
beam-copying device (implemented using spatial light modulator) along with log-polar optical
transformation Mirhosseini et al. [30] reported a separation efficiency of 92% experimentally.

2.4. Generalized Pauli X operation

Generalized Pauli X operation and its integer powers along with the generalized Pauli Z (with its
integer powers) can be used to implement an arbitrary unitary operation on a given dimensional
Hilbert space. The Z operation (in N dimensions) given by Z =

∑︁N−1
n=0 exp 2iπn/N |n⟩⟨n| can be

easily implemented on OAM space by using two DPs, where the first one is rotated through an
angle α = πn/N about the z-axis with respect to the second one [49]. However, implementing X
is not as simple. Four-dimensional implementation of X on OAM space can be achieved as given
below [50,51]. For a more general cyclic permutation on OAM modes can be found in [52].

Consider the OAM subspace spanned by the following four spatial modes {|−2⟩, |−1⟩, |0⟩, |1⟩}.
The action of X can be written as

X |ℓ⟩ = |ℓ ⊕ 1⟩, (9)

where ℓ ∈ {−2,−1, 0, 1} and ℓ ⊕ 1 = ℓ + 1 (mod 4). In other words, X is a cyclic permutation
operation.

The X operation can be realized as follows [53]. First, the transformation |ℓ⟩ → |ℓ + 1⟩ is
achieved using a spiral phase plate, which adds an OAM of ℏ per photon. With this, we obtain
{|−2⟩, |−1⟩, |0⟩, |1⟩} → {|−1⟩, |0⟩, |1⟩, |2⟩}. Now even and odd modes are sorted using MZ
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OAM sorter with α = π/2 (see Fig. 2). By passing the even modes alone through a DP and
recombining the even and odd modes we finally obtain {|−1⟩, |0⟩, |1⟩, |−2⟩}, which is the desired
X operation.

For the X2 operation, we first sort the even and odd modes and perform transformation |ℓ⟩ →
|ℓ + 2⟩ only for the even OAM modes. This is followed by a reflection on all the modes and then
we combine them on a mode sorter. This results in {|−2⟩, |−1⟩, |0⟩, |1⟩} → {|0⟩, |1⟩, |−2⟩, |−1⟩}.

Finally, for the X3 operation, we first observe that X3 = X†. So we first sort even and odd modes
and then pass the even modes through a DP to obtain {|−2⟩, |−1⟩, |0⟩, |1⟩} → {|2⟩, |−1⟩, |0⟩, |1⟩}.
Now by applying the transformation |ℓ⟩ → |ℓ − 1⟩ using a spiral phase plate, which adds
an OAM of −ℏ per photon, we achieve the desired operation, namely, {|2⟩, |−1⟩, |0⟩, |1⟩} →
{|1⟩, |−2⟩, |−1⟩, |0⟩}.

Having introduced the necessary background, we present our device, polarization selective
Dove prism, and derive the associated infinite dimensional operator in the next Section.

3. Polarization selective Dove prism

Here we propose a device – named PSDP – which acts as a DP for one of the polarization states
of the light without affecting the orthogonal polarization state. This device consists of a cube
made of three negative uniaxial crystals glued together (see Fig. 4). We use two half-wave plates
to neutralize the effect of rotation of PSDP on the polarization states of light, as schematically
outlined in Fig. 5. In this section, we describe PSDP and the role of each of its individual
components in detail.

Fig. 4. Schematic diagram of the proposed device – made of negative uniaxial crystal –
which acts as a DP for one of the orthogonal polarizations of the incoming light field. Optic
axes (OA) of AED and BCF are along the z-axis, while that of ABFE is along the y-axis. So
both x (or the ordinary ray – denoted by ‘↕’) and y (or the extraordinary ray – denoted by ‘•’)
polarized light fields entering at point P1 will “see” the same refractive index no and thereby
propagate undeviated. Now inside ABFE the ordinary ray will pass through undeviated
by experiencing a refractive index no. However, the extraordinary ray will experience a
refractive index ne, and therefore bends at P2, total internally reflected at P3, and reaches
P4. Finally, inside BCF both ordinary and extraordinary rays experience the same refractive
index, no, and hence propagate along the line P4P5. Distances and angles shown here are
not to scale.

PSDP consists of three uniaxial crystals glued together as shown in Fig. 4. All three components
of PSDP are constructed from the same uniaxial crystal, however, their optic axis are aligned in
different directions. The two components, at the beginning and at the end (represented by blue
color), have their optic axis (OA) along z-axis and the middle symmetric trapezoidal component
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Fig. 5. Schematic diagram of the whole PSDP(α) setup, which acts as a DP rotated through
an angle α anticlockwise about the z-axis for the y-polarized light and leave the x-polarized
light unaffected. This device consists of two half-wave plates (HWPs) rotated at an angle
α/2 (denoted by Hα/2) and a PSDP (Fig. 4). Here, the Jones matrix corresponding to the
PSDP is J (see Eq. (10)), while that corresponding to the entire optical setup is −Jα (see
Eq. (16)).

has the OA aligned along y-axis. All three components put together form a cuboid of length L
and square cross-section of length d and area a = d2.

In a uniaxial crystal, the refractive index for ordinary ray is no and for extraordinary ray it is ne.
Since the OA in the first and third component is along the direction of propagation of light, i.e.,
z-axis, both the polarization (along x- and y-axis) are ordinary rays for them. However, in the
trapezoid the polarization along the OA is extraordinary, i.e., y-polarization and the polarization
orthogonal to OA is ordinary, i.e., x-polarization.

Let a coherent paraxial light field of wavelength λ propagating in the z-direction enter the
cuboid from the left at P1. Evidently, the light field propagates undeviated inside AED, as its OA
is along the z-axis. At P2, both polarizations “see” different refractive indices. As a result, the
y-polarized light bends away from the normal and propagates towards P3, whereas the x-polarized
light propagates undeviated towards P4. At P3, the y-polarized light is totally internally reflected
and propagates to P4. Finally, both polarizations once again “see” same refractive index at P4, as
the OA of BCF is along the z-axis and therefore propagate to P5 undeviated.

The optical path traveled by the ordinary ray and the extra ordinary rays in a uniaxial crystal
is different which results in delay in the arrival time for the two rays. This path difference can
be compensated using a Soleil compensator (SC), or by choosing negative uniaxial crystals and
appropriate angle β as shown in Appendix A.

Mathematically, the operation corresponding to the PSDP can be written as

J = |x⟩⟨x| ⊗ 1 + |y⟩⟨y| ⊗ Us. (10)

Here Us is DP operator acting on the OAM space [see Eq. (5)], {|x⟩, |y⟩} are the x- and
y-polarization states of light, and 1 represents identity operator acting on the OAM space.

Now we consider a situation where the crystal is rotated through an angle α anticlockwise
about the z-axis so that the plane of incidence makes an angle α with the x-axis (Fig. 5). Rotating
the PSDP setup by an angle α about the z-axis will result in the new operator given by

J(α) = RαJαR−α, (11)

where Rα is the rotation matrix

Rα =

⎡⎢⎢⎢⎢⎣
cosα − sinα

sinα cosα

⎤⎥⎥⎥⎥⎦ , (12)

and
Jα = |x⟩⟨x| ⊗ 1 + |y⟩⟨y| ⊗ Us(α). (13)
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For the rotated PSDP the states Rα |x⟩ is the ordinary ray and Rα |y⟩ is the extraordinary ray,
andUs(α) is acting on the OAM states coupled with new extraordinary polarization. However,
we want x- and y-polarizations to remain the ordinary and extraordinary, i.e., the operatorUs(α)
should act on OAM states coupled with y-polarization.

To overcome this problem, we can employ two half-wave plates (HWP) rotated by angle α/2,
as shown in Fig. 5. The transformation matrix corresponding to a HWP is given by [54,55]

H0 =

⎡⎢⎢⎢⎢⎣
i 0

0 −i

⎤⎥⎥⎥⎥⎦ . (14)

For the rotated HWP whose slow axis makes an angle α with the x-axis, the corresponding
Jones matrix is

Hα/2 = Rα/2H0R−α/2 = i
⎡⎢⎢⎢⎢⎣
cosα sinα

sinα − cosα

⎤⎥⎥⎥⎥⎦ . (15)

It can easily be seen that

Hα/2[R(α)JαR(−α)]Hα/2 = H0JαH0 = −Jα. (16)

Here, the negative sign introduces overall phase and can readily be discarded. Therefore, the
action of the rotation on the uniaxial crystal can be compensated using two HWPs and the whole
setup results in the operator Jα which performsUs(α) operation on the y-polarization and leaves
the OAM state associated with x-polarization unaffected. Hence, we achieve a device which is
capable of performing polarization selective DP action.

In summary, PSDP is a passive device which makes use of in-principle lossless optical
elements and can readily provide coupling between the OAM and the polarization DoFs. This
desirable feature is highly sought after in fields such as optical quantum computation and quantum
information. In the following Section we present a few applications of PSDP.

4. Applications

Although the PSDP is an all optical simple device, the applications of this device are limitless.
It is not possible to present all the application in this article, as example, we show realization
of CNOT and SWAP gates between polarization and OAM DoFs, non-interferometric OAM
sorter and permutation operation in four OAM modes, which are some of the most important
features required for quantum computation and communication. We should emphasize that PSDP
is capable of performing all these operations both on single photons as well as classical light.

4.1. CNOT operation

The action of the CNOT gate C on a two-qubit system [2] is written as

C |i⟩ ⊗ |j⟩ = |i⟩ ⊗ |j ⊕ i⟩, (17)

where i, j ∈ {0, 1} and j ⊕ i = j + i mod 2. Since the state of the first qubit is not changing upon
the action of C, it is called the control qubit and the second qubit is the target qubit.

In our setup, the polarization can serve as the control qubit with the basis {|x⟩, |y⟩} and OAM
as the target system with the subspace spanned by {|±ℓ⟩}. The action of the PSDP with the
operator J(0) on the joint basis {|x⟩ ⊗ |±ℓ⟩, |y⟩ ⊗ |±ℓ⟩} reads

J(0) : |x⟩ ⊗ |±ℓ⟩ → |x⟩ ⊗ |±ℓ⟩ (18)

|y⟩ ⊗ |±ℓ⟩ → |y⟩ ⊗ |∓ℓ⟩, (19)
which is identical to the CNOT gate. Hence PSDP at α = 0 realize the CNOT gate.
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4.2. SWAP operation

SWAP operation is defined as follows [2,56]:

SWAP : |ψ1⟩ ⊗ |ψ2⟩ → |ψ2⟩ ⊗ |ψ1⟩. (20)

SWAP gate on two-qubit system can be decomposed into three CNOT operation, i.e., (Fig. 6)

SWAP = C→C←C→, (21)

where C→ (C←) is the CNOT operation in which the first qubit is the control (target) qubit and
the second one is the target (control) qubit.

Fig. 6. (a) Circuit diagram of SWAP operation, implemented here using three CNOT gates.
Here, C→ (C←) denotes that the first (second) qubit is the control qubit. (b) SWAP operation
using three PSDP setups. PSDP(0) acts as a CNOT gate (denoted by C→; see (18) and 19)
with polarization qubit being the control qubit. Left and right multiplying C→ with H ⊗ H,
where H is the Hadamard operation [see Eq. (22)], we obtain C← – CNOT gate with OAM
modes in basis {| ± 1⟩} being the control qubit.

SWAP gate is an important gate for quantum computation and quantum information. In general
it is a difficult operation to implement, especially in an optical system. However, the SWAP
operation can be implemented using a set of PSDP as follows: as shown in the subsection 4.1,
PSDP(0) acts as a CNOT operation (say C→) on polarization plus OAM DoFs where {|x⟩, |y⟩}
is the basis for polarization and {|±1⟩} for OAM, and polarization is the control qubit. The
operation C→ can be converted into C← by using Hadamard operations on the two qubits, i.e.,
C← = (H ⊗ H)C→(H ⊗ H), where H is the Hadamard operation given by [2]

H = 1
√

2

⎡⎢⎢⎢⎢⎣
1 1

1 −1

⎤⎥⎥⎥⎥⎦ . (22)

It can be observed that the Hadamard operation on the polarization qubits can be realized
through the use of rotated HWP, Hπ/8, whereas the same on the OAM mode qubit with basis
{| ±1⟩} is realized using π/2- and π-phase converters which can be realized using thin cylindrical
lenses of positive focal length [22]. With this, the SWAP gate on polarization and OAM DoFs
can be implemented using three PSDP setups. The explicit construction of SWAP gate is given
in Fig. 6.

4.3. OAM sorting using PSDP

We now demonstrate how PSDP can sort the constituent LG modes present in a paraxial light
field. First we present the scheme to sort even-odd OAM modes. The setup for this is given in
Fig. 7(a). This setup requires two HWPs, two PSDPs, and a polarizing beamsplitter.
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Fig. 7. (a) Schematics diagram for PSDP OAM sorter (POS) which sorts N LG modes in the
polarization domain. This device consists of two rotated HWPs (H π

8
) and two PSDP(α) [with

rotation angles α and 0 (Fig. 5)]. If the incoming light is in the state |ψ⟩ ⊗ |x⟩, the state
of light after passing through POS will be (|ψ⟩ + |ψ′⟩)/

√
2 ⊗ |x⟩ + (|ψ⟩ − |ψ′⟩)/

√
2 ⊗ |y⟩.

Polarizing beamsplitter (PBS) is used to split the resultant light into horizontal and vertical
beams conditioned on the polarization states. (b) OAM sorting of four OAM modes using
three POSs.

Consider a paraxial light field in horizontal polarization represented by the state vector

|Ψ⟩ =
∑︂
ℓ

cℓ |ℓ⟩ ⊗ |x⟩, (23)

where cℓ are complex coefficients. In our setup, the beam passes through the HWP rotated at
π/8 angle Hπ/8 [see (15)] which causes the transformation

|Ψ⟩ →
∑︂
ℓ

cℓ |ℓ⟩ ⊗
1
√

2
(|x⟩ + |y⟩) ≡ |Ψ1⟩. (24)

The action of PSDP(α) followed by another PSDP(0) transform the state |Ψ1⟩ to

|Ψ2⟩ =
1
√

2

∑︂
ℓ

cℓ
(︂
|ℓ⟩ ⊗ |x⟩ + ei2ℓα |ℓ⟩ ⊗ |y⟩

)︂
. (25)

Finally, the action of another Hπ/8 results in

|Ψ3⟩ =
1
2

∑︂
ℓ

cℓ
[︁
(ei2ℓα + 1)|ℓ⟩ ⊗ |x⟩

+(1 − ei2ℓα)|ℓ⟩ ⊗ |y⟩
]︁

.
(26)

Therefore, choosing α = π/2 will result in a state entangled between OAM and polarization
DoFs, which is given by

|Ψ3⟩ =

∞∑︂
n=−∞

c2n (|2n⟩ ⊗ |x⟩ + |2n + 1⟩ ⊗ |y⟩) . (27)



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14927

Here all the even OAM modes are coupled with the horizontal polarization and all the odd
modes are coupled with vertical polarization. The even and odd modes can now be separated in
different spatial modes using a polarizing beamsplitter.

The even modes can further be separated into 4n and 4n + 2 modes by choosing α = π/4. In
the case of odd modes, we let ℓ = 2n + 1, where n = 0, 1, . . .. Then Eq. (26) becomes

|Ψ3⟩ =
1
2

∑︂
n

c2n+1

[︂
(ei2(2n+1)α + 1)|2n + 1⟩ ⊗ |x⟩

+(1 − ei2(2n+1)α)|2n + 1⟩ ⊗ |y⟩
]︂

.
(28)

It is evident that by letting α = π/4 we are unable to sort |4n + 1⟩ and |4n + 3⟩ modes in
horizontal and vertical polarizations, respectively. Nevertheless, by introducing a phase factor
ei2α to the horizontal polarization alone in Eq. (25) with ℓ = 2n + 1 and follow it by Hπ/8 we
obtain

|Ψ3⟩ =
ei2α

2

∑︂
n

c2n+1
[︁
(ei4nα + 1)|2n + 1⟩ ⊗ |x⟩

+(1 − ei4nα)|2n + 1⟩ ⊗ |y⟩
]︁

.
(29)

Consequently, the modes |4n + 1⟩ and |4n + 3⟩ can be sorted in horizontal and vertical
polarizations, respectively, for α = π/4. And the overall phase factor, ei2α, which is common to
both polarizations, can be discarded. Hence, recursive use of the PSDP based OAM sorter can
be employed to sort all the OAM modes. In order to sort N OAM modes we require N − 1 PSDP
OAM sorter (POS), which include 2N − 2 HWPs, 2N − 2 PSDP setups and N − 1 polarizing
beamsplitters. While sorting odd OAM modes, we require an additional polarization sensitive
phase shifter for each choice of α. However, this setup does not require aligning interferometers;
hence, PSDP can sort OAM states efficiently and the setup is scalable. In Fig. 7(b) we sketch the
sorting of four OAM modes using three POS.

4.4. Generalized X operation

Generalized Pauli X operation is implemented on the OAM subspace spanned by {| − 2⟩, | −
1⟩, |0⟩, |1⟩} using PSDPs as given below. Without loss of generality, we can assume that the
input light is in the horizontal polarization state. First step in implementing X operation is to
add unit angular momentum. This can be done using a spiral phase plate. This results in the
transformation {|−2⟩, |−1⟩, |0⟩, |1⟩} → {|−1⟩, |0⟩, |1⟩, |2⟩}. Now letting the resultant modes
pass through POS (see Fig. 7 (a)) with α = π/2 changes the polarization state of the even modes,
|0⟩ and |2⟩, from |h⟩ to |v⟩. However, the polarization state of the odd modes, |−1⟩ and |1⟩,
remains the same. Subsequent action of PSDP(0) will result in the even modes transforming
as {|0⟩, |2⟩} → {|0⟩, |−2⟩}, while the odd modes (in |h⟩) remain unaffected. Finally, passing
these modes through POS−1 – obtained by interchanging PSDP(α) and PSDP(0) in POS (see
Figure 7 (a)) with α = π/2 – we obtain {| − 1⟩, |0⟩, |1⟩, | − 2⟩} (all available now in |h⟩). Since
X3 = X†, the same setup in the reverse order can be used to implement X3 operation.

In the case of X2 operation, we first pass the given spatial modes through POS with α = π/2
so that the polarization state of the even modes is changed from |h⟩ to |v⟩. Next step in realizing
X2 operation is to add two units of OAM in only the even states. This can be achieved by
using fork hologram in spatial light modulators (SLM). SLMs can be made to operate only on a
certain polarization state leaving the other polarization unaffected. We can use a DP to perform
|ℓ⟩ → |−ℓ⟩ transformation for all the modes. Finally, by applying POS−1 transformation with
α = π/2 results in X2 operation. Hence, using two POS setups and one PSDP setup one can
realize generalized Pauli X and X3 operations and using SLM and DP along with two POS setups
X2 operation, all in a single beam.
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5. Conclusion

We have proposed an all optical device named polarization sensitive Dove prism which can
couple OAM and polarization DoFs of light without involving digital/liquid crystal devices or
interferometric methods. This device consists of in principle lossless linear optical elements such
as uniaxial crystal and half wave-plates which makes the device highly efficient and scalable.
The linear optical nature of PSDP makes it work equally good on single-photons as well as
classical light. As applications of PSDP, we present the scheme to implement CNOT operation
and SWAP operation between polarization and OAM of light, efficient and scalable sorting of
OAM states and implementation scheme for cyclic permutation operations on a four-dimensional
subspace of OAM of light. Although, all these operations have already been implemented using
various interferometric methods or using digital/liquid crystal devices, the main advantage of
using PSDP is that the same operations can now be done with non-interferometric linear optical
setup. Since OAM is a highly sought after property for quantum information processing tasks,
PSDP can be an important device for photonic quantum computation and information.

Appendix A. Optical path difference (OPD)

In this appendix we calculate the optical path difference (OPD) between the ordinary and
extraordinary rays as shown in Fig. 4. We have

OPD = 2neP2P3 − 2noP2P3 cos δ
= 2P2P3(ne − no cos δ).

(30)

Because P2P3 sin δ = d/2, the OPD is

OPD =
d (ne − no cos δ)

sin δ
. (31)

Relation between angles δ and β can be found with the aid of Snell’s law at P2 for the
extraordinary ray. We find that

no sin β = ne sin(β + δ) (or)

tan β =
sin δ

(no/ne) − cos δ
.

(32)

This OPD between the ordinary and extraordinary rays can be compensated by using an SC
[55,57]. Evidently, the OPD in Eq. (31) can be made 0 for the choice

δ = cos−1
(︃
ne

no

)︃
. (33)

Then by (32) the corresponding β is

β = tan−1

(︄
ne√︁

n2
o − n2

e

)︄
. (34)

This choice of β ensures that the OPD is 0, and we don’t require an SC. However, we must
ensure that the extraordinary ray at point P3 in Fig. 4 is total internal reflected for the choice of δ.
For example, if we consider calcite (ne = 1.486 and no = 1.658 when λ = 589.3 nm is used [58]),
a negative uniaxial crystal, the angles δ and β are 26.329◦ and 63.671◦, respectively.
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