IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

1479

A Scalable Platform for Distributed Object
Tracking Across a Many-Camera Network

Aakash Khochare ™, Aravindhan Krishnan, and Yogesh Simmhan

, Senior Member, IEEE

Abstract—Advances in deep neural networks (DNN) and computer vision (CV) algorithms have made it feasible to extract meaningful
insights from large-scale deployments of urban cameras. Tracking an object of interest across the camera network in near real-time is a
canonical problem. However, current tracking platforms have two key limitations: 1) They are monolithic, proprietary and lack the ability to
rapidly incorporate sophisticated tracking models, and 2) They are less responsive to dynamism across wide-area computing resources
thatinclude edge, fog, and cloud abstractions. We address these gaps using Anveshak, a runtime platform for composing and coordinating
distributed tracking applications. It provides a domain-specific dataflow programming model to intuitively compose a tracking application,
supporting contemporary CV advances like query fusion and re-identification, and enabling dynamic scoping of the camera network’s
search space to avoid wasted computation. We also offer tunable batching and data-dropping strategies for dataflow blocks deployed on
distributed resources to respond to network and compute variability. These balance the tracking accuracy, its real-time performance, and
the active camera-set size. We illustrate the concise expressiveness of the programming model for four tracking applications. Our detailed
experiments for a network of 1000 camera-feeds on modest resources exhibit the tunable scalability, performance, and quality trade-offs

enabled by our dynamic tracking, batching, and dropping strategies.

Index Terms—Big data platform, edge and fog computing, video analytics, distributed stream processing, Internet of Things

1 INTRODUCTION

HE push for smarter and safer cities has led to the prolif-
Teration of video cameras in public spaces. Regions like
London, New York, Singapore and China [1] have deployed
camera networks with 1000’s of feeds to help with wurban
safety, e.g., to detect abandoned objects, to track missing peo-
ple and for behavioral analysis [2]. They are also used for citi-
zen services, e.g., to identify open parking spots and count the
traffic flow. Such “many-camera networks”, when coupled
with sophisticated Computer Vision (CV) algorithms and
Deep Learning (DL) models can also serve as meta-sensors to
replace other physical sensors for IoT applications and to
complement on-board cameras for self-driving cars [3].

One canonical application domain that operates over
such ubiquitous video feeds is called tracking [4]. Here, the
goal is to identify an “object” or “entity” (e.g., a stolen vehicle
or a missing child), based on a given sample image, in video
streams arriving from cameras distributed across the city,
and to track that entity’s movements across the many-camera
network in near real-time [5]. Fig. 1 illustrates a missing per-
son being tracked across a network of 5 video cameras,
C4—Cpg, on a road network using a smart spotlight tracking
algorithm. A blue circle indicates the Field of View (FOV) of

o Aakash Khochare and Yogesh Simmhan are with the Department of
Computational and Data Sciences, Indian Institute of Science, Bangalore
560012, India. E-mail: {aakhochare, simmhan}@IISc.ac.in.

o Aravindhan Krishnan was with the Indian Institute of Science, Bangalore
560012, India. He is now with the VM Ware, Bangalore 560076, India.
E-mail: aravindhank11@gmail.com.

Manuscript received 28 Mar. 2020; revised 15 Dec. 2020; accepted 21 Dec. 2020.
Date of publication 5 Jan. 2021; date of current version 28 Jan. 2021.
(Corresponding author: Aakash Khochare.)

Recommended for acceptance by T. Kosar.

Digital Object Identifier no. 10.1109/TPDS.2021.3049450

a camera. The path taken by the person between time ¢; and
t5 is indicated by the green dashed arrow. Given an image
of the person, the goal is to trace their path across the city
with high accuracy, while reducing the application design
and computing overheads. These pose several challenges.

Challenge 1 (Composability). The application requires online
video analytics across space and time, and this commonly
has three stages: object detection, object tracking, and re-
identification [4]. The first filters out objects that do not belong
to the same class as the entity while the second tracks objects
in a single camera’s frame. Re-identification (or re-id) matches
the objects in a camera with the given target entity [6].
Recently, a fourth stage, fusion, enhances the original entity
query with features from the matched images that is then
used for tracking, giving better accuracy [7].

Each of these individual problems is well-researched. But
these stages have to be composed as part of an overall platform,
and coupled with a distributed tracking logic that operates
across the camera network and over time. Stages like object
tracking may require specialized DNNs to deal with crowded
scenes or occlusion. However, contemporary many-camera
analysis platforms are monolithic, proprietary and bespoke [8],
[9I[10]. They offer limited composability and reusability of
models, and minimal support for custom tracking strategies.
This increases the time and effort to incorporate domain intelli-
gence and adopt the rapid advances being made in CV/DL.

Challenge 2 (Distributed Tracking). It is impractical to exe-
cute the full video analytics pipeline on all the cameras due
to the punitive computing and network costs. E.g., just
doing object detection on a 1000-camera network using a
contemporary fast neural network requires 5-128 Titan XP
GPUs; besides, the bandwidth to move the video streams to
the compute resource is high [11]. Instead, these platforms
should incorporate smart tracking strategies that limit the

1045-9219 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

https://orcid.org/0000-0001-6399-3749
https://orcid.org/0000-0001-6399-3749
https://orcid.org/0000-0001-6399-3749
https://orcid.org/0000-0001-6399-3749
https://orcid.org/0000-0001-6399-3749
https://orcid.org/0000-0003-4140-7774
https://orcid.org/0000-0003-4140-7774
https://orcid.org/0000-0003-4140-7774
https://orcid.org/0000-0003-4140-7774
https://orcid.org/0000-0003-4140-7774
mailto:aakhochare@IISc.ac.in
mailto:simmhan@IISc.ac.in
mailto:aravindhank11@gmail.com

1480

Cyatt,

Lt 2 t, t Fagt k,»
T4 £ £ T4 7 -
t N S
5

Cgatt,
o

. X

o | Ceatts
| #

Fig. 1. Spotlight strategy for camera activation while tracking. Blue
circles are the FOV of cameras C'4—C. The person icon shows people
on the road at times t,—t;. A red person means the entity of interest is in
a blindspot while a green person means they are in the FOV of a camera.
A purple person indicates someone not being queried for. Sample
images used in our experiments are shown to the right [13]. The yellow
circles S; are the calculated spotlight regions that indicate which cam-
eras should be active at time ¢;. The purple diamonds with an E indicate
edge devices co-located with the cameras while the orange squares
with an F indicate fog devices present across the city.

video processing to the cameras where the object is likely to
be present and adapt to blindspots [12]. They can use domain
knowledge like the road and transit network, speed of the
object, camera location and field of view to make smart
choices on the video streams to be actively processed.

Example. In Fig. 1, the cameras need not generate and
process video feeds unless activated. Initially, at time ¢;, the
target person (green icon) is within the FOV of Cy4, and only
this camera is made active. By time ¢, they (red icon) have
moved out of the FOV of C4, and also of all other cameras,
ie, in a blindspot. Now, we calculate a spotlight region
around the camera where they were last seen, and activate
cameras that fall in this region, as shown by the yellow cir-
cle S5, which contains C4 and Cp. This spotlight grows to
Sy at time t3 as the person is still in a blindspot, and it acti-
vates camera C¢ as well. The person reappears in the FOV
of C¢ at time ¢4 and the spotlight shrinks to S with just this
single camera being active and the rest are deactivated. The
spotlight again grows at time ¢; when the person is lost, and
S5 activates cameras C¢, Cp and Cg.

Using such a smart tracking logic can reduce the number
of active video streams we process, e.g., to 1-3 cameras
rather than all 5, in Fig. 1. This reduces the resource usage
substantially with limited impact on the tracking accuracy.
However, contemporary many-camera analysis platforms
do not offer such sophisticated tracking logic.

Challenge 3 (Scaling Across Edge and Fog Resources). Smart
cities are seeing edge and fog computing resources being
deployed on Metropolitan Area Networks (MAN), to com-
plement cloud resources [14]. Such edge and fog computing
resources can be used to achieve a judicious use of the Inter-
net bandwidth. [15]. This also brings processing closer to
the data source [16]. Fog resources distributed across the
city, with higher compute capability and even low-end
GPU accelerators, can complement edge resources in effi-
ciently processing video streams [15]. This is important for
video tracking, given its low latency, high bandwidth and
high compute needs [1], [17]. So tracking platforms must
effectively use such heterogeneous, wide-area compute
resources that are part of the computing continuum rather
than rely exclusively on cloud resources.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

For scalability, the platform must balance the latency for
tracking against the throughput supported for the active
camera feeds on the available resources — a high latency can
cause the object to be detected late, and lead to the spotlight
region growing larger when the person is missing, while a
low throughput can limit the number of cameras that can be
active at a time, and increase the chances of losing the per-
son. Also, given the dynamism of Wide Area Networks
(WANSs), compute performance and stream rates, the plat-
form must trade-off the accuracy of tracking with the
application’s performance at runtime. Current platforms do
not offer such tunable adaptivity and scaling [5], [18].

We make the following specific contributions in this arti-
cle to address these challenges:

1) We propose a novel domain-specific dataflow model for
current and emerging tracking applications, with
functional operators to plug-in different analytics.
Uniquely, it has first-class support for distributed track-
ing strategies to dynamically decide the active cameras
(Section 2). These address Challenges 1 and 2.

2) We implement the dataflow model and heuristics in
our Anveshak platform to execute across distributed
edge, fog and cloud resources (Section 3). Further, it
incorporates domain-sensitive heuristics for dropping
and batching frames, which allow users to tune the
accuracy, the latency and the scalability under dyna-
mism (Section 4). These address Challenge 3.

3) We illustrate the flexibility of the dataflow model
using 4 tracking applications, and offer detailed
empirical results across latency, accuracy, camera-
set sizes and tracking logic to validate the scalability
and tunability of our platform (Section 5).

We complement these with a review of related work in

Section 6 and offer our conclusions in Section 7.

2 A DOMAIN-SPECIFIC DATAFLOW FOR TRACKING

2.1 System Model

A many-camera infrastructure consists of a set of cam-
eras that are statically placed at specific locations in a
city, and each can generate a stream of video observa-
tions within its FOV [5]. The cameras are connected to a
MAN, directly or through an edge device [17]. Fog devi-
ces may also be co-located with the cameras or within a
few network hops of them, while cloud resources are
accessible at data centers over the WAN [14]. While the
edge and fog are typically captive city resources, cloud
resources are available on-demand for a price. These
resources have diverse capacities, and their performance
may vary over time due to multi-tenancy. The bandwidth
and latency between devices on the MAN and the WAN
can be dynamic, depending on the traffic. These can affect
the QoS of distributed applications.

Cameras allow remote access to their video streams over
the network and expose endpoints to control parameters
such as the frame rate, resolution and FOV [19]. Rather than
move these video feeds to a data center for processing, we
instead propose to move the analytics to the data by using
edge and fog devices close to the cameras, complemented
by the cloud for control.

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

KHOCHARE ETAL.: SCALABLE PLATFORM FOR DISTRIBUTED OBJECT TRACKING ACROSS A MANY-CAMERA NETWORK

Edge Edge/Fog/Cloud Cloud
= 8 —
2/ Al [N RNN
....... NN Broadcast
&L o e
: VA, DNN Ke,ve[] EQF
= 68 _)40 o @
\e/ R ; CR
C.{ Fcza} Cid,Img[] 1 KeVe[] uv
2
'==; - — R CﬁlaTé::s
;. Fcaa} Wf 2 ﬂi
3 { . <
— B ‘EVAZE\ W] BN Jﬂﬂ” H 051 a%
 City_ Tuning
Triangle

LATEN: ACCURACY,

cY
Tracking Logic

Fig. 2. Domain-specific dataflow and modules for tracking. (Inset) Tun-
able performance and scalability choices.

2.2 Domain-Specific Programming Model

We propose a domain-specific model for tracking applica-
tions as a pre-defined streaming dataflow with modules that
correspond to the logical stages of a tracking application
(Fig. 2). We specify the input and output interfaces for each
module, and statically compose them. Multiple instances of
a module can data-parallely execute different input events.
The user defines an application by providing the compute
logic for each module stage, which consumes and produces
streams of events (e.g., video frames, detections), and speci-
fies the routing between module instances.

General purpose dataflow models like ORCC [20],
Apache NiFi [21] and Apache Spark [22] allow programmers
to connect modules in a flexible manner to help compose
diverse applications. In contrast, we give a high-level data-
flow composition to meet the specific needs of tracking appli-
cations, and focus on specific implementations of these
modules based on advances in DL/CV models, and
uniquely, control the distributed tracking logic through a
custom module. This is like Hadoop MapReduce [23] where
the user specifies the Map and Reduce logic, but the dataflow
and execution pattern is pre-defined. Like Hadoop, our run-
time platform also offers the benefits of automatic paralleli-
zation and performance management.

Next we describe the interfaces of these modules, the
dataflow pattern, and the execution model (Fig. 2).

2.2.1 Filter Control (FC)

This module is the entry point for video frames from a cam-
era into the dataflow. It is usually co-located with the cam-
era or on an edge device connected to it. Each camera has a
single FC instance along with its local state. Users provide a
logic to decide if a video frame on the input stream of an FC
should be forwarded on its output stream to the Video Ana-
lytics (VA) module, or ignored. FC can use its local state
(e.g., isActive) or even the frame content to decide this. If a
frame is forwarded, a key-value event is sent on the output
stream, with camera ID as key and frame content as value.

Importantly, the FC state for a camera (e.g., isActive) can
be updated by control events from the Tracking Logic (TL),
as described in Section 2.2.4. This allows tunable activation of
video streams that will enter the dataflow, on a per-camera
basis. E.g., TL can have FC deactivate a camera feed if the
target will not be present in its FOV, or reduce/increase the
frame-rate based on the target’s speed. The FC logic should
be simple as it typically runs on edge devices.

1481

2.2.2 Video Analytics (VA)

This module receives input event streams from one or more
upstream FC modules, and performs video analytics on a sin-
gle camera’s stream at a time. Users can define complex com-
pute logic for object detection and tracking, and even
invoke external TensorFlow, PyTorch or OpenCV models [24].
The input API for the logic is an iterator of events, grouped
by the camera ID, and it can also access the target query (e.g.,
an image of a person), and maintain local state across execu-
tions. This is similar to the shuffle and reduce in MapReduce.
Grouping by camera ID gives the user logic access to a batch
of frames from the same camera for temporal analytics. It
also allows batching of inputs for model execution to amor-
tize loading costs, using strategies proposed in Section 4.4.

The output of the logic is a batch of key-value pairs,
which may be, e.g., the camera ID (key), and bounding
boxes for potential target objects in a frame with confidence
scores (value). There can be a many-to-many relationship
between the input and output events for this module. We
allow users to link an output event with an input event to let
us trace its latency and help with drop strategies we pro-
pose in Section 4.3. Depending on the compute needs, it
may run on edge, fog or cloud resources.

The local state of this module can be updated by the
Query Fusion (QF) task. This allows dynamic updates to the
entity query by fusion algorithms [7] to enhance a query’s
feature vector from successful detections of the entity. The
VA can also update its model based on such signals.

2.2.3 Contention Resolution (CR)

This module receives a stream of key-value events from one
or more VA instances, grouped by key. The keys are typically
the camera ID and the values contain detections or annotated
frames, but these can be overridden by the VA user logic. It
has access to the entity query as well. The user can provide
logic to analyze results from multiple cameras, say, to resolve
conflicting detections from different cameras, or use more
advanced DL models for a higher accuracy match. CR may be
triggered only on a conflict or a low confidence detection by
a VA, and hence execute less often than VA, but be compute
intensive. CR may even degenerate to a human-in-the-loop.
This makes it better suited for running on fog or cloud
resources. The output stream from CR primarily contains
metadata — much smaller than the video input — and this is
forked three ways, to TL, QF and UV modules. Like VA, this
module can receive updates from QF as well.

2.2.4 Tracking Logic (TL)

This is a novel module that we propose to help users capture
the core logic of distributed tracking across the multi-cam-
era network [25]. The detections that TL receives from CR
for each frame may be a positive or negative match with the
target query. On a negative detection, users can define a TL
logic to expand the search space by activating additional
cameras, while if the entity is found in a frame (positive),
they can contract the search space. The module can use
sophisticated tracking algorithms with prior knowledge of
the environment and the entity, and devise strategies to (de)
activate the cameras to optimize the quality and perfor-
mance of tracking. It can be hosted on cloud resources.

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

1482

E.g., in Fig. 1, TL uses knowledge of the road network
and camera locations to dynamically decide the camera
search space (spotlight), depending on when and in which
camera the entity was last detected, and (de)activates those
cameras. It can also be more sophisticated and have the
cameras focus on an approaching or receding entity, or
change the frame-rate based on the entity’s speed. This sep-
arates the core video analytics logic, from distributed entity
tracking across the camera network and camera controls.

2.2.5 Query Fusion (QF)

This module uses information on the detections to enhance
the entity query’s features. High-confidence entity detec-
tions in the input video can be fused with the existing entity
query to generate a new query that offers better matches, or
even use negative matches to enhance the query [7], [25].
The output of this module updates the entity query at the
VA and CR modules for their future input streams.

2.2.6 User Visualization (UV)

This is a user-facing module that can be used to submit the
entity query and display the current state of the tracking
and detections. This can be a central portal running on the
cloud where authorized personnel can view the progress.

2.3 Composing Tracking Applications

When composing a tracking application, users provide a
YAML file pointing to a Python implementation of each of
these modules, along with configuration details, which is
then executed by our Anveshak platform. Each module has
init, compute and partitioner functions with a fixed input and
output signature. Algorithm 1 gives the user logic for the
compute function of the FC, VA, CR, TL and QF modules for
a sample OpenRelD (ORID) Application [26] to track a person
entity across a road network. The App takes the image of a
person as the input query, and returns detections of the
entity in the camera network to the UV module. Fig. 2
shows how these modules are embedded into the pre-
defined dataflow pattern and the data flow between them.

FC uses the active state to decide if the camera’s output
should be passed to the downstream VA module as a series
of key-value events, (Cjq4,img), having the camera ID and
image. At the start, all FCs have active=true to let their cam-
era’s output be passed through to initially locate the entity.
All images from one camera ID are routed to a single VA
instance, determined by a partitioner function provided by
the user, and multiple FCs can send their feeds to one VA,
e.g., I'Cy and FC, to VA, in Fig. 2.

VA executes over a batch of images from one camera at a
time, (Cjq, tmgs[]). For ORID, it uses a feature-based HoG
pedestrian detector [27] (line 2) to put bounding boxes (bbs)
around persons in each image. The user’s Python compute
logic invokes OpenCV’s HoG external library, which exe-
cutes on the entire batch of images. For each input image, it
emits a key-value event, (Cj4, (img,outbbs|])), which has
the camera ID, the image and its bounding boxes. It is sent
to one of the CR instances determined by the partitioner.

CR receives a batch of tagged images from each camera,
crops and extracts the image regions in the bounding boxes,
and passes this batch to a high-quality PyTorch DNN for

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

pedestrian detection [26] (line 8). It matches the query entity
against the images and emits them with a true or false flag,
(Cy4, (img, was_detected)), which is sent to UV, TL and QF.

Algorithm 1. Modules” Compute Pseudocode for ORID
App

: procedure FCimg, state
return state.get("is Active’)
end procedure

: procedure VAC,4, imgs| |, state

bbs[][| = OpenCV.HoGimgs][1)

for img in imgs| | and outbbs| | in bbs[][] do
EMITCy, (img, outbbs] 1))

end for

end procedure

: procedure CR(C}y, (img, outbbs| |))[], state
query = state.get('entity_query_img')
cropped = [|
for tuple in(img, outbbs| |)[] do
cropped_img = CROPimg, outbbs] |
cropped.append(cropped_img)
end for
detections = PyTorch. DNN_CReropped, query
for was_detected indetections| | do
EMIT Cjq, (img, was_detected)
end for
12: end procedure

: procedure TL_WBFS(C}4, (img, detections| |))[|, state
el = GetEntityLocation (Cjg, detections| |)[]
if el == @ then 1> Entity lost. Expand spotlight...
graph = state.get('road_network’)
Isl = state.get('lastSeenLocation')
Ist = state.get('lastSeenTime')
cameras| | = WeightedBFSgraph, Isl, Ist
ExpandSearchSpacecameras
else
10: ShrinkSearchSpace el
end if
12: end procedure

—_ =
DY RNDT R RN AN |2

—_

—_
—_

1: procedure QF(Cj4, (img, detections[])[|), state
2: oldFeature « state.get('state’)

3: forimage inimg[| do

4: if detection == true then

5: newFeature «— RNN (image, old Feature)

6: endif

7: end for

8: emit(Cuy,imagel], out[])

9: end procedure

UV (not shown) just displays the camera frames having a
true flag to the user. TL, however, combines the presence or
absence of the entity in a camera, with the road and camera
network, and the last known location of the entity stored in
the state variable, to decide the cameras to (de)activate. If
the entity is missing from all cameras, we start a Weighted
Breadth First Search (WBFS) on the road network from the
last known position of the entity (line 7), considering the
road lengths, the entity’s peak speed and the time since its
last detection. This identifies the spotlight region where the
entity should be present, and TL signals the FC of cameras
in this region to activate them (line 8). Else, if the entity is

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

KHOCHARE ETAL.: SCALABLE PLATFORM FOR DISTRIBUTED OBJECT TRACKING ACROSS A MANY-CAMERA NETWORK

TABLE 1
Module Mappings for lllustrative Tracking Apps
App FC VA CR TL QF
ORID Active? HoG [27] Open WBEFS -
Re-id [26]
PRID Active? HoG [27] Person BFS RNN
Re-id [28] [7]
VRID Frame YOLO for BoxCar WBFS -
Rate Cars [11] Re-id [29] w/ speed
PbRID Active? Person Re-id Person Re-id Probabilistic -
(Small) [31] (Large) [32]

detected in some camera’s frame, the spotlight contracts to
that camera and deactivates all others (line 10). Lastly, QF
uses an RNN [7] to enhance the entity query using high-
quality hits and routes them to all VA and CR instances.
Table 1 lists the module logic used by ORID and three
other exemplar tracking applications we can compose. We
use the TensorFlow-based PersonRelD DNN [28] in CR for
the PRID App, with an unweighted BFS logic for TL. The
query may also match a vehicle’s image, in VRID, which
uses DNNs for vehicle detection in both VA [11] and
CR [29]. Here, TL is also more complex, with awareness of
the road lengths and speed limits. In PbRID, we use a Naive
Bayes model to give the likelihood of paths that will be
taken by the entity to decide the cameras to activate. Appli-
cations may also use DNNs trained for crowded traffic [30]
as their CR module. More details on the dataflow composi-
tion and PRID App are in Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2021.3049450.

3 ANVESHAK PLATFORM IMPLEMENTATION

We implement this domain-specific dataflow model as
Anveshak (Explorer, in Sanskrit), a Python-based distributed
runtime engine that allows users to easily define their track-
ing application. Its architecture is illustrated in Fig. 3. Anve-
shak is more light-weight than Big Data streaming platforms
like Apache Spark Streaming or Flink [22], [33], and
designed to operate on a WAN than a Local Area Network
(LAN). This allows it to be deployed on edge, fog or cloud
resources.

Application developers implement their user logic in
Python for the different modules of the dataflow, such as in
Table 1. External models like OpenCV and TensorFlow are
invoked by a user’s Python compute logic for a module as a
library call, by a command-line execution, or by invoking a
local gRPC service that wraps the model. Using a gRPC ser-
vice helps amortize the model loading and execution over-
heads across many events. A Master process runs in the
cloud at a well-known endpoint and manages the applica-
tion deployment. The application composed in YAML is sub-
mitted to the Master with the module definition, instance
count and configurations, e.g., path to a DNN model for VA
and CR, or the expected entity speed used by TL.

The Master calls a Scheduler logic that decides the map-
ping of module instances to the resources. The scheduling
logic is modular. By default, we use a simple round-robin
scheduler with a fixed number of instances per module

1483

Cloud VMs

Cloud VM

m Data Flow
o

~—+ Control Flow

Edges

Anveshak Worker

Fogs

Executor

Batching

& groupBy
Router .= T T

Tensor-
>
flow

- Partitioner EREC

RN B A groupBy
- <=

.
SysV Q " partitioner
(Executor)

Executor

Fig. 3. System architecture of Anveshak.

type, and map specific module types to specific edge, fog or
cloud resource abstractions. More advanced scheduling
strategies are beyond the scope of this paper.

Each distributed resource available for deploying the
dataflow runs a Worker process (Fig. 3), which manages
module instances on that resource and transfers data
between instances on different devices using ZeroMQ [34].
The Master initializes module instances on a resource by
contacting its Worker. We assume that the required libraries
are pre-deployed in the Workers, and in future, this can be
replaced by light-weight containers.

A Worker can host multiple FC, VA, CR, etc. module
instances with the user logic, and each is encapsulated in a
separate Executor process (Fig. 3). An Entry process copies
incoming events arriving over ZeroMQ for a Worker to a
common Sys V Inter-Process Communication (IPC)
queue [35], after dropping delayed events as discussed in
Section 4.3. From this, a Router process retrieves events for a
specific Executor, forms a batch using the strategy discussed
in Section 4.4, and puts it on the Executor’s SysV singleton
queue. The batching triggers when the Executor’s previous
execution of the module compute completes. For each batch
placed in its singleton input queue, the Executor invokes the
module’s compute logic on it and generates output events.

The output events are assigned to downstream module
instance(s) by calling the module’s partitioner function
defined by the user. This has to be one of the successor mod-
ule(s) in the static dataflow. Each Worker maintains a lookup
table from every deployed module instance to the Worker it
is present on, and uses this to route events to those Workers
over ZeroMQ. An Exit process ensures that delayed events
are dropped and not placed in ZeroMQ (Section 4.3). We do
not guarantee any ordering across input events arriving at a
module instance from different upstream module instances.
A Worker can also fetch events from an external endpoint
rather than ZeroMQ, such as from the camera for FC instan-
ces. Further platform details are in Appendix A.3, available
in the online supplemental material.

4 RUNTIME TUNING STRATEGIES

The Anveshak platform operates in a dynamic environment,
and needs to be tuned at runtime to adapt to these condi-
tions. We offer a novel Tuning Triangle (Fig. 2, bottom right),
where users can control the properties (corners of the triangle)
—end-to-end latency, accuracy and camera count scalability when
performing tracking, by modifying knobs (shown at the side

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3049450
http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3049450

1484

opposite to a property’s corner). The batching knob controls
the latency property, the dropping knob controls the accuracy,
and the sophistication of the tracking logic knob, already dis-
cussed, determines the active camera set size (or scalability).
Next, we discuss the two other knobs to control data drops
and batching. Additional discussions on these strategies are
provided in Appendix B, available in the online supplemen-
tal material.

4.1 Approach

We have a captive set of edge, fog and cloud resources hav-
ing variable compute load due to a changing active set size
being processed, and are connected over a MAN/WAN that
exhibits dynamism in the latency and bandwidth between
resources present on it. So the transient load on resources
hosting the active module instances can exceed the available
compute or network capacity, which leads to higher event
latencies that can cascade up the input event stream.

In such cases, we can gracefully degrade by dropping
events that cannot be processed within a maximum tolerable
latency (y) specified by the user. If we drop potentially stale
events early in the dataflow pipeline, we can make make
more resources available to the events that are retained and
increase their chances of completing within the threshold.
This knob helps meet the latency goals and supports a
larger active-set size, but it affects the accuracy of tracking if
frames containing the entity are dropped. Besides allowing
the users to disable dropping, we propose a smart dropping
strategy in Section 4.3 to dynamically vary the accuracy,
given a tolerable latency and a peak active camera set size.

For timely processing of the video feeds, it is sufficient
for the latency between a frame generated at a camera and
its processed response reaching the UV to fall within y. This
can be exploited to enhance the processing throughput by
batching events passed to the VA/CR modules to amortize
the static overheads of invoking the external DL models,
while ensuring that the processing latency per event is
within permissible limits. However, the time budget avail-
able for batching can vary across time, and is non-trivial to
estimate without a shared global clock. Besides allowing
users to set a fixed batch size, we propose an adaptive batch-
ing strategy in Section 4.4 that maximizes the batch size with-
out violating the latency constraint, for a given accuracy
requirement and a peak active camera set size.

Data drops and dynamic batching are featured in stream
processing systems. Techniques for load shedding (drops)
and batching [36], [37] have been proposed to help deter-
mine the the fraction of data to be dropped and the batch
size. They use greedy empirical approaches or model it as
an optimization problem that is solved using numerical
solvers. But they make centralized decisions, are computa-
tionally costly and/or expect synchronized device clocks.
These are challenging on constrained and wide-area distrib-
uted resources. Instead, we design strategies that are light-
weight, distributed and resilient to clock-skews.

4.2 Preliminaries

For modeling latency, we decompose the dataflow graph of
module instances (tasks) shown in Fig. 2 to a set of sequen-
tial task pipelines, with a task selectivity of 1:1 — the ratio of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

ZeroMQ Batching Router Executor ZeroMQ
NW Input NW Output
e Internal FIFO Queue e B}

> ‘Compute - =

o £ (LTI D M pari =

: “ > i}

w Dynamic Module 7;
1 batch size (b) 2 3

Drop Before Queueing Drop Befare Execution Drop Befare Transmit
A

Arrival Time (aj)

Execution Time (&;(b))
for event ¢;

Queuing Duration (qj,)

Processing Duration (1))

Fig. 4. Event processing at a Worker, with batching & drops.

input to output events. Each sequential pipeline has FC,
VA, CR and UV instances, though we assume these are
generic tasks, [t1, 19, ..., 7,], where 7 is the source task and
7, is the sink. We propose strategies for a single pipeline,
which is then generalized to the entire dataflow.

Each event e, arriving at the source task t; of each pipe-
line is assigned a unique ID k. This ID propagates to all its
causal downstream events. Since we have a 1:1 selectivity,
an event e}, in the pipeline can be uniquely identified by a
combination of its source event ID k and the task 7; it is an
input to.

When an event €} arrives at a task 7; from an upstream
task 7;_y, it is placed in a FIFO queue (Fig. 4). Events at the
front of the queue are identified by the Executor to form a
batch, whose size is dynamically decided, as discussed in
Section 4.4. The user-logic is triggered on the batch of input
events and it returns a batch of output events that is passed
to a partitioner, which routes each event based on its key to a
downstream task.

Let a, indicate the arrival time of an event €} at a task t;
from its upstream task (Fig. 4). This timestamp is mea-
sured at the resource hosting the task r;. The time spent
by the event in the queue before execution is given by the
queuing duration g¢.. Once events from the queue are
formed into a batch of size, say b, let the function ¢;(b)
give the estimated execution duration for the batch by the
user-logic for the task ;. We assume that the execution
duration monotonically increases with the batch size, i.e.,
&(b) < &(b+1). When b = 1, this is a streaming execution
with no batching delay. We also define the processing
duration 7, = ¢i. + £(b), as the time between an event arriv-
ing at a task and the resulting output event being placed
on its output stream.

We define the upstream time for an event e} arriving at
task 7; as u} = a} — a}. This is a relative time defined using
the timestamps of the source event e} at the source task and
the causal event ¢! observed at the current task, which in
turn depend on their local device clocks «; and «;. The
arrival time a}, for the source event e}, is propagated to all its
causal downstream events in their headers.

While we initially assume all device clocks are synchro-
nized, in Appendix B.3, available in the online supplemen-
tal material, we discuss how our techniques are resilient to
clock-skews between all devices (as is common in MAN/
WAN), except those hosting the source and sink tasks of the
pipeline, «; and «,,.

4.3 Strategies to Drop Events

The platform should drop any event e/ that cannot reach the
last task t, before a time aglc + y as it exceeds it maximum
tolerable latency y and is hence stale. So a task 7; may drop

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

KHOCHARE ETAL.: SCALABLE PLATFORM FOR DISTRIBUTED OBJECT TRACKING ACROSS A MANY-CAMERA NETWORK

an arriving event e; if (z; > ai + y. While simple, this
waits till the allowed latency is exceeded and does not pre-
vent resource wastage due to execution of tasks prior to
the one where the event is dropped. E.g., if at tasks 7,,_
and 7,1, we have a" % < al +y and " ! > al +y, then
every event will be processed through the first (n —2)
tasks and yet dropped at the (n — 1)th task, assuming that
the task processing times and network performance stay
constant. Ideally, the first task 7; should reject a newly
arriving event if it will be rejected downstream to avoid
resource wastage.

We capture the potential staleness of an event at a task
t; using a completion budget ;. This is the duration allowed
for an arriving event to complete processing at this task,
including the upstream time spent since its source task,
ie., if ul + 7, > B; for an event e}, it is stale and can be
dropped. Since 7}, is not known when the event arrives but
only after it is queued and executed, this drop decision is
taken thrice within a task, as shown in Fig. 4 and described
below.

This completion budget for a task can change often dur-
ing the lifetime of an application as the system reacts to vari-
ability. Later, in Section 4.5, we discuss how g; is actively
updated to encapsulate this variability. It guarantees that
for a given budget, if the downstream tasks do not exhibit
further variability, then any event that meets the budget
will be processed within y, and vice versa.

4.3.1 Drop Point 1

The first drop decision is when an event arrives at a task
but before it is placed in its input queue (Fig. 4). This
checks if the observed upstream time already expended
plus the fastest possible execution duration for the event
on this task, i.e., using a batch size of b = 1, will cause the
event to exceed it completion budget, even in the absence
of any queuing. Since we do not know the actual queuing
delay and batch size for this event at this time, we are
conservative in this decision. So events that pass this test
may still be dropped at subsequent drop points based on
how long they spent in the queue and the actual execution
duration.

procedure DropBeforeQueuing (a}, a})
i il
Uy = ap — Gy
if (u}, + &(1)) < B; then return false

1:

2

3 > Retain
4. else return true

5

6:

> Drop this event
end if
end procedure

4.3.2 Drop Point 2

The second drop point is after the event is queued and put
in a batch, but before the batch is executed. At this time, we
have a batch of events B of size b, which gives us the
expected execution time &;(b), and the queuing duration g,
for each of its events. If the predicted time to complete exe-
cuting this event exceeds the completion budget, i.e., u} +
g+ &(b) > B;, we drop this event. The function is passed
the entire batch and it returns an updated batch B without
events that should be dropped.

1485
1: procedure DropBeforeExecB]], b
2: for{(a},ai,q.,€l) in Bdo
3: ul = al — ai
4 if (uj 4+ g+ &(b)) < B then B — ¢ > Retain
5: end if
6: end for
7. return B > Events that should be executed
8:

end procedure

4.3.3 Drop Point 3

It is possible that the actual execution time was longer than
estimated. So we trigger the third drop point after the batch
execution, where the processing time 7} has been spent on
an event, but before its output events are sent on the output
stream. Here, we check if the generated event ¢} at time
uy + 7}, has exceeded its completion budget g;. This drop
point is also important if the dataflow has branches, as dis-
cussed next.

: procedure DropBeforeTransmit (a}, aj, 7})
uj = d — a}
if (uj, 4+ ;) < B, then return false
else return true
end if
end procedure

> Retain
> Drop this event

SANS LI e

By providing these three light-weight drop points, we
achieve fine-grained control in avoiding wasted network or
compute resources, and yet perform event drops just-in-
time when they are guaranteed to exceed the budget. This
balances application accuracy and performance. As a fur-
ther optimization, we allow the user-logic to flag an event
as avoid drop, e.g., if it has a positive match, and the platform
avoids dropping such events even if they exceed the tolera-
ble latency. This can improve the accuracy and manage the
active set size.

Each of the three drop points performs a constant-time
comparison operation per event (Line 2 in Drop Point 1,
Line 4 in Drop Point 2, Line Line 3 in Drop Point 3), for a
time complexity of O(1) per drop point. In practice, this
translates to an overhead of ~ 2-13 ms per event for the
ORID App’s VA module evaluated in Section 5, which is
~ 0.3-4% of the total module execution time for an event.

As shown in Figs. 3 and 4, the drop points are imple-
mented at various point within an Anveshak Worker’s exe-
cution for a module instance. Drop point 1 is checked by the
Entry process of a Worker, when it reads an event from the
ZeroMQ input, before placing it in the SysV common input
queue for the Worker. Drop point 2 is checked by the Router
when events for a module instance are added to a batch,
before the Executor invokes compute on it. Lastly, drop point
3 is verified by the Exit process before the output event is
placed in the ZeroMQ output queue to the next Worker.

4.3.4 Non-Linear Pipelines

While the drop logic has been defined for a linear pipeline, a
module instance (task) in our dataflow can send an event to
one of several downstream module instances, based on the
partitioning function. However, the destination task for an

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

1486

output event is known only after the partitioner operates on
that event, at drop point 3. The completion budget for a task
depends on the network and compute performance of the
downstream tasks that the event flows through, which can
vary for the different task-paths taken. So for each task, we
maintain one budget per downstream task.

4.4 Strategies for Dynamic Batching of Events
Batching and executing events in a stream improves the
throughput and reduces the average event latency [38].
When events arrive early at a task 7; and/or the application
has a relaxed y, there may adequate completion budget g;
to accumulate events from the input queue into a batch and
execute them together, while not violating the budget and
causing a drop. Since g; and the input event rates can vary
over time, this batch size has to be dynamically decided.

We define the event deadline i, = B; + a}. for an event ¢}, as
the time at the task 7; by which it must complete processing
to avoid being dropped. Similarly, we define the batch dead-
line Al =min(8},...,8.) as the latest time by which the
batch B, having m events must complete execution, and it
is defined as the earliest event deadline among all events in
the batch. Since temporal event ordering is not assumed,
this may not be the first event in the batch.

The batching logic considers the event ¢ at the head of
the queue at the present time t; for adding to the “current
batch” B, having size m by checking if t; + & (m+1) >
mm(A;, ’T) i.e., will adding this event to the batch cause the
new execution time of the batch (¢; + &(m + 1)) to exceed
the deadline of the batch Aé or the new event 8; If not, we
add the event to the current batch and update the batch
deadline. We incrementally check and add events from the
queue into the current batch. If the event at the head of the
queue cannot be added to the batch, we submit the current
batch for execution and add the head event to a new empty
batch that becomes the current batch. Even if the queue is
empty, the current batch is automatically submitted for exe-
cution when the local clock reaches the time, A; —&(m).

This dynamic batching logic is implemented in the Batch-
ing Router process of a Worker (Figs. 3 and 4), as it accumu-
lates a batch from the common SysV event queue into a
module’s SysV input queue.

4.5 Updating the Completion Budget

The completion budget B for a task is central to determining
the events to be dropped as well as the batch size. To deal
with the dynamism in the system, the budget for all tasks
must change over time. To enable this, each task t; stores a
3-tuple (d},q;,mj) for every event e; it has processed: the
departure time dj, = uj, + 7}, which sums the upstream time
and the processing duration; the queuing duration g;; and the
batch size mi, that the event was part of. Further, each down-
stream event sent by task 7; in the pipeline is augmented
with two header fields: the sum of execution times £ =
Dt ¢;(m]) and the sum of the queuing delay 7, = Dt a,
spent at the preceding tasks.

As an event executes through the pipeline, we either
increase or decrease the budgets for the upstream tasks
based on whether the event arrives at the destination task
early or is dropped by a task in-between, respectively. The
logic used for these budget changes are described next.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

4.5.1 Reducing the Budget

If an event is processed within its completion budget at a
task, it should also complete processing that pipeline within
the maximum tolerable latency, if there is no downstream
variability. However, if an event e, gets dropped at task t;,
it means that the downstream latency has deteriorated and
hence, the completion budget of all the upstream tasks
{7;]i = 1..j — 1} must be reduced. If the event has exceeded
the completion budget by e = dj — f;, then the sum of the
upstream completion budgets must be reduced by e. Intui-
tively, we reduce the budget at each upstream task t; pro-
portional to the time spent in the queue and batch before
execution. This causes batches with fewer events to be
formed for execution. Using just the queuing time ratio for
reducing the budget also avoids penalizing tasks with lon-
ger execuitlon times.

Let)\ be the duration by which the budget ﬂ, at an
upstream task 7; has to be reduced due to an event e}, being
dropped at 7;, where i < j

)‘k = min (e X %, &(my) — &(1)) 1)

k

The first term in the min operator reflects the excess time ¢
scaled by the ratio of the queuing delay for the task relative
to the sum of the delays at all the tasks upstream of the
dropping task. The second term ensures that the budget
reduction does not fall below the minimum possible budget
required when streaming the event through with b = 1.

Whenever an event is dropped at 7;, it sends a reject signal
to its upstream tasks with the event ID £, the excess duration
over the budget ¢ and the sum of the queuing delays 7,. The
receiving task 7; combines these with the 3-tuple it maintains
for the event to calculate X ., and updates its budget as

B = min(dj, — X;, B.

The first term determines the updated budget as the earlier
departure time for that event, less the reduction in budget.
Here, the min operator selects the lower of the previous and
the new budget to make the model be resilient to out of
order accept or reject signals.

4.5.2 Increasing the Budget

Events that arrive at the final task much earlier than the
maximum tolerable latency indicate lost opportunity costs
in improving the throughput and scalability of the pipeline
by forming larger batches. Therefore, when an event arrives
at the final task at € = g, — u} duration earlier than its com-
pletion budget g, = y, and this value is greater than some
set threshold, €”**, the completion budget of the upstream
tasks must be increased. Intuitively, we increase the budget
of a task proportional to its execution time, relative to the
total execution times for all upstream tasks. This gives more
weight to tasks with longer execution times, allowing them
to increase their throughput which is likely to be the least in
the pipeline.

If 7: is the duration by which the budget g; at an
upstream task 7; has to be reduced due to an event e} com-
pleting ahead of time at the final task 7, then

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

KHOCHARE ETAL.: SCALABLE PLATFORM FOR DISTRIBUTED OBJECT TRACKING ACROSS A MANY-CAMERA NETWORK

m? EC 50 ms VA 50 ms R 50 ms uv
£(b) = 50xb bet E(b) = 100xb+200 §(b) = 200xb+300 ¢, arrives fyy = 10000
fpoEt (o). Fraz20 caihoo O UL
g €=9000
U Fesw b, Mi=3aze TR =529 Send Accept

Brc = 1529 g=Ze By, = 3526

. Ber = 6144 Signal for e,
| () () M |l
s o)

(a) Increasing budget on early event

1487
1fps g 400ms, yp 400ms, g 400ms, .y

§(b) = 50xb oy §b) = 100xb+200 §(b) = 200xb+300 [g7 75 _L By = 2800

Bre = 1100 peelZ2s B, = 1700 Ber = 2600 | dropped
Lo e, e

€= 600

<77;:777777777;""'---"7:,’777777777777777777777:,77””””"7:. 77777

7 =300 et AA=100 2R = 200 "}éﬁ'RE;W‘

Brc =800 [-] Bra = 1600 Ber = 2400 Signal for e;

LN

(b) Decreasing budget on delayed event

Fig. 5. Dynamically changing the completion budget in response to early or delayed events. All times are in ms.

o (mma.'r,

. e 7/
T; = min (e X §i(my)
k

o x e) <)

my,
(2)

The first term in the min operator scales the e by the relative
time spent in the execution duration for the task t;, relative
to the execution time at all tasks until (but not including)
the final task. The second term ensures that the budget does
not exceed the time to create and execute the largest batch
size m"*" allowed by the user. This assumes that the queu-
ing time scales linearly with the number of events. As the
prior budget already considers the queuing and execution
time for a batch size m}, we subtract it from m™.

A batch will have events with different queuing duration
but the same batch execution duration. So some events in
the batch will always arrive at the final task before y elapses.
However, we should not increase the budget based on these
early events in a batch. Rather, the decision to increase the
budget is made only if event with the highest latency in a
batch is below y + ¢"**. If so, the task t,, sends an accept sig-
nal to all the upstream tasks with the slowest event’s ID &,
the duration of early arrival € and the sum of upstream exe-
cution time, ZZ_I. These are used to calculate the value of
A}, at tasks r; and update their budgets using the 3-tuples
for that event: The completion budget for an task t; is
increases as follows:

B, = max(d,+ X, p).
As before, selecting the max against the previous budget is
to make the model resilient to out of order signals.

The task budgets are increased when an event success-
fully reaches the final task ahead of time. But transient con-
ditions may cause the system to reduce the budgets to such
a low value that no subsequent events flow through to the
final task without being dropped. In such cases, even if the
conditions improve, the budget may never get updated. To
address this, the system periodically sends probe signals for
every kth event that is dropped at a task ;. This probe is for-
warded downstream without being dropped. If this signal
reaches the final task within y, then the system calculates
and sends the accept signal so that the budget for the
upstream tasks can be increased and regular events may
start flowing through.

Figs. 5a and 5b illustrate how we use this strategy to
increase or decrease the completion budget, for the 4 modules
of the Anveshak dataflow executing a video feed arriving at
1 fps. For simplicity, the network time for moving events
between tasks is static, irrespective of the batch size b, e.g.,
50 ms in Fig. 5a. In Fig. 5a, the first event e; has completion
budgets of ;- =50 ms, By =400 ms, Bor = 950 ms and

Bcr = 10000 ms, and it streams through with b = 1 to reach
UV 9000 ms earlier than the 10 secs allowed. Hence an
accept signal is propagated to the upstream tasks from UV,
with € = 9000 ms. Using this and the prior states main-
tained at the tasks, we calculate A using Eqn. (2) and
increase their completion budgets. As a result, future events
[e3, e4] are placed in batches of a larger size b = 2, increasing
the throughput of the pipeline while still avoiding event
delays. Similarly in Fig. 5b, we see that the event e; is
dropped at UV, and this triggers a cancel signal upstream
with e = 600 ms, which is used to calculate A using Eqn. (1)
and reduce the completion budget at the prior tasks. This in
turn reduces the batch sizes of future events, e.g., from b =
2to b =1 at VA, to ensure the deadline is met.

When bootstrapping the application initially, the batch
size for all tasks is fixed at b=1 and no budgets are
assigned except B, = y + a}.. Subsequently, when accept or
reject signals are triggered, these values are updated (with-
out considering %) and they stabilize to the new budget.

5 [EXPERIMENTS

We perform targeted and detailed experiments to evaluate
the benefits of the domain-sensitive Tuning Triangle knobs
(Fig. 2, inset) we offer: (1) a smarter tracking logic, (2)
dynamic batching capability, and (3) multi-stage dropping
strategies. We empirically demonstrate our proposition that
these knobs can influence their respective performance
properties, and help users achieve a trade-off between them.

5.1 Setup

System Setup. We mimic the resource conditions of 96 Rasp-
berry Pi 3B edge devices on a local cluster, which has 1 head
node and 10 compute nodes. The compute nodes each have an
8-core/16-hyperthread Intel Xeon CPU E5-2620 v4 CPU
@2.10 GHzand 64 GB DDR4 RAM, while the head node has
the same CPU in a dual socket configuration and 512 GB
RAM. Each Xeon CPU core performs comparable to a 4-core
Pi 3B, as measured using the CoreMark benchmark. All the
nodes have a 1 Gbps Ethernet interface. The nodes run Cen-
tos v7.5 with Linux 3.10.0 kernel release, Java 1.8 and Python
v3. The head node hosts a Kafka v2.11.0 pub-sub broker for
routing input video streams while the compute nodes have
PyTorch v1.0.1 and Tensorflow 1.2 [24] installed.

Anveshak Setup." We have two Anveshak Workers on
each compute node and the head node. The number of FC
instances equals the number of cameras used in that experi-
ment, which ranges from 100 — 1000. In addition, we have

1. Anveshak source code can be downloaded from https://github.
com/dream-lab/ Anveshak

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

https://github.com/dream-lab/Anveshak
https://github.com/dream-lab/Anveshak

1488

10 VA, 10CR, 1 TL and 1 UV instances. The FC instances are
scheduled across the 10 compute nodes in a round-robin
manner for load balancing, and run on one of the two Work-
ers on the node. The VA and CR instances are also placed in
a round-robin manner on these nodes, on the other Worker.
This co-locates a subset of the FC, VA and CR on the same
server and minimizes their network transfer overheads.
Since each instance runs on a separate Executor process
within the Worker, each in-effect runs on a Pi 3B-class CPU
core. The TL and UV instances run on a Worker each on the
head node.

Applications. We implement two tracking applications,
ORID and PRID, described in Table 1 and evaluate them in
our experiments. These omit the QF module given its
nascency. Further, we use three TL algorithms for the appli-
cations. TL-All is a naive baseline that keeps all the cameras
in the network active all the time. TL-BFS has access to the
underlying road network, but assumes a fixed road-length
for all edges when performing the spotlight BFS strategy.
TL-WBEFS is similar, but aware of the exact lengths of each
road segment (Algorithm 1). Both TL-BFS and TL-WBFS are
configured with the expected peak walking speed (es) of the
entity being tracked, which varies across experiments. The
maximum tolerable latency is set as y = 15 secs. We provide
a detailed analysis for ORID below, and report additional
empirical discussions and PRID results in Appendix C,
available in the online supplemental material.

Workload. For the road network, we extracted a circular
region of 7 km?, centered at the Indian Institute of Science,
Bangalore campus, from Open Street Maps [39]. This has
1,000 vertices and 2,817 edges, with an average road length
of 84.5 m. We use this as the fixed road length for TL-BFS.
We use the CUHKO3 Person Re-identification image data-
set [13] with 1,360 unique persons who can be queried for,
and 10,531 images, which provide true positives or negatives
for the models used. Each JPG image is 64 x 128 pzx in size
with RGB colors, and a median file size of 2.9 k5. Sample
images are shown in Fig. 2.

We use these images to simulate video feeds that mimic
the movement of the query entity through a road network.
The simulator takes as input the road network with the road
lengths, the speed of the entity being tracked, their starting
vertex in the network, and the labeled images for the entity.
Cameras are “placed” on all of the road vertices, but may be
fewer for some experiments, as reported. We simulate the
movement of the entity from the source vertex as a random
walk at a speed of 1 m/sec (3.6 km/hr). Each camera gener-
ates a timestamped feed of images at 1 fps using the true
negative images (i.e., images not containing the entity), but
uses the true positive person’s images for the time intervals
when the tracked entity is within the camera’s FOV during
the walk. For each camera, the simulator publishes its image
feed in real-time to a unique topic using the Kafka broker.
The FC module for the camera subscribes to its relevant
topic to acquire the input stream.

Baseline. We also design a Lookup-based batching (LB) base-
line to evaluate the effectiveness of our dynamic batching.
This uses prior benchmarking on the stable system to deter-
mine the smallest batch size that can meet specific input
rates without any drops or delays, for rates of 1-
1000 events/sec, in steps of 10. This forms a lookup table.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

T 70 |
=55¢ | = Not delayed = gf | mm BFs
Ssof * Delayed §5° @g | m=WBFS
— 454451 EEE Dropped 50 S |
c c 2o
=40 % Unstable = %2 ‘

8357 8 40 aq |
£301 E € |
E2s) £30 33
530 5 o8

I3 520 o}

315 g £s

g 10 S 10 own

Z 5 =

SB-1 SB- SB- SB- SB-
5 10 15 20

LB- DB-
25 25

Drops
Disabled Enabled

Drops 4m/s 6m/s

(a) Batching vs.
es=6 m/sec

latency, (b) Drops vs. Accu- (c) Tracking Logic
racy, es=7 m/sec vs. Camera Count

Fig. 6. Distribution of the average end-to-end event latencies for the dif-
ferent batching, dropping, and TL strategies.

During the application execution, the platform dynamically
picks the batch size for the rate closest to the current input
rate from this table. Under static system conditions, this
strategy will find the best-fit batch size, maximizing the
throughput while minimizing the latency, but requires the
construction of the lookup table a priori.

5.2 Effectiveness of Tuning Triangle

We first show the overall efficacy of the tuning triangle,
before offering additional analysis in later sections and in
Appendix C, available in the online supplemental material.
Here, we show how the batching, dropping and tracking logic
knobs have a direct impact on the latency, accuracy and cam-
era count scaling properties, respectively (Fig. 2, inset), and
can help improve the application performance.

5.2.1 Batching

In the tuning triangle, the end-to-end latency to process a
frame through the dataflow pipeline is affected by the
batching strategy, which groups the input events (frames)
for a module before executing them using the compute
logic. A simple strategy is to use a static batch size (SB-b)
with b events per batch. But this does not account for vari-
ability in input frame rates due to different numbers of cam-
eras being active over time. Another baseline is the Lookup-
based Batching (LB), which uses an offline lookup table to
select the ideal batch size for a module’s input rate. But it
does not respond to changes in network performance.
Lastly, Anveshak provides a dynamic batching (DB) strategy
that automatically tunes this knob to help meet the user’s
latency needs under variable conditions.

To evaluate these, we execute the ORID application with
1000 cameras in the road network, a peak entity speed of
es = 6 m/s, using BFS tracking logic and with dropping dis-
abled, for a duration of 10 mins and ~ 600k total input
frames at 1 fps. We evaluate SB with sizes b = 1-20, and LB
and DB with a maximum batch size set to v"** = 25, i.e., SB-
b, LB-25 and DB-25. Fig. 6a reports a count of the frames
whose end-to-end latency was within the user-specified y =
15 secs, i.e., not delayed (green), and those with latency
exceeding y, i.e., delayed (yellow, labeled).

SB-1 with one event per batch streams the executing of
each event, and delays over 25k events since it is unstable
(marked *). This configuration is not sustainable for the
input rate, and causes the input queue to grow exponen-
tially and the latencies of all future events to be delayed. SB-
5 is one of the better strategies with only 95 events delayed.

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

KHOCHARE ETAL.: SCALABLE PLATFORM FOR DISTRIBUTED OBJECT TRACKING ACROSS A MANY-CAMERA NETWORK

While this translates to just 0.3 percent of delayed events,
there are only 21 frames in total containing the entity being
queried and they may fall within this. Also, the choice of b =
5 performing well is not known a priori. Increasing b further
for SB causes more events to be delayed, between 215 —
1671 events for SB-10 — SB-20, since more event per batch
increases the queuing latency per event but potentially
offers a higher throughput.

Unlike SB, LB adapts to variability in the input rates by
automatically changing b at runtime. But it still causes 368
events to be delayed (Fig. 6a, LB-25) as it assumes the net-
work latency is constant. Lastly, Anveshak’s DB strategy
does not delay any events (Fig. 6a, DB-25). It uses feedback
from prior events in the pipeline to automatically set a per-
event time budget that picks a near-ideal batch size for each
module, which ensures that the frames are not delayed
despite network variation. We provide a more detailed
analysis of batching in Section 5.3.

The total processed frames by different batching strategies
varies, and is well below the 600k input frames. Batching
affects the timely detection of a positive or a negative match
by the tracking logic and hence the camera activation, which
determines if the input frames from a feed flows through
the pipeline or not.

5.2.2 Dropping

The data drops knob affects the accuracy of the application,
since dropped events can cause frames having the entity of
interest to be missed. But dropping some events may be
necessary to ensure that a lot more events are not delayed.
To validate this, we run ORID with BFS tracking logic and
DB-25, but at a faster entity speed of es = 7m/sec, and com-
pare the performance with drops disabled and enabled. In
Fig. 6b, when drops are disabled, over 38k events are delayed
and only 15 percent of events are on-time. This is also an
unstable configuration (). When we enable drops, 83 per-
cent of the events are processed on-time. However, 7.8k
events are dropped in the process, reducing the accuracy.
This is the trade-off that the drops knob provides the users,
where much more video frames can be processed within the
user’s latency y and at a sustainable rate, but with some of
the frames missed in the process. This is discussed in more
detail in Section 5.5.

5.2.3 Tracking Logic

Lastly, the TL knob allows users to define or select a suitable
camera activation logic that can reduce the number of cam-
eras active for locating and tracking the entity — more cam-
eras that are activated, lower the system scalability over the
fixed set of compute resources. We run ORID with DB-25
and drops disabled at two entity speeds, es =4 m/s and
es = 6 m/s. For each, we evaluate BFS and WBFS tracking
logic, and measure the peak number of cameras from
among the 1000 that they activate. For BFS, a maximum of
111 cameras are active at es =4 m/s and 255 are active at
es =6 m/s, while for WBFS, the corresponding camera
counts are fewer at 67 and 153. In other words, for the given
computing resources, using BFS TL can support a 1000 cam-
era network while using WBFS, we can support a larger

%1000 ~ 1657 and 223 x 1000 ~ 1667 camera network.

1489

‘15

-
w
(=]

15

=
w
k=1

=
(=1
(=]
=
(=1
=]

110

un
o
w
wn
o

Active Cameras Count
1
Active Cameras Count

% 200 400 08 %" 200 a0 0B
App. Timeline (sec) App. Timeline (sec)

(a) Lookup-based Batching (LB-25) (b) Dynamic Batching (DB-25)

Fig. 7. # of active cameras (left Y axis, blue line) and Avg. end-to-end
event latency (right Y axis, yellow dots) over Application execution time-
line (X axis) for ORID App using TL-BFS, es = 4 m/sec. Red horizontal
line shows y = 15 secs.

This scaled comparison is plotted in Fig. 6¢. So an intelligent
TL can help scale to a larger camera network.

5.3 Analysis of Batching Strategy

The varying number of active cameras and its consequence
on the latency motivates the use of variable batch sizes at
runtime. Here, we further analyze the benefits of Anveshak’s
Dynamic Batching (DB-25) against the Lookup-based batch-
ing (LB-25). The setup is identical to Section 5.2.1, for the
ORID App, with TL-BFS, drops disabled, y = 15 secs and
run for 10 mins —except, we use a slower es = 4 m/s.

Figs. 7a and 7b show the application timeline for LB and
DB, with the application’s wall-clock execution timeline (X
axis), the number of active cameras picked by TL (left Y axis,
blue line), and the end-to-end event latency, from the source
to the sink task averaged for every 1 sec (right Y axis, yellow
dots). A red line shows the tolerable latency, y = 15 secs.

We see that there are no delayed events in Anveshak’s
DB-25 while 90 events are delayed for LB-25, at time points
350 secs and 520 secs (delays not visible due to 1 sec aver-
aging). This is despite LB selecting a best-fit batch size from
its lookup table as the system executes. But it assumes that
the input rate is uniform for all instances of a module, which
does not hold in practice and causes instances receiving a
higher rate to use a smaller batch size and hence violate y.
But Anveshak’s batching prevents delays in all cases as it
modulates its batch size per-instance.

LB does offer a low latency distribution, at a median of
0.4 secs due to its selection of batch size of b =2 and b = 5,
approaching a streaming scenario. The median latency for
DB is 7.66 secs, with a wide variety of batch sizes and
latency values (Fig. 7b). But reducing the latency is not a
goal; we ensure that all events reach within y.

Adapting to Network Variation. The complexity of
Anveshak’s batching logic is partly attributed to its ability
to respond to network and computation variability. The for-
mer is more common in WAN and MAN. We evaluate
Anveshak’s ability to adapt to even sharp changes in the
network performance. Using the same setup for LB-25 and
DB-25 as above, we drop the bandwidth between compute
nodes from 1 Gbps to 30 Mbps midway through the applica-
tion execution at 300 secs. The timeline plots for LB and DB
are shown in Figs. 8a and 8b.

The first 300 secs is identical to the earlier plots, and nei-
ther configuration has event delays. But once the bandwidth
drops, DB keeps the system stable with no event delays as it
reacts to event latencies increasing. As the network degrades,

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

1490

—— 30Mbps—»
-—15

——1Gbps —»«——30Mbps—> ¢

|
E:.:_rl'IO

1/ |30

2007 1Gbps

-
w
o

=
w
(=]

wn

o
-
i=1
L=l

[[{ 120
| H

T e
“600 O)
App. Timeline (sec)

(b) Dynamic Batching (DB-25)

w
(=]
w

Active Cameras Count
-
o
S

Active Cameras Count

N J |
% ~""200 400
App. Timeline (sec)

(a) Lookup-based Batching (LB-25)

Fig. 8. Adapting to network variation. The system bandwidth drops from
1 Gbps to 30 Mbps after the 300" sec.

the budget available to each task reduces, and DB forms
smaller batches. E.g., the median CR batch size rapidly drops
from b =8 to 5, and the number of batches with 1 and 2
events rise from only ~ 18% before 300 secs to ~ 30% after
the network slowdown. LB, however, becomes unstable
beyond 500 secs. This is due to its lookup table being created
for a certain system and network performance and that not
holding at runtime.

5.4 Analysis of Tracking Logic

We further analyze and compare the TL-BFS and TL-WBFS
tracking logic for the es = 4 m/s setup of ORID App with
static batching, drops disabled and y = 15 secs, against TL-
All, a baseline logic that keeps all cameras active, similar to
contemporary systems. Since the resources are inadequate
to support all 1000 cameras being active for TL-All, we do
two runs, with 100 and 200 cameras placed on a proportion-
ally smaller road network, and all active. For TL-All, we use
a static batch size of b = 20, which offers the best configura-
tion, while for TL-BFS, we try two setups, SB-1 and SB-20,
and use SB-1 for TL-WBEFS.

Fig. 9a plots the application timeline (X axis) and the
event latency averaged over 1 sec (right Y axis) for the 100
and 200 cameras of TL-All. While the event latency is stable
without any delays for 100 cameras with a median latency
of 2.80 secs), it is unstable and grows rapidly with 200
active cameras, indicating inadequate resources. The total
frames processed is ~ 60k in the former, and ~ 120k in the
latter with over 55 percent delayed. Obviously, this tracking
logic does not scale to 1000 cameras.

For TL-BFS operating on 1,000 cameras, we show a simi-
lar timeline in Figs. 9b and 9c¢, and also plot the active cam-
era count (left Y axis). The SB-1 setup has a low median
latency at 218 ms < y. But the latency occasionally exceeds
y (for 25 events), when the active camera count is > 100.
The camera count (Fig. 9b, blue line) has a saw-tooth behav-
ior — the spotlight logic increases the active set of cameras

1100

TL-Base-100
W TL-Base-200 (gn

160
40

120

0 100 200 300 400 500 600
App. Timeline (sec)

(a) TL-All (SB-20)

-
w
(=}

-
(=]
o

L
=]

Active Cameras Count

06,__. — 200—_,_106 et | L

App. Timeline (sec)

(b) TL-BFS (SB-1)

“1s

“ 110

Active Cameras Count

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

when the entity is in a blindspot, and drops this to 1 when it
is reacquired by an active camera. At ~ 550 secs, the entity
is in a blindspot long enough that the count spikes to 111
cameras, stressing the available resources and causing the
latency to grow to 16.8 secs. This is due to CR, whose DNN
is the slowest task and supports only 8.33 events/sec per
Executor instance. When feeds from 111 active cameras at
1 fps are mapped to 10 CR instances, 8 of these receive
more than 8.33 events/sec, and cause the latency spike.

For TL-BFS with SB-20, the median latency has increased
to 3.65 secs (Fig. 9c). But even with static batching, this
improved tracking logic does not have any delayed events.
Interestingly, in periods where the active camera count
increases, like between 140-240 secs, the mean latency
decreases — more cameras means a higher input rate, which
fills up a batch and triggers it faster.

Similarly, the more advanced TL strategy TL-WBFS sup-
ports 1,000 total cameras on the same set of resources, and
has a stable latency even with SB-1 where events stream
through. Its median latency of 291 ms is lower than BFS SB-
20 and comparable to BFS SB-1, but with no events delayed.
The active camera count grows in more granular steps using
WBFS since it is aware of the road lengths and leads to a
more measured growth of active cameras. Further, its peak
active camera count is 67, relative to 111 when using TL-
BFS. So WBFS can help scale to a larger set of total cameras
or for a longer period of the entity being in a blindspot.

While a better TL helps, it is not a substitute for dynamic
batching since we can have scenarios where a static batch is
not adequate. E.g., for a faster es = 6 m/sec , TL-BFS with
SB-20 causes 603 events to be delayed, compared to no
delays using dynamic batching (not shown).

5.5 Analysis of Dropping Strategy

Even TL and dynamic batching may not suffice when the
spotlight grows large. This can cause the resources to be
overwhelmed, latencies to grow unabated, and cascade to all
future events. Anveshak’s smart dropping strategy is benefi-
cial here, causing events to drop early in order to avoid
resource wastage, and reduce overall event delays.

We examine the results from Section 5.2.2 in more detail,
where we run ORID with TL-BFS and DB-25 at es = 7 m/s.
In Fig. 10a, we report a timeline plot of the active camera
count (left Y axis) and the average event latency (right Y
axis) for the experiment, with drops enabled and disabled.
The red line indicates y = 15 secs allowed latency.

When the entity moves faster, the spotlight also grows
faster when it is in a blindspot. Under such conditions, when
drops are disabled, we see that the latency grows sharply > y

[-
(=1 w
k=1 k=1

w
o

1150

1100

| lsp

0

200 400
App. Timeline (sec)

(c) TL-BFS (SB-20)

Active Cameras Count

Fig. 9. Effect of tracking logic on performance of ORID, with es = 4 m/sec, static batching and drops disabled.

-
w
(=

..15

-
(=]
o

w
=]

(

0

200 400
App. Timeline (sec)

(d) TL-WBFS (SB-1)

oo

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

KHOCHARE ETAL.:

600 i 300 800

700
1250

1600
[200 1500 €

o
r400 2

=]
L3005

| 1150

o 200 400 608
App. Timeline (sec)

App. Timeline (sec)

(b) Drops Enabled

(a) Drops Disabled

Fig. 10. Perf. with drops dis/enabled, TL-BFS, and es=7 m/sec.

as the active cameras grow from 100-500. This causes each
CR instance to receive a peak of ~ 49 events/sec, while
its processing capacity is only 19 events/sec. This causes
85 percent of events to be delayed (Fig. 6b), and the App
is unstable.

When drops are enabled, the application’s latency is stable
and within y = 15 secs even when the active camera count
grows as high as 389 (Fig. 10b). The drops start (far right Y
axis, red dots) when the camera count exceeds 200, which
matches ~ 20 events/sec for each CR task. While 17 percent
of all events are dropped, the rest of the events are proc-
essed without any delays (Fig. 6b). Dropping frames con-
taining the entity can delay locating the entity and cause the
active set to grow. However, none of the 21 frames carrying
the detected entity is dropped. This is merely incidental, but
enabling the do not drop flag will ensure this. The batch sizes
for VA and CR are smaller here (not shown) than for es =
4 m/sec with dynamic batching but no drops. When the
input event rate is high, the system first reduces the queuing
time by forming smaller batches and then resorts to drops.

6 RELATED WORK

6.1 Video Surveillance Systems

Intelligent Video surveillance systems have been designed
for machine learning, pattern analysis and data manage-
ment of video footage [9]. These span various generations.
The first generation systems only capture and store analog
data; the second generation introduce CV algorithms
applied centrally; and the third generation supports auto-
mated wide area surveillance, with distributed intelligence
and data fusion from multiple cameras and other sensors.

ADVISOR [8] supports tracking, crowd counting and
behavioral analysis over camera feeds from train stations to
assist human operators. But these are pre-defined applica-
tions, run centrally on a private data center and process all
camera feeds all the time. IBM’s Smart Surveillance System
(S3) [18] is a proprietary platform for video data manage-
ment, analysis and real-time alerts. While it offers limited
composition of modules, it too performs centralized analy-
sis and does not consider performance optimizations. Early
works examine edge computing for basic pre-process-
ing [40]. But the edge logic is static, and the rest of the ana-
lytics done centrally using dedicated networks.

Several frameworks have been developed specifically for
distributed video analytics across the edge, fog and cloud
resources. The Ella Middleware uses a publish-subscribe model
with hierarchical brokers to route video and event streams
between analytics deployed on edge devices. However, their

SCALABLE PLATFORM FOR DISTRIBUTED OBJECT TRACKING ACROSS A MANY-CAMERA NETWORK

1491

platform design resembles a general-purpose event-driven
middleware, without any specific analytics support or run-
time optimizations for video processing, unlike us. Edge-
Eye [41] efficiently deploys DNN models on the edge, using a
JavaScript API for users to specify their parameters. It offers
performance optimizations for DNNs, but does not consider
distributed systems issues, such as batching, dropping and
network variability.

Video Storm [42] is a video analytics system with the goals
of approximation and delay tolerance. It schedules video
analytics query workloads on a cluster of machines, where
each query has a deadline and a priority. VideoEdge [19]
extends this to support scheduling on a hierarchy of edge,
fog and cloud resources. Both these provide tuning knobs
which are conceptually similar to our ours. But the key dis-
tinction is that these degrees of freedom requires the specifi-
cation of objective functions to define the impact of the
knobs on metrics. This makes it challenging to use out of
the box. Our domain-sensitive Tuning Triangle intuitively
captures the impact of the 3 well-defined knobs on the 3
metrics that impact tracking applications the most.

More recently, RES [43] tackles the problem of running
video analytics using edge and cloud resources while meet-
ing Quality of Service (QoS) constraints. They identify filtra-
tion and identification phases to split the tasks across edge
and cloud, with three types of operations: basic, filter and
machine learning. In contrast, our modules are better-tuned
for entity tracking across a many-camera network, with dis-
tinctive modules such as tracking logic and query fusion.
Our runtime also offers mechanisms to deal with network
variability. Hu et al. [44] develop specialized image recogni-
tion algorithms for video surveillance using mobile edges to
achieve high accuracy and low recognition time. These can
be incorporated within Anveshak to facilitate deployment
and scalable execution across city-scale camera networks.
VU [45] identifies camera feeds in a many-camera network
which are not useful due to occlusion or blurring, and drops
such feeds from being processed. Such techniques can com-
plement our tracking and dropping strategies. Privacy pre-
serving video analytics platforms is an active area of
research [46]. While not a primary goal, we provide privacy
benefits by processing most video feeds on local edge and
fog devices.

6.2 Big Data Platforms and DSL
General purpose dataflow models such as ORCC [20] and
Apache NiFi [21] give programmers the flexibility to com-
pose complex applications using logic blocks, often provid-
ing pre-defined blocks and a graphical Ul These are then
compiled and executed within a runtime environment. Sim-
ilarly, Big Data stream processing platforms like Apache
Storm, Flink and Spark Streaming [22], [33], [47] offer flexible
dataflow composition. Instead, we define a domain-specific
dataflow pattern for tracking applications, with a fixed data-
flow composition from the 7 modules. But users provide the
logic for each module that matches the given module signa-
tures. This curtails flexibility but allows users to rapidly
design, upgrade and deploy a variety of tracking scenarios,
incorporating contemporary advances in DNNs.

Google’s TensorFlow is a DSL for defining DNNs and CV
algorithms, and to deploy trained models for inference [24].

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

1492

However, TensorFlow is not meant for composing arbitrary
modules together. The tasks take a Tensor as an input and give
a Tensor as the output, and there are no native patterns such as
Map and Reduce to ease composability. Yahoo's TensorFlow on
Spark [48] adds flexibility by allowing Spark’s Executors to
feed RDD data into TensorFlow. Thus, users can couple
Spark’s operations with TensorFlow’s neural networks. But
Anveshak is at a level of abstraction higher, allowing for rapid
development of tracking applications with fewer lines of code
or sometimes just a configuration change. Also, Spark is not
designed for distributed computing on WANs or edge/fog
devices, which we address in the Anveshak runtime.

6.3 Streaming Performance Management

There are several performance optimizations adopted by
stream processing systems, which we extend. Apache Flink [33]
and Storm [47] support back-pressure, where a slow task sends
signals to its upstream task to reduce its input rate. This may
eventually lead to data drops, but the data being dropped are
the new ones generated upstream rather than the stale ones
that are already in-flight. This sacrifices freshness in favor of
fairness. Our drops prioritize recent events over stale events,
and importantly, adjust the budget more precisely.

Google’s Millwheel [49] uses the concept of low watermarks
to determine the progress of the system, defined as the time-
stamp of the oldest unprocessed event in the system. It
guarantees that no event older than the watermark may
enter the system. Watermarks can thus be used to trigger
computations, such as window operations, safely. While
our batching and drop strategies are similar, watermarks
cannot budget the time left for a message in the pipeline
and has no notion of user-defined latency.

Aurora [36] adopts load shedding, which is similar to our
data drops. They define QoS as a multidimensional func-
tion, including attributes such as response time, similar to
our maximum latency. Given this function, the objective is
to maximize the QoS. Borealis [37] extends this to a distrib-
uted setup. Anveshak uses multiple drop points even
within a task, which offers fine-grained control and robust-
ness. Features like “do not drop” and resilience to clock
skews are other domain and system-specific optimizations.

7 CONCLUSION

In this paper, we have proposed an intuitive domain-specific
dataflow model for composing distributed object tracking
applications over a many-camera network. Besides offering an
expressive and concise pattern, we surface the Tracking Logic
module as a powerful abstraction that can perform intelligent
tracking and manage the active cameras. This enhances the
scalability of the application and makes efficient use of resour-
ces. Further, we offer tunable runtime strategies for dropping
and batching that help users easily balance between the goals
of performance, accuracy and scalability. Our design is sensi-
tive to the unique needs of a many-camera tracking domain
and for distributed edge, fog and cloud resources on wide-
area networks. Our experiments validate these for a real-track-
ing application on deployments of up to 1,000 cameras.

As future work, we plan to explore intelligent scheduling
of the module instances on edge, fog and cloud resources;
allow modules to be dynamically replaced for better

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

accuracy or performance; and handle mobile camera plat-
forms such as drones. In a real setting, multiple objects of
interest would be tracked across the camera network. This
should lead to interesting scheduling problems as well as
an opportunity to share compute across multiple queries. A
practical deployment of Anveshak would use containers for
dependency management. However, co-locating containers
can lead to interference and QoS violations [15]. It would be
worth exploring models to estimate such performance inter-
ference, which can influence the execution time estimates
used in the batching and dropping strategies. It will also be
useful to support camera-specific DNNs to handle, say,
crowded scenes that may be visible to specific cameras.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Electronic
and Information Technology (MeitY), Government of India
under Grant 4(16) /2019-ITEA. The first author was supported
by a fellowship from the Robert Bosch Center for Cyber-
Physical Systems, Indian Institute of Science, Bangalore.

REFERENCES

[11 G. Ananthanarayanan ef al. “Real-time video analytics: The killer
app for edge computing,” IEEE Comput., vol. 50, no. 10, pp. 58-67,
Oct. 2017.

[2] L.Wangand D. Sng, “Deep learning algorithms with applications to
video analytics for a smart city: A survey,” 2015, arXiv:1512.03131.

[3] A. Khochare, P. Ravindra, S. P. Reddy, and Y. Simmbhan,
“Distributed video analytics across edge and cloud using echo,”
in Proc. Int. Conf. Service Oriented Comput. Demo, 2017, pp. 402—-407.

[4] A. Bedagkar-Gala and S. K. Shah, “A survey of approaches and
trends in person re-identification,” Image Vis. Comput., vol. 32, no.
4, pp. 270-286, 2014.

[5] P.Natarajan, P. K. Atrey, and M. Kankanhalli, “Multi-camera coor-
dination and control in surveillance systems: A survey,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 11, no. 4, 2015, Art. no. 57.

[6] X.Liu, W. Liu, H. Ma, and H. Fu, “Large-scale vehicle re-identifi-
cation in urban surveillance videos,” in Proc. IEEE Int. Conf. Multi-
media Expo, 2016, pp. 1-6.

[7]1 K. L.Navaneet, R. K. Sarvadevabhatla, S. Shekhar, R. V. Babu, and A.
Chakraborty , “Operator-in-the-loop deep sequential multi-camera
feature fusion for person re-identification,” vol. 15, pp. 2375-2385,
2020, doi: 10.1109/TIFS.2019.2957701.

[8] N.T. Siebel and S. Maybank, “The advisor visual surveillance sys-
tem,” in Proc. ECCV Workshop Appl. Comput. Vis., 2004, pp. 103-111.

[9] M. Valera and S. A. Velastin, “Intelligent distributed surveillance

systems: A review,” IEE Proc.-Vis. Image Signal Process., vol. 152,

no. 2, pp. 192-204, 2005.

M. K. Lim, S. Tang, and C. S. Chan, “iSurveillance: Intelligent

framework for multiple events detection in surveillance videos,”

Expert Syst. Appl., vol. 41, no. 10, pp. 4704-4715, 2014.

J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”

2016, arXiv:1612.08242.

L. Esterle, P. R. Lewis, M. Bogdanski, B. Rinner, and X. Yao,

“A socio-economic approach to online vision graph generation

and handover in distributed smart camera networks,” in Proc. 5th

ACM/IEEE Int. Conf. Distrib. Smart Cameras, 2011, pp. 1-6.

W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepRelD: Deep filter pair-

ing neural network for person re-identification,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., 2014, pp. 152-159.

P. Varshney and Y. Simmhan, “Characterizing application sched-

uling on edge, fog, and cloud computing resources,” Softw., Prac-

tice Experience, vol. 50, no. 5, pp. 558-595, 2020.

E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and

J. H. Abawajy, “Fog of everything: Energy-efficient networked

computing architectures, research challenges, and a case study,”

IEEE Access, vol. 5, pp. 9882-9910, 2017.

P. G. Lopez et al., “Edge-centric computing: Vision and challenges,”

ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 37-42,

2015.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

http://dx.doi.org/10.1109/TIFS.2019.2957701

KHOCHARE ETAL.: SCALABLE PLATFORM FOR DISTRIBUTED OBJECT TRACKING ACROSS A MANY-CAMERA NETWORK 1493

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

thorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 08,2023 at 09:28:50 UTC from IEEE Xplore. Restrictions app

M. Satyanarayanan ef al. “Edge analytics in the Internet of Things,”
IEEE Pervasive Comput., vol. 14, no. 2, pp. 24-31, Second Quarter 2015.
C.-F. Shu et al. “IBM smart surveillance system (S3),” in Proc. IEEE
Conf. Adv. Video Signal Based Surveillance, 2005, pp. 318-323.

C.-C. Hung et al. “VideoEdge: Processing camera streams using
hierarchical clusters,” in Proc. IEEE Symp. Edge Comput., 2018,
pp. 115-131.

H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and
M. Raulet, “Orcc: Multimedia development made easy,” in Proc.
21st ACM Int. Conf. Multimedia, 2013, pp. 863-866.

Apache NiFi. Accessed: Dec. 15, 2020. [Online]. Available: https://
nifi.apache.org/

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and 1. Sto-
ica, “Spark: Cluster computing with working sets,” in Proc. 2nd
USENIX Workshop Hot Topics Cloud Comput., 2010, Art. no. 10.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol. 51,no. 1, pp. 107-113, 2008.
M. Abadi ef al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2016, pp. 265-283.

K. Shiva Kumar, K. Ramakrishnan, and G. Rathna, “Distributed
person of interest tracking in camera networks,” in Proc. ACM Int.
Conf. Distrib. Smart Cameras, 2017, pp. 131-137.

T. Xiao, “Open-RelD.” Accessed: Dec. 15, 2020. [Online]. Avail-
able: https://cysu.github.io/open-reid /

N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2005, pp. 886-893.

E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learn-
ing architecture for person re-identification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 3908-3916.

J. Sochor, J. Spanhel, and A. Herout, “BoxCars: Improving fine-
grained recognition of vehicles using 3-D bounding boxes in traf-
fic surveillance,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1,
pp- 97-108, Jan. 2019.

L. Ren, J. Lu, Z. Wang, Q. Tian, and]. Zhou, “Collaborative deep
reinforcement learning for multi-object tracking,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 605-621.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

C. Szegedy, S. loffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-ResNet and the impact of residual connections on
learning,” in Proc. AAAI Conf. Artif. Intell., 2017, pp. 4278-4284.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.
Tzoumas, “Apache Flink: Stream and batch processing in a single
engine,” IEEE Bull. Tech. Committee Data Eng., vol. 36, no. 4,
pp- 28-38, Dec. 2015.

F. Akgul, ZeroMQ. Birmingham, U.K.: Packt Publishing, 2013.

D. P. Bovet and M. Cesati, Understanding the Linux Kernel: From I/O
Ports to Process Management. Sebastopol, CA, USA: O'Reilly Media,
2005.

D.J. Abadi et al., “Aurora: A new model and architecture for data
stream management,” Int. . Very Large Data Bases, vol. 12, no. 2,
pp- 120-139, 2003.

D. J. Abadi et al., “The design of the borealis stream processing
engine,” in Proc. Conf. Innovative Data Syst. Res., 2005, pp. 277-289.
A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural
network models for practical applications,” 2017, arXiv:1605.07678.
OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org,” 2017. [Online]. Available: https://
www.openstreetmap.org

H. Detmold, A. van den Hengel, A. Dick, K. Falkner, D. S. Munro,
and R. Morrison, “Middleware for distributed video surveillance,”
IEEE Distrib. Syst. Online, vol. 9, no. 2, pp. 1-1, Feb. 2008.

P. Liu, B. Qi, and S. Banerjee, “EdgeEye: An edge service frame-
work for real-time intelligent video analytics,” in Proc. Int. Work-
shop Edge Syst. Analytics Netw., 2018, pp. 1-6.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance,” in Proc. USENIX Symp. Netw. Syst.
Des. Implementation, 2017, pp. 377-392.

M. Ali, A. Anjum, O. Rana, A. R. Zamani, D. Balouek-Thomert,
and M. Parashar, “RES: Real-time video stream analytics using
edge enhanced clouds,” IEEE Trans. Cloud Comput., to be pub-
lished, doi: 10.1109/TCC.2020.2991748.

[44] H.Huet al., “Video surveillance on mobile edge networks—A rein-
forcement learning based approach,” IEEE Internet Things |., vol. 7,
no. 6, pp. 4746-4760, Jun. 2020.

[45] H. Sun, W. Shi, X. Liang, and Y. Yu, “VU: Edge computing-enabled
video usefulness detection and its application in large-scale video sur-
veillance systems,” IEEE Internet Things]., vol. 7, no. 2, pp. 800-817,
Feb. 2020.

[46] R.Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa,
“Visor: Privacy-preserving video analytics as a cloud service,” in
Proc. USENIX Secur. Symp., 2020, pp. 1039-1056.

[47] A.Toshniwal et al., “Storm@ twitter,” in Proc. ACM Int. Conf. Man-
age. Data, 2014, pp. 147-156.

[48] Yahoo, “Tensorflow on Spark.” Accessed: Dec. 15, 2020. [Online].
Available: https:/ /github.com/yahoo/TensorFlowOnSpark /wiki

[49] T. Akidau et al., “MillWheel: Fault-tolerant stream processing at
internet scale,” Proc. VLDB Endowment, vol. 6, no. 11, pp. 1033-1044,
2013.

Aakash Khochare is currently working toward
the PhD degree at the Indian Institute of Science,
Bangalore, India. His research involves designing
systems, abstractions, and heuristics that enable
analytics on edge, fog, and drone platforms.
He is a recipient of the IEEE TCSC SCALE
Challenge Award, in 2019.

Aravindhan Krishnan received BTech degree in
computer science and technology, from VIT,
Chennai, in 2019. He is working at VMWare,
Bangalore. His research interests include distrib-
uted systems and networking.

Yogesh Simmhan (Senior Member, |EEE)
received the PhD degree in computer science
from the Indiana University, Bloomington, Indi-
ana, and was previously a research faculty with
the University of Southern California (USC), and
a postdoc with Microsoft Research. He is an
associate professor and a Swarna Jayanti fellow
with the Indian Institute of Science, Bangalore.
His research explores abstractions, algorithms,
and applications on distributed systems, including
cloud and edge computing, scalable graph proc-
essing, and distributed storage and analytics to support Big Data and
Internet of Things (loT) applications. He is an associate editor-in-chief of
the Journal of Parallel and Distributed Systems (JPDC), and earlier
served as an associate editor of the IEEE Transactions on Cloud
Computing. He is a senior member of ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

https://nifi.apache.org/
https://nifi.apache.org/
https://cysu.github.io/open-reid/
https://planet.osm.org
https://www.openstreetmap.org
https://www.openstreetmap.org
http://dx.doi.org/10.1109/TCC.2020.2991748
https://github.com/yahoo/TensorFlowOnSpark/wiki

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

