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1. Introduction

Let Ω be a bounded domain in Cm and A(Ω) be the unital Banach algebra obtained as 
the norm closure with respect to the supremum norm on Ω of all functions holomorphic 
on a neighbourhood of Ω. A complex Hilbert space H is said to be a Hilbert module 
over A(Ω) with module map A(Ω) ×H π→ H by point-wise multiplication such that the 
module action A(Ω) ×H π→ H is norm continuous. Classical examples of Hilbert modules 
are the Hardy and Bergman module over the disc algebra A(D) where D is the open 
unit disc in the complex plane. Two Hilbert modules H1 and H2 over A(Ω) with module 
actions (f, hi) �→ M

(i)
f (hi), i = 1, 2, are said to be isomorphic if there is a Hilbert space 

isomorphism Φ : H1 → H2 such that Φ(M (1)
f (h1)) = M

(2)
f (Φ(h1)). The basic problem 

alluded to the title is as follows:
Given a Hilbert module M and a submodule M0 over A(Ω), satisfying the exact 

sequence

0 → M0
i→ M

π→ Mq → 0,

where i is the inclusion map, π is the quotient map and Mq is the quotient module M �
M0, is it possible to determine Mq in terms of M and M0? One can make this general 
question more precise by asking if it is possible to assign some computable invariants on 
Mq in terms of M and the submodule M0.

In [10] and [2], these questions have been studied when the submodule M0 consists 
of all functions in a quasi-free Hilbert module M of rank 1 (cf. [12, Section 2], [13, 
Page 3]) over A(Ω) vanishing along a smooth hypersurface Z and a complex algebraic 
variety of complete intersection of finitely many smooth hypersurfaces in Ω, respectively, 
to obtain geometric invariants for such quotient modules in terms of the curvature of 
the line bundle associated to M and M0. By means of jet construction, [15, Page 372]
a model for the quotient modules obtained from the submodules M (k)

0 of functions in 
M vanishing of order k ≥ 1 along Z has been provided which is then used to obtain 
geometric invariants of such quotient modules generalizing the results in [10]. Later in 
[14], a complete set of unitary invariants for such quotient modules with an arbitrary 
k has been described. For k = 2, these invariants turn out to be the tangential and 
transverse components of the curvature of the line bundle EM relative to hypersurface 
Z and the second fundamental form for the inclusion EM ⊂ J

(2)
1 EM where J (2)

1 EM

is the second order jet bundle of EM relative to Z (cf. [14, Section 3]). More recently, 
Chen and Douglas have introduced the localization of a commuting tuple of operators 
in the Cowen-Douglas class over Ω on Z and obtained unitary invariants for them in 
[3]. Furthermore, they relate these localizations to the quotient modules obtained from 
the submodules of vector valued holomorphic functions on Ω ⊂ Cm vanishing to order 
k ≥ 2 on a smooth hypersurface Z. These studies on quotient modules naturally lead to 
consider the case when the submodules consist of vector valued holomorphic functions 
vanishing to higher order along a smooth complex analytic set of codimension greater 
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than 1. In order to describe the content of the present article, we first recall the definition 
of the Cowen-Douglas class.

Let DT : H → H ⊕ · · · ⊕ H be the operator given by the formula: DT h =
(T1h, . . . , Tmh), h ∈ H. Following [7], we say that a commuting m-tuple of bounded 
linear operators T = (T1, . . . , Tm) on H is in Br(Ω) if

• dim kerDT−zI = r, z ∈ Ω;
• ranDT−zI is closed in H⊕ · · · ⊕ H;
• the linear span of the vectors in kerDT−zI , z ∈ Ω is dense in H.

Following the ideas of [7], it is easy to establish a one to one correspondence between the 
unitary equivalence class of commuting m-tuples of operators in Br(Ω) and equivalence 
class of the corresponding hermitian holomorphic vector bundles ET := {(w, x) ∈ Ω ×H :
x ∈ kerDT−w} of rank n over Ω. The equivalence class of the hermitian holomorphic 
vector bundle is the local equivalence of the hermitian structure. These vector bundles 
are distinguished, among others, by the property that the hermitian structure on the 
fibre over z ∈ Ω is induced from the inner product of a fixed Hilbert space H. It has been 
proved in [9] that the corresponding m-tuple of operators T is simultaneously unitarily 
equivalent to the adjoint of the m-tuple of multiplication operators M = (Mz1 , . . . , Mzm)
by the coordinate functions on a reproducing kernel Hilbert space HK consisting of Cr-
valued holomorphic functions on Ω∗ := {z : z ∈ Ω}, where K is the reproducing kernel 
on Ω∗.

In general, the adjoint of the tuple M need not be in Br(Ω). However, it can be 
ensured by putting additional conditions (cf. [9]) on K. One set of such conditions are 
the following:

(i) for any z ∈ Ω∗, the evaluation mapping evz : HK → Cr is bounded and surjective;
(ii) HK has the Gleason property, that is, for any z ∈ Ω∗ and f ∈ HK , f(z) = 0 if and 

only if f(w) = (w1 − z1)f1 + · · ·+ (wm − zm)fm for some f1, . . . , fm ∈ HK and any 
w ∈ Ω∗.

The following result shows that these are, indeed, the necessary and sufficient for a 
tuple T = (T1, . . . , Tm) of commuting operators to be in Br(Ω).

Theorem 1.1. [3, Theorem 2] A tuple of operators T = (T1, . . . , Tm) lies in Br(Ω) if 
and only if T is unitarily equivalent to the adjoint of the tuple M = (Mz1 , . . . , Mzm) of 
multiplication operators on a Cr- valued holomorphic function space over Ω∗ satisfying 
(i) and (ii) as listed above.

From now on, we say that a Hibert module M is in Br(Ω) if (M∗
z1 , . . . , M

∗
zm) is in 

Br(Ω) where (Mz1 , . . . , Mzm) is the tuple of multiplication operators on M corresponding 
to the coordinate functions on Ω∗.
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In the first half of the present article, the emphasis is on treating the quotient modules 
more generally, compared to previous work in special cases (codimension 1, scalar valued 
functions, etc.), in a uniform way. However, as in the previous case, the basic assumption 
made throughout is that the subvariety Z is smooth. Thus after a local change of variables 
at a given point in Ω, Z becomes locally isomorphic to a linear subvariety (codimension 
d ≥ 2) described by the vanishing of first d variables yielding geometric invariants of the 
quotient modules with respect to the local coordinates in a neighbourhood of a given 
point. (By abstract principles this often suffices to obtain global invariants.) We make 
use of this description of the subvariety Z in Section 3 to obtain a canonical model for 
the submodule of functions in M vanishing to order k on Z. The main crux in obtaining 
this model is to prove the Proposition 3.10 which can also be obtained using the multi-
variable version of the Fa di Bruno formula. However, the advantage of the proof given 
in this article is in providing the change of variable matrix for the N -jet of a holomorphic 
function explicitly which we use in later sections.

This model of submodules then enables us to obtain a model for the quotient modules 
(Theorem 4.5) in Section 4. The main idea, originating from [15], is to consider a module 
J(M ) of k-jets relative to Z of all functions in M and identify the quotient module Mq

as the restriction of J(M ) to Z. One of the basic problems is whether this new module 
J(M )|Z over A(Z) belongs to Br|A|(Z) where A = {α ∈ (N ∪ {0})m : |α| < k}. As one 
of the main results in Section 4, it is shown that

M ∈ Br(Ω) =⇒ J(M )|Z ∈ Br|A|(Z)

at least for a natural class of Hilbert modules in the Cowen-Douglas class in Theorem 4.8.
Thus for this class of Hilbert modules, the corresponding quotient modules Mq give 

rise to a hermitian holomorphic vector bundles over Z as well, but it turns out that only 
the bundle structure cannot determine the unitary equivalence class of such quotient 
modules. The flag structure of this new bundle induced by the module action − which 
now involves the nilpotent action obtained from the compression of the tuple of multipli-
cation operators by the vanishing coordinates of Z − must be accounted as explained in 
Remark 4.7 and Remark 5.2. Classifying such quotient modules − for vector valued func-
tions and the higher codimensional vanishing set − requires new ideas and techniques 
extending older ones from complex geometry of jet bundles and moving frames.

The vector bundle associated with the module J(M )|Z turns out to be the k-th order 
jet bundle relative to Z of the vector bundle associated with the module M . In Section 5, 
using the techniques of normalised frame [19, Lemma 2.3] of these vector bundles, we first 
show in Theorem 5.10 that two such quotient modules are unitarily equivalent if and only 
if there exists a constant isometric jet bundle isomorphism between the corresponding 
jet bundles restricted to the submanifold Z with the aid of normalized frame. This fact 
is then used to determine the unitary invariants of the aforementioned quotient modules 
in Theorem 5.13. These results extend the results in [11,14,3] to the case of quotient 
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modules obtained from submodules of vector valued functions vanishing along a smooth 
analytic variety of arbitrary codimension.

Finally, in Theorem 6.4 we show, for two Hilbert modules M , M̃ ∈ Br(Ω) with r < m

and any connected complex submanifold Z ⊂ Ω of codimension d with r ≤ d ≤ m, that 
the unitary equivalence of quotient modules obtained from the submodules of functions 
in M (respectively, M̃ ) vanishing of order r + 2 along Z forces the Hilbert modules to 
be unitarily equivalent. It is also pointed out, for m ≤ r and d �= m, that there exist 
Hilbert modules M and M̃ which are not equivalent although these quotient modules 
are. Thus it generalizes one of the main results, namely Theorem 1.6 in [6], in multi-
variable domains as well as provides the main result (Theorem 3.12) in [4] as a special 
case.

1.1. Notations and conventions

Before proceeding further, let us fix some notations which will be useful throughout 
the paper.

(1) O(Ω) denotes the set of all holomorphic functions on Ω.
(2) In this article, we only consider those Hilbert modules M ⊂ O(Ω)⊕r for which the 

evaluation mappings evz : M → Cr are bounded from M onto Cr for z ∈ Ω and the 
Gleason property holds. We also assume that the ring of polynomials C[z1, . . . , zm]
is contained in M .

(3) Let M be a Hilbert module over A(Ω) consisting of holomorphic functions on Ω and 
M0 ⊂ M be a subspace which is also a Hilbert module over Ω. Assume that A(Ω)
acts on M by point-wise multiplication and Mq be the quotient module M�M0. Let 
U ⊂ Ω be an open connected subset. Then from the identity theorem for holomorphic 
functions of several complex variables we have M 
A(Ω) M |U , M0 
A(Ω) M0|U , 
and hence Mq 
A(Ω) Mq|U where M |U = {h|U : h ∈ M }. We, therefore, may cut 
down the domain Ω to a suitable open subset U , if necessary, and pretend U to 
be Ω.

(4) From now on, for any multi-indices α = (α1, . . . , αd), we use following nota-
tions

∂α(respectively, ∂̄α) := ∂|α|

∂z1α1 · · · ∂zdαd

(
respectively, ∂̄|α|

∂̄z1α1 · · · ∂̄zdαd

)
(1.1)

unless and otherwise stated, where ∂i = ∂
∂zi

, i = 1, . . . , d.

2. Preliminaries on hermitian holomorphic vector bundles

Let E be a hermitian holomorphic vector bundle of rank n over a complex manifold M
of dimension m. A connection on the bundle E is a differential operator D : E0(M, E) →
E1(M, E) of order 1 with the defining property
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D(fσ) = df ⊗ σ + f ·Dσ

for any smooth function f on M and σ ∈ E0(M, E) where df stands for usual exterior 
derivative of f , E0(M, E) is the set of all smooth sections of E and E1(M, E) is the 
set of all smooth E valued 1 forms on M . It is well known (cf. [18]) that there is 
unique connection D − the Chern connection − on E which is compatible with both 
the complex structure and the hermitian metric. It with respect to a local holomorphic 
frame s = {e1, . . . , en} of E, takes the form

D(s) = ∂H(s) ·H(s)−1 (2.1)

where H(s) is the Gramian matrix of the frame s. From now on, by a connection on a 
hermitian holomorphic vector bundle we will mean the Chern connection. The curvature 
tensor K of the vector bundle E → M with respect to the Chern connection is an 
element in E2(M) ⊗ Hom(E, E) and takes the form

K (s) = ∂̄(∂H(s) ·H(s)−1) (2.2)

with respect to the local holomorphic frame s of E, where E2(M) is the set of all smooth 
2 forms on M and Hom(E, E) is the vector bundle over M with Hom(Ep, Ep) as the 
fibre over any point p ∈ M . It follows that in a local coordinate system of M one can 
write K as

K (s) =
m∑

i,j=1
Kij(s)dzi ∧ dzj =

m∑
i,j=1

∂̄j(∂iH(s) ·H(s)−1)dzi ∧ dzj , (2.3)

where s is a local holomorphic frame of E.
Note that unlike the curvature tensor K , the connection operator D is not C∞ linear, 

that is, D is not a bundle map. Nevertheless, it is easy to verify that the commutator of 
connection with a bundle map is a bundle map. More generally the following fact holds:

Lemma 2.1. [6, Lemma 2.10] Let E and Ẽ be C∞ vector bundles over some smooth 
manifold X with connections D and D̃, respectively. If Φ : E → Ẽ is a C∞ bundle map 
then so is D̃Φ −ΦD as map from E to Ẽ⊗T ∗(X), where T ∗(X) is the cotangent bundle 
of X.

Thus, for bundle maps Φ : E → Ẽ, there exist bundle maps Φzi , Φzj
: E → Ẽ satisfying

D̃Φ − ΦD =
m∑

i,j=1
(Φzi ⊗ dzi + Φzj

⊗ dzj). (2.4)

In particular, for a bundle map Φ : E → E we write
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[D,Φ] := DΦ − ΦD.

Let Φ(s), Φzi(s), Φzj
(s) be the matrix representation of Φ, Φzi , Φzj

, respectively, with 
respect to the local holomorphic frame s. It turns out that

Φzi(s) = ∂ziΦ(s) − [∂ziH(s) ·H(s)−1,Φ(s)] and (2.5)

Φzi
(s) = ∂zi

Φ(s). (2.6)

In the following lemma, we calculate the covariant derivatives of curvature tensor. The 
proof of the following lemma, for d = 1, is well known (cf. [6, Proposition 2.18], [4, Lemma 
20]). Although the similar set of arguments used there with more than one variable yields 
the proof in our case, we present a sketch of the proof for the sake of completeness.

Lemma 2.2. Let E be a hermitian holomorphic vector bundle over Ω in Cm with a fixed 
holomorphic frame s := {s1, . . . , sr} whose Gramian matrix is H. Then

(i) for 1 ≤ d ≤ m, α, β ∈ (N ∪ {(0)})d, and i, j = 1, . . . , d, the r × r matrices 
(Kij(S))zαzβ can be expressed in terms of H−1 and ∂p∂̄qH where zα = z1

α1 · · · zdαd , 
zβ = z1

β1 · · · zdβd , ∂p = ∂p1
1 · · · ∂pd

d , ∂̄q = ∂̄q1
1 · · · ∂̄qd

d and 0 ≤
∑d

l=1 pl ≤ |α| + 1, 
0 ≤

∑d
l=1 ql ≤ |β| + 1, l = 1, . . . , d;

(ii) given 1 ≤ d ≤ m, α, β ∈ (N ∪ {(0)})d, ∂α∂̄βH can be written in terms of H−1, 
∂pH, ∂̄qH and (Kij)zrzs , for 0 ≤ pl ≤ αl, 0 ≤ ql ≤ βl, 0 ≤

∑d
l=1 rl ≤ |α| − 1, 

0 ≤
∑d

l=1 sl ≤ |β| − 1, l = 1, . . . , d, i, j = 1, . . . , d.

Proof. Let E, S and H be as above. Then, for j = 1, . . . , m, we have

∂zjH
−1 = −H−1 · ∂zjH ·H−1, and (2.7)

∂zj
H−1 = −H−1 · ∂zj

H ·H−1. (2.8)

Now from the definition of curvature we obtain, for i, j = 1, . . . , d,

Kij = ∂zj
(∂ziH ·H−1)

= ∂zj
∂ziH ·H−1 − ∂ziH ·H−1 · ∂zj

H ·H−1

which also implies that

∂zj
∂ziH = KijH + ∂ziH ·H−1 · ∂zj

H. (2.9)

Then an induction argument using Leibniz rule together with the equations (2.7) and 
(2.8) yield the desired expression in (i). Further, (ii) can be obtained as before by using 
Leibnitz rule and formulas (2.7), (2.8) and (2.9) with the help of mathematical induction 
on |α| and |β|. �
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3. The submodule M0

Let M ⊂ O(Ω)⊕r be the Hilbert module over A(Ω) for which the evaluation mappings 
evz : M → Cr are bounded from M onto Cr for z ∈ Ω and the Gleason property holds. 
Denote the elements of M as h = (h1, . . . , hr)tr where hj ∈ A(Ω), 1 ≤ j ≤ r. In this 
section, we define the submodule M0 of M . So we begin by recalling some elementary 
definitions regarding complex analytic varieties.

Definition 3.1. A subset Z ⊂ Ω is called an analytic set if, for any point p ∈ Ω, there is 
a connected open neighbourhood U of p in Ω and finitely many holomorphic functions 
φ1, . . . , φd on U such that

U ∩ Z = {q ∈ U : φj(q) = 0, 1 ≤ j ≤ d}.

Definition 3.2. An analytic set Z ⊂ Ω is said to be regular of codimension d at p ∈ Z
if there is an open neighbourhood Up ⊂ Ω and holomorphic functions φ1, . . . , φd on Up

such that

(a) Z ∩ Up = {q ∈ Ω : φ1(q) = · · · = φd(q) = 0},
(b) the rank of the Jacobian matrix of the mapping q �→ (φ1(q), . . . , φd(q)) at p is d.

An analytic set is said to be irreducible if it can not be decomposed as a union of two 
analytic sets. It is known in the literature that any smooth analytic set is irreducible if 
and only if it is connected with respect to the subspace topology [18, page 20].

In the following proposition, we point out that such an analytic set Z is a regular 
complex submanifold of codimension d in Ω.

Proposition 3.3. [17, page 161] An analytic set Z is regular of codimension d at p ∈ M

in a complex manifold M of dimension m if and only if there is a complex coordinate 
chart (U, φ) of M such that B := φ(U) is an open subset of Cm with φ(p) = 0 and 
φ(U ∩ Z) = {λ = (λ1, ..., λm) ∈ B : λ1 = · · · = λd = 0}.

Remark 3.4. In this article, we are interested in smooth irreducible analytic sets Z of 
codimension d in some bounded domain Ω in Cm. So from the Definition 3.2 and the 
Proposition 3.3 we have, for each point p ∈ Z, there is a coordinate chart (U, φ) at p of 
Ω satisfying following properties:

(a) φ(p) = 0 with φ(U ∩ Z) = {λ = (λ1, ..., λm) ∈ B : λ1 = · · · = λd = 0},
(b) the rank of the Jacobian matrix of the mapping q �→ (φ1(q), . . . , φd(q)) at p is d.

We are now about to define the order of vanishing of a holomorphic function along a 
smooth analytic set. Our definition is essentially a direct generalization of the definition 
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given in [15] to define the order of vanishing of a holomorphic function along a smooth 
complex hypersurface.

Definition 3.5. Let Ω and Z be as above and f : Ω → C be a holomorphic function. Then 
f is said to have zero of order at least k at some point p ∈ Z if there exists a coordinate 
chart (U, φ) at p of Ω satisfying the properties (a) and (b) in the Remark 3.4 such that

[f ] ∈ IkZ (3.1)

where [f ] is the germ of f at p and IZ is the ideal in Om,p generated by [φ1], . . . , [φd].

Remark 3.6. Note that the above definition is independent of the choice of coordinate 
chart at p. Indeed, for two such charts (U1, φ1) and (U2, φ2) with the properties listed 
in Remark 3.4, φ1 and φ2 ◦ φ−1

1 , respectively, induce isomorphisms Φ1 : Om,p → Om,0
defined by Φ1([g]) = [g ◦ φ−1

1 ] and Φ2 : Om,0 → Om,0 with Φ([g ◦ φ−1
1 ]) = [g ◦ φ−1

2 ]. As a 
consequence, it turns out that f satisfies (3.1) if and only if [f ◦φ−1

1 ] ∈ Ik1 which is again 
equivalent to the fact that [f ◦ φ−1

2 ] ∈ Ik2 where Ij is the ideal generated by the germs 
[λj

1], . . . , [λ
j
d], j = 1, 2, with local coordinates λj

1, . . . , λ
j
m of Cm corresponding to φj .

Definition 3.7. The submodule M0 is defined as

M0 := {h ∈ M : hj has zero of order at least k at every q ∈ Z, 1 ≤ j ≤ r}.

Lemma 3.8. Let Ω be a bounded domain in Cm, Z be a complex submanifold in Ω and 
f : Ω → C be a holomorphic function. Then, for each point p ∈ Z, f vanishes to order 
k at p along Z if and only if

∂α
λ (f ◦ φ−1)|φ(U∩Z) := ∂|α|

∂λ1
α1 · · · ∂λd

αd
(f ◦ φ−1)|φ(U∩Z) = 0 for 0 ≤ |α| ≤ k − 1,

where α = (α1, . . . , αd) and |α| = α1 + · · · + αd, for some coordinate chart (U, φ) as in 
the Remark 3.4.

In general, there are no global defining functions φ1, . . . , φd for a smooth irreducible 
analytic set Z. Since the modules and the submodules of interest can be localized (see at 
the end of the Section 1), it is enough to work with an open set U ⊂ Ω intersecting Z. So 
from now on, we consider a fixed neighbourhood U ⊂ Ω of p with U∩Z �= ∅ and defining 
functions φ1, . . . , φd satisfying conditions (a) and (b) in Remark 3.4. Since the Jacobian 
matrix of the mapping z �→ (φ1(z), . . . , φd(z)) has rank d at p, by rearranging the 
coordinates in Cm, we can assume that D1(p) := ((∂jφi|p))di,j=1 is invertible. Note that 
D1(z) is invertible on some neighbourhood of p in U . Abusing the notation, let us denote 
this neighbourhood by the same letter U . Consider the mapping φ : U → φ(U) defined as 
φ(z) = (φ1(z), . . . , φd(z), zd+1, . . . , zm) and observe that φ is a bi-holomorphism from U
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onto φ(U) with φ(p) = 0 and φ(U ∩Z) = {λ = (λ1, ..., λm) ∈ φ(U) : λ1 = · · · = λd = 0}. 
Thus once we fix a chart as above and pretend U to be Ω, the submodule M0 may be 
described as

M0 =
{
h ∈ M : ∂|α|

∂λ1
α1 · · · ∂λd

αd
(hj ◦ φ−1)(λ)|φ(Z) = 0 for 0 ≤ |α| ≤ k − 1, 1 ≤ j ≤ r

}
.

At this stage, we introduce a definition that separates the coordinate chart described 
above among others and will be useful throughout this article.

Definition 3.9. Let Ω be a domain in Cm and Z ⊂ Ω be a complex submanifold of 
codimension d. Then, for any point p ∈ Z, we call a coordinate chart (U, φ) of Z around 
p an admissible coordinate chart if the bi-holomorphism φ : U → φ(U) takes the form 
φ(z) = (φ1(z), . . . , φd(z), zd+1, . . . , zm) with φ(p) = 0 and φ(U∩Z) = {λ = (λ1, ..., λm) ∈
φ(U) : λ1 = · · · = λd = 0} for some holomorphic functions φ1, . . . , φd on U .

Note that even in this local description of the submodule, there is a choice of com-
plementary directions to the submanifold Z involved. The following proposition ensures 
that in this local picture two different sets of complementary directions to Z give rise 
to equivalent submodules. We must recall some elementary definitions and properties of 
the ring of polynomial functions on a finite dimensional complex vector space which will 
be useful in the course of the proof of the following proposition.

For any complex vector space V of dimension d, the ring of polynomial functions 
C[V ] on V consists of all functions f : V → C such that, for any basis {e1, . . . , ed} of 
V , f takes the form f(α1e1 + · · · + αded) = φ(α1, . . . , αd) for all (α1, . . . , αd) ∈ Cd and 
some polynomial φ ∈ C[x1, . . . , xd]. In other words, f is a polynomial into the elements 
x1 = e∗1, . . . , xd = e∗d of the dual basis. It is then clear that

C[V ] 
 S(V ∗) 
 C[x1, . . . , xd] (3.2)

where S(V ∗) is the graded vector space of all symmetric tensors on V ∗. Note that C[V ]
is an algebra over C.

A polynomial function f on V is said to be homogeneous of degree t if f(αv) = αtf(v)
for all α ∈ C and v ∈ V . We denote C[V ]t the subspace of C[V ] of homogeneous 
polynomial functions of degree t. In particular, C[V ]0 = C, C[V ]1 = V ∗ and C[V ]t is 
canonically identified in the first isomorphism in (3.2) with the t-th symmetric power 
St(V ∗), and it can also be identified with the subspace of C[x1, . . . , xd] generated by the 
monomials xt1

1 · · ·xtd
d with t1 + · · · + td = t via the second isomorphism of (3.2).

Proposition 3.10. Let Ω be a bounded domain in Cm, Z be a complex submanifold in Ω
and f : Ω → C be a holomorphic function. Then, for each point p ∈ Z and n ∈ N, there 
exists an admissible coordinate chart (U, φ) of Ω at p such that

∂α
λ (f ◦ φ−1)(λ)|φ(p) = 0, 0 ≤ |α| ≤ n if and only if ∂αf(z)|p = 0, 0 ≤ |α| ≤ n
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where α = (α1, . . . , αd) ∈ (N ∪ {0})d, λ = (λ1, . . . , λm) denotes the standard coordinates 
on φ(U) ⊂ Cm.

Proof. Let us consider an admissible coordinate system (U, φ) (cf. Definition 3.9) at 
p ∈ Z ⊂ Ω of Ω, that is, φ : U → φ(U) defined as φ(z) = (φ1(z), . . . , φd(z), zd+1, . . . , zm).

For q ∈ U , let Vq and Vφ(q) be tangent spaces at q and φ(q) to (Cd × {0}) ∩ U and 
(Cd × {0}) ∩ φ(U), respectively. Denote the standard ordered basis of Vq by B1(q) :=
{ ∂
∂zj

|q}dj=1 and that of Vφ(q) by B1(φ(q)) := { ∂
∂λj

|φ(q)}dj=1. Consider the linear map 

L1(q) : V ∗
q → V ∗

φ(q) whose matrix with respect to the dual bases {dzj}dj=1 and {dλj}dj=1
of B1(q) and B1(φ(q)), respectively, is the matrix ((∂jφi(q)))di,j=1.

In view of the first isomorphism in (3.2), we observe that L1(q) canonically induces 
linear mappings Lt(q) : St(V ∗

q ) → St(V ∗
φ(q)) defined by

Lt(q)(dzα1
1 ⊗ · · · ⊗ dzαd

d ) = L1(q)(dz1)α1 ⊗ · · · ⊗ L1(q)(dzd)αd

where α = (α1, . . . , αd) ∈ (N ∪ {0})d with |α| = α1 + · · · + αd = t and by dzαj

j (respec-
tively, by L1(q)(dzj)αj ) we mean that the αj-th symmetric power of dzj (respectively, 
L1(q)(dzj)).

Let Bt(q) := {dzα1
1 ⊗· · ·⊗dzαd

d : |α| = t} and Bt(φ(q)) := {dλα1
1 ⊗· · ·⊗dλαd

d : |α| = t}
be bases for vector spaces St(V ∗

q ) and St(V ∗
φ(q)), respectively, and make them ordered 

bases with respect to the order induced by the colexicographic order on the set {α ∈
(N ∪ {0})d : |α| = t}. Denote the matrix of Lt(q) represented with respect to the basis 
Bt(q) and Bt(φ(q)) as Dt(q), for t ∈ N ∪ {0}. Note that since Lt(p) is a vector space 
isomorphism for each t ∈ N ∪ {0} the matrices Dt(p)’s are invertible.

In this set up, we claim, for z ∈ U with φ(z) = λ ∈ φ(U), that

An,φ(z) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ◦ φ−1(λ)
∂λ1f ◦ φ−1(λ)

...
∂α
λ f ◦ φ−1(λ)

...
∂n
λd
f ◦ φ−1(λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(z)
∂1f(z)

...
∂αf(z)

...
∂n
d f(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.3)

where ∂α
λ stands for the differential operator ∂|α|

∂λ
α1
1 ···∂λαd

d

, An,φ(z) is the block lower 
triangular matrix with 1, D1(z), . . ., Dn(z) as the diagonal blocks. Here the order used 
in writing the coloumn vectors is obtained from the colexicographic order on the set 
{α ∈ (N ∪ {0})d : |α| ≤ k}.

We prove this claim with the help of mathematical induction on n. Note that the base 
case is a direct consequence of the change of variables formula. Let the equation (3.3)
hold true for t = l with 1 ≤ l ≤ n, that is, for α = (α1, . . . , αd) with |α| = l,
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∂αf(z) =
∑
|β|=l

(Dl(z))αβ∂β
λf ◦ φ−1(λ) + other terms

where Dl(z) is the matrix (((Dl(z))αβ))|α|=l,|β|=l. Differentiating both sides of this equa-
tion with respect to the zj-th coordinate and using the Leibnitz rule we have, for an 
arbitrary but fixed point q ∈ U ,

∂j∂
αf(z)|z=q =

∑
|β|=l

∂j(Dl(z))αβ |z=q∂
β
λf ◦ φ−1(φ(q))

+
∑
|β|=l

(Dl(q))αβ

(
d∑

s=1
∂jφs(q)∂λs

)
∂β
λf ◦ φ−1(λ)|λ=φ(q) + ∂j(other terms)

=
∑
|β|=l

(Dl(q))αβ∂β
λ

(
d∑

s=1
∂jφs(q)∂λs

f ◦ φ−1(λ)
)∣∣

λ=φ(q)

+ (other terms involving ∂β
λf ◦ φ−1(φ(q)) with |α| ≤ l)

Note that the rings of polynomial functions S(V ∗
q ) and S(V ∗

φ(q)) can be canonically 
identified with the algebras of linear partial differential operators with constant coeffi-
cients, namely, Γq : S(V ∗

q ) 
C {
∑

α aα∂
α1
1 · · · ∂αd

d : aα ∈ C} under the correspondence 

dzα1
1 ⊗ · · · ⊗ dzαd

d

Γq�→ ∂α1
1 · · · ∂αd

d and similarly, Γφ(q) : S(V ∗
φ(q)) 
C {

∑
α aα∂

α1
λ1

· · · ∂αd

λd
:

aα ∈ C} via the mapping dλα1
1 ⊗· · ·⊗dλαd

d

Γφ(q)�−→ ∂α1
λ1

· · · ∂αd

λd
. Consequently, it yields that

∂α+εjf(q) =
∑
|β|=l

(Dl(q))αβ∂β
λ

(
d∑

s=1
∂jφs(q)∂λs

f ◦ φ−1(λ)
)∣∣

λ=φ(q)

+ (other terms involving ∂β
λf ◦ φ−1(φ(q)) with |α| ≤ l)

= (Γφ(q)L1(q)Γ−1
q (∂1))α1 · · · (Γφ(q)L1(q)Γ−1

q (∂j))αj · · · (Γφ(q)L1(q)Γ−1
q (∂d))αd

(Γφ(q)L1(q)Γ−1
q (∂j))f ◦ φ−1(λ)

∣∣
λ=φ(q)

+ (other terms involving ∂β
λf ◦ φ−1(φ(q)) with |α| ≤ l)

= (Γφ(q)L1(q)Γ−1
q (∂1))α1 · · · (Γφ(q)L1(q)Γ−1

q (∂j))αj+1 · · · (Γφ(q)L1(q)Γ−1
q (∂d))αd

f ◦ φ−1(λ)
∣∣
λ=φ(q) + (other terms involving ∂β

λf ◦ φ−1(φ(q)) with |α| ≤ l)

=
∑

|β|=l+1

(Dl+1(q))(α+εj)β∂
β
λf ◦ φ−1(φ(q))

+ (other terms involving ∂β
λf ◦ φ−1(φ(q)) with |α| ≤ l)

which verifies the claim. Thus, An,φ(z) is invertible if and only if D1(z), . . ., Dn(z) are 
simultaneously invertible which is the case for z ∈ U . Hence it completes the proof. �
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Remark 3.11. We point out that the proposition above can also be obtained from the 
multi-variable version of the Faa di Bruno formula for composite functions as suggested 
by the anonymous referee. However, the advantage of the proof above is in computing 
the invertible matrix An,φ(z) satisfying the equation (3.3). We will use this invertible 
matrix again in Section 5 which is why we prefer to keep this proof here than the one 
by Faa di Bruno formula. Nevertheless, we provide a brief sketch of this proof following 
Faa di Bruno formula for sake of completeness.

We now elaborate upon this. Let Ω, Z, and f be as in the Proposition 3.10, and (U, φ)
be an admissible coordinate chart at p. The multi-variable Faa di Bruno formula, for the 
composite function f ◦ φ−1 and multi-indices μ, μij , ν, νij of length m, states that

∂ν
λ(f ◦ φ−1)(λ) =

∑
1≤|μ|≤n

(∂μf)(φ−1(λ))
∑
μij �=0

∑
νij

C(μij , νij)
j∏

i=1
(∂νij

λ φ−1(λ))μ
ij

where 1 ≤ i ≤ j ≤ n = |ν|, (∂νij

λ φ−1(λ))μij denotes a monomial product, and for 
each j, the summation is subject to the restriction 

∑j
i=1 λ

ij = λ,
∑j

i=1 |μij |νij = ν. 
C(μij , νij) are the combinatorial coefficients which are explicitly known in [5]. Denote 
α′′ = (αd+1, . . . , αm). Note that being an admissible coordinate chart, φ−1

d+1, . . . , φ
−1
m

are independent on first d variables and hence ∂α
λφ

−1
k (λ) = 0 whenever α′′ = 0 and 

d + 1 ≤ k ≤ m.
Let us consider ν such that ν′′ = 0 which is the case in the previous proposition 

and observe from the condition 
∑j

i=1 |μij |νij = ν that all νij also satisfy (νij)′′ = 0 as 
|μij | > 0. It turns out, for i ≤ j and ν with ν′′ = 0, that the only μij , which can occur 
in the formula above, are those with (μij)′′ = 0. Also, it implies that all such μ, whose 
μ′′ = 0, can occur in the right hand side of the formula above completing the proof of 
the forward direction of the proposition above. Finally, a similar argument as above with 
f ◦φ−1 and φ in place of f and φ−1, respectively, completes the proof of Proposition 3.10.

From the proposition above and Remark 3.6 we have another characterization of the 
submodule M0 as follows:

M0 = {h ∈ M : ∂1
α1 · · · ∂dαd(hj)|Z = 0, 0 ≤ |α| ≤ k − 1, 1 ≤ j ≤ r}.

Remark 3.12. Note that following (3) in Section 1, it is enough to restrict the module 
M and the submodule M0 to an admissible coordinate chart (U, φ) around some point 
p ∈ Z ⊂ Ω. Also, it can be seen that the unitary equivalence classes of these submodules 
remain the same under the change of variables φ. We now elaborate upon this fact.

Let us consider the module, φ∗(M |U ) which is, by definition,

φ∗(M |U ) := {f |U ◦ φ−1 : f ∈ M }
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and note that it is a module over A(Ω) with the module action

g · (f |U ◦ φ−1) := (gf)|U ◦ φ−1,

for g ∈ A(Ω). It is evident that the modules φ∗(M |U ) and M are isomorphic via the 
isomorphism Φ : M → φ∗(M |U ) defined by f �→ f |U ◦φ−1. So, defining an inner product 
as

〈f |U ◦ φ−1, g|U ◦ φ−1〉φ∗(M |U ) := 〈f, g〉M ,

it can be seen that φ∗(M |U ) is unitarily equivalent to M as Hilbert modules. Since M is a 
reproducing kernel Hilbert module with a reproducing kernel, say, K so is φ∗(M |U ) with 
the kernel function K ′ defined by K ′(u, v) = K(φ−1(u), φ−1(v)), for u, v ∈ φ(U). Also, 
the multiplication operators Mz1 , . . . , Mzm on M are simultaneously unitarily equivalent 
to Mu1 , . . . , Mum

on φ∗(M |U ). Finally, (3) in Section 1 together with the Proposition 3.10
ensure that the submodules M0 and φ∗R(M0) are also unitarily equivalent via the same 
map as mentioned earlier. Consequently, we have the following Proposition.

Proposition 3.13. Let Ω be a bounded domain in Cm, Z be a complex connected subman-
ifold in Ω and M 1, M 2 be two Hilbert modules of rank r over A(Ω). Let M 1

0 and M 2
0 be 

submodules of M 1 and M 2, respectively, consisting of holomorphic functions vanishing 
of order at least k along Z. Assume that (U, φ) is an admissible coordinate system around 
some point p ∈ Z. Then M 1

0 is unitarily equivalent to M 2
0 as Hilbert modules if and only 

if φ∗(M 1
0 |U ) is unitarily equivalent to φ∗(M 2

0 |U ). In other words, the following diagram 
commutes.

M 1
0

R−−−−→ M 1
0 |U

Φ−−−−→ φ∗(M 1
0 |U )⏐⏐� ⏐⏐� ⏐⏐�

M 2
0

R−−−−→ M 2
0 |U

Φ−−−−→ φ∗(M 2
0 |U )

Remark 3.14. In view of the previous proposition and Definition 3.9 we note that it 
is enough to consider the submanifold Z as the coordinate plane of codimension d. 
Therefore, from now on we shall only consider domains Ω which contain the origin,

Z = {z ∈ Ω : z1 = . . . = zd = 0}

and the submodule M0 as

M0 = {h ∈ M : ∂1
α1 · · · ∂dαd(hj)|Z = 0, 0 ≤ |α| ≤ k − 1, 1 ≤ j ≤ r}.
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4. Quotient module Mq

Let Ω and Z be as described in the previous section. Consider the exact sequence

0 → M0
i→ M

P→ Mq → 0 (4.1)

where i is the inclusion map and P is the quotient map. Then Mq := M /M0 = M �M0. 
For f ∈ A(Ω) and h ∈ M , we define the module action on Mq as

fP (h) = P (fh) (4.2)

making it a Hilbert module. Here we mean (fh1, . . . , fhr) by fh. In this section, we are 
interested in obtaining a model for these quotient modules Mq.

Following the ideas of [15], we first describe the jet construction relative to the sub-
manifold Z. Let A = {α ∈ (N ∪ {0})d : |α| < k} be an ordered set equipped with 
the colexicographing ordering, {εα}α∈A be the standard ordered basis of C|A|, {σi}ri=1
be the standard ordered basis of Cr and recall that ∂1, ..., ∂d are the partial derivative 
operators with respect to z1, ..., zd variables, respectively. For h ∈ M , we note that 
h = (h1, . . . , hr)tr =

∑r
i=1 hi ⊗ σi, and define

h :=
r∑

i=1

(∑
α∈A

∂αhi ⊗ εα

)
⊗ σi.

Consider the space J(M ) := {h : h ∈ M } ⊂ M ⊗ (C|A| ⊗ Cr). Here and throughout 
this article, we follow the notation below for the tensor product:

A⊗B = ((Abij))qi,j=1

for any matrix A and B = ((bij))qi,j=1. Consequently, we have the mapping

J : M → J(M ) defined by h �→ h. (4.3)

Since J is injective we define an inner product on J(M ) making J to be an unitary 
transformation as follows

〈J(h1), J(h2)〉J(M ) := 〈h1, h2〉M .

Since each evaluation mapping evz : M → Cr is bounded, M is a reproducing kernel 
Hilbert space implying that J(M ) is also a reproducing kernel Hilbert space with the 
reproducing kernel JK as computed in the following proposition.

Proposition 4.1. J(M ) is a reproducing kernel Hilbert space with the reproducing kernel 
JK : Ω × Ω → M|A|r(C) defined as
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(JK)αβij (z, w) = ∂α∂̄βKij(z, w) for α, β ∈ A, 1 ≤ i, j ≤ r, (4.4)

where JK(z, w) is an r × r block matrix with (((JK)αβij (z, w)))α,β∈A as the |A| × |A|
block and (JK)αβij (z, w) is the αβ-th element of the ij-th block.

Proof. We begin with the observation that

JK(., w)εβ ⊗ σj =
∑
α∈A

r∑
i=1

∂α∂̄βKij(., w)εα ⊗ σi = J(∂̄βK(., w)σj)

which shows that JK(., w)εβ ⊗ ξ ∈ J(M ) for all ξ ∈ Cr and w ∈ Ω. It remains to show 
that JK has the reproducing property which is, by definition,

〈h, JK(., w)ζ〉J(M ) = 〈h(w), ζ〉C|A|⊗Cr , (4.5)

for h ∈ J(M ) and ζ ∈ M|A|r(C). Note that, for w ∈ Ω, α ∈ A and 1 ≤ j ≤ r,

〈h, JK(., w)εβ ⊗ σj〉J(M ) = 〈h, J(∂̄βK(., w)σj)〉J(M )

= 〈h, ∂̄βK(., w)σj〉M
= ∂βhj

which completes the proof as ∂αhj(w) = 〈h(w), εα ⊗ σj〉C|A|⊗Cr . �
We now define an action of A(Ω) on J(M ) so that J(M ) becomes a module over A(Ω)

and J turns out to be a module isomorphism. For f ∈ A(Ω) and h ∈ J(M ), the module 
action Jf : J(M ) → J(M ) is defined by Jf (h) := J (f) ⊗ Irh where J (f) ∈ M|A|(C) is 
complex matrix defined as follows

J (f)αβ :=
(
α

β

)
∂α−βf :=

(
α1

β1

)
· · ·

(
αd

βd

)
∂α−βf (4.6)

with α = (α1, . . . , αd) and β = (β1, . . . , βd) and Ir is the identity matrix of size r. Note 
that this is a lower triangular matrix and it takes the following matrix form

J (f) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f
. . . 0

... J (f)αβ
. . .

∂k−1
d f . . . . . . f

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Using the Leibniz rule, for 1 ≤ i ≤ r, we have
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J(f · hi) =
∑
α∈A

∂α(f · hi) ⊗ εα

=
∑
α∈A

α1∑
β1=0

· · ·
αd∑

βd=0

((
α1

β1

)
· · ·

(
αd

βd

)
∂α1−β1
1 · · · ∂αd−βd

d f · ∂β1
1 · · · ∂βd

d hi

)
⊗ εα

= J (f) · hi

which shows that J(f ·h) = J (f) ⊗Ir·h = Jf (h) implying that J is a module isomorphism.
As in the case of Hilbert submodule M0 of the Hilbert module M it is clear that the 

subspace

J(M )0 := {h ∈ J(M ) : h|Z = 0}

is a submodule of J(M ). Let J(M )q be the quotient module obtained by taking an 
orthogonal complement of J(M )0 in J(M ), that is, J(M )q := J(M ) � J(M )0. The 
following theorem provides the equivalence of two quotient modules Mq and J(M )q.

Theorem 4.2. Mq and J(M )q are isomorphic as modules over A(Ω).

Proof. Let us begin by pointing out that D := {∂̄αK(., w)σi : w ∈ Z, 1 ≤ i ≤ r, α ∈ A}
is a spanning set for Mq. Indeed, using the reproducing property of K, we note for 
ζ ∈ Cr, w ∈ Z, α ∈ A, and h ∈ M0, that

〈h, ∂̄αK(., w)ζ〉 = 〈∂αh(w), ζ〉 = 0

implying that M0 ⊂ spanD⊥. Also, a similar computation yields that spanD ⊂ M⊥
0 .

From the equation (4.3) it follows that J(D) = {JK(., w)εα ⊗ σi : α ∈ A, 1 ≤ i ≤
r, w ∈ Z}. As above, for h ∈ J(M ), 1 ≤ i ≤ r, and w ∈ Ω, from the reproducing property 
of JK it turns out that

〈h, JK(., w)εα ⊗ σi〉J(M ) = 〈h(w), εα ⊗ σi〉C|A|r = ∂αhi(w), α ∈ A, (4.7)

justifying that J(D) spans J(M )q. Thus J(Mq) = J(spanD) = spanJ(D) = J(M )q.
In course of completion of the proof, it remains to check that J is a module isomor-

phism from Mq onto J(M )q. In other words, we need to verify the following identity

J ◦ P ◦Mf = (JP ) ◦ Jf ◦ J,

for f ∈ A(Ω), which is equivalent to show that

JM∗
fP = J∗

f (JP )J

where JP : J(M ) → J(M )q is the orthogonal projection operator. Since it amounts to 
show that J intertwines the module actions on D and both P and JP are identity on D
and J(D), respectively, it is enough to prove that
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JM∗
f = J∗

fJ, for f ∈ A(Ω), on D.

Let α = (α1, · · · , αd) ∈ A, 1 ≤ i ≤ r and ∂̄αK(., w)σi ∈ D. For f ∈ A(Ω), w ∈ Z ⊂ Ω, 
we have

M∗
fK(., w)σi = f(w)K(., w)σi. (4.8)

Differentiating both sides of the equation above and using the induction on the degree 
of differentiation we obtain

Mf
∗∂̄αK(., w)σi =

α1∑
β1=0

· · ·
αd∑

βd=0

∂̄α1−β1
1 · · · ∂̄αd−βd

d f(w)∂̄β1
1 · · · ∂̄βd

d K(., w)σi. (4.9)

Therefore, the equation (4.3) together with the Proposition 4.1 yield that

J(Mf
∗∂̄αK(., w)σi) = JK(., w)(J (f)(w))∗(εα ⊗ σi).

Finally, for h ∈ J(M ), ζ ∈ C|A| ⊗Cr and w ∈ Ω, we have

〈h, J∗
fJK(., w) · ζ〉J(M ) = 〈h(w),J (f)(w)∗ζ〉C|A|×r = 〈h, JK(., w)J (f)(w)∗ζ〉J(M )

completing the proof. �
Remark 4.3. Note that as mentioned in [15] the Theorem 4.2 is equivalent to the fact 
that the following diagram of exact sequences is commutative.

0 −−−−→ M0
i−−−−→ M

P−−−−→ Mq −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ J(M )0

i−−−−→ J(M ) JP−−−−→ J(M )q −−−−→ 0

In [1], it was shown that for a reproducing kernel Hilbert space H with scalar valued 
reproducing kernel K on some set W , the restriction of K on a subset W1 of W is also a 
reproducing kernel and restriction of K to W1 constitutes a reproducing kernel Hilbert 
space which is isomorphic to the quotient space H�H0 where H0 := {f ∈ H : f |W1 = 0}. 
Here, adopting the proof from [1] for our case with vector valued kernel, we have the 
following theorem. Since this result is well known (Theorem 3.3, [15]) for the case while 
the codimension of the submanifold, Z, is one and using the techniques used in that 
proof in a similar way the following theorem can be obtained, we omit the proof.

Theorem 4.4. The normed linear space J(M )|Z is a Hilbert space and the Hilbert spaces 
J(M )q and J(M )|Z are unitarily equivalent. Consequently, the reproducing kernel K1
for J(M )|Z is the restriction of the kernel JK to the submanifold Z. Moreover, J(M )q
and J(M )|Z are isomorphic as modules over A(Ω).
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Theorem 4.5. The quotient module Mq is equivalent to the module J(M )|Z over A(Ω).

Proof. It is obvious from Theorem 4.2 and Theorem 4.4. �
Remark 4.6. Let us consider a reproducing kernel Hilbert module M over A(Dm) and 
Δd = {z = (z1, . . . , zm) ∈ Dm : z1 = · · · = zd} be the connected submanifold. Suppose 
that M0 is the submodule defined as follows

M0 = {f ∈ M : ∂α1
1 · · · ∂αd−1

d−1 f |Δd
= 0 : α = (α1, . . . , αd−1) ∈ (N ∪ {0})d−1,

0 ≤ |α| ≤ k − 1}.

It follows from Proposition 3.10 that the submodule M0 is independent of the choice of 
complementary directions to Δd (for example, M0 is isomorphic with the submodule of 
functions f in M such that ∂α1

1 · · · ∂αd−1
d−1 f |Δd

= 0 for α ∈ (N ∪ {0})d−1 with 0 ≤ |α| ≤
k − 1). Consider the quotient module Mq = M � M0 and note that as in the proof of 
Theorem 4.5 it can be shown that Mq is isomorphic to the module of jets J1(M )|Δd

restricted to Δd where

J1(M ) =

⎧⎨
⎩

∑
0≤|α|≤k−1

∂α1
1 · · · ∂αd−1

d−1 f ⊗ εα : α = (α1, . . . , αd−1) ∈ (N ∪ {0})d−1

⎫⎬
⎭ .

On the other hand, from Proposition 3.13 and Theorem 4.5 we have that the quotient 
module Mq is isomorphic to J(φ∗(M ))|Δd

as modules where φ : Dm → Cm is the 
bi-holomorphism φ(z) = (z1 − zd, . . . , zd−1 − zd, zd, . . . , zm) onto it’s image, φ∗(M ) =
{f ◦φ−1 : f ∈ M } and J(f ◦φ−1) =

∑
0≤|α|≤k−1 ∂

α1
λ1

· · · ∂αd−1
λd−1

(f ◦φ−1) ⊗εα with λj = φj , 
j = 1, . . . , d − 1 as (Dm, φ) is an admissible coordinate chart of Dm (Definition 3.9). 
Therefore, J1(M )|Δd

is also isomorphic to J(φ∗(M ))|Δd
as modules. Note that this new 

model J1(M )|Δd
for the quotient modules Mq of above kind is more canonical than the 

one obtained from the jet construction relative to a coordinate plane.
We also point out that the construction depicted above can be performed to any linear 

varieties which possess a global admissible coordinate chart.

Example. For λ > 0, let H(λ)(D) be the Hilbert space of holomorphic functions on D with 

the reproducing kernel K(λ)(z, w) = (1 − zw)−λ for z, w ∈ D with {e(λ)
n (z) := c

− 1
2

n zn :
n ≥ 0} as a complete orthonormal set in H(λ)(D) where cn are the n-th coefficient of 
the power series expansion of (1 − |z|2)−λ,

cn =
(
−λ

n

)
= λ(λ + 1)(λ + 2) · · · (λ + n− 1)

n! = (λ)n
n! .

Let us recall that for λ > 0, the natural action of polynomial ring C[z] on each Hilbert 
space H(λ)(D) makes it into a Hilbert module over C[z]. We also point out that, for 
λ > 1, H(λ)(D) becomes a Hilbert module over the disc algebra A(D).
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It is well known that the product of two reproducing kernels is also a reproducing 
kernel [1, Page no. 8]. For λ = (λ1, . . . , λm) with λi > 0, i = 1, . . . , m, let us consider the 
Hilbert space H(λ)(Dm) := H(λ1)(D) ⊗· · ·⊗H(λm)(D) with the natural choice of complete 
orthonormal set {e(λ1)

i1
(z) ⊗ · · · ⊗ e

(λm)
im

(z) : ij ≥ 0, j = 1, . . . , m}. H(λ)(Dm) naturally 
possesses, under the identification of the functions zi11 · · · zimm on Dm := D × · · · ×D, an 
obvious reproducing kernel

K(λ)(z, w) :=
m∏
j=1

(1 − zjwj)−λj

on Dm. Furthermore, the natural action of C[z] on H(λ)(Dm) makes it a Hilbert module 
over C[z], for λj > 0, j = 1, . . . , m, where by C[z] we mean C[z1, . . . , zm].

Let us now consider the subspace H(λ)
0 consisting of holomorphic functions in H(λ)

which vanish to order 2 along the diagonal Δ := {(z1, . . . , zm) ∈ Dm : z1 = · · · = zm}, 
that is, following the definition given in Section 3,

H(λ)
0 = {f ∈ H(λ)(Dm) : f = ∂1f = · · · = ∂mf = 0 on Δ}.

Following the remark above the quotient module H(λ)
q := H(λ)(Dm) � H(λ)

0 can be 
identified with the reproducing kernel Hilbert module over A(D) with the reproducing 
kernel

Kq(z,w)|Δ = JK(λ)(z,w)|Δ = ((∂i∂̄jK(λ)(z,w)|Δ))mi,j=0.

Remark 4.7. Let us now clarify the module action of A(Ω) on the quotient module 
Mq before proceeding further. To facilitate this action we, following [15, page 384], 
consider the algebra of holomorphic functions on Ω taking values in C|A| with A = {α ∈
(N ∪ {0})d : |α| < k},

JA(Ω) := {J f : f ∈ A(Ω)} ⊂ A(Ω) ⊗M|A|(C)

with the usual matrix multiplication, namely, (J f · J g)(z) := J f(z)J g(z). It is clear 
from (4.6) that J(M )|Z is a module over the algebra JA(Ω)|Z obtained by restricting 
JA(Ω) to Z. Note that J defines an algebra isomorphism from A(Ω) onto JA(Ω) and 
intertwines the restriction operators R1 : A(Ω) → A(Ω)|Z and R2 : JA(Ω) → JA(Ω)|Z . 
Consequently, J : A(Ω)|Z → JA(Ω)|Z is also an algebra isomorphism. So J(M )|Z can 
be thought of as a Hilbert module over JA(Ω)|Z .

On the other hand, observe that the inclusion i : Z → Ω induces a map i∗ : JA(Ω) →
JA(Ω)|Z defined by i∗(J f)(z) = J f(i(z)), for z ∈ Z. Then J(M )|Z can be made a 
module over JA(Ω) by defining the module map as follows:

J f ⊗ Ir · h|Z := i∗(J f ⊗ Ir)h|Z .
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Thus, recalling the fact that J defines an algebra isomorphism between A(Ω) and JA(Ω), 
we can think of J(M )q as a module over A(Ω). Moreover, from the equation above it can 
be seen, for f = zi with i = d +1, . . . , m, that the module action Jf = MJ f⊗Ir on J(M )|Z
becomes the multiplication by zi. Thus, J(M )|Z can be thought of as a reproducing 
kernel Hilbert space with the reproducing kernel JK|Z on which the multiplication 
operators corresponding to the coordinate functions of Z are obtained from the module 
actions Jzi , i = d + 1, . . . , m.

Since the similar construction can be done for the Hilbert modules M ∈ Br(Ω) with 
submodules M0 consisting of holomorphic functions in M vanishing along Z to order 
k, it is natural to ask whether the quotient spaces arising from such submodules are in 
B|A|r(Z) where |A| is the cardinality of the set A of all multi-indices α = (α1, . . . , αd)
with |α| < k. In the following theorem, we give an affirmative answer to this question 
for a large collection of Hilbert modules.

Theorem 4.8. Let Ω ⊂ Cm be a bounded domain containing the origin and Z ⊂ Ω be the 
coordinate plane defined by Z = {z = (z1, . . . , zm) ∈ Ω : z1 = · · · = zd = 0}. We also 
assume that M is a reproducing kernel Hilbert space with the reproducing kernel K such 
that C[z1, . . . , zm] ⊂ M . Then the quotient Hilbert space Mq lies in B|A|r(Z) provided 
M ∈ Br(Ω) where |A| is the cardinality of A = {α ∈ (N ∪ {0})d : |α| < k}.

Proof. Let us denote z′ = (z1, . . . , zd) and z′′ = (zd+1, . . . , zm). In view of Theorem 4.5
and Remark 4.7, it is enough to prove that the module of jets, J(M ) restricted to Z is in 
B|A|r(Z). Since C[z1, . . . , zm] ⊂ M and J(M ) has a reproducing kernel, the evaluation 
functionals are bounded and onto. So from Theorem 1.1 it is enough to show that, for 
any h ∈ J(M )|Z and (0, w′′) ∈ Z, h(0, w′′) = 0 if and only if

h = (zd+1 − wd+1)h1 + · · · + (zm − wm)hm−d

on Z for some h1, . . . , hm−d ∈ J(M )|Z which follows from the lemma below. �
Lemma 4.9. Let h ∈ J(M )|Z with h = J(h) and (0, w′′) ∈ Z be an arbitrary point. 
Assume also that h(0, w′′) = 0. Then there exist h1, . . . , hm−d ∈ M such that

h =
m−d∑
j=1

(zd+j − wd+j)hj(z′, z′′) +
∑
|α|=k

zαgα (4.10)

for some gα ∈ M , α = (α1, . . . , αd) with |α| = k.

Proof. We prove the desired identity in (4.10) with the help of mathematical induction 
on |α|. Since h(0, w′′) = 0 it follows from the Gleason property of M (as M ∈ Br(Ω)) 
that
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h(z′, z′′) =
d∑

i=1
zigi(z′, z′′) +

m−d∑
j=1

(zd+j − wd+j)gd+j(z′, z′′))

for some g1, . . . , gm ∈ M taking care of the base case with hj = gd+j , j = 1, . . . , m − d.
Assume that the claim is true for |α| ≤ k − 2. Let h ∈ J(M ) with h = J(h) and 

h(0, w′′) = 0. From the definition of J in (4.3), it follows that ∂αh(0, w′′) = 0 for all 
α ∈ A. Consequently, from the induction hypothesis it turns out that

h(z′, z′′) =
m−d∑
j=1

(zd+j − wd+j)gj(z′, z′′) +
∑

|α|=k−1

zαgα (4.11)

for some gα ∈ M , α = (a1, . . . , ad) with |α| = k − 1. For any α ∈ A with |α| = k − 1, 
applying the differential operator ∂α to the both sides of the equation (4.11) we have 
that

∂αh(0, z′′) =
m−d∑
j=1

(zd+j − wd+j)∂αgj(0, z′′) + cgα(0, z′′)

for some non-zero constant c. But since ∂αh(0, w′′) = 0 so is gα(0, w′′) = 0. Therefore, 
from the Gleason property of M it can be seen that

gα(z′, z′′) =
d∑

i=1
zig

i
α(z′, z′′) +

m−d∑
j=1

(zd+j − wd+j)g̃jα(z′, z′′)

for some giα, ̃gjα ∈ M for i = 1, . . . , d and j = 1, . . . , m − d. Now substituting gα’s in 
(4.11) we have that

h(z′, z′′) =
m−d∑
j=1

(zd+j − wd+j)

⎛
⎝gj +

∑
|α|=k−1

(z′)αg̃jα

⎞
⎠ (z′, z′′) +

d∑
|α|=k−1,i=1

zα+εigiα

which completes the proof. �
Remark 4.10. Note that the assumption C[z1, . . . , zm] ⊂ M implies that the reproducing 
kernel JK for the Hilbert module J(M ) is non-degenerate (cf. [9, Definition 4.2]).

We note that the above theorem provides examples of quotient modules which are in 
the Cowen-Douglas class. We now provide another important application of the lemma 
above which will be useful in the next section.

Proposition 4.11. Let Ω ⊂ Cm and Z ⊂ Ω be as above. Also, assume that M is a 
reproducing kernel Hilbert space with the reproducing kernel K such that C[z1, . . . , zm] ⊂



P. Deb / Bull. Sci. math. 169 (2021) 102977 23
M and M ∈ Br(Ω). Then

{∂̄αK(., (0, w′′))εj : 0 ≤ |α| ≤ k − 1, (0, w′′) ∈ Z, 1 ≤ j ≤ r}

forms a basis for ∩m
i=d+1 ker(M∗

zi − wi) ∩ ker(M∗
z′′)β where by ker(M∗

z′′)β we mean 
∩|β|=k ker((M∗

z1)
β1 · · · (M∗

zd
)βd) and β = (β1, . . . , βd).

Proof. We first observe from the reproducing property that, for any w ∈ Ω and 1 ≤ i ≤ r,

M∗
zi(K(., w)εj) = wiK(., w)εj .

So it follows, for any w ∈ Ω and αi, βi ∈ N ∪ {0}, that

(M∗
zi − wi)βi ∂̄αi

i K(., w)εj = βi!
(
αi

βi

)
∂̄αi−βi

i K(., w)εj .

Consequently, we have, for w ∈ Ω, 1 ≤ j ≤ r and α = (α1, . . . , αd) ∈ (N ∪ {0})d, that

(M∗
z1 − w1)β1 · · · (M∗

zd
− wd)βd(∂̄αK(., w)εj) = β!

(
α

β

)
∂̄α−βK(., w)εj

implying that the set {∂̄αK(., (0, w′′))εj : 0 ≤ |α| ≤ k − 1, (0, w′′) ∈ Z, 1 ≤ j ≤ r} is 
contained in ∩m

i=d+1 ker(M∗
zi − wi) ∩ ker(M∗

z′′)β .
Let f be any element perpendicular to the set {∂̄αK(., (0, w′′))εj : 0 ≤ |α| ≤ k −

1, (0, w′′) ∈ Z, 1 ≤ j ≤ r}. It follows from the reproducing property that ∂αf(0, w′′) = 0
for all α with 0 ≤ |α| ≤ k − 1. From the lemma above we have that

f ∈
m⊕

i=d+1

(Mzi − wi)M
⊕
|β|=k

(Mz1)β1 · · · (Mzd)βdM

which is perpendicular to ∩m
i=d+1 ker(M∗

zi − wi) ∩ ker(M∗
z′′)β verifying that f = 0. �

5. Jet bundle

This section is devoted to provide geometric invariants of quotient modules Mq

introduced in the previous section. To begin with, since the Hilbert module M in 
Br(Ω), M gives rise to a hermitian holomorphic vector bundle E with the frame 
{K(., w)σ1, . . . , K(., w)σr : w ∈ Ω∗} on Ω∗. Now to make calculations simpler let us 
consider the map c : Ω → Ω∗ defined by w �→ w and pull back the bundle E to a 
vector bundle over Ω. We denote this new bundle with the same letter E and note that 
E is a hermitian holomorphic vector bundle over Ω with the global holomorphic frame 
s := {s1(w), . . . , sr(w) : w ∈ Ω} with sj(w) := K(., w)σj , 1 ≤ j ≤ r. Correspondingly, 
we have ∂αsj(w) = ∂αK(., w)σj , 1 ≤ j ≤ r, α ∈ A with A = {α ∈ (N ∪ {0})d : |α| < k}.
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Following the ideas in [15] we attempt, in this section, to describe the jet bundle of 
the vector bundle E → Ω relative to a connected complex submanifold Z of codimension 
d ≥ 1. Our interest is to investigate unitary invariants of the quotient module Mq

obtained from the submodules M0 (cf. Section 3) assuming that M ∈ Br(Ω). Therefore, 
following the Remark 3.14, it is enough to consider the submanifolds

Z := {z = (z1, · · · , zm) ∈ Ω : z1 = · · · = zd = 0}.

We define the jet bundle J (k)E of order k of E relative to Z on Ω by declaring 
{∂αs}α∈A as a frame for J (k)E on Ω where we mean by ∂αs the ordered set of sec-
tions {∂αs1, . . . , ∂αsr}, α ∈ A. Since we have a global frame on J (k)E we do not need 
to worry about the transition rule.

At this point, we should note that this construction of jet bundle depends on the 
choice of the complementary direction to Z which is, a priori, not unique. For instance, 
two different choices of admissible coordinate charts (Definition 3.9) (U1, φ1) and (U2, φ2)
would give rise to two jet bundles J (k)

i E, i = 1, 2 with global frames {∂α
λi
sj : α ∈ A, 1 ≤

j ≤ r} for i = 1, 2, respectively. A priori it is not clear if these two bundles are equivalent. 
Nevertheless, it can be seen from the following proposition.

Proposition 5.1. Let (U1, φ1) and (U2, φ2) be two admissible coordinate charts of Ω around 
some point p ∈ Z. Then two jet bundles J (k)

1 E and J (k)
2 E obtained as above with respect 

to (U1, φ1) and (U2, φ2), respectively, are equivalent holomorphic vector bundles over 
U1 ∩ U2.

Proof. In fact, from Proposition 3.10 it is clear, for a holomorphic frame s = {s1, . . . , sr}
of E on U1 ∩ U2, that on a small enough neighbourhood U of p in U1 ∩ U2 we have, for 
i = 1, 2,

Ak−1,φi
(z) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

si1(λ) · · · sir(λ)
∂λ1s

i
1(λ) · · · ∂λ1s

i
r(λ)

...
...

∂α
λ s

i
1(λ) · · · ∂α

λ s
i
r(λ)

...
...

∂k−1
λd

si1(λ) · · · ∂k−1
λd

sir(λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s1(z) · · · sr(z)
∂1s1(z) · · · ∂1sr(z)

...
...

∂αs1(z) · · · ∂αsr(z)
...

...
∂k−1
d s1(z) · · · ∂k−1

d sr(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

for z ∈ U and λi ∈ φi(U), where λi = (λi1, . . . , λid), α = (α1, · · · , αd), and sij = sj ◦φ−1
i , 

1 ≤ j ≤ r. Since Ak−1,φi
(z), for i = 1, 2 and z ∈ U , are invertible (Proposition 3.10) we 

can see that (Ak−1,φ1(z) ◦Ak−1,φ2(z)−1) ⊗ Ir is the desired bundle map where Ir is the 
identity matrix of order r. �

Now in course of completing our construction to make the jet bundle J (k)E a hermitian 
holomorphic vector bundle, we need to put a hermitian metric on J (k)E extending the 
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metric on E. To this extent, if H(w) = ((〈si(w), sj(w)〉E))ri,j=1 is the metric on E over 
Ω then the hermitian metric on J (k)E with respect to the frame {∂αs}α∈A is given by 
the Grammian JH := ((JHαβ))α,β∈A with r × r blocks

JHαβ(w) := ((〈∂αsi(w), ∂βsj(w)〉))ri,j=1 for α, β ∈ A,w ∈ Ω.

This completes our construction of the jet bundle.

Remark 5.2. (i) Assume that C[z1, . . . , zm] ⊂ M . Then it follows from Theorem 4.8 that 
the quotient module Mq ∈ Br|A|(Z). Also, we note that the hermitian holomorphic vector 
bundle E |Z → Z obtained from J(M )|Z is equivalent to the jet bundle J (k)E|Z → Z
of E relative to Z. To facilitate, K = ((Kij))ri,j=1 be the reproducing kernel associated 
to M . From the preceding construction it follows that the metric for the jet bundle is 
given by the formula

〈∂αK(., w)σi, ∂
βK(., w)σj〉 = ∂α∂̄βKji(w,w) for w ∈ Z, α, β ∈ A, 1 ≤ i, j ≤ r.

On the other hand, the bundle E |Z → Z associated to J(M )|Z is spanned by the global 
holomorphic frame {JK(., w)εα ⊗ εj : α ∈ A, 1 ≤ j ≤ r}. So we define the bundle map 
Φ : E |Z → J (k)E|Z by JK(., w)εα ⊗ εj �→ ∂αK(., w)σj , for w ∈ Z, α ∈ A and 1 ≤ j ≤ r. 
Since J is the unitary module map J : M → J(M ) it then follows that Φ is an isometry. 
Therefore, the vector bundle E |Z is unitarily equivalent to J (k)E|Z .

(ii) We point out that, in our notation of jet bundle, J (1)E is nothing else but the 
bundle E itself, although in literature J (1)E means the first jet bundle of the vector 
bundle E. We maintain these notations following [15,14].

(iii) Note that the action of the algebra A(Ω) on the module J(M ) defines, for every 
f ∈ A(Ω), a holomorphic bundle map Ψf : J (k)E → J (k)E whose matrix representation 
with respect to the frame J(s) := {

∑
α∈A ∂αs1 ⊗ εα, . . . , 

∑
α∈A ∂αsr ⊗ εα} is the matrix 

J (f) ⊗ Ir where J (f) is as in (4.6) and Ir is the identity matrix of order r. Thus, Ψf

induces an action of A(Ω) on the holomorphic sections of the jet bundle J (k)E defined 
by

(f · σ)(w) := Ψf (σ(w)), (5.1)

for f ∈ A(Ω), w ∈ Ω and σ is a holomorphic section of J (k)E. Therefore, we observe that 
the question of determining the equivalence classes of modules J(M ) is same as under-
standing the equivalence classes of the jet bundles J (k)E with an additional assumption 
that the equivalence bundle map is also a module map on holomorphic sections over 
A(Ω). Hence it is natural to give the following definition (Definition 4.2, [14]).

Definition 5.3. Two jet bundles are said to be equivalent if there is an isometric holo-
morphic bundle map which induces a module isomorphism of the class of holomorphic 
sections.
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5.1. Main results from jet bundle

In order to find geometric invariants of quotient modules we first investigate the simple 
case, d = k = 2. We show here that the curvature is the complete set of unitary invariants 
of the quotient module Mq for the Hilbert module M when r = 1. In this case, we give a 
computational proof to depict the actual picture behind the general result which we will 
prove later in this subsection. Although the line of idea of the proof for k = 2 essentially 
is the same as in [14], in our case calculations become more complicated as here we have 
to deal with more than one transversal directions to Z. Thus, our results extend most 
of the results of the paper [15], [14] as well as those from a recent paper [3].

Since d = 2 we have that Z = {(z1, . . . , zm) ∈ Ω : z1 = z2 = 0}. Consequently, 
(0, 0, z3, . . . , zm) is the coordinates of Z in U . Now let us begin with a line bundle E over 
Ω∗ with the real analytic metric G which possesses the following power series expansion

G(z′, z′′) =
∞∑

α,β=0

Gαβ(z′′)z′αz′β (5.2)

where (z′, z′′) ∈ Ω∗, α, β are multi-indices, z′α = z1
α1z2

α2 , z′β = z1
β1z2

β2 and z′′ =
(z3, . . . , zm).

Lemma 5.4. Let Ω ⊂ Cm be a bounded domain and Z be a complex connected submanifold 
of Ω of codimension 2. Suppose that K and K̃ are the curvature tensors of line bundles 
E and Ẽ with respect to the hermitian metric ρ and ρ̃ of E and Ẽ, respectively. Then 
K and K̃ are equal on Z if and only if there exist holomorphic functions ψ00, ψ10, ψ01
on Z such that

((ρ̃αβ))1|α|,|β|=0 = Ψ · ((ραβ))1|α|,|β|=0 · Ψ∗ (5.3)

on Z where ραβ (ρ̃αβ , respectively) = ∂α∂̄βρ (∂α∂̄β ρ̃, respectively) with α, β ∈ (N∪{0})2
and Ψ is the 3 × 3 matrix

Ψ =
(
ψ00 0 0
ψ10 ψ00 0
ψ01 0 ψ00

)
. (5.4)

Before going into the proof of the lemma let us give an application of it as follows.

Theorem 5.5. Suppose that M and M̃ are in B1(Ω). Then the quotient modules Mq and 
M̃q are isomorphic if and only if the corresponding curvature tensors K and K̃ of the 
line bundles E and Ẽ, respectively, are equal on Z.

Proof. In fact, Theorem 4.5 provides that equivalence of Mq and M̃q is same as the 
equivalence of J(M )|Z and J(M̃ )|Z . So let us begin with an isometric module map 
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Ψ : J(M )|Z → J(M̃ )|Z . Since Ψ intertwines the module action Ψ is of the form given 
in (5.4). Since Ψ intertwines the module action Ψ satisfies the following equation

Ψ
(

f 0 0
∂1f f 0
∂2f 0 f

)
=

(
f 0 0
∂1f f 0
∂2f 0 f

)
Ψ,

for every f ∈ A(Ω). Putting suitable functions in the equation above we see that Ψ takes 
the form given in (5.4). Moreover, being an isometry, Ψ satisfies

JK|Z = Ψ · JK̃|Z · Ψ∗ (5.5)

which is equivalent to saying that Ψ satisfies the identity (5.3) on Z as, for z ∈ Z, ρ(z)
is nothing but K(z, z). Then the Lemma 5.4 proves the necessity part.

Conversely, since K = K̃ on Z, it follows from Lemma 5.4 that Ψ is of the form given 
in (5.4) and satisfies (5.5). Consequently, Ψ is an isometry from J(M )|Z onto J(M̃ )|Z
and intertwines the module action. �
Proof of Lemma 5.4. Note that if ρ and ρ̃ are equivalent hermitian metrics satisfying 
the equation (5.3), then the equality of K and K̃ on Z is a direct consequence of 
the definition of curvature form of a hermitian holomorphic vector bundle. So we only 
consider the forward direction in which case we have to find ψ00, ψ10, ψ01 holomorphic 
on Z such that (5.3) holds assuming that K and K̃ are equal along Z.

Let ρ̃ = r · ρ and Γ = log r. Then Γ is real analytic function on Ω. Therefore, Γ can 
be expanded in the power series

Γ(z′, z′′) =
∞∑

α,β=0

Γαβ(z′′)z′αz′β (5.6)

where α, β are multi-indices, z′α = z1
α1z2

α2 , z′β = z1
β1z2

β2 and z′′ = (z3, . . . , zm). 
Paraphrasing the assumption on K and K̃ we have that ∂i∂̄jΓ = 0, for 1 ≤ i, j ≤ m, 
along Z. We now separate out this into following three different cases.

I. (∂i∂̄jΓ = 0 along Z, for i = 1, 2, j = 3, . . . , m) It follows from (5.6) that ∂1∂̄jΓ|Z
is 0 for j = 3, . . . , m is equivalent to the fact that Γ(1,0)(0,0) is holomorphic on Z. 
Similarly considering the case with i = 2, we get Γ(0,1)(0,0) is also holomorphic on 
Z.

II. (∂i∂̄jΓ = 0 along Z, for i, j = 1, 2) In view of the equation (5.6), it yields that 
Γαβ = 0 on Z for α, β ∈ {(1, 0), (0, 1)}.

III. (∂i∂̄jΓ = 0 along Z, for i, j = 3, . . . , m) In this last case, we have ∂i∂̄jΓ|Z is 
0, for i, j = 3, . . . , m which together with power series expansion of Γ yield that 
∂i∂̄jΓ(0,0)(0,0) is 0, for i, j = 3, . . . , m, on Z. Since Z is a complex submanifold with 



28 P. Deb / Bull. Sci. math. 169 (2021) 102977
coordinates z = (0, 0, z3, . . . , zm) ∈ Z the above equations together imply that

Γ(0,0)(0,0)(z′′) = ψ1(z′′) + ψ2(z′′),

for z′′ ∈ Z and some holomorphic functions ψ1, ψ2 on Z.

Now, substituting the above coefficients in the equation (5.6) and noting that Γ is real 
valued, we have

Γ(z′, z′′) = ψ1 + β1z1 + η1z2 + ψ2 + β2z1 + η2z2 + (terms of degree ≥ 3)

where ψi, βi, ηi, i = 1, 2, are holomorphic functions on Z. Since Γ is a real valued function 
Γ = Γ+Γ

2 and hence we have

Γ(z′, z′′) = ψ + βz1 + ηz2 + ψ + βz1 + ηz2 + (terms of degree ≥ 3) (5.7)

where ψ = ψ1+ψ2
2 , β = β1+β2

2 and η = η1+η2
2 . So from the definition of Γ we can write

r = exp Γ

= | expψ|2 · |(1 + βz1 + βz1 + |β|2z1z1 + · · · )|2 · (|1 + ηz2 + ηz2 + |η|2z2z2 + · · · )|2 · · ·
= | expψ|2 · (1 + βz1 + ηz2 + βz1 + ηz2 + |β|2z1z1 + βηz1z2 + βηz1z2 + |η|2z2z2 + · · · )

Thus, putting the above expression of r in ρ̃ = r · ρ and equating the coefficients of ρ̃
and ρ we see that ψ00, ψ10 and ψ01 with

ψ00 = expψ,ψ10 = expψβ, ψ01 = expψη

verify the equation (5.4). �
It would be nice if one could carry forward the arguments used in the proof of 

Lemma 5.4 to achieve similar results in the case of arbitrary order of vanishing of vector 
valued functions. However, for general k, it would be cumbersome to continue the cal-
culation done in the above lemma. On the other hand, application of normalized frames 
makes the calculations simpler and enables us to get a conceptual proof in the general 
case as well. We adopt the idea of using a normalized frame from [3] in our case to pro-
vide the geometric invariants for quotient modules using jet bundle construction relative 
to a smooth complex submanifold of codimension d. To this extent, the following theo-
rem provides the required dictionary between the analytic theory and geometric theory 
for quotient modules obtained from submodules consisting of vector valued holomorphic 
functions on Ω vanishing along a smooth complex submanifold of codimension d. As men-
tioned earlier in this section, from now on we will assume (without lose of generality) 
that Ω ⊂ Cm contains the origin and the Z is the coordinate plane

Z := {z = (z1, · · · , zm) ∈ Ω : z1 = · · · = zd = 0}.
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Theorem 5.6. Let Ω and Z be as above. Assume that both M and M̃ contain 
C[z1, . . . , zm] and are in Br(Ω). Then the quotient modules Mq and M̃q are equivalent 
as modules over A(Ω) if and only if the jet bundles J (k)E|Z and J (k)Ẽ|Z are equivalent 
where E and Ẽ are the hermitian holomorphic vector bundles over Ω corresponding to 
Hilbert modules M and M̃ , respectively.

Proof. Let Mq and M̃q be unitarily equivalent. Then there exists a unitary U :
J(M )|Z → J(M̃ )|Z such that

U(J f ⊗ Ir)|Z(h|Z) = (J f ⊗ Ir)|ZU(h|Z), for h ∈ J(M ).

In particular, for f = zi, i = 1, . . . , m, ∩m
i=d+1 ker(M∗

zi −wi) ∩ker(M∗
z′′)β is preserved by 

U where ker(M∗
z′′)β is ∩|β|=k ker((M∗

z1)
β1 · · · (M∗

zd
)βd) and β = (β1, . . . , βd) ∈ (N∪{0})d. 

Therefore, it follows from Proposition 4.11 that the map Φ : J (k)E|Z → J (k)Ẽ|Z defined 
by Φ(∂αsi(0, w′′)) = U(∂αs̃i(0, w′′)) is a jet bundle isomorphism.

Conversely, since span{∂αsi(w) : 1 ≤ i ≤ r, w ∈ Z, 0 ≤ |α| ≤ k − 1} and 
span{∂αs̃i(w) : 1 ≤ i ≤ r, w ∈ Z, 0 ≤ |α| ≤ k − 1} are dense in Mq and M̃q, re-
spectively, any jet bundle isomorphism between J (k)E|Z and J (k)Ẽ|Z defines a unitary 
module map between Mq and M̃q. �

We now determine the geometric invariants of quotient modules Mq by studying the 
geometry of the jet bundles J (l)E|Z , for 0 ≤ l ≤ k. Before proceeding further, let us 
recall a fact from complex analysis.

Lemma 5.7. Let Ω ⊂ Cm be a domain and f(z, w) be a function on Ω × Ω which is 
holomorphic in z and anti-holomorphic in w. If f(z, z) = 0 for all z ∈ Ω, then f(z, w) = 0
identically on Ω.

Since this lemma is well-known [16, Proposition 1] we omit the proof. We use this 
lemma several times in the proof of the following theorems.

We observe that a hermitian holomorphic vector bundle can not have a holomorphic 
orthonormal frame in general. Instead one can have (Lemma 2.4 of [6]) a holomorphic 
frame on a neighbourhood of a point which is orthonormal at that point. Then using 
the technique of the proof of Lemma 2.4 in [6] in a similar way, we have the following 
existence of normalized frame of a hermitian holomorphic vector bundle over Ω along 
a submanifold of codimension at least d in Ω. In the following proposition we use the 
notation z = (z′, z′′) where z′ = (z1, . . . , zd) and z′′ = (zd+1, . . . , zm).

Proposition 5.8. Let E be a hermitian holomorphic vector bundle of rank r over a 
bounded domain Ω ⊂ Cm containing 0 and Z be as above. Then there is a holo-
morphic frame s(z′, z′′) = {si(z′, z′′)}ri=1 on a neighbourhood of the origin in Ω
such that ((〈∂αsi(0, z′′), sj(0, 0)〉))ri,j=1 is the zero matrix for α ∈ (N ∪ {0})d and 
((〈si(0, z′′), sj(0, 0)〉))ri,j=1 is the identity matrix on Z.
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We say a frame is normalized at origin along Z if it satisfies the properties in the 
above proposition.

Theorem 5.9. Let Ω, Z be as above. Assume that both M and M̃ contain C[z1, . . . , zm]
and are in B1(Ω). Then Mq and M̃q are unitarily equivalent as modules over A(Ω) if 
and only if ∂α∂̄β ‖s̃‖2 = ∂α∂̄β ‖s‖2 on Z for all α, β ∈ A = {α ∈ (N ∪ {0})d : |α| < k}
where {s(z)} and {s̃(z)} are frames of the line bundles E and Ẽ on Ω associated to the 
Hilbert modules M and M̃ , respectively, normalized at origin along Z.

Proof. Following Theorem 5.6 it is enough to prove that there exists a jet bundle iso-
morphism Φ : J (k)E|Z → J (k)Ẽ|Z if and only if ∂α∂̄β ‖s̃‖2 = ∂α∂̄β ‖s‖2 on Z for all 
α, β ∈ A.

We start with the necessity. Let Φ : J (k)E|Z → J (k)Ẽ|Z be a jet bundle isomorphism 
which can be represented by a complex matrix ((φαβ))α,β∈A in M|A|(C) with respect to 
the frames {∂αs(0, z′′)}α∈A and {∂αs̃(0, z′′)}α∈A where φαβ are holomorphic functions 
on Z. Consequently, by Definition 5.3, we have the following two matrix equations on Z:

((〈∂αs, ∂βs〉))α,β∈A = ((φγδ))γ,δ∈A((〈∂αs̃, ∂β s̃〉))α,β∈A((φγδ))∗γ,δ∈A (5.8)

((φγδ))γ,δ∈A((J (f)αβ))αβ = ((J (f)αβ))α,β∈A((φγδ))γ,δ∈A. (5.9)

The proof of the forward direction then easily follows from the following claims.
Claim 1. Let α, β ∈ A, with α = (α1, . . . , αd) and β = (β1, . . . , βd). For z ∈ Z, we 

have that

φαβ(0, z′′) =
{(

α
α−β

)
φ(α−β)0(0, z′′) if αt ≥ βt ∀ t = 1, · · · , d,

0 otherwise.
(5.10)

We note from the equation (5.9) that, for fixed α, β ∈ A and f(z′, z′′) = zβ1
1 · · · zβd

d ,
∑
γ∈A

φαγJ (zβ1
1 · · · zβd

d )γ0 =
∑
γ∈A

J (zβ1
1 · · · zβd

d )αγφγ0

on Z. If αt ≥ βt, for t = 1, . . . , d, only non-zero entry on the left hand side occurs for 
γ = β and on the right for γ = α − β. On the other hand, while αt < βt for some 
t ∈ {1, . . . , d} the right hand side vanishes for all γt ≥ 0. This verifies the Claim 1.

Thus Claim 1 shows that the matrix ((φαβ(0, z′′)))α,β∈A is a lower triangular matrix. 
Consequently, we have that Φ induces bundle morphisms Φ|J(l)E|Z : J (l)E|Z → J (l)Ẽ|Z , 
for 0 ≤ l ≤ k.

Claim 2. φ00 is a constant function and φαα = φ00, for α ∈ A, on Z.
Following Claim 1 it is enough to show that φ00 is a constant function on Z. In fact, 

from the equation (5.8) we have that

〈s(0, z′′), s(0, z′′)〉 = φ00(0, z′′)〈s̃(0, z′′), s̃(0, z′′)〉φ00(0, z′′).
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Consequently, Lemma 5.7 and Proposition 5.8 together yield that

φ00(0, z′′)φ00(0, 0) = 1

completing the proof of Claim 2.
Claim 3. ((φαβ(0, z′′)))α,β∈A = φ00 · I where I is the |A| × |A| identity matrix where 

|A| is the cardinality of the set A.
In view of Claim 1 and Claim 2, it is enough to show that φα0 = 0, for α ∈ A, on Z. 

So calculating α0-th entry of the matrices in the equation (5.8) and using the Lemma 5.7
we have

〈∂αs(0, z′′), s(0, w′′)〉 =

⎛
⎝∑

γ∈A

φαγ(0, z′′)〈∂γ s̃(0, z′′), s̃(0, w′′)〉

⎞
⎠φ00.

Consequently, after putting w′′ = 0 and applying the Proposition 5.8 to the frames {s}
and {s̃} at the origin we get φα0(0, z′′) = 0 on Z.
Thus Claim 1, Claim 2, Claim 3 and the equation (5.8) together yield that

∂α∂̄β ‖s(0, z′′)‖2 = φ00∂
α∂̄β ‖s̃(0, z′′)‖2

φ00 = ∂α∂̄β ‖s̃(0, z′′)‖2 (5.11)

on Z, for α, β ∈ A.
The converse statement is easy to see. Indeed, if the equation (5.11) happens to be 

true then the desired jet bundle isomorphism Φ is given by the constant matrix I with 
respect to the frames {∂αs}α∈A and {∂αs̃}α∈A where I is the identity matrix of order 
|A|. �
Theorem 5.10. Let Ω, Z be as above. Assume that both M and M̃ contain C[z1, . . . , zm]
and are in Br(Ω). Then Mq and M̃q are unitarily equivalent as modules over A(Ω) if and 
only if there exists a constant unitary matrix D such that ∂α∂̄βH = D(∂α∂̄βH̃)D∗ on 
Z, for all α, β ∈ A = {α ∈ (N ∪ {0})d : |α| < k} where H(z) and H̃(z) are the Gramian 
matrices for the holomorphic frames s and s̃ of the hermitian holomorphic vector bundles 
E and Ẽ on Ω associated to the Hilbert modules M and M̃ , respectively, normalized at 
origin along Z.

Proof. To begin with, let Φ : J (k)E|Z → J (k)Ẽ|Z be a jet bundle isomorphism. Then Φ
can be represented by a |A| × |A| block matrix ((Φαβ))α,β∈A with respect to the frames 
{∂αs(0, z′′)}α∈A and {∂αs̃(0, z′′)}α∈A where Φαβ are holomorphic r × r matrix valued 
functions on Z and |A| is the cardinality of A. The fact that Φ is an isometry of two jet 
bundles J (k)E|Z and J (k)Ẽ|Z translates to the following matrix equation on Z:

((∂α∂̄βH))α,β∈A = ((Φαβ))α,β∈A((∂α∂̄βH̃))α,β∈A(((Φαβ))α,β∈A)∗. (5.12)
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Let Ei|Z and Ẽi|Z be the line bundles determined by the frames {si} and {s̃i}, re-
spectively, on Z, for 1 ≤ i ≤ r. Note that the decompositions E|Z = ⊕r

i=1Ei|Z
and J (k)E|Z = ⊕r

i=1J
(k)Ei|Z with {∂αsi}α∈A as a frame on Z are evident. Also, let 

Pi : J (k)E|Z → J (k)Ei|Z and P̃i : J (k)Ẽ|Z → J (k)Ẽi|Z be the projection morphisms 
where the frame {∂αs̃i}α∈A defines the jet bundle J (k)Ẽi|Z . It is clear that the matrix 
of Φ with respect to the frames J(s) = {

∑
α∈A ∂αs1 ⊗ εα, . . . , 

∑
α∈A ∂αsr ⊗ εα} and 

J(s̃) = {
∑

α ∂αs̃1 ⊗ εα, . . . , 
∑

α ∂αs̃r ⊗ εα} is (([Pij ]))ri,j=1 where [Pij ] represents the 
matrix of P̃iΦP ∗

j with respect to the frames {∂αsj}α∈A and {∂αs̃i}α∈A. Since Φ is a 
jet bundle isomorphism (Definition 5.3) it intertwines the module action on the class of 
holomorphic sections of J (k)E|Z and J (k)Ẽ|Z . As a consequence, we have

(([Pij ]))ri,j=1(J (f) ⊗ Ir) = (J (f) ⊗ Ir)(([Pij ]))ri,j=1,

for f ∈ A(Ω), which is equivalent to the fact that the bundle morphisms P̃iΦP ∗
j intertwine 

the module action (5.1) on holomorphic sections of J (k)Ej |Z and J (k)Ẽi|Z . Thus, P̃iΦP ∗
j

defines a jet bundle morphism from J (k)Ej |Z onto J (k)Ẽi|Z .
We, therefore, can apply Claim 1 in Theorem 5.10 to P̃iΦP ∗

j to conclude, for α, β ∈ A, 
that

[Pij ]αβ =
(

α

α− β

)
[Pij ](α−β)0(0, z′′), (α− β) ∈ (N ∪ {0})d

=
(

α

α− β

)
(Φ(α−β)0(0, z′′))ij , (α− β) ∈ (N ∪ {0})d,

otherwise, [Pij ]αβ is the zero matrix. It follows that the matrix of Φ(0, z′′) with respect to 
the frames {∂αs}α∈A and {∂αs̃}α∈A is a lower triangular block matrix with Φαα(0, z′′) =
Φ00(0, z′′) for α ∈ A and, for α, β ∈ A, α = (α1, . . . , αd), β = (β1, . . . , βd) and 1 ≤ i, j ≤
r,

(Φαβ(0, z′′))ij =
(

α

α− β

)
(Φ(α−β)0(0, z′′))ij if (α− β) ∈ (N ∪ {0})d, (5.13)

and is zero, otherwise, on Z. A similar proof as in Claim 2 in Theorem 5.9 with matrix 
valued holomorphic functions H, H̃ and Φ00 on Z yields that Φ00 is a constant unitary 
matrix. Thus the proof will be done once we prove that Φα0 = 0, for α ∈ A, on Z. Com-
puting the α0-th block of the matrices in the equation (5.12) and using the Lemma 5.7
we get

((〈∂αsi(0, z′′), sj(0, w′′)〉))ri,j=1 =
(

α∑
t=0

Φαβ(0, z′′)((〈∂β s̃i(0, z′′), s̃j(0, w′′)〉))ri,j=1

)
Φ∗

00.

Consequently, after putting w′′ = 0 and applying Proposition 5.8 to the frames s and s̃
at the origin we get Φα0(0, z′′) = 0 on Z. Thereby from (5.12) we have



P. Deb / Bull. Sci. math. 169 (2021) 102977 33
∂α∂̄βH(0, z′′) = D(∂α∂̄βH̃(0, z′′))D∗ (5.14)

on Z for all α, β ∈ A where D = Φ00.
For the converse direction, note that the equation (5.14) canonically gives rise to the 

jet bundle isomorphism Φ by prescribing the matrix of Φ as D ⊗ I with respect to the 
frames J(s) and J(s̃) where I is the identity matrix of order |A|. �
Corollary 5.11. Let T = (T1, . . . , Tm) and T̃ = (T̃1, . . . , T̃m) be two m-tuples of operators 
in B1(Ω). Then T and T̃ are unitarily equivalent if and only if there are jet bundle 
isomorphisms Φk : J (k)E|Z → J (k)Ẽ|Z , for every k ∈ N ∪ {0} where Z is any singleton 
set {p}, for p ∈ Ω.

Proof. The necessity part is trivial and so we only show that T and T̃ are unitarily 
equivalent assuming that there are jet bundle isomorphisms Φ(k) : JkE|Z → J (k)Ẽ|Z , 
for every k ∈ N ∪ {0}.

Let E and Ẽ be vector bundles over Ω corresponding to operator tuples T and T̃, 
respectively, and Z = {0}. Note that the codimension of Z is m. Let s and s̃ be frames 
for E and Ẽ, respectively, normalized at origin. Using Theorem 5.9 we have, for every 
k ∈ N ∪ {0}, that

∂α1
1 · · · ∂αm

m ∂̄β1
1 · · · ∂̄βm

m ‖s(0)‖2 = ∂α1
1 · · · ∂αm

m ∂̄β1
1 · · · ∂̄βm

m ‖s̃(0)‖2 (5.15)

for all α, β ∈ A(k) where A(k) = {α ∈ (N ∪ {0})d : |α| < k}.
Since s and s̃ both are holomorphic on their domains of definition, ‖s‖2 and ‖s̃‖2

are real analytic there. Consequently, using the power series expansion of ‖s‖2 and ‖s̃‖2

together with the equation (5.15) we obtain that

‖s(z)‖2 = ‖s̃(z)‖2

on some open neighbourhood, say Ω0, of the origin in Ω. Thus the bundle map Φ : E → Ẽ

determined by the formula Φ(s(z)) = s̃(z) defines an isometric bundle isomorphism 
between E and Ẽ over Ω0. Then the result is a direct consequence of the Rigidity 
theorem in [6]. �
Remark 5.12. Note that the theorem above shows that the unitary equivalence of local 
operators (1.5 in [6]) N (k)

ω0 and Ñ (k)
ω0 corresponding to T and T̃, respectively, for all k ≥ 0

but at a fixed point ω0 ∈ Ω implies the unitary equivalence of T and T̃. In other words, 
any m-tuples of operators T ∈ B1(Ω) enjoy the “Taylor series expansion” property. 
Moreover, following the technique used in Theorem 18 in [3], it is seen that the same 
property is also enjoyed by any T ∈ Br(Ω), r ≥ 1.

The following theorem is one of the main results in this article which generalizes the 
study of quotient modules done in the paper [14] to the case of arbitrary codimension. 
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For the definition of bundle maps used in the following theorem, we refer the readers to 
the equation (2.5) in Section 2.

Theorem 5.13. Let Ω ⊂ Cm be a bounded domain containing the origin and Z ⊂ Ω be 
the complex manifold of codimension d defined by z1 = · · · = zd = 0. Suppose that pair 
of Hilbert modules M and M̃ are in Br(Ω) and contain C[z1, . . . , zm]. Then Mq and 
M̃q are isomorphic as modules over A(Ω) if and only if following conditions hold:

(i) There exists holomorphic isometric bundle map Φ : E|Z → Ẽ|Z where E and Ẽ are 
hermitian holomorphic vector bundles over Ω corresponding to the Hilbert modules 
M and M̃ over A(Ω).

(ii) The transverse curvature ∂̄i((∂jH)H−1) and ∂̄i((∂jH̃)H̃−1) of E and Ẽ, respec-
tively, for 1 ≤ i, j ≤ d, as well as their covariant derivatives of order at most 
k − 2, along the transverse directions to Z, are intertwined by Φ on Z where 
s = {s1, . . . , sr} and s̃ = {s̃1, . . . , ̃sr} are frames of E and Ẽ normalized at ori-
gin along Z, respectively, for α ∈ A, and H and H̃ are Gramians of s and s̃, 
respectively.

(iii) Φ intertwines the bundle maps J α
i (H) := ∂̄i((∂αH)H−1) and J α

i (H̃) :=
∂̄i((∂αH̃)H̃−1), for d + 1 ≤ i ≤ m and α ∈ A on Z where s = {s1, . . . , sr} and 
s̃ = {s̃1, . . . , ̃sr} are frames of E and Ẽ normalized at origin along Z, respectively, 
H and H̃ are Gramians of s and s̃, respectively.

Remark 5.14. Although it may seem apparently that the condition (iii) in the theorem 
above depends on the choice of a frame, it is not the case. For instance, if t is another 
frame normalized at origin along Z we have t = sX for some holomorphic function 
X : Z → GLr(C). Since both s and t are normalized at origin along Z the same proof 
as in Claim 2 in Theorem 5.9 with matrix valued holomorphic functions shows that X
is a constant unitary matrix. Thus we have H = XHX∗ and hence it follows that

J α
i (G) = XJ α

i (H)X−1, d + 1 ≤ i ≤ m,

where G is the Gramian matrix of the frame t.

Proof. Let Ω ⊂ Cm and Z ⊂ Ω be as given. Suppose that Mq and M̃q are equivalent 
as modules over A(Ω). Then by Theorem 5.10 there exists a constant unitary matrix D
such that

∂α∂̄βH(0, z′′) = D(∂α∂̄βH̃(0, z′′))D∗, for (0, z′′) ∈ Z and α, β ∈ A, (5.16)

where H(z) and H̃(z) are the Gramian matrices for holomorphic frames s = {s1, . . . , sr}
and s̃ = {s̃1, . . . , ̃sr} for E and Ẽ on Ω associated to the Hilbert modules M and M̃ , 
respectively, normalized at origin along Z. In particular, for α = β = 0, (5.16) becomes
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H(0, z′′) = DH̃(0, z′′)D∗, for (0, z′′) ∈ Z.

Let Φ : E|Z → Ẽ|Z be the bundle morphism whose matrix representation with respect 
to the frames s and ̃s is D providing the desired isometric bundle map in (i). The equation 
(5.16) together with (i) of Lemma 2.2 yield (ii), and since D is a constant unitary matrix 
on Z, (iii) is an easy consequence of (5.16) with β = 0.

For the converse direction, we show that the condition (i), (ii) and (iii) in the statement 
together imply the condition of Theorem 5.10. More precisely, we prove that there exists 
a constant unitary matrix D on Z such that the equation (5.16) holds on the submanifold 
Z for α, β ∈ A and frames s and s̃ of E and Ẽ, respectively, normalized at origin along 
Z. We follow two steps in obtaining the matrix D. First, we extend the holomorphic 
isometric bundle map Φ : E|Z → Ẽ|Z , obtained from condition (i), to a family of linear 
isometries Φ̂z0 : J (k)E|z0 → J (k)Ẽ|z0 for every z0 ∈ Z. Then this extension is shown to 
be a jet bundle isomorphism providing our desired matrix.

Let us begin with frames s and s̃ for E and Ẽ, respectively, normalized at z0 ∈ Z, 
for an arbitrary z0 ∈ Z. Condition (i) yields an isometric holomorphic bundle map 
Φ : E|Z → Ẽ|Z and consequently, we have a holomorphic r × r matrix valued function 
φ on Z such that

H(0, z′′) = φ(0, z′′)H̃(0, z′′)φ(0, z′′)∗ (5.17)

where φ represents Φ with respect to frames s and s̃. Since both s and s̃ are normalized 
at z0, the equation (5.17) shows that φ(0, z′′0 ) is a unitary matrix. Furthermore, from 
condition (ii) of our hypothesis along with second statement of Lemma 2.2 we have, for 
0 ≤ α1 + · · · + αd ≤ k − 1, 0 ≤ β1 + · · · + βd ≤ k − 1,

∂α1
1 · · · ∂αd

d ∂̄β1
1 · · · ∂̄βd

d H(0, z′′0 ) = φ(0, z′′0 )∂α1
1 · · · ∂αd

d ∂̄β1
1 · · · ∂̄βd

d H̃(0, z′′0 )φ(0, z′′0 )∗ (5.18)

as ∂α1
1 · · · ∂αd

d H(0, z′′0 ) (respectively, ∂α1
1 · · · ∂αd

d H̃(0, z′′0 )) and ∂̄β1
1 · · · ∂̄βd

d H(0, z′′0 ) (respec-
tively, ∂̄β1

1 · · · ∂̄βd

d H̃(0, z′′0 )) are zero matrices for any αi, βi ≥ 0, i = 1, . . . , d. Thus 
the equations above (5.17), (5.18) lead to the following natural isometric extension, 
Φ̂z0 : J (k)E|z0 → J (k)Ẽ|z0 defined by

Φ̂z0(∂αsj(0, z′′0 )) =
r∑

i=1
φji(0, z′′0 )∂αs̃i(0, z′′0 ), α ∈ A, 1 ≤ j ≤ r. (5.19)

We note, for α ∈ A, 1 ≤ j ≤ r, z0 = (0, z′′0 ) ∈ Z and f ∈ A(Ω), that

Φ̂z0J (f)(z0)(∂αsj(0, z′′0 )) = Φ̂z0(
∑
β

∂α−βf(z0)∂βsj(0, z′′0 )) = J (f)(z0)(Φ̂z0(∂αsj(0, z′′0 ))

implying that the extension (5.19) above intertwines the module action (5.1) on the 
sections of J (k)E and J (k)Ẽ over Z. From now on, in the rest of the proof, we denote 
this extension by Φ̂. We also note that Φ̂ is an isometry on J (k)E|Z → Z.
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Consider frames s and s̃ of E and Ẽ, respectively, normalized at origin along Z, 
and D(0, z′′) := ((Φ̂αβ(0, z′′)))α,β∈A be the matrix of Φ̂ with respect to the frames 
{∂αs(0, z′′)}α∈A and {∂αs̃(0, z′′)}α∈A. We point out that the (0, 0)-th block of D(0, z′′), 
namely, Φ̂00(0, z′′) is the matrix representation of Φ : E|Z → Ẽ|Z with respect to s
and s̃, and hence Φ̂00(0, z′′) is holomorphic on Z. So in view of the proof of Claim 2 in 
Theorem 5.9 with matrix valued holomorphic functions, it can be seen that Φ̂00(0, z′′) is 
a constant unitary matrix, say, Φ̂00 on Z.

We also note, from the construction of Φ̂ above, that Φ̂(J (l)E|Z) ⊂ J (l)Ẽ|Z , for 
0 ≤ l ≤ k. Consequently, D(0, z′′) is a lower triangular matrix. Moreover, since Φ̂
commutes with the module action on the sections of J (k)E|Z and J (k)Ẽ|Z , the same 
proof as in Theorem 5.10 shows that the entries of the matrix satisfy the properties 
stated in (5.13). So it is enough to show that Φ̂α0(0, z′′) = 0 on Z for α ∈ A. We prove 
this with the help of mathematical induction on |α|.

Since Φ̂ is an isometry on J (k)E|Z → Z it satisfies the equation (5.12) which leads to

∂αH(0, z′′) = ((Φγδ(0, z′′)))γ,δ∈A

(∑
τ∈A

∂σ∂̄τ H̃(0, z′′)Φ0τ (0, z′′)∗
)

σ∈A

=
∑
σ∈A

Φ̂ασ(0, z′′)∂αH̃(0, z′′)Φ̂00(0, z′′)

with Φ̂00 being a constant unitary matrix. Here the second equality holds because the 
matrix ((Φ̂αβ(0, z′′)))α,β∈A is lower triangular. Assume that Φ̂σ0(0, z′′) = 0 on Z for all 
multi-indices σ = (σ1, . . . , σd) with 0 < |σ| < |α|. For |α| = 1 this assumption is empty 
and hence automatically fulfilled. We then have on Z that

∂αH(0, z′′)Φ̂00(0, z′′) =
∑
σ≤α

Φ̂ασ(0, z′′)∂σH̃(0, z′′)

= Φ̂σ0(0, z′′)H̃(0, z′′) + Φ̂αα(0, z′′)∂αH̃(0, z′′)

+
∑

0<σ<α

Φ̂ασ(0, z′′)∂σH̃(0, z′′).

Since Φ̂ intertwines the module action the equation (5.13) yields that Φ̂ασ(0, z′′) =
Φ̂(α−σ)0(0, z′′) on Z whenever 0 ≤ σ ≤ α. Therefore, with the help of induction hy-
pothesis we have Φ̂ασ(0, z′′) = 0 provided 0 < σ < α. Also, it follows from the above 
calculation that

Φ̂α0(0, z′′) = ∂αH(0, z′′)Φ̂00(0, z′′)H̃(0, z′′)−1 − Φ̂00(0, z′′)∂αH̃(0, z′′)H̃(0, z′′)−1

= ∂αH(0, z′′)H̃(0, z′′)−1Φ̂00(0, z′′) − Φ̂00(0, z′′)∂αH̃(0, z′′)H̃(0, z′′)−1.

Now, for d + 1 ≤ i ≤ m, we get

∂̄iΦ̂α0(0, z′′) = ∂̄i(∂αH(0, z′′)H̃(0, z′′)−1)Φ̂00 − Φ̂00∂̄i(∂αH̃(0, z′′)H̃(0, z′′)−1) = 0
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as Φ̂00 is constant. Thus, Φ̂α0(0, z′′) is holomorphic on Z. Consequently, from the equa-
tion (5.13) it follows that Φ̂ is a holomorphic bundle morphism. Now the identity obtained 
above

((〈∂αsi(0, z′′), sj(0, z′′)〉))ri,j=1Φ̂00 = Φ̂α0(0, z′′)((〈s̃i(0, z′′), s̃j(0, z′′)〉))ri,j=1

+ Φ̂00((〈∂αs̃i(0, z′′), s̃j(0, z′′)〉))ri,j=1

can be polarised using Lemma 5.7 to obtain

((〈∂αsi(0, z′′), sj(0, 0)〉))ri,j=1Φ̂00 = Φ̂α0(0, z′′)((〈s̃i(0, z′′), s̃j(0, 0)〉))ri,j=1

+ Φ̂00((〈∂αs̃i(0, z′′), s̃j(0, 0)〉))ri,j=1.

This implies that Φ̂α0(0, z′′) = 0 since the frames s and s̃ are normalized at origin along 
Z. �
Remark 5.15. (i) From the proof of Theorem 5.13, it is clear that, for r = 1 and d = k = 2, 
conditions (i), (ii) and (iii) of Theorem 5.13 together yield that the curvatures of the 
bundles E|Z and Ẽ|Z are equal. Further, the matrix in (5.4) turns out to be the diagonal 
matrix ψ00I with respect to a normalized frame at origin where I is the identity matrix 
of order 3. Moreover, following the proof of Claim 2 in Theorem 5.9 we see that ψ00 is 
a constant function on Z with |ψ00| = 1. Thus Theorem 5.13 is exact generalization of 
Lemma 5.4.

(ii) We also note that three conditions (i), (ii) and (iii) listed in the theorem above 
correspond to the conditions that the metric of E and Ẽ are equivalent to order k, in the 
sense of the paper [14], on Z while the codimension of Z is 1. Consequently, following 
[14, Remark 6.1], we see that the conditions (i), (ii) and (iii) in the above theorem 
correspond to the equality on Z of tangential curvatures, transversal curvatures and the 
second fundamental forms for the inclusions E|Z ⊂ J (2)E|Z and Ẽ|Z ⊂ J (2)Ẽ|Z , or 
equivalently, the off-diagonal entries of the curvature matrices of the bundles E and Ẽ, 
for k = 2.

6. Application

Let us consider the family of Hilbert modules Mod(Dm) := {H(λ)(Dm) : λ =
(λ1, . . . , λm), λj > 0, 1 ≤ j ≤ m} over the polydisc Dm in Cm. We now prove that 
for any pair of tuples λ = (λ1, . . . , λm) and λ′ = (λ′

1, . . . , λ
′
m), the unitary equivalence of 

two quotient modules H(λ)
q and H(λ′)

q , obtained from the submodules of functions vanish-
ing of order 2 along the diagonal set Δ, implies the equality of the Hilbert modules H(λ)

and H(λ′). In other words, the restriction of the curvature of the jet bundle J (2)E(λ) to 
the diagonal Δ is a complete unitary invariant for the class Mod(Dm) where the jet bun-
dle J (2)E(λ) is defined by the global frame {K(λ)(., w), ∂1K

(λ)(., w), . . . , ∂mK(λ)(., w)}
where ∂j are the differential operators with respect to the variable zj , for j = 1, . . . , m
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Theorem 6.1. For λ = (λ1, . . . , λn) and λ′ = (λ′
1, . . . , λ

′
n) with λi, λ′

i > 0, for all i =
1, . . . , n, the quotient modules H(λ)

q and H(λ′)
q are unitarily equivalent if and only if 

λi = λ′
i, for all i = 1, . . . , n.

Proof. The proof of sufficiency is trivial. So we only prove the necessity. Let us begin 
by pointing out that the diagonal set Δ in Dm can be described as the zero set of the 
ideal I :=< z1 − z2, . . . , zi − zi+1, . . . , zm−1 − zm >. It is easy to verify that φ : U → Cm

defined by

φ(z1, . . . , zm) = (z1 − z2, . . . , zi − zi+1, . . . , zm−1 − zm, zm)

yields an admissible coordinate system (Definition 3.9) around the origin. We choose U
small enough so that φ(U) ⊂ Dm. A simple calculation shows that φ−1 : φ(U) → U

takes the form

φ−1(u1, . . . , um) = (
m∑
j=1

uj , . . . ,
m∑
j=i

uj , . . . , um−1 + um, um).

For rest of the proof we pretend U to be Dm following Remark 3.12. Using Proposi-
tion 3.13 it is enough to prove that λi = λ′

i, i = 1, . . . , m, provided φ∗H(λ)
q is unitarily 

equivalent to φ∗H(λ′)
q where φ∗H(λ)

q and φ∗H(λ′)
q are the quotient modules obtained 

from the submodules φ∗H(λ)
0 and φ∗H(λ′)

0 of the Hilbert modules φ∗H(λ) and φ∗H(λ′), 
respectively.

Note that both φ∗H(λ) and φ∗H(λ′) are reproducing kernel Hilbert modules with 
reproducing kernels

K(u) =
m∏
i=1

⎛
⎝1 − |

m∑
j=1

uj |2
⎞
⎠

−λi

and K′(u) =
m∏
i=1

⎛
⎝1 − |

m∑
j=1

uj |2
⎞
⎠

−λ′
i

,

respectively, where u = (u1, . . . , um) ∈ φ(U). We also pint out that the submodules 
φ∗H(λ)

0 and φ∗H(λ′)
0 consist of functions in φ∗H(λ) and φ∗H(λ′), respectively, vanishing 

along the submanifold Z := {(0, . . . , 0, um) : um ∈ D} ∩ φ(U) of order 2.
Since φ∗H(λ)

q and φ∗H(λ′)
q are unitarily equivalent from Theorem 5.13 it follows that

K|Z = K′|Z (6.1)

where K and K′ are the curvature matrices for the vector bundles E and E′ over φ(U)
obtained from the Hilbert modules φ∗H(λ) and φ∗H(λ′), respectively. By the definition 
of curvature tensors we have that K(u) = ((Kij(u)))mi,j=1 where

Kij(u) = ∂2
log K(u,u),
∂ui∂uj
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for u = (u1, . . . , um) ∈ φ(U). Thus, for 1 ≤ i ≤ m and u ∈ φ(U),

Kii(u) = ∂2

∂ui∂ui
log K(u,u) =

i∑
l=1

λl

⎛
⎝1 − |

m∑
j=l

uj |2
⎞
⎠

−1

.

A similar computation also yields, for i = 1, . . . , m and u ∈ φ(U), that

K′
ii(u) =

i∑
l=1

λ′
l

⎛
⎝1 − |

m∑
j=l

uj |2
⎞
⎠

−1

.

We now note that, for u ∈ Z,

Kii(u) =
∑i

l=1 λl

(1 − |um|2) and K′
ii(u) =

∑i
l=1 λ

′
l

(1 − |um|2) .

Thus by using the equality in equation (6.1) it is not hard to see that λi = λ′
i, for 

i = 1, . . . , m. �
This example shows that the unitary equivalence of two quotient modules determines 

the Hilbert modules completely. In general, it seems natural to ask if the unitary equiva-
lence of certain quotient modules implies the unitary equivalence of the Hilbert modules. 
More precisely, let M and M̃ be two Hilbert modules in Br(Ω) and 1 ≤ d ≤ m be any 
integer. Let Mq(Z) (respectively, M̃q(Z)) be the quotient module obtained from the 
submodule of functions in M (respectively, M̃ ) vanishing of order t along a connected 
complex submanifold Z of codimension d. Then the question of interest is to find condi-
tions on t and d such that the unitary equivalence of M and M̃ is determined by the 
unitary equivalence of Mq(Z) and M̃q(Z) for every d codimensional connected complex 
submanifold Z in Ω. This question was studied by Chen and Douglas in [4] for d = m. In 
our case, we consider any d with 1 ≤ d ≤ m. We first show, for r ≤ d ≤ m and t0 = r+2, 
that the unitary equivalence of quotient modules forces the Hilbert modules to be uni-
tarily equivalent. It is also pointed out, for d < r, that there exist Hilbert modules M
and M̃ which are not equivalent although the quotient modules Mq(Z) and M̃q(Z) are 
for Z of codimension d and t ≤ r + 2. We begin by recalling the following definition and 
theorem from [8].

Definition 6.2. Let E and Ẽ be two hermitian holomorphic vector bundles over Ω and k
be a positive integer. Then E and Ẽ are equivalent to order k at a point w ∈ Ω if there 
exists a linear isometry Φw : Ew → Ẽw such that

Φw ◦ χ|w = χ̃|w ◦ Φw

for each covariant derivative of the curvatures χ|w and χ̃|w of E and Ẽ at w, respectively, 
of total order at most k.
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Theorem 6.3. [8, Theorem II, 3.10] Let E and Ẽ be two hermitian holomorphic vector 
bundles over Ω of rank r which are equivalent to order r at every point in Ω. Then E
and Ẽ are locally unitarily equivalent on an open dense subset of Ω.

We now present the main theorem in this section which generalizes Theorem 1.6 in [6].

Theorem 6.4. Let M and M̃ be two Hilbert modules in Br(Ω) with r < m = dim Ω
and S be the collection of all connected complex submanifolds Z in Ω of codimension d
with r ≤ d ≤ m. Assume also that both M and M̃ contain C[z1, . . . , zm]. Let Mq(Z)
(respectively, M̃q(Z)) be the quotient module obtained from the submodule of functions 
in M (respectively, in M̃q) vanishing of order r + 2 along the submanifold Z ∈ S. If for 
every Z ∈ S the quotient modules Mq(Z) and M̃q(Z) are unitarily equivalent as Hilbert 
modules over A(Ω) then M is unitarily equivalent to M̃ as Hilbert modules over A(Ω).

Proof. In view of (3) in Section 1, it is enough to show that M and M̃ are locally 
equivalent which we prove with the help of Theorem 6.3. Let w0 be an arbitrary but fixed 
point in Ω, I = (i1, . . . , id) with 1 ≤ i1 < · · · < id ≤ m and α = (α1, . . . , αd) ∈ (N∪{0})d
with 0 ≤ |α| ≤ r. Consider the submanifold Z ⊂ Ω defined as Z := w0 + Z where Z is 
the coordinate plane defined by Z = {z ∈ Ω : zi1 = · · · = zid = 0}. Assume that Mq

(respectively, M̃q) is the quotient module obtained from the submodule of functions in 
M (respectively, M̃ ) vanishing of order r + 2 along the submanifold Z.

Let U be an open neighbourhood of origin in Ω such that w0+U ⊂ Ω and φ : U → φ(U)
be the bi-holomorphism defined by z �→ z + w0. It follows from Proposition 3.13 that 
φ∗(Mq) is unitarily equivalent to φ∗(M̃q). Note that φ∗(Mq) (respectively, φ∗(M̃q)) is the 
quotient module obtained from the submodule of functions in φ∗(M |φ(U)) (respectively, 
φ∗(M̃ |φ(U))) vanishing of order r + 2 along the coordinate plane Z. Further, since M
(respectively, M̃ ) is in Br(Ω) and C[z1, . . . , zm] is contained in both M and M̃ , it 
follows from Theorem 4.8 that φ∗(M |φ(U)) (respectively, φ∗(M̃ |φ(U))) is in Br(φ(U)). 
We also point out from the definition of pull back that φ∗E|φ(U) → U (respectively, 
φ∗Ẽ|φ(U) → U) are the hermitian holomorphic vector bundles associated to φ∗(M |φ(U))
(respectively, φ∗(M̃ |φ(U))) where E → Ω and Ẽ → Ω are the hermitian holomorphic 
vector bundles associated to M and M̃ , respectively, and φ∗E|φ(U) → U (respectively, 
φ∗Ẽ|φ(U) → U) are the pull back of E|φ(U) → φ(U) and Ẽ|φ(U) → φ(U).

It follows from part (i) and part (ii) in Theorem 5.13 that there exists a iso-
metric bundle map Φ : φ∗E|Z → φ∗Ẽ|Z which intertwines the transverse curva-
tures ∂̄il((∂ijφ∗H)φ∗H−1) and ∂̄il((∂ijφ∗H̃)φ∗H̃−1) of φ∗E and φ∗Ẽ, respectively, for 
1 ≤ j, l ≤ d, as well as their covariant derivatives along zi1 , . . . , zid directions up to order 
r on Z. Here φ∗H and φ∗(H̃) are defined as follows:

φ∗(H)(z) = H(φ(z)), and φ∗(H̃)(z) = H̃(φ(z))

where H and H̃ are Gramians with respect to the frames {s1, . . . , sr} and {s̃1, . . . , ̃sr}
normalized at w0 along Z. Since Dφ is identically identity matrix the curvatures of 
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φ∗E|Z → Z (respectively, φ∗Ẽ|Z → Z) and their covariant derivatives of any order 
at w ∈ Z turn out to be those of E → Ω at φ(w) ∈ Z. In particular, we have a 
linear isometry from Ew0 onto Ẽw0 which intertwines the curvatures ∂̄il((∂ijH)H−1)
and ∂̄il((∂ij H̃)H̃−1) of E and Ẽ, respectively, for 1 ≤ j, l ≤ d, as well as their covariant 
derivatives along zi1 , . . . , zid directions up to order r at w0. Since w0 was arbitrary and 
d > r it follows that for every w ∈ Ω there is a linear isometry V : Ew → Ẽw which 
intertwines the curvatures and their covariant derivatives up to order r at w. Therefore, 
from Theorem 6.3 we have that M and M̃ are locally unitarily equivalent. �
Remark 6.5. Let Ω = D2 and K((z1, z2), (w1, w2)) = (1 − z1w1)−λ(1 − z2w2)−μ be the 
weighted Bergman kernel with weights λ, μ > 0. Denote H(λ,μ)(D2) be the weighted 
Bergman space. Consider the reproducing Hilbert modules HK1 and HK2 on D2 with 
the reproducing kernels K1 and K2 defined as follows:

K1((z1, z2), (w1, w2)) =
(
K((z1, z2), (w1, w2)) 0

0 ∂4
1 ∂̄

4
1∂

4
2 ∂̄

4
2K((z1, z2), (w1, w2))

)
, and

K2((z1, z2), (w1, w2)) =
(

K((z1, z2), (w1, w2)) ∂̄4
1 ∂̄

4
2K((z1, z2), (w1, w2))

∂4
1∂

4
2K((z1, z2), (w1, w2)) ∂4

1 ∂̄
4
1∂

4
2 ∂̄

4
2K((z1, z2), (w1, w2))

)
.

It can be shown that adjoint of the multiplication operators by coordinate functions on 
both of these Hilbert spaces are in B2(D2) which are not unitarily equivalent. But since 
K is diagonal kernel it turns out that

((∂i
1∂̄

j
1K1((z1, z2), (w1, w2))))3i,j=0|Zl

= ((∂i
1∂̄

j
1K2((z1, z2), (w1, w2))))3i,j=0|Zl

where l = 1, 2 and Zl is the coordinate plane defined by zl = 0. Therefore, from The-
orem 4.5 and Proposition 3.13 that quotient modules obtained from the submodules of 
functions in HK1 and HK2 vanishing of order 4 along any connected smooth hypersur-
faces in D2 are unitarily equivalent. Thus it shows that the assumption on the relation 
of the dimension of the domain and the rank of the bundle as mentioned in the theorem 
above is necessary.

The author has been benefited from the discussions with Dr. Soumitra Ghara in 
concluding that the reproducing kernel K2 in Remark 6.5 corresponds to an operator 
tuple in B2(D2).
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