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1. Introduction

Let © be a bounded domain in C™ and A(2) be the unital Banach algebra obtained as
the norm closure with respect to the supremum norm on € of all functions holomorphic
on a neighbourhood of Q. A complex Hilbert space H is said to be a Hilbert module
over A(Q) with module map A(Q2) x H > H by point-wise multiplication such that the
module action A(2) x H > H is norm continuous. Classical examples of Hilbert modules
are the Hardy and Bergman module over the disc algebra A(D) where D is the open
unit disc in the complex plane. Two Hilbert modules H; and Hs over A(Q2) with module
actions (f, h;) — M}i)(hi), i = 1,2, are said to be isomorphic if there is a Hilbert space
isomorphism ® : ‘H; — Ha such that @(M}l)(hl)) = M}2)(<I>(h1)). The basic problem
alluded to the title is as follows:

Given a Hilbert module .# and a submodule My over A(QY), satisfying the exact
sequence

0= My M My— 0,

where i is the inclusion map, ™ is the quotient map and Ay is the quotient module A ©
My, is it possible to determine My in terms of M and Mo? One can make this general
question more precise by asking if it is possible to assign some computable invariants on
My in terms of M and the submodule 4.

In [10] and [2], these questions have been studied when the submodule .4 consists
of all functions in a quasi-free Hilbert module .# of rank 1 (cf. [12, Section 2], [13,
Page 3]) over A(Q) vanishing along a smooth hypersurface Z and a complex algebraic
variety of complete intersection of finitely many smooth hypersurfaces in §2, respectively,
to obtain geometric invariants for such quotient modules in terms of the curvature of
the line bundle associated to .# and .#,. By means of jet construction, [15, Page 372]

) of functions in

a model for the quotient modules obtained from the submodules //lo(k
A vanishing of order k£ > 1 along Z has been provided which is then used to obtain
geometric invariants of such quotient modules generalizing the results in [10]. Later in
[14], a complete set of unitary invariants for such quotient modules with an arbitrary
k has been described. For £ = 2, these invariants turn out to be the tangential and
transverse components of the curvature of the line bundle E_, relative to hypersurface
Z and the second fundamental form for the inclusion E , C J1(2)E "« where J1(2)E w
is the second order jet bundle of E 4 relative to Z (cf. [14, Section 3]). More recently,
Chen and Douglas have introduced the localization of a commuting tuple of operators
in the Cowen-Douglas class over {2 on Z and obtained unitary invariants for them in
[3]. Furthermore, they relate these localizations to the quotient modules obtained from
the submodules of vector valued holomorphic functions on 2 C C™ vanishing to order
k > 2 on a smooth hypersurface Z. These studies on quotient modules naturally lead to
consider the case when the submodules consist of vector valued holomorphic functions
vanishing to higher order along a smooth complex analytic set of codimension greater



P. Deb / Bull. Sci. math. 169 (2021) 102977 3

than 1. In order to describe the content of the present article, we first recall the definition
of the Cowen-Douglas class.

Let Dp : H = H @ --- & H be the operator given by the formula: Dph =
(Thh,...,Tnh), h € H. Following [7], we say that a commuting m-tuple of bounded
linear operators T = (T4, ..., T,,) on H is in B,.(Q) if

o dimker Dy _,; =71, z € Q;
e ranDyp_; is closed in H D --- & H;
e the linear span of the vectors in ker Dp_.;, z € 0 is dense in H.

Following the ideas of [7], it is easy to establish a one to one correspondence between the
unitary equivalence class of commuting m-tuples of operators in B,.(§2) and equivalence
class of the corresponding hermitian holomorphic vector bundles Er := {(w,z) € QxH :
x € ker Dp_,,} of rank n over . The equivalence class of the hermitian holomorphic
vector bundle is the local equivalence of the hermitian structure. These vector bundles
are distinguished, among others, by the property that the hermitian structure on the
fibre over z € € is induced from the inner product of a fixed Hilbert space H. It has been
proved in [9] that the corresponding m-tuple of operators T is simultaneously unitarily
M.,,)
by the coordinate functions on a reproducing kernel Hilbert space H g consisting of C"-

equivalent to the adjoint of the m-tuple of multiplication operators M = (M,,, ...

valued holomorphic functions on Q* := {Z : z € Q}, where K is the reproducing kernel
on .

In general, the adjoint of the tuple M need not be in B, (). However, it can be
ensured by putting additional conditions (cf. [9]) on K. One set of such conditions are
the following:

(i) for any z € Q*, the evaluation mapping ev, : Hx — C” is bounded and surjective;

(ii) Hx has the Gleason property, that is, for any z € Q* and f € Hg, f(z) = 0 if and
only if f(w) = (w1 —21)f1 + -+ + (W — 2m) frm for some f1,..., f, € Hg and any
w e N*.

The following result shows that these are, indeed, the necessary and sufficient for a
tuple T' = (T, ..., Ty,) of commuting operators to be in B,.().

Theorem 1.1. /3, Theorem 2] A tuple of operators T = (11,...,Tyn) lies in B.(Q) if
and only if T is unitarily equivalent to the adjoint of the tuple M = (M,,,...,M,, ) of
multiplication operators on a C"- valued holomorphic function space over Q* satisfying
(i) and (ii) as listed above.

From now on, we say that a Hibert module . is in B,.(2) if (M} ,..., M} ) is in
B, (Q) where (M,,,..., M

Zm

) is the tuple of multiplication operators on . corresponding
to the coordinate functions on Q*.
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In the first half of the present article, the emphasis is on treating the quotient modules
more generally, compared to previous work in special cases (codimension 1, scalar valued
functions, etc.), in a uniform way. However, as in the previous case, the basic assumption
made throughout is that the subvariety Z is smooth. Thus after a local change of variables
at a given point in €2, Z becomes locally isomorphic to a linear subvariety (codimension
d > 2) described by the vanishing of first d variables yielding geometric invariants of the
quotient modules with respect to the local coordinates in a neighbourhood of a given
point. (By abstract principles this often suffices to obtain global invariants.) We make
use of this description of the subvariety Z in Section 3 to obtain a canonical model for
the submodule of functions in .# vanishing to order k on Z. The main crux in obtaining
this model is to prove the Proposition 3.10 which can also be obtained using the multi-
variable version of the Fa di Bruno formula. However, the advantage of the proof given
in this article is in providing the change of variable matrix for the N-jet of a holomorphic
function explicitly which we use in later sections.

This model of submodules then enables us to obtain a model for the quotient modules
(Theorem 4.5) in Section 4. The main idea, originating from [15], is to consider a module
J (M) of k-jets relative to Z of all functions in .# and identify the quotient module ./,
as the restriction of J(.#) to Z. One of the basic problems is whether this new module
J(AM )|z over A(Z) belongs to By4(Z) where A = {a € (NU{0})™ : |a] < k}. As one
of the main results in Section 4, it is shown that

M EB(Q) = J(M)|z € Bya(2)

at least for a natural class of Hilbert modules in the Cowen-Douglas class in Theorem 4.8.
Thus for this class of Hilbert modules, the corresponding quotient modules .#, give
rise to a hermitian holomorphic vector bundles over Z as well, but it turns out that only
the bundle structure cannot determine the unitary equivalence class of such quotient
modules. The flag structure of this new bundle induced by the module action — which
now involves the nilpotent action obtained from the compression of the tuple of multipli-
cation operators by the vanishing coordinates of Z — must be accounted as explained in
Remark 4.7 and Remark 5.2. Classifying such quotient modules — for vector valued func-
tions and the higher codimensional vanishing set — requires new ideas and techniques
extending older ones from complex geometry of jet bundles and moving frames.

The vector bundle associated with the module J(.#)|z turns out to be the k-th order
jet bundle relative to Z of the vector bundle associated with the module .# . In Section 5,
using the techniques of normalised frame [19, Lemma 2.3] of these vector bundles, we first
show in Theorem 5.10 that two such quotient modules are unitarily equivalent if and only
if there exists a constant isometric jet bundle isomorphism between the corresponding
jet bundles restricted to the submanifold Z with the aid of normalized frame. This fact
is then used to determine the unitary invariants of the aforementioned quotient modules
in Theorem 5.13. These results extend the results in [11,14,3] to the case of quotient
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modules obtained from submodules of vector valued functions vanishing along a smooth
analytic variety of arbitrary codimension.

Finally, in Theorem 6.4 we show, for two Hilbert modules .#, .# € B,(Q) with r < m
and any connected complex submanifold Z C Q2 of codimension d with r < d < m, that
the unitary equivalence of quotient modules obtained from the submodules of functions
in . (respectively, M ) vanishing of order r + 2 along Z forces the Hilbert modules to
be unitarily equivalent. It is also pointed out, for m < r and d # m, that there exist
Hilbert modules .# and .# which are not equivalent although these quotient modules
are. Thus it generalizes one of the main results, namely Theorem 1.6 in [6], in multi-
variable domains as well as provides the main result (Theorem 3.12) in [4] as a special
case.

1.1. Notations and conventions

Before proceeding further, let us fix some notations which will be useful throughout
the paper.

(1) O(Q) denotes the set of all holomorphic functions on €.

(2) In this article, we only consider those Hilbert modules .# C O(Q)®" for which the
evaluation mappings ev, : .# — C" are bounded from .# onto C” for z €  and the
Gleason property holds. We also assume that the ring of polynomials Clz1, ..., 2]
is contained in ..

(3) Let . be a Hilbert module over A(2) consisting of holomorphic functions on 2 and
My C A be a subspace which is also a Hilbert module over 2. Assume that A4(Q)
acts on .# by point-wise multiplication and .#; be the quotient module .#Z ©.#. Let
U C Q be an open connected subset. Then from the identity theorem for holomorphic
functions of several complex variables we have .# ~ ) A |v, Mo =) #olu,
and hence .#; ~ 4q) #,|lv where # |y = {h|ly : h € .#}. We, therefore, may cut
down the domain  to a suitable open subset U, if necessary, and pretend U to
be Q.

(4) From now on, for any multi-indices o = («y,...,aq), we use following nota-
tions

o) ly, 0 o 1 o L1
o t oy o 9 ti - .
(respectively, 90%) R Y <reSpeC ively, G 8zdad> (1.1)

unless and otherwise stated, where 0; = %, i=1,...,d.
2. Preliminaries on hermitian holomorphic vector bundles
Let E be a hermitian holomorphic vector bundle of rank n over a complex manifold M

of dimension m. A connection on the bundle E is a differential operator D : £9(M, E) —
EY(M, E) of order 1 with the defining property
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D(fo)=df ® o+ f Do

for any smooth function f on M and o € £°(M, E) where df stands for usual exterior
derivative of f, E9(M, E) is the set of all smooth sections of E and £'(M, E) is the
set of all smooth E valued 1 forms on M. It is well known (cf. [18]) that there is
unique connection D — the Chern connection — on E which is compatible with both
the complex structure and the hermitian metric. It with respect to a local holomorphic
frame s = {e1,...,e,} of E, takes the form

D(s) =0H(s)- H(s)™! (2.1)

where H(s) is the Gramian matrix of the frame s. From now on, by a connection on a
hermitian holomorphic vector bundle we will mean the Chern connection. The curvature
tensor £ of the vector bundle F — M with respect to the Chern connection is an
element in £2(M) ® Hom(E, E) and takes the form

H (s) = D(OH (s) - H(s)™") (2.2)

with respect to the local holomorphic frame s of E, where £2(M) is the set of all smooth
2 forms on M and Hom(E, E) is the vector bundle over M with Hom(E,, E,) as the
fibre over any point p € M. It follows that in a local coordinate system of M one can
write £ as

H(s) =Y Hy(s)dz Ndz; =D 0;(0:H(s) - H(s) )z A dzj, (2.3)
i,j=1 i,j=1

where s is a local holomorphic frame of E.

Note that unlike the curvature tensor £, the connection operator D is not C*° linear,
that is, D is not a bundle map. Nevertheless, it is easy to verify that the commutator of
connection with a bundle map is a bundle map. More generally the following fact holds:

Lemma 2.1. [6, Lemma 2.10] Let E and E be C* wvector bundles over some smooth
manifold X with connections D and D, respectively. If ® : E — E is a C* bundle map
then so is D® —®D as map from E to E®@T*(X), where T*(X) is the cotangent bundle
of X.

Thus, for bundle maps ® : E — E, there exist bundle maps $,,,9;,  E— F satisfying

D®—®D =Y (P, @dz + Pz, @ dZ;). (2.4)

4,5=1

In particular, for a bundle map ¢ : £ — E we write
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[D,®] := D& — ®D.

Let ®(s),®.,(s),®z,(s) be the matrix representation of ®,®., , &, respectively, with
respect to the local holomorphic frame s. It turns out that

D, (s) = 0., D(s) — [0, H(s) - H(s) ", &(s)] and (2.5)
D, (5) = 0=, (s). (2.6)

In the following lemma, we calculate the covariant derivatives of curvature tensor. The
proof of the following lemma, for d = 1, is well known (cf. [6, Proposition 2.18], [4, Lemma
20]). Although the similar set of arguments used there with more than one variable yields
the proof in our case, we present a sketch of the proof for the sake of completeness.

Lemma 2.2. Let E be a hermitian holomorphic vector bundle over Q2 in C™ with a fized
holomorphic frame s := {s1,..., 8} whose Gramian matrix is H. Then

(i) for 1 <d < m, o, € (NU{O)N, and 3,5 = 1,...,d, the r x r matrices

(H5(S)) zozs can be expressed in terms of H™' and OPOH where 2% = 2,1 - - - 24%4¢,
LB n e 00 = OO, 1 = B0 and 0 € Tl € Jol + 1,
0<Y q<|Bl+1,1=1,....d; i

(ii) given 1 < d < m, o, f € (NU{(0)})%, 0“0°H can be written in terms of H*,
OPH, 0H and (H5)zrz=, for 0 < pp < oy, 0 < ¢ < 3, 0 < 27:1 r < la| -1,

0<S s <|Bl—-1,1=1,....d,i,j=1,....d.

Proof. Let E, S and H be as above. Then, for j = 1,...,m, we have

O,H'=-H'- 9, H-H ", and (2.7)
0 ;H '=-H "' 0 H-H . (2.8)
Now from the definition of curvature we obtain, for 7,7 =1,...,d,

Hiz =050, H-H ")
:afjgzLHH_l _aZLHH_l 8ZJHH_1

which also implies that

9,0, H=H;H+ 0., H-H -9 H. (2.9)
Then an induction argument using Leibniz rule together with the equations (2.7) and
(2.8) yield the desired expression in (i). Further, (ii) can be obtained as before by using
Leibnitz rule and formulas (2.7), (2.8) and (2.9) with the help of mathematical induction
on |af and |8]. O
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3. The submodule .#

Let .4 C O(2)®" be the Hilbert module over A(Q) for which the evaluation mappings
ev, : M — C" are bounded from .# onto C" for z € 2 and the Gleason property holds.
Denote the elements of .# as h = (hi,...,h,)" where h; € A(Q), 1 < j < r. In this
section, we define the submodule .#; of .#. So we begin by recalling some elementary
definitions regarding complex analytic varieties.

Definition 3.1. A subset Z C  is called an analytic set if, for any point p € €, there is
a connected open neighbourhood U of p in 2 and finitely many holomorphic functions
¢1,...,0q on U such that

UnZ={qelU:¢(q)=0,1<j<d}

Definition 3.2. An analytic set Z C € is said to be regular of codimension d at p € Z

if there is an open neighbourhood U, C € and holomorphic functions ¢, ..., ¢q on U,
such that
(a) ZNUp, ={q€Q:¢1(q) = = ¢alq) = 0},

(b) the rank of the Jacobian matrix of the mapping ¢ — (¢1(q), ..., dq(q)) at p is d.

An analytic set is said to be irreducible if it can not be decomposed as a union of two
analytic sets. It is known in the literature that any smooth analytic set is irreducible if
and only if it is connected with respect to the subspace topology [18, page 20].

In the following proposition, we point out that such an analytic set Z is a regular
complex submanifold of codimension d in €.

Proposition 3.3. [17, page 161] An analytic set Z is reqular of codimension d at p € M
in a complex manifold M of dimension m if and only if there is a complex coordinate
chart (U,¢) of M such that B := ¢(U) is an open subset of C™ with ¢(p) = 0 and
PpUNZ)={A=(A,..,dm) €EB: A\ =---=)Xg=0}.

Remark 3.4. In this article, we are interested in smooth irreducible analytic sets Z of
codimension d in some bounded domain €2 in C™. So from the Definition 3.2 and the
Proposition 3.3 we have, for each point p € Z, there is a coordinate chart (U, ¢) at p of
Q satisfying following properties:

(a) ¢(p) =0with p(UNZ)={A=(A1,.., Am) EB: A =---= X3 =0},
(b) the rank of the Jacobian matrix of the mapping ¢ — ($1(q), ..., dq(q)) at p is d.

We are now about to define the order of vanishing of a holomorphic function along a
smooth analytic set. Our definition is essentially a direct generalization of the definition
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given in [15] to define the order of vanishing of a holomorphic function along a smooth
complex hypersurface.

Definition 3.5. Let 2 and Z be as above and f : 2 — C be a holomorphic function. Then
f is said to have zero of order at least k at some point p € Z if there exists a coordinate
chart (U, ¢) at p of Q satisfying the properties (a) and (b) in the Remark 3.4 such that

[f) el (3.1)
where [f] is the germ of f at p and Iz is the ideal in O,, , generated by [¢1],. .., [¢d].

Remark 3.6. Note that the above definition is independent of the choice of coordinate
chart at p. Indeed, for two such charts (Uy, ¢1) and (Uz, ¢2) with the properties listed
in Remark 3.4, ¢1 and ¢ o ¢1_1, respectively, induce isomorphisms ®; : Oy, = O
defined by @;([g]) = [go ¢1 '] and @3 : O — O with @([go¢1']) =[go ¢, ] Asa
consequence, it turns out that f satisfies (3.1) if and only if [f o ¢ '] € I} which is again
equivalent to the fact that [f o ¢g 1] € I} where I ; is the ideal generated by the germs
[)\Ji], A [)\gl], j = 1,2, with local coordinates A{, ...y M, of C™ corresponding to ¢;.

Definition 3.7. The submodule .# is defined as
My = {h € A : h; has zero of order at least k at every g € Z, 1 < j <r}.

Lemma 3.8. Let 2 be a bounded domain in C™, Z be a complex submanifold in Q and
f:Q — C be a holomorphic function. Then, for each point p € Z, f vanishes to order
k at p along Z if and only if

_ ol
ON(fod Nlpwnz) = 3

PVt ¢ lswnz) =0 for 0<of <k -1,

where o = (v, ...,0q) and |a| = aq + -+ + aq, for some coordinate chart (U, $) as in
the Remark 3.4.

In general, there are no global defining functions ¢1, ..., ¢4 for a smooth irreducible
analytic set Z. Since the modules and the submodules of interest can be localized (see at
the end of the Section 1), it is enough to work with an open set U C € intersecting Z. So
from now on, we consider a fixed neighbourhood U C € of p with UNZ # @ and defining
functions ¢1, ..., ¢4 satisfying conditions (a) and (b) in Remark 3.4. Since the Jacobian
matrix of the mapping z — (¢1(2),...,¢q(z)) has rank d at p, by rearranging the
coordinates in C™, we can assume that Dy (p) := ((8j¢i|p))f€j:1 is invertible. Note that
D (z) is invertible on some neighbourhood of p in U. Abusing the notation, let us denote
this neighbourhood by the same letter U. Consider the mapping ¢ : U — ¢(U) defined as
d(2) = (91(2), ..., da(2), Zdt1, - - -, 2m) and observe that ¢ is a bi-holomorphism from U
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onto ¢(U) with ¢(p) =0and (UNZ) ={A=(A1,....; An) €DU) : Ay =--- = Ag =0}
Thus once we fix a chart as above and pretend U to be €2, the submodule .#Z; may be
described as

ole

o {G/// M oA

(hjo ¢’1)(A)|¢(z) =0for0<|a|<k—-1,1<5< 7"} .
At this stage, we introduce a definition that separates the coordinate chart described
above among others and will be useful throughout this article.

Definition 3.9. Let 2 be a domain in C™ and Z C € be a complex submanifold of
codimension d. Then, for any point p € Z, we call a coordinate chart (U, ¢) of Z around
p an admissible coordinate chart if the bi-holomorphism ¢ : U — ¢(U) takes the form
d(2) = (91(2), ..., Pa(2), Zat1s - - -, 2m) With ¢(p) = 0and ¢(UNZ) = {A = (A1, ..., Ap) €
d(U) : Ay = --- = Ag = 0} for some holomorphic functions ¢1,...,¢q on U.

Note that even in this local description of the submodule, there is a choice of com-
plementary directions to the submanifold Z involved. The following proposition ensures
that in this local picture two different sets of complementary directions to Z give rise
to equivalent submodules. We must recall some elementary definitions and properties of
the ring of polynomial functions on a finite dimensional complex vector space which will
be useful in the course of the proof of the following proposition.

For any complex vector space V' of dimension d, the ring of polynomial functions
C[V] on V consists of all functions f : V' — C such that, for any basis {e1,...,eq} of
V, f takes the form f(aje; + -+ + ageq) = ¢(au, ..., aq) for all (ay,...,a4) € C? and

some polynomial ¢ € Clxy,...,24]. In other words, f is a polynomial into the elements
x1 =e€j,...,xq = e of the dual basis. It is then clear that

where S(V*) is the graded vector space of all symmetric tensors on V*. Note that C[V]
is an algebra over C.

A polynomial function f on V is said to be homogeneous of degree t if f(av) = ot f(v)
for all « € C and v € V. We denote C[V]; the subspace of C[V] of homogeneous
polynomial functions of degree ¢. In particular, C[V], = C, C[V]; = V* and C[V]; is
canonically identified in the first isomorphism in (3.2) with the ¢-th symmetric power
St(V*), and it can also be identified with the subspace of C[z1,...,z4] generated by the
monomials /' - - xfid with ¢; 4+ -+ 4 t4 = ¢ via the second isomorphism of (3.2).
Proposition 3.10. Let Q be a bounded domain in C™, Z be a complex submanifold in §)
and f : Q — C be a holomorphic function. Then, for each point p € Z andn € N, there
exists an admissible coordinate chart (U, @) of Q at p such that

3(f 06 Y Nlog) =0, 0< |a] < n if and only if ° ()], = 0, 0 < || <n
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where a = (a1, ...,aq) € (NU{0}4, A= (\1,...,A\m) denotes the standard coordinates
on ¢(U) C C™.

Proof. Let us consider an admissible coordinate system (U, ¢) (cf. Definition 3.9) at
pE€ZCQofQ thatis, ¢: U — ¢(U) defined as ¢(z) = (¢1(2), ..., 0a(2), Zds1y -+ Zm)-

For q € U, let Vg and Vi, be tangent spaces at ¢ and ¢(q) to (C? x {0}) NU and
(C% x {0}) N ¢(U), respectively. Denote the standard ordered basis of V, by Bi(q) :=
{%L}}?zl and that of Vi) by Bi(¢(q)) = {ai,\j|¢(q)}§l:1~ Consider the linear map
Li(q): V; — V(g Whose matrix with respect to the dual bases {dz; }?:1 and {d\; }?:1
of Bi(q) and By(¢(q)), respectively, is the matrix ((8;¢i(q)))¢ ;.

In view of the first isomorphism in (3.2), we observe that L;(g) canonically induces
linear mappings L;(q) : S*(V;) — St(qu‘(q)) defined by

Li(q)(dz1" @ -+ ®@dzg") = Li(q)(dz1)™ @ - - @ La(q)(dza)™

where a = (a1, ..., aq) € (NU{0})? with |a] = @y + -+ aq =t and by dz;7 (respec-
tively, by L1(q)(dz;)®) we mean that the cj-th symmetric power of dz; (respectively,
Li(0)(dz)).

Let Bi(q) := {d21" ®---®dz5" : |a| =t} and Bi(¢(q)) := {dA\]' ®---@dA\]" : |of =t}
be bases for vector spaces S*(V,*) and St(V(;‘(q)), respectively, and make them ordered
bases with respect to the order induced by the colexicographic order on the set {a €
(N U{0})?: |a| = t}. Denote the matrix of L;(q) represented with respect to the basis
Bi(q) and Bi(¢(q)) as Di(q), for t € N U {0}. Note that since L;(p) is a vector space
isomorphism for each t € N U {0} the matrices D,(p)’s are invertible.

In this set up, we claim, for z € U with ¢(z) = A € ¢(U), that

fod™t(N) f(z)

I fod™t(N) o f(2)
Ay o(2) - - = .. 3.3
O arosin | T | oos) 33

O, fod (M) 93 f(2)
where 0 stands for the differential operator ﬁ, Ap (%) is the block lower

10 d

triangular matrix with 1, D1(2), ..., D,(2) as the diagonal blocks. Here the order used

in writing the coloumn vectors is obtained from the colexicographic order on the set
{a e (NU{0H?: |a| <k}

We prove this claim with the help of mathematical induction on n. Note that the base
case is a direct consequence of the change of variables formula. Let the equation (3.3)
hold true for ¢ = with 1 <1 <, that is, for a = (a1, ..., aq) with |a| =1,
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0“f(z) = Z (Dl(z))agaff 0 ¢ 1(\) + other terms
1Bl=l

where Dy(z) is the matrix (((Di(2))as))|a|=1,|8|=- Differentiating both sides of this equa-
tion with respect to the z;-th coordinate and using the Leibnitz rule we have, for an
arbitrary but fixed point g € U,

0;0° f = > 95(Du(2))asl:=ed5 f 0 67 (6(a))
|Bl=1

d
+ Z (D1(q))ap (Z 3j¢s(q)8>\s> 6ff 0 ¢ (A)[a=g(q) + O;(other terms)
s=1

|B=l
d
= > (Di(@))apd} (Z 0;65(q)0x. f 0 qu(A)) ot
= s=1
+ (other terms involving 85]‘ 0 ¢ 1 (p(q)) with |a] < 1)
Note that the rings of polynomial functions S(V;*) and S(V(;( )) can be canonically

identified with the algebras of linear partial differential operators with constant coeffi-
cients, namely, 'y : S(V*) ~c {>_, @a07" -+~ 03¢ : aq € C} under the correspondence

dz{" @ - ®@dzy? at o' -+ 0y and similarly, Ty + S(V5(,)) ~c {32, aady] -+ 035
r
aq € C} via the mapping dAT"' @ - - @ dAS* RaSy oyl -+ 0%, Consequently, it yields that

9t f(q) = Z aﬂa (Z 0j¢s(a)0, f oo™ )> |>\:¢(Q)

|8I=1
+ (other terms involving 95 f o ¢~ 1(¢(q)) with |a| <)
= T L1(@)T5 1 (01))** -+ (L) L1 (@)T5 H(9))% -+ (L) L1 (@)L (D))
(T¢ Li(q)T5 (91))f 0 67 V)| Zy(a)
+ (other terms involving 95 f o ¢~ 1(¢(q)) with |a| <)
= Tys(q) ( T, H(01)) ™ - (T (q) L1 ()T H(05)) % -+ (T gy La (9T ()

foot ‘A:q&(q) + (other terms involving (“)ff 0 ¢ 1 (p(q)) with |af <1)
= D (Pra(@)are)sdi f o671 (6())
|8|=1+1

+ (other terms involving 8f\3f o ¢ H(¢(q)) with |a| < 1)

which verifies the claim. Thus, A, 4(z) is invertible if and only if Dy (z), ..., Dy(z) are
simultaneously invertible which is the case for z € U. Hence it completes the proof. O
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Remark 3.11. We point out that the proposition above can also be obtained from the
multi-variable version of the Faa di Bruno formula for composite functions as suggested
by the anonymous referee. However, the advantage of the proof above is in computing
the invertible matrix A, 4(z) satisfying the equation (3.3). We will use this invertible
matrix again in Section 5 which is why we prefer to keep this proof here than the one
by Faa di Bruno formula. Nevertheless, we provide a brief sketch of this proof following
Faa di Bruno formula for sake of completeness.

We now elaborate upon this. Let Q, Z, and f be as in the Proposition 3.10, and (U, ¢)
be an admissible coordinate chart at p. The multi-variable Faa di Bruno formula, for the
composite function f o ¢~! and multi-indices p, u*, v, V% of length m, states that

'7 .
HK(fos™HN = @NE M) Y. S cw v ]Ex et ()
1<|p|<n ui#£0Q vt z:l
where 1 < ¢ < j < n = |y, (83\’ijgb’1()\))“ij denotes a monomial product, and for

cach j, the summation is subject to the restriction S7_, X9 = A, S_ |u# v = v.
C(u¥,v%) are the combinatorial coefficients which are explicitly known in [5]. Denote
o' = (ags1,-.-,m). Note that being an admissible coordinate chart, (;S;_&l, eyt
are independent on first d variables and hence 9¢¢; ' (\) = 0 whenever o/ = 0 and
d+1<k<m.

Let us consider v such that v/ = 0 which is the case in the previous proposition
and observe from the condition Y>7_, ||y = v that all v also satisfy (1) = 0 as
|| > 0. It turns out, for i < j and v with v/ = 0, that the only u*, which can occur
in the formula above, are those with ()" = 0. Also, it implies that all such u, whose
1 =0, can occur in the right hand side of the formula above completing the proof of
the forward direction of the proposition above. Finally, a similar argument as above with
foo~! and ¢ in place of f and ¢!, respectively, completes the proof of Proposition 3.10.

From the proposition above and Remark 3.6 we have another characterization of the
submodule .#, as follows:

///0:{he//lzalal-~8dad(hj)|2:0, 0< |a| Sk—l, IS]S’I’}
Remark 3.12. Note that following (3) in Section 1, it is enough to restrict the module
A and the submodule .# to an admissible coordinate chart (U, ¢) around some point
p € Z C Q. Also, it can be seen that the unitary equivalence classes of these submodules

remain the same under the change of variables ¢. We now elaborate upon this fact.

Let us consider the module, ¢*(.# ) which is, by definition,

(M) = {flvod™": f e}
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and note that it is a module over A(€Q2) with the module action

9 (flvod™) = (gf)lvoo™",

for g € A(Q). It is evident that the modules ¢*(#|y) and .# are isomorphic via the
isomorphism ® : .# — ¢* (. |y) defined by f +— f|lrod~L. So, defining an inner product
as

<f|U © ¢_179|U O¢_1>¢*(//[|U) = <f7 g>-//f7

it can be seen that ¢*(.#|y) is unitarily equivalent to .# as Hilbert modules. Since . is a
reproducing kernel Hilbert module with a reproducing kernel, say, K so is ¢*(.#|y) with
the kernel function K’ defined by K'(u,v) = K(¢~1(u),¢ 1 (v)), for u,v € ¢(U). Also,
the multiplication operators M., , ..., M,  on .# are simultaneously unitarily equivalent
to My,, ..., M,, on¢*(A|y). Finally, (3) in Section 1 together with the Proposition 3.10
ensure that the submodules .#, and ¢* R(.#;) are also unitarily equivalent via the same

map as mentioned earlier. Consequently, we have the following Proposition.

Proposition 3.13. Let 2 be a bounded domain in C™, Z be a complex connected subman-
ifold in Q and #*, #* be two Hilbert modules of rank r over A(Y). Let .4, and #G be
submodules of .41 and #?, respectively, consisting of holomorphic functions vanishing
of order at least k along Z. Assume that (U, @) is an admissible coordinate system around
some point p € Z. Then Ay is unitarily equivalent to MG as Hilbert modules if and only
if o* (M |v) is unitarily equivalent to ¢* (M |y). In other words, the following diagram
commutes.

My L My 2 ¢ (M)

l | !

M2 —E e —2 o (MR2)y)

Remark 3.14. In view of the previous proposition and Definition 3.9 we note that it
is enough to consider the submanifold Z as the coordinate plane of codimension d.
Therefore, from now on we shall only consider domains 2 which contain the origin,

Z={2€Q:z1=...=24=0}
and the submodule .#, as

Moy ={he M ™ 0,(hj)|z=0,0<|a| <k—1,1<j<r}
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4. Quotient module .7,

Let © and Z be as described in the previous section. Consider the exact sequence
0 Moyt 5 ;0 (4.1)

where 7 is the inclusion map and P is the quotient map. Then #, := A4 [ My = M S M.
For f € A(Q) and h € #, we define the module action on .Z, as

JP(h) = P(fh) (4.2)

making it a Hilbert module. Here we mean (fhy,..., fh,) by fh. In this section, we are
interested in obtaining a model for these quotient modules .#.

Following the ideas of [15], we first describe the jet construction relative to the sub-
manifold Z. Let A = {a € (NU{0})? : |a|] < k} be an ordered set equipped with
the colexicographing ordering, {¢,}neca be the standard ordered basis of Cl4!, {o;}7_,
be the standard ordered basis of C” and recall that 01, ...,d4 are the partial derivative
operators with respect to z1,...,2z4 variables, respectively. For h € .#, we note that
h=(hi,...,h )" =3I_, h; ® 0;, and define

h:= i (Z 0%h; @ 5a> ® o0;.
i=1 \a€A

Consider the space J(.#) :={h:h € .#} C .# @ (C!4l @ C"). Here and throughout
this article, we follow the notation below for the tensor product:

A® B = ((Ab)){

ij=1
for any matrix A and B = ((bz‘j))g,j:y Consequently, we have the mapping
J: M — J(A) defined by h +— h. (4.3)

Since J is injective we define an inner product on J(.#) making J to be an unitary
transformation as follows

(J(h1), J(h2)) sy = (h1,h2) ar-

Since each evaluation mapping ev, : .# — C" is bounded, .# is a reproducing kernel
Hilbert space implying that J(.#) is also a reproducing kernel Hilbert space with the
reproducing kernel JK as computed in the following proposition.

Proposition 4.1. J(.#) is a reproducing kernel Hilbert space with the reproducing kernel
JK Q2 x Q= M 4),(C) defined as
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(JK);-Xjﬁ(z,w) =00 Kij(2,w) for a,B€ A, 1<4,j<r, (4.4)

where JK (z,w) is an r X r block matriz with (((JK)%ﬁ(z,w)))aﬂeA as the |A| x | 4|
block and (JK)?jﬂ(z,w) is the afB-th element of the ij-th block.

Proof. We begin with the observation that
JE(,w)eg®@0; =Y ZaaaﬁK,J w)eq @ 0y = J(PK (., w)o;)
acAi=1

which shows that JK (., w)eg @& € J(A) for all £ € C" and w € . It remains to show
that JK has the reproducing property which is, by definition,

<ha JK(7w)C>J(//Z) = <h(w)7C>C\A\®C"'7 (45)
for h € J(#4) and ¢ € M 4,-(C). Note that, for w € Q, a € Aand 1 < j <,
(b, JK(.,w)ep ® 05) sy = (b, J(O°K(,w)05)) 5 (.ar)

= (h,0°K(.,w)o;).0
= aﬂh]
which completes the proof as 0%h;(w) = (h(w),eq ® 0j)claiger- O
We now define an action of A(2) on J(.#) so that J(.#) becomes a module over A(f2)
and J turns out to be a module isomorphism. For f € A(Q2) and h € J(#), the module

action Jy : J(A) — J(A) is defined by J¢(h) := J(f) ® Ih where J(f) € M|4(C) is
complex matrix defined as follows

7= (o= (5r) - (G)or s (46)

with a = (aq,...,aq4) and 8 = (f1,...,B4) and I, is the identity matrix of size r. Note
that this is a lower triangular matrix and it takes the following matrix form

o A f

Using the Leibniz rule, for 1 < ¢ < r, we have
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J(f-hy) = Zaa(f-hi)@)sa

acA

aq g
= Z Z Z ((;1) <gd)3?1—/31 ...@gd—ﬁdf o ...6gdhi> ® eq
Q€A B1=0  Ba=0 ! d
=J(f) h
which shows that J(f-h) = J(f)®I,-h = J¢(h) implying that J is a module isomorphism.
As in the case of Hilbert submodule .#; of the Hilbert module .# it is clear that the
subspace

J(.///)O = {hGJ(%)hIZ:O}

is a submodule of J(.#). Let J(.#), be the quotient module obtained by taking an
orthogonal complement of J(.# )y in J(A), that is, J(M )y := J(M) S J(A)y. The
following theorem provides the equivalence of two quotient modules .#; and J (A4 ).

Theorem 4.2. .#, and J(.#), are isomorphic as modules over A(Q).

Proof. Let us begin by pointing out that D := {0°K(.,w)o; 1w € 2,1 <i <r,a € A}
is a spanning set for .#,. Indeed, using the reproducing property of K, we note for
(eCrweZ ac A and h € 4y, that

(h, 0K (.,w)¢) = (9*h(w),¢) =0

implying that .#, C spanD=. Also, a similar computation yields that spanD C ..

From the equation (4.3) it follows that J(D) = {JK(.,w)eq ® 0; : « € A;1 < i <
r,w € Z}. As above, forh € J(#),1 < i <r,and w € Q, from the reproducing property
of JK it turns out that

(h, JK(.,w)ea @ 0i) j(ar) = (h(w), €0 ® 03)crair = 0%hi(w), o € A, (4.7)
justifying that J(D) spans J(.#),. Thus J(#,) = J(spanD) = spanJ (D) = J (A ),.
In course of completion of the proof, it remains to check that J is a module isomor-
phism from .#; onto J(.# )4. In other words, we need to verify the following identity
JoPoMy=(JP)oJsol,
for f € A(f), which is equivalent to show that
JM;P = J;(JP)J

where JP : J(#) — J(# )4 is the orthogonal projection operator. Since it amounts to
show that J intertwines the module actions on D and both P and JP are identity on D
and J(D), respectively, it is enough to prove that
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JM§ = J;J, for f € A(Q), on D.

Let a = (a1, - ,aq) € A, 1 <i<rand 0°K(.,w)o; € D.For f € A(Q),w e Z CQ,

we have
MiK(,w)o; = f(w)K (., w)o;. (4.8)

Differentiating both sides of the equation above and using the induction on the degree
of differentiation we obtain

[e71 aq
MoK (w)oy =Y -+ Y oM 9yt P f(w)a) - 9 K (L w)or. (4.9)
B1=0 Ba=0

Therefore, the equation (4.3) together with the Proposition 4.1 yield that
J(Mp* 0K (., w)a;) = JK(,w)(T(f)(w))* (ea ® 7).
Finally, for h € J(.#), ¢ € C @ C" and w € Q, we have

(b, JEJK (. w) - Quny = (h(w), T(f)(w) Qcraxr = (b, JK(, w)T (f)(w)*C) )
completing the proof. O

Remark 4.3. Note that as mentioned in [15] the Theorem 4.2 is equivalent to the fact
that the following diagram of exact sequences is commutative.

0 —— My —— H —2s H, ——0

l l l

0 —— J(t)y —— J(t) —L J(at)y, —— 0

In [1], it was shown that for a reproducing kernel Hilbert space H with scalar valued
reproducing kernel K on some set W, the restriction of K on a subset W of W is also a
reproducing kernel and restriction of K to W7 constitutes a reproducing kernel Hilbert
space which is isomorphic to the quotient space HOHo where Ho := {f € H : flw, = 0}.
Here, adopting the proof from [1] for our case with vector valued kernel, we have the
following theorem. Since this result is well known (Theorem 3.3, [15]) for the case while
the codimension of the submanifold, Z, is one and using the techniques used in that
proof in a similar way the following theorem can be obtained, we omit the proof.

Theorem 4.4. The normed linear space J(# )|z is a Hilbert space and the Hilbert spaces
J( M)y and J(A )|z are unitarily equivalent. Consequently, the reproducing kernel K
for J(A)|z is the restriction of the kernel JK to the submanifold Z. Moreover, J(M ),
and J(A )|z are isomorphic as modules over A(S2).
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Theorem 4.5. The quotient module .4y is equivalent to the module J(A )|z over A(S).
Proof. It is obvious from Theorem 4.2 and Theorem 4.4. O

Remark 4.6. Let us consider a reproducing kernel Hilbert module .# over A(D™) and
Ag={z=(21,.--,2m) ED™: z; =--- = 23} be the connected submanifold. Suppose
that .#; is the submodule defined as follows

My ={f€M:0 057 fla,=0:a=(ar,...,a4-1) € (NU{0})**
0<|a] <k-—1}.

It follows from Proposition 3.10 that the submodule .#; is independent of the choice of
complementary directions to Ay (for example, .#( is isomorphic with the submodule of
functions f in .# such that 9 - 977" fla, =0 for a € (NU{0})4~! with 0 < |a| <
k — 1). Cousider the quotient module /// M © My and note that as in the proof of
Theorem 4.5 it can be shown that .#, is isomorphic to the module of jets Ji (.4 )|a,
restricted to Ay where

Ji (M) = o0y f®eata=(a1,...,aa-1) € (NU{OH*!

0<]al<k-1

On the other hand, from Proposition 3.13 and Theorem 4.5 we have that the quotient
module ., is isomorphic to J(¢*(#))|a, as modules where ¢ : D™ — C™ is the
bi-holomorphism ¢(z) = (21 — 2dy - -, Zd—1 — Zds Zds - - - » #m) Onto it’s image, ¢* () =
{foo™t: fe}and J(fop™!) = Zogmgkfl o5 - ;fj [ (foo™ N ®eq with Aj = ¢j,
j=1,...,d—1 as (D™, ¢) is an admissible coordinate chart of D™ (Definition 3.9).
Therefore, J1 (A )|a, is also isomorphic to J(¢* (4 ))|a, as modules. Note that this new
model J1(#)|a, for the quotient modules ., of above kind is more canonical than the
one obtained from the jet construction relative to a coordinate plane.

We also point out that the construction depicted above can be performed to any linear
varieties which possess a global admissible coordinate chart.

Example. For A > 0, let #*) (D) be the Hilbert space of holomorphic functions on D With
the reproducing kernel K™ (z,w) = (1 — 2w)~> for z,w € D with {egf‘)( )= cn T
n > 0} as a complete orthonormal set in HM (D) where ¢, are the n-th coefficient of
the power series expansion of (1 — |z|?)~*

o (—)\) CAAHDA+Y) A1) (A

n n! n!

Let us recall that for A > 0, the natural action of polynomial ring C[z] on each Hilbert
space HM (D) makes it into a Hilbert module over C[z]. We also point out that, for
A > 1, HM (D) becomes a Hilbert module over the disc algebra A(D).
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It is well known that the product of two reproducing kernels is also a reproducing
kernel [1, Page no. 8]. For A = (Ay,..., A\p) with A; > 0,i=1,...,m, let us consider the
Hilbert space HN) (D™) := HA)(D)®- - -@H =) (D) with the natural choice of complete

orthonormal set {e(’\l)(z) ®:-® egi‘tm)(z) ci; > 0,5 = 1,...,m}. HM(D™) naturally

i1

possesses, under the identification of the functions zj* -+ zim on D™ :=D x --- x D, an

obvious reproducing kernel

K(A)(Z, w) = (1 - Zj@j)ikj

—

1

J

on D™. Furthermore, the natural action of C|[z] on £ (D™) makes it a Hilbert module
over C[z], for A; >0, j =1,...,m, where by C[z] we mean Clz1,. .., 2Zn].

Let us now consider the subspace 7—[0)‘) consisting of holomorphic functions in H®)
which vanish to order 2 along the diagonal A := {(z1,...,2;,) € D™ : 21 = -+ = 2z, },
that is, following the definition given in Section 3,

7_[(()%):{fEH(A)(Dm);f:alf:.--: mf =0 on A}

Following the remark above the quotient module 'H((ZA) = HMD™) o H(()A) can be
identified with the reproducing kernel Hilbert module over A(D) with the reproducing
kernel

Kq(z,w)|a = JKW (z,w)[a = ((0:0;K™ (2, w)[4))7=.

Remark 4.7. Let us now clarify the module action of A(2) on the quotient module
My before proceeding further. To facilitate this action we, following [15, page 384],
consider the algebra of holomorphic functions on  taking values in Cl4! with A = {a €
(NU{0}?: |o| <k},

JAQ) == {Jf: f € AQ)} C AQ) @ M4(C)

with the usual matrix multiplication, namely, (Jf - Jg¢)(z) := Jf(2)Tg(z). It is clear
from (4.6) that J(.#)|z is a module over the algebra JA(Q)|z obtained by restricting
JA(Q) to Z. Note that J defines an algebra isomorphism from A(Q2) onto JA(Q) and
intertwines the restriction operators Ry : A(Q2) — A(Q)|z and Ry : JA(Q) = JA(Q)|z.
Consequently, J : A(Q)|z — JA(Q)|z is also an algebra isomorphism. So J(.#)|z can
be thought of as a Hilbert module over JA()|z.

On the other hand, observe that the inclusion ¢ : Z — €2 induces a map i* : JA(Q2) —
JA(Q)|z defined by i*(J f)(z) = Tf(i(z)), for z € Z. Then J(# )|z can be made a
module over JA(Q2) by defining the module map as follows:
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Thus, recalling the fact that J defines an algebra isomorphism between A(Q2) and JA(Q),
we can think of J(.#), as a module over A(£2). Moreover, from the equation above it can
be seen, for f = z; with i = d+1,..., m, that the module action J; = Mgy, on J (A )|z
becomes the multiplication by z;. Thus, J(.#)|z can be thought of as a reproducing
kernel Hilbert space with the reproducing kernel JK|z on which the multiplication
operators corresponding to the coordinate functions of Z are obtained from the module
actions J,,, i =d+1,...,m.

Since the similar construction can be done for the Hilbert modules .# € B,.(2) with
submodules .#{ consisting of holomorphic functions in .# vanishing along Z to order
k, it is natural to ask whether the quotient spaces arising from such submodules are in
Bjaj-(Z) where |A| is the cardinality of the set A of all multi-indices o = (o, ..., aq)
with |a| < k. In the following theorem, we give an affirmative answer to this question
for a large collection of Hilbert modules.

Theorem 4.8. Let Q2 C C™ be a bounded domain containing the origin and Z C ) be the
coordinate plane defined by Z = {z = (21,...,2m) € Q: 21 = -+ = zg = 0}. We also
assume that A is a reproducing kernel Hilbert space with the reproducing kernel K such
that Clz1,...,2m| C . Then the quotient Hilbert space .4 lies in Bja),(Z) provided
M € B.(Q) where |A| is the cardinality of A= {a € (NU{0}?: |a| < k}.

Proof. Let us denote 2’ = (z1,...,2q4) and 2" = (2441, .., 2m). In view of Theorem 4.5
and Remark 4.7, it is enough to prove that the module of jets, J(.#) restricted to Z is in
B ajr(2). Since Clz1,. .., 2zm] C 4 and J(.#) has a reproducing kernel, the evaluation
functionals are bounded and onto. So from Theorem 1.1 it is enough to show that, for
any h € J(#)|z and (0,w"”) € Z, h(0,w”) = 0 if and only if

h=(z441 —wgr1)hs + -+ (2 — W)y
on Z for some hy,... h,,_4 € J(.#)|z which follows from the lemma below. O

Lemma 4.9. Let h € J(# )|z with h = J(h) and (0,w”) € Z be an arbitrary point.
Assume also that h(0,w”) = 0. Then there exist hy,..., hpm—q € M such that

m—d
h=> " (zar; —war))hi(z',2") + Y 2°9a (4.10)
j=1 o=k
for some go, € M, o = (a1,...,aq) with |a| = k.

Proof. We prove the desired identity in (4.10) with the help of mathematical induction
on |al. Since h(0,w"”) = 0 it follows from the Gleason property of .# (as .# € B,(f2))
that
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d m—d
W 2" = zigi(2 2" + > (2ars — ways)gari (2, 2"))
i=1 j=1
for some g1, ...,9m € .4 taking care of the base case with h; = g4+, 7 =1,...,m —d.

Assume that the claim is true for |a| < k — 2. Let h € J(.#) with h = J(h) and
h(0,w"”) = 0. From the definition of J in (4.3), it follows that 9*h(0,w”) = 0 for all
a € A. Consequently, from the induction hypothesis it turns out that

m—d
h(z',2") = Z (2dtj — wat5)g; (2", 2") + Z 2%Ga (4.11)
j=1 la]=k—1

for some g, € A, o = (a1,...,aq) with |a| = k — 1. For any o € A with |a] =k — 1,
applying the differential operator 9% to the both sides of the equation (4.11) we have
that

m—d

9“n(0,2") = Z (Zdtj — wa+5)0%9;(0,2") + cga (0, 2")
j=1

for some non-zero constant ¢. But since 9*h(0,w”) = 0 so is go(0,w”) = 0. Therefore,
from the Gleason property of .# it can be seen that

d m—d
9a(2,2") = zigh (2, 2) + Y (zarj — wayi)ja(2, 2")
i=1 j=1

for some ¢, §jo € A for i =1,....d and j = 1,...,m — d. Now substituting g,’s in
(4.11) we have that

m—d d
h(Zl’ Z") _ Z (Zd-',-j _ wd-‘,—j) g; + Z (Z/)agja (Z/, Z”) + Z Za“rEig(il
j=1 la|=k—1 loe|l=k—1,i=1

which completes the proof. O

Remark 4.10. Note that the assumption C|z1, ..., 2] C .4 implies that the reproducing
kernel JK for the Hilbert module J(.#) is non-degenerate (cf. [9, Definition 4.2]).

We note that the above theorem provides examples of quotient modules which are in
the Cowen-Douglas class. We now provide another important application of the lemma
above which will be useful in the next section.

Proposition 4.11. Let 2 C C™ and Z C Q be as above. Also, assume that A is a
reproducing kernel Hilbert space with the reproducing kernel K such that Clz1, ..., zm] C
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M and A € B.(Q). Then
{0°K (., (0,w")e; : 0< |a| <k -1, (0,w") €2, 1<j<r}

forms a basis for N, ker(M; — w;) N ker(M3,)? where by ker(MZ,)? we mean
Nigj=r ker((Mz)Pr- -+ (Mz,)P) and B = (B, ..., Ba)-

Proof. We first observe from the reproducing property that, forany w € Qand 1 < <r,
M (K(.,w)e;) =W K (., w)e;.

So it follows, for any w €  and «;, §; € N U {0}, that

(M2, — ) 0 K w)e; = B (ﬂ)a% PR (w)es

Consequently, we have, for w € Q, 1 < j <7 and a = (a1,...,aq) € (NU{0})?, that

(M2, — )P (M2, — W) (B w)q)ﬁ!(g)aaﬂz«.,w)sj

implying that the set {0“K(.,(0,w"))e; : 0 < |a| <k —1, (0,w”) € Z, 1 < j <r}is
contained in NI, ker(M; —w;) Nker(M},)".

Let f be any element perpendicular to the set {0“K(.,(0,w"))e; : 0 < |a| < k —
1, (0,w"”) € Z, 1 < j < r} It follows from the reproducing property that 9% f(0,w”) =0
for all @ with 0 < |a| < k — 1. From the lemma above we have that

fe @ 0L, —w)tt @O, (M)
i=d+1 |8|=k

which is perpendicular to N}, ; ker(M}, — ;) N ker(M?,

2

)2 verifying that f = 0. O
5. Jet bundle

This section is devoted to provide geometric invariants of quotient modules .#,
introduced in the previous section. To begin with, since the Hilbert module .#Z in
B, (), # gives rise to a hermitian holomorphic vector bundle E with the frame
{K(,w)o1,...,K(,W)o, : w € Q*} on Q. Now to make calculations simpler let us
consider the map ¢ : @ — QF defined by w — w and pull back the bundle FE to a
vector bundle over 2. We denote this new bundle with the same letter E and note that
E is a hermitian holomorphic vector bundle over €2 with the global holomorphic frame
s = {s1(w),..., s (w) : w € Q} with s;(w) = K(.,w)o;, 1 < j < r. Correspondingly,
we have 60‘3]( )=0°K(.,w)oj, 1<j<r,acAwith A={ae (NU{0}): |a] < k}.
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Following the ideas in [15] we attempt, in this section, to describe the jet bundle of
the vector bundle £ — (Q relative to a connected complex submanifold Z of codimension
d > 1. Our interest is to investigate unitary invariants of the quotient module .,
obtained from the submodules .#; (cf. Section 3) assuming that .# € B,.(Q2). Therefore,
following the Remark 3.14, it is enough to consider the submanifolds

Zi={z= (21, ,2m) €EQiz1 =+ =29 =0}.

We define the jet bundle J®E of order k of E relative to Z on © by declaring
{0%}aca as a frame for J®E on Q where we mean by 0%s the ordered set of sec-
tions {0%s1,...,0%s,}, a € A. Since we have a global frame on J®*) E we do not need
to worry about the transition rule.

At this point, we should note that this construction of jet bundle depends on the
choice of the complementary direction to Z which is, a priori, not unique. For instance,
two different choices of admissible coordinate charts (Definition 3.9) (U, ¢1) and (Us, ¢2)
would give rise to two jet bundles Ji(k)E, i = 1,2 with global frames {8§ sjra€e Al <
j <r}fori=1,2, respectively. A priori it is not clear if these two bundles are equivalent.
Nevertheless, it can be seen from the following proposition.

Proposition 5.1. Let (Uy, ¢1) and (Usz, ¢p2) be two admissible coordinate charts of Q around
some point p € Z. Then two jet bundles Jl(k)E and JQ(k)E obtained as above with respect
to (Uy,¢1) and (Us, ¢a), respectively, are equivalent holomorphic vector bundles over
Ui NUs.

Proof. In fact, from Proposition 3.10 it is clear, for a holomorphic frame s = {s1,...,s,}
of E on U; NUs,, that on a small enough neighbourhood U of p in U; N U we have, for
i1=1,2,

st sk si(z) o se(2)
OMs1(A) - Onsi(A) Osi(z) - Oisi(2)
A1 gegin) o aesi(n) | T | 0%siz) o 0vsi(x) |0
PN o )\ s e o)

for z € U and \; € ¢;(U), where \; = (M\i1,..., \ig), @« = (a1, -+, aq), and s;'» = sjoqﬁi_l,
1 <j <r. Since Ay_1,4,(2), for i =1,2 and =z € U, are invertible (Proposition 3.10) we
can see that (Ax_1,4,(2) 0 Ak—1,,(2)7') ® I, is the desired bundle map where I, is the
identity matrix of order r. O

Now in course of completing our construction to make the jet bundle J*) E a hermitian
holomorphic vector bundle, we need to put a hermitian metric on J® E extending the
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metric on E. To this extent, if H(w) = (((si(w),sj(w))r)); ;—; is the metric on E over
Q then the hermitian metric on J*) E with respect to the frame {0%s}qca is given by
the Grammian JH := ((JHag))a,pe4 with 7 x r blocks

JHyp(w) := (((3“51(10),aﬁsj(w»));j:l for a, B € A,w € Q.
This completes our construction of the jet bundle.

Remark 5.2. (i) Assume that C[z1, ..., 2,] C . Then it follows from Theorem 4.8 that
the quotient module .2, € B,|4/(Z). Also, we note that the hermitian holomorphic vector
bundle &|z — Z obtained from J(.#)|z is equivalent to the jet bundle J®E|z — Z
of E relative to Z. To facilitate, K = ((Kj;;))
to . From the preceding construction it follows that the metric for the jet bundle is

i j—1 be the reproducing kernel associated

given by the formula
(0°K(.,W)0;,0°K (., wW)o;) = 0°0° K;;(w,w) forw € Z, a,f € A, 1 <i,j<r.

On the other hand, the bundle &|z — Z associated to J(.# )|z is spanned by the global
holomorphic frame {JK(.,W)eq ®¢; : a € A, 1 < j <r}. So we define the bundle map
®: 8|z = JPE|z by JK(.,W)eq ®ej — O°K(., W), forw € Z,a€ Aand 1 < j <.
Since J is the unitary module map J : # — J(.#) it then follows that ® is an isometry.
Therefore, the vector bundle &|z is unitarily equivalent to J Q) ) |z.

(ii) We point out that, in our notation of jet bundle, JWE is nothing else but the
bundle E itself, although in literature J)E means the first jet bundle of the vector
bundle E. We maintain these notations following [15,14].

(iii) Note that the action of the algebra A(€2) on the module J(.#) defines, for every
f € A(Q), a holomorphic bundle map ¥ : JFE — J¥) E whose matrix representation
with respect to the frame J(s) := {3 c 4 0%s' ®€a,..., > qeca 0%y ®eq} is the matrix
J(f) ® I, where J(f) is as in (4.6) and I, is the identity matrix of order r. Thus, ¥y
induces an action of A(2) on the holomorphic sections of the jet bundle J*)E defined
by

(f - o) (w) == Vy(o(w)), (5.1)

for f € A(Q), w € Q and ¢ is a holomorphic section of J*) E. Therefore, we observe that
the question of determining the equivalence classes of modules J(.#) is same as under-
standing the equivalence classes of the jet bundles J*) E with an additional assumption
that the equivalence bundle map is also a module map on holomorphic sections over
A(£2). Hence it is natural to give the following definition (Definition 4.2, [14]).

Definition 5.3. Two jet bundles are said to be equivalent if there is an isometric holo-
morphic bundle map which induces a module isomorphism of the class of holomorphic
sections.
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5.1. Main results from jet bundle

In order to find geometric invariants of quotient modules we first investigate the simple
case, d = k = 2. We show here that the curvature is the complete set of unitary invariants
of the quotient module .#; for the Hilbert module .# when r = 1. In this case, we give a
computational proof to depict the actual picture behind the general result which we will
prove later in this subsection. Although the line of idea of the proof for k = 2 essentially
is the same as in [14], in our case calculations become more complicated as here we have
to deal with more than one transversal directions to Z. Thus, our results extend most
of the results of the paper [15], [14] as well as those from a recent paper [3].

Since d = 2 we have that Z = {(z1,...,2m) € @ : 21 = 22 = 0}. Consequently,
(0,0, 23, ..., 2ny) is the coordinates of Z in U. Now let us begin with a line bundle E over
Q* with the real analytic metric G which possesses the following power series expansion

oo

G(,2") = Y Gap(z")"7 (5.2)

«a,=0

C . 1. —B — Bi—
where (2/,2") € Q*, a, 8 are multi-indices, 2/“ = 2, 2%, 2/ = 7,712,/ and 2" =

(235 -y 2Zm)-

Lemma 5.4. Let Q C C™ be a bounded domain and Z be a complex connected submanifold
of Q of codimension 2. Suppose that X and A are the curvature tensors of line bundles
E and E with respect to the hermitian metric p and p of E and E, respectively. Then
K and K are equal on Z if and only if there exist holomorphic functions Voo, V10, o1
on Z such that

((Pap)atis1=0 =¥ - ((Pap))jal1p1=0  L* (5:3)

on Z where pag (Pus, respectively) = 0%9°p (0%0°p, respectively) with o, B € (NU{0})?

and ¥ is the 3 X 3 matriz
Yoo 0 0
U= |0 %o 0 |]. (5-4)
Yor 0 oo

Before going into the proof of the lemma let us give an application of it as follows.

Theorem 5.5. Suppose that .# and A are in By (Q). Then the quotient modules My and
//Zq are isomorphic if and only if the corresponding curvature tensors & and H of the
line bundles E and E, respectively, are equal on Z.

Proof. In fact, Theorem 4.5 provides that equivalence of .#, and ., is same as the
equivalence of J(.#)|z and J(#)|z. So let us begin with an isometric module map
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U :J(M)|z — J(A)|z. Since ¥ intertwines the module action W is of the form given
n (5.4). Since ¥ intertwines the module action U satisfies the following equation

f 0 0 f 0 0
\If(alf f 0>=<81f f 0)\11,
dof 0 f Oof 0 f

for every f € A(Q). Putting suitable functions in the equation above we see that W takes
the form given in (5.4). Moreover, being an isometry, ¥ satisfies

JK|z=V.JK|z U* (5.5)

which is equivalent to saying that ¥ satisfies the identity (5.3) on Z as, for z € Z, p(z)
is nothing but K (z, z). Then the Lemma 5.4 proves the necessity part.

Conversely, since # = . on Z, it follows from Lemma 5.4 that ¥ is of the form given
n (5.4) and satisfies (5.5). Consequently, ¥ is an isometry from J(.#)|z onto J(.4)|z
and intertwines the module action. 0O

Proof of Lemma 5.4. Note that if p and p are equivalent hermitian metrics satisfying
the equation (5.3), then the equality of % and X on Z is a direct consequence of
the definition of curvature form of a hermitian holomorphic vector bundle. So we only
consider the forward direction in which case we have to find g, 19, %1 holomorphic
on Z such that (5.3) holds assuming that .# and ¢ are equal along Z.

Let p=r-pand I' =logr. Then T is real analytic function on 2. Therefore, I' can
be expanded in the power series

o0
r',2") = Z Falg(z”)z'a?ﬁ (5.6)
a,B=0
where «, 8 are multi-indices, 2/ = 2;%1 292, 77 = 2% and 2" = (z3,...,2m).

Paraphrasing the assumption on .# and ¢ we have that &gjl’ =0, for1 <i,j <m,
along Z. We now separate out this into following three different cases.

LI (9;0;T = 0 along 2, for i = 1,2, j = 3,...,m) It follows from (5.6) that 0,0,T|z
is 0 for j = 3,...,m is equivalent to the fact that I'(; 9)(0,0) is holomorphic on Z.
Similarly considering the case with i = 2, we get I'(o,1)(0,0) is also holomorphic on
Z.

II. (Biéjf‘ = 0 along Z, for i,j = 1,2) In view of the equation (5.6), it yields that
I'wg=0on Z for o, 8 € {(1,0),(0,1)}.

II1. (al-éjr = 0 along Z, for 4,5 = 3,...,m) In this last case, we have Biéjﬂg is
0, for 7,5 = 3,...,m which together with power series expansion of I' yield that
815]-1“(0’0)(0’0) is 0, for 7,7 =3,...,m, on Z. Since Z is a complex submanifold with
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coordinates z = (0,0, z3, ..., 2,) € Z the above equations together imply that
L(0,0)(0,0)(2") = 1(2") + ¢2(2"),
for 2" € Z and some holomorphic functions 1)1, - on Z.

Now, substituting the above coefficients in the equation (5.6) and noting that T" is real

valued, we have
T(2,2") =1 + Biz1 +mza + b + B2y +ToZz + (terms of degree > 3)

where 1;, 8i,mi, i = 1,2, are holomorphic functions on Z. Since I' is a real valued function
I' = 22T and hence we have

(2, 2") =1+ Bz1 +mze + ¢ + Bz1 +Nza + (terms of degree > 3) (5.7)

where ¢ = 132 g = BikP2 and g = ME12 8o from the definition of I' we can write

r=expl
= lexp¥|® |(1+ Bz1 + Bz1 + [BlP21Z1 + ) (11 + nzo + 722 + 0?2022 + -+ )2+
= |exp¥|® - (14 Bz1 + nze + Bz1 + 072 + |B]° 2171 + BNz1Z2 + Brzize + [n|*zeza + )

Thus, putting the above expression of r in p = r - p and equating the coefficients of p
and p we see that g, 19 and 1 with

Yoo = exp 1,10 = exp 3, o1 = expn
verify the equation (5.4). O

It would be nice if one could carry forward the arguments used in the proof of
Lemma 5.4 to achieve similar results in the case of arbitrary order of vanishing of vector
valued functions. However, for general k, it would be cumbersome to continue the cal-
culation done in the above lemma. On the other hand, application of normalized frames
makes the calculations simpler and enables us to get a conceptual proof in the general
case as well. We adopt the idea of using a normalized frame from [3] in our case to pro-
vide the geometric invariants for quotient modules using jet bundle construction relative
to a smooth complex submanifold of codimension d. To this extent, the following theo-
rem provides the required dictionary between the analytic theory and geometric theory
for quotient modules obtained from submodules consisting of vector valued holomorphic
functions on €2 vanishing along a smooth complex submanifold of codimension d. As men-
tioned earlier in this section, from now on we will assume (without lose of generality)
that @ C C™ contains the origin and the Z is the coordinate plane

ZI:{Z:(Zlv"'7Zm)€Q:21:”.:Zd:0}.
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Theorem 5.6. Let Q0 and Z be as above. Assume that both .# and A contain
Clz1, .-, Zm] and are in B,(Q). Then the quotient modules #, and .4, are equivalent
as modules over A(Q) if and only if the jet bundles J® E|z and J®) E|z are equivalent
where E and E are the hermitian holomorphic vector bundles over Q corresponding to
Hilbert modules M and A, respectively.

Proof. Let .#, and //Zq be unitarily equivalent. Then there exists a unitary U :
J(M)|z — J(M)|z such that

UJTfel)zhlz) = (Tf®1)[zU(hlz), for he J(AZ).

In particular, for f = 2z;,i=1,...,m, N~ | ker(M} —w;) Nker(M},)P is preserved by
U where ker(M,)? is Mgy, ker((Mz )% -+ - (Mz,)P4) and 8 = (B4, ..., Ba) € (NU{0})<.
Therefore, it follows from Proposition 4.11 that the map ® : J® E|z — J®) E|z defined
by ®(90%s;(0,w")) = U(9*5;(0,w")) is a jet bundle isomorphism.

Conversely, since span{d®s;(w) : 1 < i < r, w € Z, 0 < |a|] < k — 1} and
span{9%5;(w) : 1 < i <r, w € 2, 0 < |a|] < k — 1} are dense in .#, and .4, re-
spectively, any jet bundle isomorphism between J*) E |z and J k) E |z defines a unitary
module map between ., and .#,. O

We now determine the geometric invariants of quotient modules .#; by studying the
geometry of the jet bundles JYE|z, for 0 < I < k. Before proceeding further, let us
recall a fact from complex analysis.

Lemma 5.7. Let Q@ C C™ be a domain and f(z,w) be a function on Q x Q which is
holomorphic in z and anti-holomorphic inw. If f(z,z) = 0 for all z € Q, then f(z,w) =0
identically on €.

Since this lemma is well-known [16, Proposition 1] we omit the proof. We use this
lemma several times in the proof of the following theorems.

We observe that a hermitian holomorphic vector bundle can not have a holomorphic
orthonormal frame in general. Instead one can have (Lemma 2.4 of [6]) a holomorphic
frame on a neighbourhood of a point which is orthonormal at that point. Then using
the technique of the proof of Lemma 2.4 in [6] in a similar way, we have the following
existence of normalized frame of a hermitian holomorphic vector bundle over 2 along
a submanifold of codimension at least d in 2. In the following proposition we use the
notation z = (2/, 2") where 2’ = (21,...,24) and 2" = (2441, .- -, 2m)-

Proposition 5.8. Let E be a hermitian holomorphic vector bundle of rank r over a
bounded domain Q C C™ containing 0 and Z be as above. Then there is a holo-
morphic frame s(z',z") = {si(z',2")}_; on a neighbourhood of the origin in
such that (((0s:(0,2"),5;(0,0)))); ;=1 is the zero matriz for o € (N U {0})* and

(({5:(0,2"),8(0,0))))i ;= is the identity matriz on Z.
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We say a frame is normalized at origin along Z if it satisfies the properties in the
above proposition.

Theorem 5.9. Let 0, Z be as above. Assume that both .# and A contain Clz1y- -, Zm]
and are in By(Q). Then My and M, are unitarily equivalent as modules over A(Q) if
and only if 99 ||3||> = 0°9° ||s||* on Z for all a,f € A= {a € (NU{O)?: |o| < k}
where {s(z)} and {5(2)} are frames of the line bundles E and E on Q associated to the
Hilbert modules A4 and A, respectively, normalized at origin along Z.

Proof. Following Theorem 5.6 it is enough to prove that there exists a jet bundle iso-
morphism @ : J®E|z — J®E|z if and only if 928° ||5]|> = 007 ||s|* on Z for all
a, B € A.

We start with the necessity. Let @ : JRE|z — J(k)E|g be a jet bundle isomorphism
which can be represented by a complex matrix ((¢ag))a,sea in M 4(C) with respect to
the frames {0%s(0,2")}aca and {0%5(0, 2”")}uea where ¢, are holomorphic functions
on Z. Consequently, by Definition 5.3, we have the following two matrix equations on Z:

(((075,8°8)))a,pen = (($46)),6e4(((073,0°3)))a,pea(($45))].5e4 (5.8)
((948))v.5ea((T (Nap))as = (T (flap))asea((dys))y.sea- (5.9)

The proof of the forward direction then easily follows from the following claims.
Claim 1. Let «, 8 € A, with a = (a1,...,0a4) and 8 = (B1,...,84). For z € Z, we
have that

(aiﬁ)d)(a—ﬁ)o(owz”) if oy >p Vt=1,---,d,

w3(0,2") = 5.10
$as(0,2") {0 otherwise. ( )

We note from the equation (5.9) that, for fixed o, € A and f(2',2") = 2" ~-~z§d,

D bar T (20 =Y T 2 anbr0

YEA YEA

on Z.If oy > B¢, for t = 1,...,d, only non-zero entry on the left hand side occurs for
v = B and on the right for v = o — 8. On the other hand, while ay < f; for some
t € {1,...,d} the right hand side vanishes for all 74 > 0. This verifies the Claim 1.

Thus Claim 1 shows that the matrix ((¢a(0, 2”")))a,sea is a lower triangular matrix.
Consequently, we have that ® induces bundle morphisms ®|;u) g, JOUE|z - JUE|z,
for0 <l <k.

Claim 2. ¢ is a constant function and ¢no = ¢og, for a € A, on Z.

Following Claim 1 it is enough to show that ¢gg is a constant function on Z. In fact,
from the equation (5.8) we have that

<S(07 ZN)’ 3(0’ ZU)> = ¢00 (0’ Z”)<§(O’ Z”)a 5(0, ZN)>¢00 (O’ Z”).
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Consequently, Lemma 5.7 and Proposition 5.8 together yield that

$00(0,2")$00(0,0) =1

completing the proof of Claim 2.

Claim 3. ((¢as(0,2")))a,8e4 = ¢oo - I where I is the |A| x |A] identity matrix where
|A] is the cardinality of the set A.

In view of Claim 1 and Claim 2, it is enough to show that ¢,9 = 0, for & € A, on Z.
So calculating a0-th entry of the matrices in the equation (5.8) and using the Lemma 5.7
we have

(0%5(0,2"), s(0,w")) = Z¢M(O,z”)<87§(0,z”),§(0,w")> oo-

yEA

Consequently, after putting w” = 0 and applying the Proposition 5.8 to the frames {s}
and {5} at the origin we get ¢0(0,2"”) =0 on Z.
Thus Claim 1, Claim 2, Claim 3 and the equation (5.8) together yield that

9°9° ||5(0,2")||* = ¢000d” [|3(0, 2")||* Bop = 0*9° ||5(0, 2")|)? (5.11)

on Z, for o, § € A.
The converse statement is easy to see. Indeed, if the equation (5.11) happens to be
true then the desired jet bundle isomorphism & is given by the constant matrix I with

respect to the frames {0%s}oca and {0%5},ca where I is the identity matrix of order
|Al. O

Theorem 5.10. Let Q, Z be as above. Assume that both .# and M contain Clz1y- -+ 2m)
and are in B, (Q). Then .4, and M, are unitarily equivalent as modules over A(Q) if and
only if there exists a constant unitary matriz D such that 9*0°H = D(aaéﬁﬁ)p* on
Z, foralla,f e A={a e (NU{0}?:|a| <k} where H(z) and H(z) are the Gramian
matrices for the holomorphic frames s and s of the hermitian holomorphic vector bundles
E and E on Q associated to the Hilbert modules .4 and . , respectively, normalized at
origin along Z.

Proof. To begin with, let ® : J® E|z — J® E|z be a jet bundle isomorphism. Then ®
can be represented by a |A| x |A| block matrix ((®ag))a.sea Wwith respect to the frames
{0%s(0, 2") }aca and {0%5(0,2")}aca where ®,5 are holomorphic r x r matrix valued
functions on Z and |A| is the cardinality of A. The fact that ® is an isometry of two jet
bundles J*) E|z and J® E|z translates to the following matrix equation on Z:

((0°0°H))a,pea = (Pap))a,sea((0°0°H))a,sea(((Pas))a,pea)” (5.12)
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Let E;|z and E;|z be the line bundles determined by the frames {s;} and {5}, re-
spectively, on Z, for 1 < ¢ < r. Note that the decompositions E|z = @®I_,FE;|z
and J(k)E\Z = @LlJ(k)Eﬂz with {0%s;}aca as a frame on Z are evident. Also, let
P : J(k)E|g — J(k)Ei|g and P : J(k)EN'|Z — J(’“)E‘AZ be the projection morphisms
where the frame {0%5;}nca defines the jet bundle J(k)Ei|g. It is clear that the matrix
of ® with respect to the frames J(s) = {D_,c40%1 ® €a,-- s 0eca 0%8r ® o} and
J(8) = {22,0%1 @ cay-- s 4 0% ®ea} is (([P]))] ;=1 where [P;;] represents the
matrix of P;®P; with respect to the frames {0%sj}aca and {0%§;}aca. Since @ is a
jet bundle isomorphism (Definition 5.3) it intertwines the module action on the class of
holomorphic sections of J® E|z and J¥) E|z. As a consequence, we have

(((P]))i =1 (T (F) @ L) = (T (f) @ L) ([Pig)i =1

for f € A(Q), which is equivalent to the fact that the bundle morphisms P; ®P7 intertwine
the module action (5.1) on holomorphic sections of J*) E;| z and J*¥ E;|z. Thus, P;®P;
defines a jet bundle morphism from J®) E;|z onto J®) E;| 2.

We, therefore, can apply Claim 1 in Theorem 5.10 to R@Pf to conclude, for o, 8 € A,
that

[Pijlas = (a : 5) [Py)a—p0(0.2"). (a — B) € (NU{0})?
= (a : 5) (®(a-0(0,2"))ij, (a—B) € (NU{0}?,

otherwise, [P;;]ap is the zero matrix. It follows that the matrix of ®(0, ") with respect to
the frames {0%s}aca and {0%5}aeca is a lower triangular block matrix with ®,4(0, 2”) =
Do (0,2") for « € A and, for a, 8 € A, a = (a1,...,a4),8=(f1,...,04) and 1 < i,5 <
/r7

(%

(®ap(0,2"))ij = (a 5

) @ 0.) (0= B € (VU ODY, 6.13)
and is zero, otherwise, on Z. A similar proof as in Claim 2 in Theorem 5.9 with matrix
valued holomorphic functions H, H and ®oy on Z yields that ®g is a constant unitary
matrix. Thus the proof will be done once we prove that &, = 0, for o € A, on Z. Com-
puting the a0-th block of the matrices in the equation (5.12) and using the Lemma 5.7
we get

(((0%5i(0,2"), 5;(0,w"))))j j=1 = (Z Pas(0, z”)((<8ﬂ§i(07Z,/)vgj(():wﬂ»));,j:l) Dpo-
t=0

Consequently, after putting w” = 0 and applying Proposition 5.8 to the frames s and §
at the origin we get ®,0(0,2") =0 on Z. Thereby from (5.12) we have
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9“0PH(0,2") = D(0*9°H(0, ")) D* (5.14)

on Z for all o, 5 € A where D = ®.

For the converse direction, note that the equation (5.14) canonically gives rise to the
jet bundle isomorphism ® by prescribing the matrix of ® as D ® I with respect to the
frames J(s) and J(5) where I is the identity matrix of order |A|. O

Corollary 5.11. Let T = (T4, ...,T,,) and T = (T1,...,Ty,) be two m-tuples of operators
in B1(Q). Then T and T are unitarily equivalent if and only if there are jet bundle
isomorphisms @y : JFE|z — J®E|z, for every k € NU {0} where Z is any singleton
set {p}, forp € Q.

Proof. The necessity part is trivial and so we only show that T and T are unitarily
equivalent assuming that there are jet bundle isomorphisms @) : J*E|z — JWE|z,
for every k € N U {0}.

Let E and E be vector bundles over Q corresponding to operator tuples T and T,
respectively, and Z = {0}. Note that the codimension of Z is m. Let s and § be frames
for E and E, respectively, normalized at origin. Using Theorem 5.9 we have, for every
k € N U{0}, that

... 9am P ... Pm

s = - apmor - opr 5O (5.15)

for all o, 8 € A(k) where A(k) = {a € (NU{0})?: |a| < k}.
Since s and § both are holomorphic on their domains of definition, ||s||* and ||3]|*
. : : . 2 12
are real analytic there. Consequently, using the power series expansion of ||s||” and |||
together with the equation (5.15) we obtain that

on some open neighbourhood, say 1, of the origin in 2. Thus the bundle map ® : £ — E
determined by the formula ®(s(z)) = 5(z) defines an isometric bundle isomorphism
between E and E over €. Then the result is a direct consequence of the Rigidity
theorem in [6]. O

Remark 5.12. Note that the theorem above shows that the unitary equivalence of local
operators (1.5 in [6]) fo;) and Nuﬁ’g) corresponding to T and ’i’, respectively, for all k£ > 0
but at a fixed point wo € € implies the unitary equivalence of T and T. In other words,
any m-tuples of operators T € B;(Q) enjoy the “Taylor series expansion” property.
Moreover, following the technique used in Theorem 18 in [3], it is seen that the same
property is also enjoyed by any T € B,.(Q2), r > 1.

The following theorem is one of the main results in this article which generalizes the
study of quotient modules done in the paper [14] to the case of arbitrary codimension.
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For the definition of bundle maps used in the following theorem, we refer the readers to
the equation (2.5) in Section 2.

Theorem 5.13. Let Q C C™ be a bounded domain containing the origin and Z C ) be
the complex manifold of codimension d defined by z; = --- = zq = 0. Suppose that pair
of Hilbert modules .4 and A are in B,() and contain Clz1, ..., 2y). Then M, and
//Zq are isomorphic as modules over A(Q2) if and only if following conditions hold:

(i) There exists holomorphic isometric bundle map ® : E|z — E|z where E and E are
hermitian holomorphic vector bundles over 2 corresponding to the Hilbert modules
M and M over A(Q).

(i) The transverse curvature 0;((0;H)H ™) and 0;((0;H)H™") of E and E, respec-
tively, for 1 < i,5 < d, as well as their covariant derivatives of order at most
k — 2, along the transverse directions to Z, are intertwined by ® on Z where
s={s1,...,5.} and 5 = {51,...,5,} are frames of E and E normalized at ori-
gin along Z, respectively, for o € A, and H and H are Gramians of s and 3,
respectively.

(iii) ® intertwines the bundle maps J&(H) = 0;((0°H)H™') and JX(H) :=
0i(0°H)H™Y), for d4+1 < i <m and a € A on Z where s = {s1,...,5,} and
5=1{51,...,5.} are frames of E and E normalized at origin along Z, respectively,
H and H are Gramians of s and 3, respectively.

Remark 5.14. Although it may seem apparently that the condition (iii) in the theorem
above depends on the choice of a frame, it is not the case. For instance, if t is another
frame normalized at origin along Z we have ¢ = sX for some holomorphic function
X : Z — GL,.(C). Since both s and t are normalized at origin along Z the same proof
as in Claim 2 in Theorem 5.9 with matrix valued holomorphic functions shows that X
is a constant unitary matrix. Thus we have H = X HX* and hence it follows that

TG = XTJPH)XLd+1<i<m,
where G is the Gramian matrix of the frame ¢.
Proof. Let 2 C C™ and Z C €) be as given. Suppose that .#; and ,//Zq are equivalent

as modules over A(£2). Then by Theorem 5.10 there exists a constant unitary matrix D
such that

9“0PH(0,2") = D(0“0PH (0, 2"))D*, for (0,z") € Zand o, B € A,  (5.16)
where H(z) and H(z) are the Gramian matrices for holomorphic frames s = {s1,...,s,}

and 3 = {31,...,5,} for F and E on Q associated to the Hilbert modules .# and ./,
respectively, normalized at origin along Z. In particular, for o = 8 =0, (5.16) becomes
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H(0,2") = DH(0,2")D*, for (0,2") € Z.

Let ® : E|z — E|z be the bundle morphism whose matrix representation with respect
to the frames s and § is D providing the desired isometric bundle map in (i). The equation
(5.16) together with (i) of Lemma 2.2 yield (ii), and since D is a constant unitary matrix
on Z, (iii) is an easy consequence of (5.16) with 8 = 0.

For the converse direction, we show that the condition (i), (ii) and (iii) in the statement
together imply the condition of Theorem 5.10. More precisely, we prove that there exists
a constant unitary matrix D on Z such that the equation (5.16) holds on the submanifold
Z for a, 8 € A and frames s and § of E and E, respectively, normalized at origin along
Z. We follow two steps in obtaining the matrix D. First, we extend the holomorphic
isometric bundle map ® : E|z — E|z, obtained from condition (i), to a family of linear
isometries @, : J®E|,, — JFE|,, for every zp € Z. Then this extension is shown to
be a jet bundle isomorphism providing our desired matrix.

Let us begin with frames s and § for E and E, respectively, normalized at zy € Z,
for an arbitrary 2o € Z. Condition (i) yields an isometric holomorphic bundle map
d: FElz — E |z and consequently, we have a holomorphic r x r matrix valued function
¢ on Z such that

H(0,2") = ¢(0,2"YH(0, 2")$(0, 2")* (5.17)

where ¢ represents ® with respect to frames s and 5. Since both s and § are normalized
at 2o, the equation (5.17) shows that ¢(0, z() is a unitary matrix. Furthermore, from
condition (ii) of our hypothesis along with second statement of Lemma 2.2 we have, for
0<ar+-4+ag<k-1,0<B1+---+8< k-1,

O 931N ABH(0, 28) = ¢(0, 20)0 - 999 - 9T H(0, 2) (0, 2 ) (5.18)

as 00 --- QY H(0, 2{]) (respectively, 0 - - 95 H(0, 2{/)) and 8} - - - 934 H (0, (/) (respec-
tively, o;’fl ~~-55dH(0,26’)) are zero matrices for any «a;,5; > 0, i = 1,...,d. Thus
the equations above (5.17), (5.18) lead to the following natural isometric extension,
&, : JME|,, — J®E|,, defined by

$.,(0%s;(0,20)) Zgzsﬂ 0,20)0%5;(0,2)), a € A, 1 <j < (5.19)

i=1

We note, fora € A, 1 <j <r, zo=(0,2() € Zand f € A(Q), that
O, T (£)(20)(0%55(0, 20)) = D2, (O 0% £(20)0”5;(0, 2)) = T (£)(20) (D=, (9%55(0, 2))
B

implying that the extension (5.19) above intertwines the module action (5.1) on the
sections of J® E and J®)E over Z. From now on, in the rest of the proof, we denote
this extension by ®. We also note that & is an isometry on J®ME|z — Z.
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Consider frames s and 5 of E and E, respectively, normalized at origin along Z,
and D(0,2") == ((®a5(0,2")))a.5e4 be the matrix of & with respect to the frames
{0%5(0,2") }aeca and {0%5(0, 2" ) }aeca. We point out that the (0,0)-th block of D(0, z”"),
namely, ®oo(0, 2”) is the matrix representation of ® : E|z — E|z with respect to s
and s, and hence @00(0, 2"} is holomorphic on Z. So in view of the proof of Claim 2 in
Theorem 5.9 with matrix valued holomorphic functions, it can be seen that (0, 2”) is
a constant unitary matrix, say, (i>00 on Z.

We also note, from the construction of ® above, that ®(JVE|z) ¢ JVE|z, for
0 <l < k. Consequently, D(0,2") is a lower triangular matrix. Moreover, since )
commutes with the module action on the sections of J* E|z and J*) E|z, the same
proof as in Theorem 5.10 shows that the entries of the matrix satisfy the properties
stated in (5.13). So it is enough to show that ®,0(0,z”) = 0 on Z for a € A. We prove
this with the help of mathematical induction on ||

Since @ is an isometry on J*) E|z — Z it satisfies the equation (5.12) which leads to

TEA

O°H(0,2") = ((945(0,2"))).5c4 (Z d°0"H(0,2")®o- (0, z”)*)
oc€A

= ®ug(0,2")0"H(0, 2" )00 (0, 2")
oc€EA

with ®g being a constant unitary matrix. Here the second equality holds because the
matrix (($as(0,2”)))a.pea is lower triangular. Assume that ®,0(0,2”) = 0 on Z for all
multi-indices o = (01, ...,04) with 0 < |o] < |a|. For |a| = 1 this assumption is empty
and hence automatically fulfilled. We then have on Z that

0“H(0,2")000(0,2") = > $ar(0,2")07 H(0, 2")

o<a
= Byo(0,2"VH(0,2") + Paa(0,2")0H(0, ")
+ Z oo (0,207 H(0,2").

O<o<a

Since & intertwines the module action the equation (5.13) yields that $nq(0,2") =
@(Q_U)O(O,z”) on Z whenever 0 < ¢ < «. Therefore, with the help of induction hy-
pothesis we have ®,,(0,2"”) = 0 provided 0 < o < «. Also, it follows from the above
calculation that

$a0(0,2") = O*H (0, 2" ) Do (0, 2" VH (0, 2")~ — B0 (0, 2V H (0, 2")VH (0, 2")~*
= 9YH(0, 2" YH (0, 2") 1y (0, 2”") — oo (0, 2" )0 H(0, 2" VH (0, z") L.

Now, for d +1 < i < m, we get

0i%a0(0,2") = 0;(0*H(0,2")H(0,2") ™) Doy — Pood; (0“H(0,2")H(0,2")7") =0
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as ®gp is constant. Thus, ®,0(0, ") is holomorphic on Z. Consequently, from the equa-
tion (5.13) it follows that disa holomorphic bundle morphism. Now the identity obtained
above

(((0%s4(0,2"), 5;(0, z")}))f’jzl‘i)oo = B,0(0,2")(((5:(0,2"), 55(0,2")))i j=1
+ Do (((0°8:(0,2),5;(0, 2" )i j1

can be polarised using Lemma 5.7 to obtain

(((9*5:(0,2"), 5;(0,00))F =1 P00 = Pao (0, ") (((3:(0,2"), 5;(0,00))F ;1
+ oo (((075:(0,2"), 55(0, 0))))i j=1-

This implies that @aO(O, 2"") = 0 since the frames s and § are normalized at origin along
Z. O

Remark 5.15. (i) From the proof of Theorem 5.13, it is clear that, forr = 1 and d = k = 2,
conditions (i), (ii) and (iii) of Theorem 5.13 together yield that the curvatures of the
bundles E|z and E|z are equal. Further, the matrix in (5.4) turns out to be the diagonal
matrix 1ool with respect to a normalized frame at origin where I is the identity matrix
of order 3. Moreover, following the proof of Claim 2 in Theorem 5.9 we see that 1y is
a constant function on Z with [1g9| = 1. Thus Theorem 5.13 is exact generalization of
Lemma 5.4.

(ii) We also note that three conditions (), (4¢) and (ié¢) listed in the theorem above
correspond to the conditions that the metric of E and F are equivalent to order k, in the
sense of the paper [14], on Z while the codimension of Z is 1. Consequently, following
[14, Remark 6.1], we see that the conditions (i), (ii) and (iii) in the above theorem
correspond to the equality on Z of tangential curvatures, transversal curvatures and the
second fundamental forms for the inclusions E|z ¢ J?E|z and E|z ¢ J?E|z, or
equivalently, the off-diagonal entries of the curvature matrices of the bundles E and E,
for k = 2.

6. Application

Let us consider the family of Hilbert modules Mod(D™) := {HM)(D™) : X =
(A, Am), A > 0, 1 < j < m} over the polydisc D™ in C™. We now prove that
for any pair of tuples A = (A1, ..., Ap) and X' = (A],..., \),), the unitary equivalence of
two quotient modules ’Hg)‘) and 7—[,(1)")7 obtained from the submodules of functions vanish-
ing of order 2 along the diagonal set A, implies the equality of the Hilbert modules H*)
and H*). In other words, the restriction of the curvature of the jet bundle J&E® to
the diagonal A is a complete unitary invariant for the class Mod(ID™) where the jet bun-
dle J@EW is defined by the global frame {K™ (., @), KM (., @),..., 0, KN (., @)}
where 0; are the differential operators with respect to the variable z;, for j =1,...,m
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Theorem 6.1. For A = (A\y,..., ;) and N = (N,...,\)) with A\, \]

’ n K

> 0, for alli =

1,...,n, the quotient modules ’HéA) and HSX) are unitarily equivalent if and only if
Ni=X, foralli=1,...,n.

Proof. The proof of sufficiency is trivial. So we only prove the necessity. Let us begin
by pointing out that the diagonal set A in D™ can be described as the zero set of the
ideal I :=< 21 —29,...,2i — Zi41,- -, Zm—1 — Zm >. It is easy to verify that ¢ : U — C™
defined by

G(21,. s 2m) = (21— 22, o, 2i — Zigly oo s Zm—1 — Zms Zm)

yields an admissible coordinate system (Definition 3.9) around the origin. We choose U
small enough so that ¢(U) C D™. A simple calculation shows that ¢! : ¢(U) — U
takes the form

m m
qb*l(ul, ey Uy) = (Zuj,...,Zuj, ey U1 F U, U -
=1 j=i

For rest of the proof we pretend U to be D™ following Remark 3.12. Using Proposi-
tion 3.13 it is enough to prove that A\; = A}, i = 1,...,m, provided d)*?-[(({\) is unitarily
equivalent to (;5*7-[,(1)‘,) where ¢*’H{(1)‘) and (;5*7-[((1)‘,) are the quotient modules obtained
from the submodules ¢*H\" and ¢*H{"” of the Hilbert modules ¢*H® and ¢*H*),
respectively.

Note that both ¢*H® and ¢*H*) are reproducing kernel Hilbert modules with
reproducing kernels

’
= -2
m m m m

K(“)ZH L= uyf and K'(w) =[] 1= wl 7

i=1 j= i=1 =1

respectively, where u = (u1,...,un) € ¢(U). We also pint out that the submodules
rb*'H(()A) and qﬁ*'H(()X) consist of functions in ¢*H™ and ¢*HA), respectively, vanishing
along the submanifold Z := {(0,...,0,up) : 4y € D} NG(U) of order 2.

Since qS*H,g’\) and ¢>*’HE[\/) are unitarily equivalent from Theorem 5.13 it follows that

Klz =Kz (6.1)

where IC and K’ are the curvature matrices for the vector bundles E and E’ over ¢(U)
obtained from the Hilbert modules ¢*H*) and ¢*H*) | respectively. By the definition
of curvature tensors we have that K(u) = ((K;;(u))){";—; where

2

- 8’&18@]

KCij(a) log K(u,u),
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foru= (u1,...,um) € ¢(U). Thus, for 1 <i<m and u € ¢(U),

-1
2

B a B 7 m 2
Kii(a) = JwoT, logK(u,u) = lz:;)\l 1 |jz:l ;]

A similar computation also yields, for i =1,...,m and u € ¢(U), that

—1

K@) =Y "N (1= uyl?
=1 j=l

We now note that, for u € Z,

DYDY , YMPY
Kii(n) = == and K};(u) = ==L
' (1= Jum[?) (1= Jum[?)
Thus by using the equality in equation (6.1) it is not hard to see that A, = AJ, for
i=1,...,m. O

This example shows that the unitary equivalence of two quotient modules determines
the Hilbert modules completely. In general, it seems natural to ask if the unitary equiva-
lence of certain quotient modules implies the unitary equivalence of the Hilbert modules.
More precisely, let .# and M be two Hilbert modules in B,-(Q) and 1 < d < m be any
integer. Let .#,(Z) (respectively, .#,(Z)) be the quotient module obtained from the
submodule of functions in .# (respectively, M ) vanishing of order ¢ along a connected
complex submanifold Z of codimension d. Then the question of interest is to find condi-
tions on ¢ and d such that the unitary equivalence of .# and .# is determined by the
unitary equivalence of .#,(Z) and .#,(Z) for every d codimensional connected complex
submanifold Z in . This question was studied by Chen and Douglas in [4] for d = m. In
our case, we consider any d with 1 < d < m. We first show, for r < d < mand ty =r+2,
that the unitary equivalence of quotient modules forces the Hilbert modules to be uni-
tarily equivalent. It is also pointed out, for d < r, that there exist Hilbert modules .#
and .# which are not equivalent although the quotient modules .#,(Z) and .#,(Z) are
for Z of codimension d and ¢t < r + 2. We begin by recalling the following definition and
theorem from [8].

Definition 6.2. Let E and E be two hermitian holomorphic vector bundles over € and k
be a positive integer. Then E and F are equivalent to order k at a point w € € if there
exists a linear isometry &, : F,, — F,, such that

D, ox|w :)2|w od,

for each covariant derivative of the curvatures x|,, and x|, of E and F at w, respectively,
of total order at most k.



40 P. Deb / Bull. Sci. math. 169 (2021) 102977

Theorem 6.3. /S, Theorem II, 3.10] Let E and E be two hermitian holomorphic vector
bundles over € of rank r which are equivalent to order r at every point in Q). Then E
and E are locally unitarily equivalent on an open dense subset of ).

We now present the main theorem in this section which generalizes Theorem 1.6 in [6].

Theorem 6.4. Let .# and .# be two Hilbert modules in B,(Q) with r < m = dim Q
and S be the collection of all connected complex submanifolds Z in  of codimension d
with r < d < m. Assume also that both M and M contain Clzy,...,zm). Let My(Z)
(respectively, //Zq(Z)) be the quotient module obtained from the submodule of functions
in M (respectively, in //Zﬂ vanishing of order r + 2 along the submanifold Z € S. If for
every Z € S the quotient modules .My(Z) and My(Z) are unitarily equivalent as Hilbert

modules over A(Q) then A is unitarily equivalent to .4 as Hilbert modules over A(Q).

Proof. In view of (3) in Section 1, it is enough to show that .# and .# are locally
equivalent which we prove with the help of Theorem 6.3. Let w® be an arbitrary but fixed
point in Q, I = (iy,...,iq) with 1 < iy < - <ig <mand a = (a1,...,a4) € (NU{0})?
with 0 < |a| < 7. Consider the submanifold Z C € defined as Z := w® + Z where Z is
the coordinate plane defined by Z2 = {z € Q : z;, = --- = z;, = 0}. Assume that .#
(respectively, //Zq) is the quotient module obtained from the submodule of functions in
A (respectively, M ) vanishing of order r + 2 along the submanifold Z.

Let U be an open neighbourhood of origin in Q such that w®+U C Qand ¢ : U — ¢(U)
be the bi-holomorphism defined by z — z + w?. It follows from Proposition 3.13 that
¢*(,) is unitarily equivalent to ¢*(.#,). Note that ¢* (.#,) (respectively, ¢*(#,)) is the
quotient module obtained from the submodule of functions in ¢*(.#|4(r)) (respectively,
¢* (M| 4uy)) vanishing of order r + 2 along the coordinate plane Z. Further, since .#
(respectively, .#) is in B,(Q) and C[zy,...,zp] is contained in both .# and .#, it
follows from Theorem 4.8 that ¢*(.#|4) (respectively, ¢*(%|¢(U))) is in B, (¢(U)).
We also point out from the definition of pull back that ¢*E|4y — U (respectively,
¢* E|gy — U) are the hermitian holomorphic vector bundles associated to ¢* (.| 1r))
(respectively, ¢*(#|4))) where E — Q and £ — Q are the hermitian holomorphic
vector bundles associated to .# and ., respectively, and ¢*E lory — U (respectively,
¢*E| 4wy — U) are the pull back of E|4qr) — ¢(U) and E|yqr — ¢(U).

It follows from part (i) and part (ii) in Theorem 5.13 that there exists a iso-
metric bundle map ® : ¢*E|z — ¢*E| z which intertwines the transverse curva-
tures 0;, ((0;,¢0*H)¢* H™') and 0;,((0;;¢*H)¢*H™') of ¢*E and ¢*E, respectively, for
1 < 4,1 <d, as well as their covariant derivatives along z;,, ..., 2;, directions up to order
r on Z. Here ¢*H and ¢*(H) are defined as follows:

¢*(H)(2) = H(6(2)), and ¢*(H)(z) = H(4(2))

where H and H are Gramians with respect to the frames {s1,...,s,} and {31,...,3,}
normalized at w® along Z. Since D¢ is identically identity matrix the curvatures of
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¢*FE|z — Z (respectively, O*E |z — Z) and their covariant derivatives of any order
at w € Z turn out to be those of E — Q at ¢(w) € Z. In particular, we have a
linear isometry from F,o onto E,o which intertwines the curvatures 5‘“((8in YH1)
and 0y, (0, H)H™') of E and E, respectively, for 1 < j,1 < d, as well as their covariant

Y was arbitrary and

derivatives along z;,, ..., z;, directions up to order r at w®. Since w
d > r it follows that for every w € € there is a linear isometry V : E,, — E,, which
intertwines the curvatures and their covariant derivatives up to order r at w. Therefore,

from Theorem 6.3 we have that .# and .# are locally unitarily equivalent. O

Remark 6.5. Let Q = D2 and K ((21,22), (w1, w2)) = (1 — 211) (1 — 20W) " be the
weighted Bergman kernel with weights X, > 0. Denote H(*#)(D?) be the weighted
Bergman space. Consider the reproducing Hilbert modules Hy, and Hg, on D? with
the reproducing kernels K7 and K5 defined as follows:

Koz (onwn)) = (KU ) o o) (o) - 0
(e ) = (0oL o)) boddiio oot o)

It can be shown that adjoint of the multiplication operators by coordinate functions on
both of these Hilbert spaces are in B(ID?) which are not unitarily equivalent. But since
K is diagonal kernel it turns out that

(D10 K1((21, 22), (w1, w2))))} j—olz, = ((950] Ka((21, 22), (w1, w2))))} ;o2

where | = 1,2 and Z; is the coordinate plane defined by z; = 0. Therefore, from The-
orem 4.5 and Proposition 3.13 that quotient modules obtained from the submodules of
functions in Hg, and Hg, vanishing of order 4 along any connected smooth hypersur-
faces in D? are unitarily equivalent. Thus it shows that the assumption on the relation
of the dimension of the domain and the rank of the bundle as mentioned in the theorem
above is necessary.

The author has been benefited from the discussions with Dr. Soumitra Ghara in
concluding that the reproducing kernel K> in Remark 6.5 corresponds to an operator
tuple in Ba(D?).
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