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Abstract
Decoding the dynamics of cellular decision-making and cell differentiation is a central question in
cell and developmental biology. A common network motif involved in many cell-fate decisions is a
mutually inhibitory feedback loop between two self-activating ‘master regulators’ A and B, also
called as toggle switch. Typically, it can allow for three stable states—(high A, low B), (low A, high
B) and (medium A, medium B). A toggle triad—three mutually repressing regulators A, B and C,
i.e. three toggle switches arranged circularly (between A and B, between B and C, and between A
and C)—can allow for six stable states: three ‘single positive’ and three ‘double positive’ ones.
However, the operating principles of larger toggle polygons, i.e. toggle switches arranged circularly
to form a polygon, remain unclear. Here, we simulate using both discrete and continuous methods
the dynamics of different sized toggle polygons. We observed a pattern in their steady state
frequency depending on whether the polygon was an even or odd numbered one. The
even-numbered toggle polygons result in two dominant states with consecutive components of the
network expressing alternating high and low levels. The odd-numbered toggle polygons, on the
other hand, enable more number of states, usually twice the number of components with the states
that follow ‘circular permutation’ patterns in their composition. Incorporating self-activations
preserved these trends while increasing the frequency of multistability in the corresponding
network. Our results offer insights into design principles of circular arrangement of regulatory
units involved in cell-fate decision making, and can offer design strategies for synthesizing genetic
circuits.

1. Introduction

During embryonic development, cellular differenti-
ation generates a diversity of cell types with vary-
ing characteristics and functions. Complex regulatory
networks drive these cell-fate decisions; elucidating
the design principles of these networks is a central
theme in dynamical systems biology [1]. In the pro-
cess of cellular decision-making, a pluripotent cell
might exhibit more than one stable steady state (phe-
notype) in response to various external and internal
factors, without any differences in genetic informa-
tion (i.e. via differential expression of genes in dif-
ferent states or phenotypes). This feature is referred
to as multi-stability (co-existence of multiple pheno-
types) and it underlies the dynamics of regulatory net-
works involved in cell-fate decision-making during
development [2, 3]. Such multistable dynamics and

consequent phenotypic changes has also been recently
seen in disease progression [4, 5] and in cellular repro-
gramming [6, 7]. Thus, elucidating the dynamics of
such multi-stable networks holds promise for advanc-
ing our understanding of embryonic development as
well as the latest applications in synthetic biology [8,
9] and regenerative therapies [10].

One of the most commonly observed network
motif in cell-fate decisions is a ‘toggle switch’, i.e.
two mutually repressing transcription factors A and
B, each of which acts as a ‘master regulator’ for spe-
cific cell fate (figure 1(A)) [11]. The mutual repression
allows for the toggle switch to have two possible out-
comes—(high A, low B) and (low A, high B), thus
driving an ‘all-or-none’ response. Therefore, this net-
work enables the progenitor cell to choose between
two possible ‘sibling’ cell fates [12, 13]. For instance,
PU.1 and GATA1 form a toggle switch that drives
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Figure 1. Schematics of toggle polygons. (A) Toggle
switch. (B) Toggle triad. (C) A general toggle polygon with
n nodes coupled circularly.

hematopoietic stem cells to either a common myeloid
progenitor (PU.1 high, GATA1 low) or an erythroid
one (PU.1 low, GATA1 high) [14]. Also, in Escherichia
coli, the construction of a toggle switch exhibiting
bistability and switching between the two states in
response to external signals has driven an extensive
design of synthetic genetic circuits [15]. In a toggle
switch, it is common for the ‘master regulators’ to
self-activate. When one or both master regulators of a
toggle switch self-activate, it can enable a third stable
state—a hybrid (medium A, medium B) state, often
mapped on to the common progenitor state [1, 16].

In cases when the same progenitor cells can give
rise to more than two cell-fates, such as in T-cell dif-
ferentiation, multiple toggle switches may be cou-
pled. A regulatory network governing T-helper cell
decisions to differentiate into Th1, Th2, and Th17
phenotypes includes a three-component network
with master regulators of the three states (A, B and
C) mutually repressing each other [17] (figure 1(B)).
Such a toggle triad, i.e. a circular coupling of three
toggle switches (between A and B, between B and C,
and between A and C), can enable three dominant dis-
tinct stable steady states—(high A, low B, low C), (low
A, high B, low C) and (low A, low B, high C), each
corresponding to a differentiated cell type. Similar to
a toggle switch, including self-activations on A, B and
C can enrich for hybrid states—(high A, high B, low
C), (high A, low B, high C) and (low A, high B, high
C) (Th1/Th2, Th2/Th17 and Th1/Th17 in this case)
[18]. However, the dynamics and design principles
of higher-order circular coupling of toggle switches
remains unclear.

Here, we investigate the emergent dynamics of
networks having the same functional units as toggle
switch and toggle triad but with an increasing number

of components. We have simulated, using both dis-
crete and continuous simulations, different networks
that are circular arrangements of toggle switches thus,
we have named them ‘toggle polygons’ (figure 1(C)).
We noticed an intriguing pattern in their steady
state distribution, depending on whether the toggle
polygon is an even-numbered or an odd-numbered
one. Even-numbered toggle polygons enable predom-
inantly two states with consecutive components of
the network expressing alternating high (1) and low
(0) levels (1010. . . , 0101. . . ). On the other hand, the
odd-numbered toggle polygons enable more num-
ber of states—usually twice the number of com-
ponents. Each of these states had comparable fre-
quency and followed a ‘circular permutation’ pattern
in their composition. Introduction of self-activations
increased the multi-stability of the network with-
out affecting the trends within the states enabled.
Put together, our results unravel design principles
of toggle polygons, i.e. networks including circular
arrangement of toggle switches—the regulatory units
involved in cell-fate decision making, and suggest
strategies to design synthetic genetic circuits enabling
such dynamic patterns.

2. Results

2.1. Even-numbered toggle polygons result in the
two most frequent stable states
The dynamics of a toggle switch (figure 1(A)) have
been well-explored. It can give rise to two distinct
phenotypes marked by expression levels (high A, low
B) or (low A, high B), as witnessed in many sce-
narios during embryonic development. On a bifurca-
tion diagram (or phase diagram), these phenotypes
can exist independently (i.e. two monostable regions)
or can co-exist (i.e. a bistable region) for a certain
subset of parameter space [15, 19]. Given the well-
characterized dynamics of a toggle switch [20–23],
including those that contain both microRNAs and
transcription factors [24–28], we first investigated the
dynamics of even-numbered toggle polygon (n= 4, 6,
8) (figure 2).

We simulated the dynamics of these networks
using two complementary strategies—discrete and
continuous—both of which take network topol-
ogy as the input. For discrete simulations, we used
a parameter-free approach: Boolean model using
asynchronous update and equal-weightage formal-
ism [29]. For continuous simulations, we used a
parameter-agnostic approach: RACIPE (random cir-
cuit perturbation) that converts network topology
information into a set of coupled ordinary differ-
ential equations (ODEs), samples 10 000 parameter
sets within a defined biologically relevant range for
the given network topology, and identifies the steady
states obtained for each parameter set for a varied set
of initial conditions (see methods) [30].
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Figure 2. Even-numbered toggle polygons. Comparison between the most frequent solutions of the even-numbered toggle
polygon networks as found from RACIPE and Boolean simulations. (A) Four-component toggle polygon (toggle square). (B)
Six-component toggle polygon (toggle hexagon). (C) Eight-component toggle polygon (toggle octagon). For all the plots, n = 3
independent RACIPE and Boolean replicates were done; error bars denote standard deviation. Labels 0 and 1 respectively
represents lower and higher concentration of the corresponding component in the steady state solution of the corresponding state.

For the even-numbered toggle polygons (i.e. 4, 6,
and 8 component networks), we observed two pre-
dominant stable steady states with equal frequencies,
both via RACIPE and Boolean (figures 2(A)–(C)).
These states had alternating high and low node
expression levels. In a four-component network, two
states: (high A, low B, high C, low D) and (low A, high
B, low C, high D) cumulatively have a frequency of
82% of the stable steady states obtained via RACIPE,
and 75% in Boolean simulations (figure 2(A)). This
cumulative frequency shows a decreasing trend as the
number of components in a toggle polygon increases.
For the six-component network, it is approximately
54% in RACIPE and 46% in Boolean simulations
(figure 2(B)). For the eight-component network, this
frequency decreases to 35% and 28% for RACIPE and
Boolean, respectively (figure 2(C)).

Including self-activation to nodes in a net-
work can affect the steady-state distribution. Thus,
we ran RACIPE and Boolean simulations for the
four, six, and eight-component networks with self-
activation (figure S1 (https://stacks.iop.org/PB/18/
046003/mmedia)). Similar to the case of toggle poly-
gons without self-activation, these circuits showed (a)
two predominant states with both having the alter-
nating high and low levels pattern and (b) equal
frequency of those two states. However, the cumu-
lative frequency of two dominant states showed a
slight decrease relative to the networks without self-
activation (figures S1(A)–(C)). Put together, these
results suggest that a design principle of even-
numbered toggle polygons is that they allow for two
most predominant stable states, each of which shows
alternating high and low levels of consecutive nodes

in that toggle polygon. These trends are also con-
gruent with pairwise correlations seen among dif-
ferent steady-state values of nodes in a network, as
obtained via RACIPE simulations—while two con-
secutive nodes are negatively correlated, and alterna-
tive nodes are positively correlated. The longer the
shortest path between any two nodes, the smaller
is the value of magnitude of correlation coefficient
between the steady state values of the nodes (figures
S2 and S3).

To ensure that the results obtained for RACIPE
are not due to under-sampling (i.e. the number
of parameter sets sampled being insufficient), we
performed RACIPE simulations for 25 000 parameter
sets, but did not observe any change in the qualitative
features observed for steady-state distributions
for ‘toggle hexagon’ (n = 6) or ‘toggle octagon’
(n = 8) with/without self-activation (figures
S1(D)–(G)). Finally, to quantify the similarity
between the steady-state frequency distributions
obtained from RACIPE and Boolean simulations for
the circuits, we used an information-theoretic metric
known as the Jensen–Shannon divergence (JSD). JSD
varies between 0 and 1; the higher the JSD value, the
more dissimilar the two distributions are [31]. Given
that the two distributions are qualitatively similar
(i.e. small JSD values) (figures 2 and S1), the results
seem robust to using either a Boolean discrete or an
ODE-based continuous modeling approach.

2.2. Multistability in even-numbered toggle
polygons
Next, we asked whether the abovementioned states
can co-exist; in other words, can these toggle polygons
be multistable for certain parameter sets. RACIPE
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simulates the dynamics of a given network for many
initial conditions for a given parameter set. Thus, for
every parameter set, we can identify whether it leads
to monostable or multistable dynamics. Consistent
with previous results [15, 30], we noted that a toggle
switch could be either monostable (∼78%) or bistable
(∼22%) (figure 3(A)). Moving from a toggle switch
to a toggle square shows a drastic decrease in the
frequency of parameter sets leading to monostabil-
ity (∼25%) and a consequent increase in those driv-
ing multistability, most evidently bistability (∼65%).
Consistently, as the number of components in a tog-
gle polygon increased, the frequency of monostable
parameter sets reduced, and that of multistable sets
increased. This trend is consistent with our previ-
ous observations that the likelihood of multistability
increases with an increase in the number of net pos-
itive feedback loops in a circuit [32] because higher
even-numbered toggle polygons have a larger num-
ber of such feedback loops. There is one net positive
feedback loop for a given node (say A) in a toggle
switch (A inhibits B, which inhibits A). For node A
in a toggle square, there are three positive feedback
loops: two with adjacent nodes (A inhibits B, which
inhibits A; and A inhibits D, which inhibits A), and
one covering the entire circuit (A inhibits B, which
inhibits C, which inhibits D, which inhibits A). Simi-
larly, node A in the toggle hexagon and toggle octagon
also has three positive feedback loops, thus increas-
ing the chances of multistability compared to a toggle
switch. This trend is reinforced by observations that
incorporating self-activation can further decrease the
frequency of monostable parameter sets, and increase
that of multistable sets (figures 3(B) and S4(A)–(C)).

Interestingly, as we move from the toggle square
to the toggle hexagon, the frequencies of parameter
sets for bistability are almost halved, but those cor-
responding to tristability tripled, and those enabling
higher-order multistability (>=4 states) show an
even stronger enrichment (figure 3(A)). For a toggle
octagon, the frequencies of the parameter sets driving
bistability and tristability further decreased to about
23% each, while those driving higher orders of multi-
stability increased to 42%. Overall, these results sug-
gest that an increasing number of components in an
even-numbered toggle polygon network can enable
higher orders of multistability.

Further, we investigated the relative frequency of
different possible states (or their combinations) in
different monostable (or multistable) combinations.
Among monostable states, the two most frequent
states seen for toggle square were (high A, low B,
high C, low D) ((A, B, C, D) = (1, 0, 1, 0) or
{AbCd} henceforth) and (low A, high B, low C, high
D) ((A, B, C, D) = (0, 1, 0, 1) or {aBcD} hence-
forth). Approximately 90% of parameter sets driv-
ing monostability led to either of these two states,
with nearly 45% parameter sets corresponding to each
(figure 3(C)). Among bistable states, the phase (a

combination of steady states) containing a combina-
tion of these two states ({aBcD, AbCd}) was the most
frequent (∼75% parameter sets), suggesting that their
co-existence was the most dominant form of bista-
bility seen for a toggle square. Interestingly, the next
dominant bistable set corresponding to only 2% of
parameter sets. Similar results were observed for other
even-numbered toggle polygons too. For instance, for
a toggle hexagon—{aBcDeF} ((low A, high B, low C,
high D, low E, high F)) and {AbCdEf} ((high A, low B,
high C, low D, high E, low F))—as the most frequent
monostable states, and their co-existence formed the
most frequent bistable case (figures 3(C) and S4(D)).

It may appear that the frequency of the most
dominant bistable combination decreases as the net-
work size increases; however, for larger networks, the
number of total bistable combinations (i.e. phases)
possible or the total number of phases obtained via
simulations also increase exponentially. Thus, a fair
comparison would be the relative enrichment or
dominance of the most dominant phase with respect
to total number of phases possible. Such analysis
reveals that the pattern of observing the most dom-
inant phase is conserved in larger even-numbered
polygons too (table S1).

Next, we investigated the relative stability of the
two states that the network converges to for a bistable
parameter set. For every parameter set that corre-
sponded to the most dominant bistable phase cor-
responding to a network, we simulated 1000 initial
conditions and counted how many initial conditions
converged to state 1 (say x) and how many con-
verged to state 2 (=1000 − x). We plotted the dis-
tributions of x and (1000 − x) taken over all param-
eter sets corresponding to this bistable phase. For
a four-component toggle polygon network (a toggle
square), the most dominant bistable phase is ({AbCd,
aBcD}). The distribution of the values of x (and
that of 1000 − x as well) drawn reveal two domi-
nant extreme regions where x > 0.955 or x < 0.045
(i.e. 1000 − x > 0.955). For a toggle square, a sig-
nificant part (∼48%) of parameter sets belonged to
these extreme regions. Thus, these parameter sets
showed a stark difference in the relative stability of
basins of attraction corresponding to the two states
(figures 4(A) and (D)). This observation suggested
that a percentage of bistable parameter sets were
effectively monostable because more than 95.5% of
the sampled initial conditions led to only one of
the two states. This trend was consistent for tog-
gle hexagon with/without self-activation (figures 4(B)
and (D)). Incorporating self-activation pushed the
distribution even further to the extremes for both the
toggle square (frequency in the extreme regions =

64% for the case with self-activation) and the tog-
gle hexagon (frequency in the extreme regions = 80%
for the case with self-activation). Moreover, the larger
the toggle polygon, the higher the frequency of such
extreme parameter sets. Thus, while consistent trends
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Figure 3. Multistability in even-numbered toggle polygons. (A) Frequency of parameter sets in RACIPE that enable monostable,
bistable and tristable solutions for different even-numbered toggle polygons—toggle switch (2 component/2c), toggle square (4
component/4c), toggle hexagon (6 component/6c) and toggle octagon (8 component/8c) networks. (B) Comparison between
frequencies of the monostable, bistable and tristable solutions form the RACIPE simulations of 4c and 4c with added
self-activation on each node (4cS). (C) Frequency of the most dominant state, the second most dominant state and rest of the
states combined states (from bottom to the top respectively) in monostable and bistable solutions of RACIPE simulations for the
4c and 6c networks. For all the plots, n = 3 independent RACIPE replicates were done; error bars denote standard deviation. ∗

denotes p < 0.01 for a student’s t-test (‘ns’ implies p > 0.01). Capital case letters indicate higher (1) level, small case letters
indicate lower (0) levels of corresponding node in the corresponding steady state obtained. Thus, the notation AbCd means (high
A, low B, high C, low D) or (A, B, C, D) = (1, 0, 1, 0).

were seen for toggle switch, for a toggle switch without
self-activation, the distribution was not as extreme as
seen for other networks (figure 4(C)). Therefore, we
concluded that while even-numbered toggle polygons
did allow for multistability, many parameter sets lead-
ing to bistability can be asymmetric in terms of the
relative stability of the two most dominant states seen.

2.3. Design principles of odd-numbered toggle
polygons
Next, we focused on odd-numbered toggle polygons.
Our previous simulations showed that a toggle triad
network could converge to one of the six dominant

states: three ‘single-positive’ ones (only one of the
nodes of the network is high, other two are low—(A,
B, C) = (1, 0, 0), (0, 1, 0) or (0, 0, 1)) and the three
‘double positive’ ones (two of the nodes in the net-
work are high—(A, B, C) = (1, 0, 1), (0, 1, 1), (1, 0,
1)) [18]. We next analyzed the steady states of higher
order odd-numbered toggle polygon networks to find
similarities and differences with trends seen for toggle
triad. The five-component toggle polygon network
(toggle pentagon) is seen to have ten dominant states
(figure 5(A)), divided into two groups similar to the
‘single positive’ and ‘double positive’ states of the tog-
gle triad. For a toggle pentagon, the dominant states of
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Figure 4. Relative stability of states in the most dominant bistable region. (A) Distribution of the frequency of achieving the two
states in the most dominant bistable solutions for RACIPE generated parameter sets for a toggle square with/without
self-activation (4c, 4cS) (x-axis: 0.045–0.0955; frequency = no. of initial conditions converging to that state/total no. of initial
conditions simulated for that parameter set (1000 in this case). (B) Same as (A) but for 6c and 6cS; for 6cS, RACIPE simulation
was done for 100 000 parameter sets. (C) Same as (A) but for 2c and 2cS (x-axis: 0.00–1.00). Dotted vertical lines at the both the
ends of the plots represents the boundary of 0.045 and 0.0955 considered as the region of effective monostable solutions. (D)
Probability of the frequency of the most dominant solution parameters belonging to ‘effective monostable’ state (i.e. [0.00–0.455)
U (0.095–1.00]) in each of the beforementioned networks. For all plots, n = 3 independent parameter sets were chosen from
RACIPE, simulations of relative stability were done using ode45 function in MATLAB (MathWorks Inc.); errors bars denote
standard deviation.

the two groups could be termed ‘double positive’ (two
nodes in the network are high) and ‘triple positive’
(three nodes in the network are high) states. The
five ‘double positive’ states have a frequency of about
10.5% each, while the ‘triple positive’ states have a
frequency of about 8% according to RACIPE simu-
lations, consistent with results for toggle triad that
‘single positive’ had higher frequency than the ‘double
positive’ ones. On the other hand, Boolean simula-
tion does not distinguish between these two groups,
and all ten dominant states have a frequency of about
10% each. Consistent results were observed for toggle
pentagon (seven-component network)—14 states in
total and the seven ‘triple positive’ states were slightly
more frequent than the ‘quadra positive’ states, based
on RACIPE simulations (figure 5(B)).

Further, we investigated the influence of includ-
ing self-activation. No significant qualitative changes
were observed for toggle pentagon, toggle hep-
tagon, consistent with our observations for even-
numbered polygons (figure S5). Consistently, toggle
nonagon (nine-component network) with/without
self-activations led to 18 most frequent states—nine
of which are ‘quadra positive’, and the remaining
ones are ‘penta positive’, with the former ones slightly
more abundance than the latter (figure S6). Put
together, a design principle of ‘n’-component odd-
numbered toggle polygon is that it leads to ‘2n’
dominant states that follow the alternative high and
low values of consecutive nodes. These trends are
conserved for larger number of parameter sets as

well (figures S7 and S8). Because of odd number of
nodes, the alternate high/low pattern cannot be fol-
lowed as coherently as for even-numbered polygon;
thus, for states seen in odd-numbered polygons, a
set of two consecutive nodes tend to have the same
value—1 (high) or 0 (low)—a trend not seen in
even-numbered polygons.

Another feature observed for odd-numbered tog-
gle polygons is that the ‘2n’ states are divided into
two groups of ‘n’ each, with one group of states hav-
ing slightly higher frequency relative to the other. The
more prevalent states typically have fewer nodes being
at a high value (or 1) as compared to the other set. A
potential reason underlying this trend may be that the
stable states with two adjacent node values being high
(1) may be less frustrated [33] than those with two
adjacent nodes being low (0). However, this trend was
not observed in Boolean formalism.

Next, we investigated multistability enabled by
odd-numbered toggle polygons. Reminiscent of our
observations for even-numbered polygons, the fre-
quency of parameter sets leading to monostability
decreased, and consequently, those leading to multi-
stability increased, as we studied higher-order poly-
gons (from toggle triad to toggle pentagon to tog-
gle heptagon) (figure 6(A)). For the five-component
network, most parameter sets are bistable, but for
the seven and nine-component networks, there is a
characteristic shift to higher-order multistability as
seen for even-numbered polygons too. Apart from
the increase in nodes, another trait that leads to a
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Figure 5. Odd-numbered toggle polygons. Comparison between the most frequent solutions of the different odd-element toggle
polygon networks seen in RACIPE and Boolean simulations. (A) 5 element toggle polygon (5c; toggle pentagon). (B) 7 element
toggle polygon (7c; toggle heptagon). 0 and 1 respectively represents lower and higher concentration of the corresponding
component in the steady state solution of the corresponding state. For all plots, n = 3 independent RACIPE or Boolean replicates
were done; error bars denote standard deviation. JSD denotes Jensen–Shannon divergence values as reported earlier.

shift towards higher-order multistability is the incor-
poration of self-activation (figure S9). For the five,
seven, and nine-component networks, the frequency
of states of the order of multistability greater than or
equal to three is 35%, 55%, and 70%, respectively.

Further, we examined the distribution of all
monostable states driven by corresponding parameter
sets. For the five-component toggle polygon, the ten
dominant states account for more than 90% monos-
table solutions. This dominance is seen for seven-
component (figure 6(B)) and other odd-numbered
networks too (figure S10(A)). Similarly, distribution
within the bistable states is broadly conserved: for
the five-component network, all bistable phases (the
combination of steady states) formed as a combina-
tion of any of the ten dominant monostable states
together have a frequency of about 80% (figure 6(C)).
The dominance of these bistable states as a com-
bination of any of the dominant monostable states
continues for seven-component (figure 6(C)) and,
nine-component (figure S10(B)) toggle polygon as
well, thus resonating with our previous observation
for the toggle triad network [18].

A closer analysis of the dominant steady-state
solutions seen for odd-numbered toggle polygons
reveals intriguing patterns. Consider the case of tog-
gle pentagon. First, the ten states constitute five pairs
of states; each pair has two states that are ‘mirror
images’ of one another, i.e. one state can be obtained
from another one by replacing every 0 with 1 and vice
versa in terms of node values; for instance, (A, B, C,
D, E) = (1, 0, 1, 0, 1) and (0, 1, 0, 1, 0) are mirror
images. This trend explains why we see five ‘double
positive’ and five ‘triple positive’ states for a toggle

pentagon. Second, if we consider all states, they are
‘circularly permutated’, i.e. one state can be obtained
from another by taking the last node’s value in the
sequence and appending it as the first node. Thus,
from (1, 0, 1, 0, 1), if we move 1 to the beginning (and
eliminate the consequent last node value), we get (1,
1, 0, 1, 0), which is also one of the steady-state solu-
tions obtained. This state can be further ‘circularly
permutated’ to give (0, 1, 1, 0, 1), following which
we can get (1, 0, 1, 1, 0) and consequently (0, 1, 0, 1,
1) which further leads to (1, 0, 1, 0, 1), i.e. the initial
state we started with, thereby completing the ‘circular
permutation’ (figures 7(A) and (B)). This pattern is in
contrast to the trends seen for even-numbered poly-
gons where two dominant states—which are ‘mirror
images’ (the node value of 1 replaced with 0 and vice
versa) of one another—emerge (figure 7(C)).

For a toggle polygon, we also performed rela-
tively stability analysis for few bistable phases, and
observed similar pattern as seen for bistable param-
eter sets for even-numbered toggle polygons (figure
S11). Similarly, the correlation matrices of node
values for results obtained through RACIPE reveal
similar trends—strong negative correlation with
consecutive nodes (figures S12 and S13) for a tog-
gle pentagon and other odd-numbered toggle poly-
gons with/without self-activation. These trends reveal
some common trends in solutions obtained for both
odd and even toggle polygons.

2.4. Dynamics of even-numbered and
odd-numbered toggle polygons
After investigating the steady-state frequencies for
even-numbered and odd-numbered toggle polygons,
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Figure 6. Multistability in odd-numbered toggle polygon networks. (A) Frequency of parameter sets generated by RACIPE that
enable monostable, bistable and tristable solutions for toggle triad (3c), 5c, 7c and 9c networks. (B) Frequency of all the dominant
monostable states combined with respect to the whole monostable solution space for the RACIPE simulations of 5c and 7c
networks. (C) Combined frequency of all the bistable states that are combinations of the most dominant monostable states with
respect to the whole bistable state solution space for RACIPE simulations of 5c and 7c. n= 3 independent RACIPE replicates were
done; error bars denote standard deviation. ∗ denotes p < 0.01 for a student’s t-test (‘ns’ implies p > 0.01).

Figure 7. Patterns seen in the steady-state solutions
obtained from toggle polygons. (A) Schematic
representation of the ‘complemented circular permutation’
pattern shown by the most dominant monostable states of
toggle polygon network. (A) 5c network. (B) General odd
element toggle polygon network. (C) General even element
toggle polygon network, showing two most dominant
states, each of which is a ‘mirror image’ of another one, and
shows an alternative ‘salt-and-pepper’ pattern in terms of
consecutive nodes being high (1) or low (0).

we examined their dynamics through bifurcation dia-
grams and stochastic simulations. As a representative
case, we plotted a bifurcation diagram for one of the
most dominant bistable phases obtained for a toggle
pentagon {AbCde, abCdE}. We chose the degradation
rate of A (ka) to be the bifurcation parameter. It was
observed that as ka is varied over approximately an
order of magnitude (0.35–3.25), the system exhibits
bistability; both states have high levels of C. At high
values of ka (>3.1), the state with high levels of A
disappears (AbCde) and the system exhibits monos-
tability (abCdE) (figure 8(A)). Next, we performed
stochastic simulations using sRACIPE [34] (stochas-
tic version of RACIPE) for this bistable phase and
observed transitions between the abCdE and AbCde
states (figure 8(B)), i.e. the levels of B and D remain
low throughout and that of C remain high, but A
and E can toggle between high and low levels in an
out-of-phase manner (figure S14(A)).

Similar transition diagrams for a toggle square
with or without self-activation for the case of bistable
phase {AbCd, aBcD} showed transitions between
these two states: the trajectories of A and D are
synchronized (i.e. high levels together or low levels
together), and those of B and C are synchronized
among themselves and anti-synchronized with those
of A and D (figures 7(C) and (D) and S14(B)). Such
dynamic analysis reveal the dynamical traits of both
the odd- and even-numbered polygons.
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Figure 8. Dynamics of odd-numbered and even-numbered toggle polygon networks. (A) Bifurcation diagram of expression
levels of A, B, C, D and E with kA as the bifurcation parameter for the bistable phase {AbCde, abCdE}. Solid curves show stable
states, dotted curves show unstable states. (B) sRACIPE dynamics plot showing switching between states in case of 5c. (C) and (D)
same as (B)) but for 4c and 4cS networks. Parameter sets used in these dynamic simulations are mentioned in table S2.
Trajectories shown in panels (B)–(D) are individual trajectories from stochastic simulations; ensemble average of a large number
of trajectories are shown in figure S14.

To investigate how these dynamical features can
be affected by a different parameter sampling mode,
we sampled the kinetic parameters from a Gaussian
or an exponential distribution through RACIPE but
observed no major qualitative changes in steady-state
distributions (figures S15 and S16). Similarly, adding
self-activation for each node in a toggle polygon also
does not dramatically alter the steady-state frequency
distributions (table S3). Put together, these observa-
tions underscore the robust dynamical features and
design principles of these circular toggle polygons.

3. Discussion

Cellular decision-making involves various network
motifs, each with a specific set of functions [35].
One such ubiquitous motif is a toggle switch, i.e.
a mutually inhibitory feedback loop between two
components [1]. Such feedback loops can also be

observed in cell–cell communication. One canon-
ical example is notch-delta signaling [36–38] that
can drive tissue patterning outcomes across biolog-
ical contexts [39]. The dynamics of a toggle switch
can be influenced by gene expression noise [34], epi-
genetic changes [40], partitioning errors during cell
division [41–44], and conformational noise in intrin-
sically disordered regions of a component in a switch
[45]. Thus, the deterministic and stochastic dynam-
ics of toggle switches and coupling of many positive
and negative feedback loops have been well-explored
in many biological systems [19, 20, 46–51], includ-
ing spatially extended realizations such as diffusion
of mutually inhibiting molecules [52], and synthetic
design of circuits to achieve a set of desired functions
[53, 54].

Here, we investigate the dynamics of toggle
switches coupled circularly to form toggle polygons.
We observed that even-numbered toggle polygons
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enable two most common states—the states where
the expression of two consecutive nodes is anti-
correlated among themselves (101 010. . . , 01 010. . . )
(‘1’ indicates a relatively higher level, ‘0’ indicates
a relatively lower level). These results suggest that
nodes in an even-numbered toggle polygon can follow
the ‘salt-and-pepper’ pattern, reminiscent of patterns
seen in a sheet of cells communicating via notch-delta
signaling [55]. These patterns were conserved upon
incorporating self-activation on the nodes in a tog-
gle polygon. Therefore, the agreement in frequency
distributions obtained for the even-numbered toggle
polygons using both approaches—logical/Boolean
models and continuous (RACIPE)—suggests this
pattern as a design principle of such networks and
offer a scaffold for synthetic network design enabling
such outputs (figure 7).

In contrast to even-numbered toggle polygons,
odd-numbered toggle polygons show a much larger
number of states, typically twice the number of ele-
ments in a toggle polygon. Nonetheless, these states
also exhibit the ‘salt-and-pepper’ pattern (10 101. . . ,
01 010. . . ). For instance, a toggle triad can enable six
states—three ‘single positive’ states (100, 010, 001)
and three ‘double positive’ ones, which are ‘mirror
images’ of the three abovementioned states (011, 101,
110). Similarly, a toggle pentagon may enable ten
states—five ‘double positive’ states (10 100, 01 010,
00 101, 10 010, 01 001) and five ‘triple positive’ ones
that are ‘mirror images’ of the ‘double positive’ ones
(01 011, 10 101, 11 010, 01 101, 10 110) (figure 7).
The states in odd-numbered polygons appear more
‘frustrated’ than those seen in the even-numbered
ones [33], and one set of states in odd-numbered
polygons looks more ‘frustrated’ than the other one.

While toggle polygons for n > 3 are not nec-
essarily explicitly identified yet in biological scenar-
ios, a bidirectional coupling of two toggle switches
similar to that of a toggle square has been observed
in scenarios showing interconnected decision-making
along two different axes of cellular plasticity [56].
The steady states obtained in this case are similar to
those reported here for a toggle square. Put together,
our study demonstrates operating principles of toggle
polygons, and reveal that odd-numbered and even-
numbered polygons behave differently. These dynam-
ical patterns seen suggest strategies for designing syn-
thetic genetic circuits to generate this set of states.

4. Materials and methods

RACIPE (Random CIrcuit perturbation analysis):
RACIPE is a computational tool for investigating the
dynamics of a given transcriptional network topol-
ogy. It takes as input a network topology and converts
it into a set of ODEs representing the interactions in
that topology. For this set of ODEs, it samples a given
number of kinetic parameters (10 000 in this case,
unless stated otherwise) from a biologically relevant

range. For each parameter set, multiple initial condi-
tions (1000 in this case) are chosen randomly (from
a uniform distribution, unless stated otherwise) and
the system is simulated to identify steady-state val-
ues for each component of the network. For a given
parameter set, the system is classified as mono-, bi-,
tri-stable to deca-stable depending on the number of
steady states the set of initial conditions converge to.
A generic ODE denoting the effect of component B
on component A, as defined in the network topology
file, denoted by RACIPE is:

dA

dt
= gA ∗ Hs (B, B0A, nBA, λBA) − kA ∗ A

where, gA: production rate, kA: degradation rate,
Hs (B, B0A, nBA,λBA): shifted Hill function [1]

Where Hs (B, B0A, nBA,λBA) :=H− (B)

+ λBA∗(1−H− (B)
)

and H− (B) :=
1

1 +
(

B
B0A

nBA
) .

The steady solution generated by RACIPE is in log2
scale. For our analysis, we have normalized the steady
state solutions obtained in two steps. First, we have
performed g/k normalization for accounting for the
extremes in sampling of the production and degra-
dation rate parameters. g/k normalization includes
dividing every steady-state value (Ei) in the solution
file by the ratio of the production and degradation
rate of the respective component (gi/ki) of the net-
work of the corresponding parameter set. Secondly,
we have performed z-score normalization by calcu-
lating the mean and the standard deviation for every
component ‘i’ over all parameter sets after the g/k nor-
malization. The final transformation formula for each
iteration looks like:

Zi =

Ei

(gi/ki)
− Ein

σin
.

Here, Zi: final normalized expression, Ein: mean, σin:
standard deviation. We have defined the states as
‘high’ and ‘low’ with respect to the normalized val-
ues being greater than and smaller than 0 respec-
tively. For every network shown in the main text and
supplementary material, three independent replicates
of RACIPE simulation were performed and the ana-
lyzed data has been presented in the form of mean ±
standard deviation.
Boolean analysis: for Boolean analysis, network
topology is given as the input file that mentions the
nodes and edges of the network. The edges can be
of two types, activating and inhibiting. The analysis
was carried out by the asynchronous update of the
nodes, i.e. one node is chosen randomly and updated
in a given timestep. The constraint of equal weigh-
tage to inhibitory and activating links was used. The
updating of the nodes follows a simple majority rule.
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The node is updated to 1 if the sum of activations
to the node is higher than inhibitions and updated
to 0 for the opposite case. The steady state is said to
be reached if there is no change in the updates for
a predefined number of time-steps. We have run the
simulations for 10 000 random initial conditions for a
given network. In other words,

si (t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+1,
∑

j

Mijsj (t) > 0

−1,
∑

j

Mijsj (t) < 0

si (t) ,
∑

j

Mijsj (t) = 0

,

where si (t) denotes the expression levels of node i at
time t. si = +1 means that the node is in ‘ON’ state,
si = −1 indicates that the node is in ‘OFF’ state. M
depicts the interaction matrix of the network. Mij = 1
indicates that node i promotes the expression of node
j, Mij =−1 implies that node i inhibits the expression
of node j, Mij = 0 implies no regulatory interaction
from node i to node j.
sRACIPE (stochastic RACIPE): we performed
RACIPE simulations on toggle square and toggle
pentagon to generate a set of random parameter sets
and simulated the system with a fixed amount of
noise in one of the parameters, using sRACIPE. We
used the webserver facility of Gene Circuit Explorer
(GeneEx) to simulate stochastic dynamics of gene
regulatory circuits: https://geneex.jax.org/.
Jensen–Shannon divergence: the JSD values were
calculated using the ‘Jensen Shannon’ function of
SciPy module of Python [57].
Relative stability analysis: the .prs file generated by
RACIPE has the details of the parameter for each
solution of RACIPE simulation. We identified param-
eter sets leading to more than one solution, wrote
a typical ODE as that in RACIPE framework using
these parameter sets, and for each parameter set, we
counted how many initial conditions out of the 1000
randomly chosen ones converged to which of the
reported states, to quantify the relative abundance
of the two state (we looked at bistable cases). This
process was repeated for many bistable parameter
sets.
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