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1. Introduction

In recent times, the geometry of operator spaces has been investigated by various
authors using Birkhoff-James orthogonality techniques [3,8,12-14,18,19]. The notion of
approximate Birkhoff-James orthogonality [5,6,15] allows us to generalize some of the
results presented in these articles and also to study some related perturbation and stabil-
ity questions related closely to the geometric and analytic structure of Banach (Hilbert)
spaces. Our aim in the present article is to study the concept of approximate Birkhoff-
James orthogonality in the semi-Hilbertian structure, as introduced in [1,2]. Let us now
introduce some relevant notations and terminologies which will be used throughout this
article.

We use the symbols H and X to denote a Hilbert space and a Banach space, respec-
tively. Unless mentioned specifically, we work with both real and complex Hilbert spaces.
The scalar field is denoted by K(= R or C). The underlying inner product and the corre-
sponding norm on H are denoted by (, ) and || - ||, respectively. Let L(H)(K(H)) denote
the Banach space of all bounded (compact) linear operators on H, endowed with the usual
operator norm. A € L(H) is said to be a positive operator if A = A* and (Az,z) > 0
for all z € H. A positive operator A is said to be positive definite if (Az,z) > 0 for all
x (# 0) € H. Tt is well known [1] that any positive operator A € L(H) induces a positive
semi-definite sesquilinear form ( , )4 on H, given by (x,y)4 = (Az,y), where z,y € H.
It is easy to see that { , )4 induces a semi-norm || - || 4 on H, given by ||z||4 = \/{Az, ).
Henceforth we reserve the symbol A for a positive operator on H. The null space and
the range space of A is denoted by N(A) and R(A), respectively. The symbol I is used
to denote the identity operator on the concerned space.

In a normed space N, an element x € N is said to be Birkhoff-James orthogonal
[4,10] to another element y € N, written as z L gy if ||z + Ay|| > ||z|| for all A € K. If the
normed space N is a Hilbert space, then the Birkhoff-James orthogonality is equivalent to
usual inner product orthogonality (z,y) = 0. In [5], the author introduced the following
definition of an approximate version of Birkhoff-James orthogonality:

Definition 1.1. Let A/ be a normed space and € € [0,1). An element z € A is said to be
approximate Birkhoff-James orthogonal to another element y € NV, denoted by x 1%y, if
llz + Ay||? > ||z]|? — 2¢||z|||| My for all A € K.

Clearly, if € = 0, the above definition coincides with the definition of Birkhoff-James
orthogonality in a normed space NV. In the Hilbert space setting, Definition 1.1 coincides
with the usual definition of approximate e-orthogonality. We note that an element z € H
is said to be approzrimate e-orthogonal to another element y € H, denoted by z_ L€y, if
{z,y)| < €|lz|||ly||, where € € [0,1) (see [5]). It should be mentioned here that there
exists another standard notion of approximate Birkhoff-James orthogonality in normed
spaces (see [7]), which is not dealt with in this work.
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We now focus on the semi-Hilbertian structure on H induced by the positive operator
A. An operator T € L(H) is said to be A-bounded if there exists ¢ > 0 such that
ITx||a < c||x||la, Vo € H. Let By1/2(H) denote the collection of all A-bounded operators,
ie., Byi2(H) = {T € L(H): 3¢ > 0such that |Tz| 4 < c|z|la, V& € H}. The A-norm
of T € By1/2(H) is given by:

[Tla= sup |Tz||la=sup{[{(Tz,y)a|:z,y € H, |lzlla = [lyla =1}.
zeH,||z||a=1

Let us now recall some relevant definitions from [1] and [20].

Definition 1.2. Let H be a Hilbert space. An element z € H is said to be A-orthogonal
to an element y € H, denoted by xL 4y, if (z,y)4 = 0.

Clearly, in a Hilbert space H|, for a positive operator A, z 1 y < |z +Aylla > ||z|la
for all A € K. Further note that if A = I, then the above definition coincides with the
usual notion of orthogonality in Hilbert spaces, which in turn is equivalent to Birkhoft-
James orthogonality.

Definition 1.3. Let H be a Hilbert space. T' € B 41/2(H) is said to be A-Birkhoff-James
orthogonal to S € By1/2(H), denoted by T LES, if |T +~S||a > || T4 for all v € K.

Note that the above definition gives a generalization of the Birkhoff-James orthogo-

nality of bounded linear operators on a Hilbert space. We also make use of the following
notations:
For a positive operator A € L(H), Bpa) and Sga) denote the A-unit ball and
the A-unit sphere of H, respectively, i.e., Bya) = {z € H: [jz[a <1} and Sga) =
{x € H:||z|la = 1}. For any T € B 41,2(H), the A-norm attainment set M% of T was
considered in [20]:

My ={zeH:|z|a=1, ||Tzlla=|T|a}.
Let us now define (e, A)-approximate orthogonality in the semi-Hilbertian structure.

Definition 1.4. Let H be a Hilbert space and € € [0,1). An element x € H is said
to be (e, A)-approximate orthogonal to another element y € H, written as x L%y, if

(2, y) al < ellzl|allylla-

It is easy to see that if € N(A), then 1 4y for all y € H and therefore 214y, for
all y € H and for any € € [0,1). Also, if we consider A = I, the above definition coincides
with the usual definition of approximate e-orthogonality in a Hilbert space.
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Definition 1.5. Let H be a Hilbert space and € € [0,1). An element z € H is said to
be (e, A)-approximate orthogonal in the sense of Chmielifiski to another element y € H,
written as @ L. ayy, if ||z 4+ Ay[|% > [|2]|% — 2¢]|z]|al|Ay[la for all X € K.

Clearly, if we consider A = I and ¢ = 0, the above definition is equivalent to the
usual definition of Birkhoff-James orthogonality in a Hilbert space. Following similar
motivation, we introduce (e, A)-approximate orthogonality in the sense of Chmielifiski,
for A-bounded operators in the following way:

Definition 1.6. Let T' € B 41,2 (H) and € € [0,1). Then T is said to be (e, A)-approzimate
orthogonal in the sense of Chmieliriski to another element S € Byi/2(H), written as
TLeayS, if [T+ AS||% = | T|1% — 2€||T|| al|AS]|a for all X € K.

In [12], the author introduced the notions of left symmetric and right symmetric
points in L(H). Motivated by that we introduce the following notions of symmetry for
A-bounded operators:

Definition 1.7. Let H be a Hilbert space and let € € [0,1). An element T € By1/2(H)
is said to be (e, A)-approximate right symmetric in the sense of Chmieliniski, if for any
S e B 412 (H), SLE(A)T = TLe(A)S.

Similarly, an element T" € B41/2(H) is said to be (e, A)-approximate left symmetric in
the sense of Chmielinski, if for any S € Bu/2(H), T L 4)S = S LT

Note that by putting A = I, we obtain the following definitions of approximate right
symmetric points and approximate left symmetric points in L(H): An element 7' € L (H)
is said to be approzimate right symmetric point, if for any S € L(H), SLGT = T15S,
where € € [0,1). Similarly, an element T’ € IL(H) is said to be approzimate left symmetric
point, if for any S € L(H), T13S = SLGT, € € [0,1). Taking ¢ = 0, we obtain
the corresponding definitions of the symmetric points in L(H). We refer the reader to
[15,16] for further details on approximate Birkhoff-James orthogonality. In this article,
our main goal is to explore the concept of approximate Birkhoff-James orthogonality of
operators in the semi-Hilbertian structure. In the following section we characterize (e, A)-
approximate orthogonality of A-bounded operators in the semi-Hilbertian structure. In
the final section we study (e, A)-approximate left and right symmetric operators in the
setting of finite-dimensional as well as infinite dimensional Hilbert spaces.

2. (e, A)-approximate orthogonality of operators

In [11], the authors introduced the notions of the positive part and the negative part
of an element in a complex Banach space, along a particular direction. In the same spirit,
for the purpose of our investigation of (e, A)-approximate orthogonality in the sense of
Chmielinski, we introduce the following;:

Let re Handlet a € U={ye€C:|y|=1,arg~y€[0,7)}. Then
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()2 ={y € H : ||z + \y|la > ||z]|a for all X = ta,t > 0},
()2~ ={y € H : ||z + \ylla > ||z]|a for all X = ta,t < 0}.

Using these definitions, we note the following results in the form of a proposition.

Proposition 2.1. Let H be a complex Hilbert space and let x,y € H. Let « € U = {v €
C:|y|=1, arg v €[0,7)}. Then for each o € U, the following are true.

either y € (z)A% ory € (z)4~

[e3%

(¢

(i) 2L ay if and only if y € ()% and y € (x)2~ for each a € U.

)
)
(iii) y € (x)AT implies ny € (px)2+ for alln >0 and p > 0.
(iv) y € (2)A implies —y € ()2~ and y € (—x)2~
(v) y € (2)2~ implies ny € (ux)A~ for alln >0 and pu > 0.
(vi) y € (z)2~ implies —y € (2)4+ and y € (—x)A+.

Proof. We only prove the first statement, as all other statements follow trivially. Let
a € U and let y ¢ (z)2+. We claim that y € (z)4~. Suppose on the contrary that
y ¢ (z)A~. Then, there exists A\g < 0 such that ||z + Aoay|/a < ||z| 4. By assumption,
y ¢ (2)A%. So, there exists A > 0 such that ||z +Xay||a < ||z]|a. As Ag < 0 and A > 0, we
can find ¢ € (0, 1) such that 0 = (1 —¢)Ag +¢A. Thus, z = (1 —¢)(xz + Aoay) +t(x + Aay).
Therefore,

[zlla < (1 =t)[lz + Aoaylla + tlle + daylla < (1 —t)[lz]la+t]zl]la =[],

a contradiction. Hence, y € (2)2% or y € (x)2~. This completes the proof of the propo-
sition. 0O

Remark 2.2. Note that by taking a = 1 in the above proposition, we obtain the analogous
statements for real Hilbert spaces.

It is easy to see that approximate e-orthogonality in a Hilbert space is symmetric. In
our next proposition we note that L relation is also symmetric.

Proposition 2.3. Let H be a Hilbert space. Let € € [0,1) and z,y € H. Then x 1%y if and
only if yLSx

Proof. The proof follows from the fact that [(x,y)a| = |{y,z) 4| for all x,y € H. O

It is easy to see that A-orthogonality is homogeneous, i.e., if =,y € H are such that
xL 4y, then ax L 4By for all «, 8 € K. Moreover, in [5], the author proved that approx-
imate Birkhoff-James orthogonality in a Banach space (and therefore in Hilbert space)
is homogeneous. In fact, one can easily show that L€ relation is also homogeneous. In
our next proposition we observe that L. 4) relation is homogeneous.
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Proposition 2.4. Let H be a Hilbert space and € € [0,1). Then L4y relation is homoge-
neous.

Proof. Let 2,y € H be such that L. 4)y. Let o, € K (excluding the obvious case
a = 0). Then,

B
llow + AByll4 > [al*(lzl% — 2elllallAZylla) = ozl — 2ellaz] 4l A8y a-
This completes the proof of our proposition. 0O

Following Proposition 2.4, it is easy to see that if T,.S € Byi,2(H) are such that
T1lca)S, then also aT L. 4)8S for all o, 3 € K. In [6], the authors proved that in
a Hilbert space H, for z,y € H, z L if and only if there exists z € H such that
zlpzand ||z —y| < €lly|]. In the following theorem, we characterize (e, A)-approximate
orthogonality in the semi-Hilbertian structure.

Theorem 2.5. Let H be a Hilbert space. Let € € [0,1) and x,y € H. Then the following
conditions are equivalent:

(1) @Lay
(1) there exists an element z € H such that 1 4z and ||z — y|la < €ly]a.

Proof. (i) = (ii): If ||z]|la = 0, i.e., x € N(A), choose z = y. Clearly, 14z and
0=lz-ylla <ellyla
Next, we assume that |z|]|a # 0. Choose z =

7‘<|;,H122Ax + Y. Clearly, <’I’,Z>A =

(z,y) A
[EIA

(x,z)a + (x,y) 4 = 0. Therefore, x L 4z. Again,

| — (z. y)al
Tlla

ellzlAllyla

= €llylla-
(&l

(ii) = (i): Let &L oz be such that ||z — y||a < €||y||la. Therefore,

(@, 9)al = [(z,y — 2)al < lzllally — zlla < ellz]lally]a-
This completes the proof of the theorem. O

Clearly, in Theorem 2.5, if we consider A = I, we obtain the characterization of

approximate e-orthogonality [6] in a Hilbert space. Thus, Theorem 2.5 generalizes the
concept of approximate e-orthogonality in a Hilbert space.
It is easy to see that approximate e-orthogonality and approximate Birkhoff-James or-
thogonality are same in a Hilbert space. Our next aim is to show the equivalence of
(e, A)-approximate orthogonality and (e, A)-approximate orthogonality in the sense of
Chmielinski in Hilbert space setting. To do so we need the following easy proposition.
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Proposition 2.6. Let H be a Hilbert space. Let x € Sy and y € H. Then

ol Aylla -1
1 - ¢ = .
B0 ficle.aa
Proof. Clearly,
R s . =+ Ay|[% — 1
lim ——— = lim
AER A0 A AeR =0 A(||z + Aylla + 1)

 M2Relr,y)a+ Alyl3)
AeRA—=0  A(|jlz + Aylla+ 1)

= Re{z,y)a. O

In our next theorem we establish the equivalence of L9 and 1.4) in the semi-
Hilbertian structure, which generalizes [5, Prop.2.1] in the setting of Hilbert space.

Theorem 2.7. Let H be a Hilbert space and ¢ € [0,1). Let x,y € H. Then z1%y <
:cJ_e(A)y.

Proof. Let =,y € H be such that xL%y. Therefore,

lz + Xyl = 2l + 2Re(Ma, y)a) + AP [lyl%

> ||zl = 2[Xz, )l

> ||zll% — 2¢flz]lall Ayl
Hence z L 4)y. Thus, 1§ = L.
Conversely, let 2,y € H be such that z_L.(4yy. If either |[z[| 4 or [[y[|a = 0, the result holds
trivially. So, we assume ||z 4, |ly[[a # 0. Since L. 4 relation is homogeneous, without
loss of generality we may assume that ||z||a = ||y|la = 1. Therefore, ||z + Ay[|% — 1 +
2¢|A] > 0 for all A € K. Hence, (x,x + Ay)a + (Ay,x + A\y)4 is real and so we have

Re(x,x + Ay)a + Re(Ay,x + Ay)a — 1 + 2¢|A| > 0 for all A € K. It is easy to see that
Re(x, x4+ A\y)a < [{z,z + Ay)a| < ||z + Ay||a. Thus, we have,

lz + Aylla + Re(Ay,z + Ay)a — 1 + 2¢|A| > 0.
Let Ao € K\ {0} and n € N and \, = 22. Clearly,
Iz + Anylla + Re(Any, & + Any)a — 1+ 2¢[An] > 0.

Hence,

A A A A
Iz + 22|14 + Re(Z2y,x + 209y 4 — 1> —2¢22).
n n n n
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So,

A A
Re(Zly,x + ;‘)yu +

|2+ 20y|4 — 1 _—
Aol '

[ ol -
n

Let ‘;—g‘y =1y and % = &,. It is easy to see that &, — 0 as n — oco. Thus,

/ —
Plrelazt,

Therefore, by taking limit and applying Proposition 2.6, we get 2Re(y’, x) 4 > —2€, i.e.,

Re(y',z + &) a — .

Re{Aoy,x) a4 > —€|Xgl|. Similarly by using —\g instead of A\g, we get Re(Moy, x)a < €|Aol-

Therefore, |Re{A\oy, x) 4| < €|A\g|. Choosing A\g = (y, z) 4, we obtain |(y,x) 4| < e. Hence,
by Proposition 2.3, we have x 14 y. This completes the proof of the theorem. O

Next we characterize the (e, A)-approximate orthogonality in the sense of Chmielifiski
for A-bounded operators in a complex Hilbert space.

Theorem 2.8. Let H be a complex Hilbert space and € € [0,1). Let T,S € By1/2(H).
Then the following conditions are equivalent:

(i) TLeayS

(ii) for each 6 € [0,), there exist sequences {n o)}, {Yn(o)} C Sm(a) such that
(a) limy oo [T Zr o) l|4 = limp o0 [[TYn@)lla = 1T a-
b) lim, e Re(67w<T:cn(9), an(9)>A) > —€l|T|| allS]|a-

(
(C) 1Hnn~>oo R€(€7i0<Tyn(a), Syn(Q))A) S 6||T'||A||S||A

Proof. Suppose (i) holds. Therefore, [T+ AS||% > [|T']|% — 2¢||T| a[[AS]| 4 for all X € K.

First we choose a sequence {\,} C K, where A\, = ¢’ where § € [0,7) and n € N.

n’

Clearly, for each n € N, there exists an element z,,9) € Sg(a) such that

i0
e 9 9 € 1
1T+ S S)ano 3 > ITIE = 25 IT)AIS]a — —.
Hence,
9 2 —i6 1 2 2 € 1
1 Tano) 2+~ Re(e™ (Txn), Stn))a) + 5l15zn@lla > 1714 = 2Tl allSlla = -
Thus,
2 2 2 —i0 1 2 € 1
Ty s > ITI — 2 Re(e™(Tniey, Soaioy)a) — S — 25 ITLallS N — .

It is easy to see that {||Tz,g)lla}, {{TTn0), STne))a} are bounded sequences. So,
passing onto a subsequence if necessary, it follows that lim, . \|Txn(9)||?4 > ||T4.
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Again by the fact z,,(9) € Sm(a), clearly, [Tz, ||% < |T]|% for all n € N. Therefore,
Hmnﬁoo ||T$n(9)||A = HTHA Thus,

1

2 i € 1
2 Rele™ (Tauie), S0 2) > (ITI% — 7206 2) — 25 ITalS s — 1S —

So,

—i n 1 1
Re(e™ (T (9 Sno)) a) > S (ITI% = 1T 200 I3) = €l Tl allSI]a %Ilslli ~ o

Therefore,

- 1 1
Re(e ¥ (Tx, 9, St > —€||T||allS|la — —|IS|IA — —.
e(e™"(Tzn(), Szn(e))a) > —€lTlallSla = o-1ISNa = 5~
Hence, by passing onto a subsequence if necessary and by taking limit, we obtain

lim R6(€7w<TJL'n(9),S$n(9)>A) > —¢||T||all S| A-

n—oo

Similarly, for A, = lw, we can find a sequence {y,(9)} € Sm(4), such that

n
T [Tyaoyla = 7]
and

lim Re(e_w <Tyn(9), Syn(9)>,4) < 6||T||A||S||A

n—oo

This completes the proof of (i) = (ii).
Next suppose (ii) holds. First, we may assume that A = |\|e?’ € K, where 0 € [0, 7).
Therefore,

17+ 2SI > tim (T + [N S)z0)3

= nILH;O(||TJCn(9)H§x + 2|\ Re(e (T2, (0), STn(a)) ) + [A?(|1S206)l|%)

v

Jim ([T 9) 1% + 2[A[Re(e™ (T, 9y, STi(e)) a)

V

T — 2€ T allAS] -

Similarly, for A = —|X|e? € K, where § € [0,7), we can show that [T + AS||% >
I T|[% — 2¢€[|T||al|AS]|a. Thus T L 4)S and so (ii) = (i). This completes the proof of the
theorem. O

The characterization of (e, A)-approximate orthogonality in the sense of Chmielinski
for A-bounded operators in a real Hilbert space admits a nicer form due to the fact that



10 J. Sen et al. / Bull. Sci. math. 170 (2021) 102997

in real normed space N and for z,y € N, 2 LGy if and only if there exists z € ({z,y})
such that z1 gz and ||z —y|| < €||y|| (Theorem 2.2 of [6]). In order to characterize (e, A)-
approximate orthogonality in the sense of Chmielifiski for A-bounded operators in a real
Hilbert space first we prove the following proposition.

Proposition 2.9. Let H be a real Hilbert space. Let P be the orthogonal projection on
R(A) Let AQ =A |m Let C € BA1/2 (H) and C’ = PC |m Then,

(4)
(i) T+S =T+ S for all T, S € B 12 (H).
(#4) AC = AC for all C € Byi2(H) and X € R,

)

)

)

Clla = IC]la, for all C € Bs/z(H).

MY NR(A) = Mgo for all C € Byi2(H).

(iv
(’U S]H[(A) n R(A) = SM(AO)

(vi) If M§ N R(A) = Spi(a )ﬂR( ) for some C' € By2(H), then M§ = Spia).

Proof. Note that, if z € N(A) and C € B 1/2(H), clearly, ||Cz||4 = 0.
(i) Let C' € By1/2(H). Clearly,

[Clla =sup{[|Cz|a : [[z]|la =1}
=sup{||Cu+ Cv||a: |lu+v||a=1,z=u+v,ue N(A),v € R(A)}
= sup{[|Cvl|a : [[v]la = 1,v € R(A)}
= sup{||PCv||4 : ||v]|a =1,v € R(A)}

= sup{[|Cv]| 4, : [[0lla, = 1,0 € R(A)}
= ”CYHAO

We omit the proof of (ii),(ii4),(iv),(v); as they follow trivially.

(vi) Suppose on the contrary that M§ # SH(4)- Then, there exists z € Sy4) such
that = ¢ MS. As H = N(A) @ R(A), = can be uniquely written as z = u + v, where
u € N(A) and v € R(A). As u € N(A), ||lulla = 0 and therefore, ||z][4 = |[v]ja = 1.
Hence, v € S (4 NR(A) = MS N R(A). So, |Cv|la = ||Cla. As ||Culla = 0, it follows
that [|Cv|la = ||Cz||a = ||C||a. Thus, z € MY, a contradiction. O

Remark 2.10. It is clear from (i) of Proposition 2.9 that for any T,S € By1/2(H) and
e€0,1), SLyaT < Sl ayT and SLET & S1E T

Now we are ready to characterize (e, A)-approximate orthogonality in the sense of
Chmielinski for A-bounded operators in real Hilbert space.

Theorem 2.11. Let H be a real Hilbert space and T, S € Bi/2(H). Let € € [0,1). Then
the following conditions are equivalent:
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(1) T Leay S

(ii) there exists a sequence {xn} C Sm(a) such that
(@) limp o0 [Tznlla = [T a-
(0) Timy, o0 [(Tn, Stn) a| < €| T a][S] a-

Proof. As the sufficient part of the theorem follows trivially, we only prove the necessary
part of the theorem.

As A is positive definite on R(A), (m, |[-]l.4) is a normed space. Let Ag = A | =cay- Let
P be the orthogonal projection on R(A). Let T = PT |zay- Clearly, (BA[l)/z (R(A)), | -
HAo) is a normed space. As T' 1 .(4) S, it is easy to see that T Lecao) S. Therefore, by 6,
Th.2.2], there exists U € BA(l)/z (R(A)) such that TJ_EOﬁ and ||S — Ul|a, < €S| 4, As
TJ_EOU, by [20, Th.2.2], there exists a sequence of Ag-unit vectors {z,,} in R(A) such
that limy,— oo || T 20|l 4, = | T]| 4, and limy, oo (Txy, Uzy)a, = 0. Thus

|<T$n, gxn>z40| < |<T‘rna gxn - [jxn>Ao‘ + |<Txnv an>z40|

<N TlagllS = Ullag + 1{Tn, Uzn) a, |

Hence, by taking limit, we obtain lim, oo (T2, Stn)a,| < €Tl 4,]S]a,- As A
is positive, N(A) = N(A'Y?). Thus, we have, (Tz,,Sz,)a, = (Tn,Sz,)a and
|T2nlla = | Txn| 4,- Also note that ||T||4 = || T|| 4, Therefore, lim,, o0 (T, Sn) 4| <
eI allSlla. O

Remark 2.12. In [6, Th.3.2], the authors proved that if 7,5 € L(H), where H is a
real Hilbert space and € € [0,1), then T 1528 if and only if there exists a sequence
{zn} C Su such that lim,, o ||[T2,|| = |T|| and lim,— oo |[{(Tzpn, Szn)| < €||T||||S]]. Thus
Theorem 2.11 generalizes [6, Th.3.2].

Next we characterize the (e, A)-approximate orthogonality in the sense of Chmieliriski
for A-bounded compact operators in complex Hilbert space setting.

Theorem 2.13. Let H be a complex Hilbert space and € € [0,1). Suppose B4y N R(A) is
bounded with respect to || -||. Let T, S € By1/2(H) NK(H). Then the following conditions
are equivalent:

(i) TJ_E(A)S

(ii) for each 8 € [0, ), there exist x9,ys € Sm(a) such that
(@) | Tzolla = [ITyolla = [Tl a-
(b) Re(e™*(Txg, Sxg)a) > —€[| T[] S] a-
(¢) Re(e *(Tyo,Syo)a) < el T[allS] a-
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Proof. (ii) = (i): First we may assume that A = [\|e?? € K, where 6 € [0, 7). Therefore,

T+ AS|% = (T + |MeS)zq|%
= ||Txo|% + 2|1 A|Re(e™® (Txg, Sxo) 4) + |A*||Szol2
> |IT1% — 2€[I T 4l AS]| a-

Similarly, for A\ = —[\|e? € K, where § € [0,7), we can show that ||T + AS||% >
||T||?4 - 26||T||A||)\S||A. Hence, TJ_E(A)S.
(i) = (ii): By Theorem 2.8, for each 6 € [0,7), there exist sequences {z,, )}, {yn(9)}

SH(a) such that

(a) limp o0 [[TZn(0) |4 = limp—soc [ TYn(o)lla = [T 4-

(b) limy, 00 Re(e™ (T 9y, Stn(g)) a) = —€l T allS]|a-

(¢) limyso0 Re(e™(TYn(a), Syn(o)) 4) < €T a]lS]|a-

As A € L(H) is positive, H = N(A)®&R(A). Therefore, each Tp(p) can be uniquely written
as Tp(g) = Un(e) + Un(o), where Un(g) € N(A) and Un(9) € R(A). As Un(g) € N(A), it is
easy to see that [[u,)|/a = 0 and therefore, ||z,(p)[|a = ||vn)lla = 1 for each n € N.
Thus, we conclude that {v,g)} S Sma) N R(A). Since T, S € Bji2(H), it is easy
to see that ||Tu,gl|a = [|[Sun@lla = 0 and therefore Tuy,(g), Sung) € N(A) for all
n € N. Hence, ||Tz,@)l|a = |[Tvne)lla and [|Sz,g)la = [[Svnella for each n € N.
As A is positive, N(A) = N(AY?) and so AY?(Tu, ) = AY?(Sun@)) = 6. Clearly,
limy, o0 HTxn(9)||A = lim;, 00 HTUn(O)HA = ||T||.a- Also,

=€ T[allS]a < lim Re(e™"(Tw,,(9), Sp(0)) 4)

= lim Re(eiie <A1/2 (Tun(g) + T’Un(g)), A1/2 (Sun(g) + Svn(g))>)

n—oo

= lim R6(€7w<A1/2TUH(0),Al/zsvn(e)»

n—oo

= lim Re(e_w<TUn(9)7Svn(9)>A)~

n—oo

Since, H is reflexive and B4y N R(A) is closed, convex and bounded with respect to
|- II, Brcay N R(A) is weakly compact with respect to || - ||. Thus, the sequence {vy )}
has a weakly convergent subsequence. Without loss of generality we may assume that

Un() — Tg With respect to || - || in H, for some xp € B4y N R(A). Since, T, S € K(H),
it follows that T'v,g) — Twg and Sv, ) — Sy with respect to || - || in H. Therefore,

lim [ T0)la = 1 ([Tl = [Taolla = 7]

Thus, z¢g € Sg(a). Also we have,
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lim Re(e_i9<Txn(9),an(9)>A) = lim Re(e_i0<Tvn(9),Svn(9)>A)

= R6(67i0 <T:ZZ(.), SI9>A)
> —€||T[|allS] a-

Similarly, we can find yy € Sp(a) such that ||Tyg||a = ||T||a and Re(e™**(Tyo, Syo)a) <
eI allSNa- O

The following corollary is an easy consequence of the above theorem.
Corollary 2.14. Let H be a complex Hilbert space and € € [0,1). Suppose Byay N R(A) is
bounded with respect to ||-||. Let T, S € B2»(H)NK(H) and M} = {+ei®z, a € [0,)}.
Then T' Lo a)S if and only if |Tx||a = ||T||a and
|Re(e™(Tx, Sx)a)| < €| T||allS|la for each 6 € [0,7).

The characterization of (e, A)-approximate orthogonality in the sense of Chmielinski
for A-bounded compact operators in a complex Hilbert space is obtained by two A-unit
vectors (Theorem 2.13). But in a real Hilbert space, (¢, A)-approximate orthogonality
in the sense of Chmielinski for A-bounded compact operators can be characterized by a
single A-unit vector, which will be discussed in our next theorem.

Theorem 2.15. Let H be a real Hilbert space such that Bya) N W is bounded with
respect to || ||. Let € € [0,1). Let T, S € B1/2(H)NK(H). Then T L. ay S if and only if
there exists an A-unit vector x, such that |Tx||a = |T||a and |(Tz, Sz)a| < €T 4l|S]a-

Proof. Since the sufficient part follows trivially, we only prove the necessary part
of the theorem. By Theorem 2.11, T 1.4y S if and only if there exists a se-

quence {x,} C Sy N R(A) (€ Sm(a)) such that lim, o [|[Tz,|la = [|T]|a and
limy, o0 (T2, Stp)al < €||T[|allS|la. As Brcay N R(A) is bounded with respect to

| - |I, clearly, By(ay N R(A) is weakly compact with respect to || - ||. Thus, the sequence
{z,} has a weakly convergent subsequence. Without loss of generality we may assume

that @, — x with respect to || - || in H, for some x € By4) N R(A). Since T, S € K(H),
it follows that Tz, — Tx and Sz, — Sz with respect to || - || in H. Therefore,

T [Tl = [ Tella = 1T

Thus, € Spg(a). Also we have, lim, o [(T2yn, Szn)a| = [(Tx,Sz)a| < €T allS]|a-
This completes the proof. O

Remark 2.16. Note that in Theorem 2.15, if we consider € = 0, Theorem 2.8 of [17] is
obtained. Moreover, if H is finite-dimensional, A = I and ¢ = 0, Bhatia-Semrl Theorem
[3, Th.1.1] follows immediately.
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In [17], the authors proved the following:
Theorem 2.17. Let H be a Hilbert space and € € [0,1). Suppose By(ay N R(A) is bounded
with respect to || -||. Let T, S € B 1/2(H) NK(H). Then TLES if and only if there exists
v € MY such that TvL 4Sv.

Hence, A-orthogonality of A-bounded compact operator is determined by some A-unit
vector v € M%. In our next theorem we establish that (e, A)-approximate orthogonality
in the sense of Chmielinski of A-bounded compact operator can be determined by some
A-unit vector € M3 under some additional conditions.

Theorem 2.18. Let H be a real Hilbert space and € € [0,1). Suppose By(ay N R(A) is
bounded with respect to |- ||. Let T, S € B i/»(H)NK(H) be such that MY C M%. Then
T LS if and only if Tx L a)Sx, where x € MT.

Proof. By Theorem 2.15, T1.(4)S if and only if there exists © € M} such that
(Txz,Sx)a| < €|T|allS|la. As MY C MZ, it is easy to see that, |(Tz,Sz)a| <
el|T|[allS||a = €||Tz|[al|Sx||a. Hence Tx L (4)Sz.

Conversely let A € R. Therefore,

1T+ AS|% = (T + AS)z[% > [ Tz|% — 2IMT2, Sz)a| = [ T1% — 2€| T allXS]| 4.
Hence, T'L¢(4)S. This completes the proof of the theorem. O
3. Symmetry of (e, A)-approximate orthogonality of operators

By Theorem 2.7 and Proposition 2.3, it is easy to see that xl.4)y if and only if
yLeayr, where 2,y € H. But this is not necessarily true in case of (e, A)-approximate
orthogonality of operators in the sense of Chmielinski. We begin this section with an
easy example to illustrate this fact.

Example 3.1. Consider R? with usual inner product. Let A(z,y) = (z,2y) for all (z,y) €
R2. Let T(z,y) = (2z,y) and S(z,y) = (0,y) for all (z,y) € R?. Let ¢ = 5. We show
that T'L.4)S but S f.a) T. Clearly, |T]|a = 2 and ||S||a = 1. It is easy to see
that M% = {4(1,0)} and M5 = {£(0, %)} Further note that [(T'(1,0),5(1,0))a| =
0 < €|T||allSlla but [(S0, 75),T(0, Z5))al = 1 £ €l|T|allS|l4. Hence, TL(4)S but
S LeayT.

It is now natural to ask if T',S € B,i/2(H), then under what conditions T'L.(4)S
implies S L. 4) T. Our next proposition gives an easy sufficient condition fot this to
happen. The proof is omitted as it follows directly from Theorem 2.15 and Theorem 2.18.
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Proposition 3.2. Let H be a real Hilbert space and € € [0,1). Suppose Byay N R(A) is
bounded with respect to || - ||. Let T, S € Bai2(H) NK(H) be such that MY C M%. If
TJ_E(A)S, then SJ_S(A)T,

In the following corollary we show that T'1L.4)S < S1.4)T holds under some addi-
tional condition.

Corollary 3.3. Let H be a real Hilbert space and € € [0,1). Suppose By(ay N R(A) is
bounded with respect to || - ||. Let T, S € Bi/2»(H)NK(H) be such that MY = M%. Then
T Lea)S if and only if SLeayT.

Proof. The proof follows trivially from Proposition 3.2. O

In [9], the authors proved that in a finite-dimensional real Hilbert space, an operator
is right symmetric if and only if it is an isometry. In our next theorem, we obtain the
characterization of (e, A)-approximate right symmetric A-bounded operator in the sense
of Chmieliniski by means of A-isometry. Note that an element T € B 41/2(H) is said to
be A-isometry if M3 = SH(4)-

Theorem 3.4. Let H be a real Hilbert space such that dimR(A) < oo. Let € € [0,1)
and T € By2(H). Then T is (e, A)-approximate right symmetric point in the sense of
Chmielinski if and only if T is an A-isometry.

Proof. First we consider 7" to be an A-isometry. Let S € B 41/2(IH) be such that S_L 4T
Since, M1 = SH(a), by Theorem 2.11, it follows that T'L.(4)S.
Next we prove the necessary part of the theorem. Let Ag = A |m. Let P be the

orthogonal projection on R(A). Let T = PT |m. Suppose on the contrary that M7 #
Skia)- Then, by (vi) of Proposition 2.9, MT = MT 1 R(A) # Su(ay N R(A). Without
loss of generality we assume that | 7|4 = ||T]|a, = 1. By [17, Th.2.4], MZO is the
Ap-unit sphere of some subspace Hy of R(A). As Ay is positive definite on R(A), it
follows that (, )a,, | - ||, are inner product and norm on R(A), respectively. As R(A)

is finite-dimensional, without loss of generality we assume that {z1,z2,...,2;n} be an
Ap-orthonormal basis of Hy. Then, {21, Za, ..., Tm, Tint1, .- Tn} is an Ag-orthonormal
basis of R(A). By [17, Th.2.11], it is clear that

m m m
1D eiTallZ, = 1T cmillh, =D lel.
i=1 i=1 i=1

As M}:O # Sm(a)NR(A), it follows that T'(Ho) # R(A). So, there exists an Ag-unit vector
wo € R(A) such that wyL a4, T(Hp). Thus, for wg, T2y, 11, by (i) of Proposition 2.1, either

|wo + AT Zpmi1lla, =1 VA >0 or ||[wo + AN Zpmila, >1VA<LO0.
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Let ||wo + AT Zmy1]|a, > 1 VA > 0. Consider,

S . R(A) — R(A)
Sx; = —Tux; foralli € {1,2,...,m}
Sz; =wo for i =m+1

Sz;=0foralliec{m+2m+3,..n}

Now we show that SJ_E(AO)T. Let z = > ciz; € Sm(ay) N R(A). It is easy to see
that Z?:l |ci|*> = 1. Clearly, ||SZ||,240 = 2;11 CiTxi”lano + C72n+1 = 2111 |eil? + Cr2n+1 <

Sy leil* = 1. We also see that || Sz 414, = 1. Thus, |[S]4, = 1. Further note that
x; € Mio for all i € {1,2,...,m + 1}. Now for A > 0,

18+ ATl ag = 15 + M) Ly = o + A L4, > 1.
For A <0,

IS+ ATLag = 1S+ AT)zmllag = | = Tm + ATw |4, > 1.
Therefore, SLEOT a~nd SO SLE(AO)T. Next we show that T Lecao) S. It is easy to see
that for any = € M} , (Tx,Sz)a,| = ||Tx||?40 =1 > e. As R(A) is finite-dimensional,

T,S are compact operators with respect to || - | on R(A). Hence, by Theorem 2.15,
T Lecao) S. Consider U : H — H by

U(z) = Sz,z € R(A) and U(z) =0,z € N(A).

It is easy to see that U = S. Thus, by Remark 2.10, UleayT but T fay U. This
completes the proof of the theorem. O

As a consequence of Theorem 3.4, we can immediately obtain the following:

Corollary 3.5. Let H be a finite-dimensional real Hilbert space. Let € € [0,1) and T €
L(H). Then T is approzimate right symmetric if and only if T is an isometry.

Remark 3.6. By Theorem 3.4, it follows that if H is finite-dimensional and T" € B 41,2 (H),
then T is (e, A)-approximate right symmetric point in the sense of Chmielinski if and
only if T'is A-isometry. Also note that in Corollary 3.5, if we consider ¢ = 0, we obtain the
characterization of right symmetric point in I (H). Hence, Theorem 3.4 is a generalization
of [9, Th.2.7] and [18, Th.4.4] in finite-dimensional case.

Now we obtain the characterization of (e, A)-approximate right symmetric point in
the sense of Chmielinski for A-bounded compact operators in infinite-dimensional Hilbert
space setting.
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Theorem 3.7. Let H be an infinite-dimensional separable real Hilbert space. Suppose
By (a) N R(A) is bounded with respect to || - || and dimR(A) = oco. Let € € [0,1) and
T € Byi2(H)NK(H). Then T is (e, A)-approzimate right symmetric point in the sense
of Chmieliniski if and only if ||T||a = 0.

Proof. We only prove the necessary part of the theorem, as the sufficient part follows
trivially. Suppose on the contrary that ||T||a # 0. Without loss of generality we assume
that [|T]|4 = 1. Let A9 = A |grzy. Let P be the orthogonal projection on R(A). Let
T =PT \R( . Then, HTHA0 = 1. As Ag is positive definite on R( ) |l - 1lag and (. )a,

are norm and inner product on R(A), respectively. It is easy to see that || - || and || - || 4,
are equivalent norms on R(A) ([17]). Next we show that, if T € B 1,2 (H) N K(H) and
A is positive definite on R(A), then M} N R(A) # Sm(a) N R(A). Clearly, M% N R(A)
is compact with respect to || - || ([17]). Also note that, as A is positive definite on R(A),
Bp(ay N R(A) is the unit ball of R(A) with respect to || - |4,. As R(A) is infinite-
dimensional, B4y N R(A) is not compact with respect to || - [[4,. As || || and [ - || 4, are
equivalent on R(A), it follows that B4y N R(A) is not compact with respect to || - ||.
Therefore, MTﬂR( ) # SH(A)QR(A). Now we are ready to construct S € B y,1/2 (R(A))
such that SJ_E(A )T but T -/Ke(Ao

By [17, Th.2.4], M5 N R(A) is A-unit sphere of some subspace Hy of R(A). Therefore,
M}:O is Ap-unit sphere of some subspace Hy. Let {x,,a € A;} be an Ap-orthonormal
basis of Hy. Extend this to a Ag-orthonormal basis {z,ys, @ € A1, B € Az} of R(A).
Clearly, T(Ho) # R(A), otherwise T(Bp,) = Bp(a) N R(A) = B(a) N R(A) and as T
is compact on R(A), it follows that B4y N R(A) is compact with respect to || - [|, a
contradiction. Therefore, there exists wo € Sg(ay N R(A) such that wg L, T(Ho). Let
Bo € Ay. Hence, for wo, Tyg,, in view of (7) of Proposition 2.1, either |wo+ATyg, |4, > 1

for all A > 0 or |lwo + ATys, |4, > 1 for all A < 0. Without loss of generality we assume

that |[wo + ATys,||a, > 1 for all X > 0. Define a map S : R(A) — R(A) by

Sto = —T2o, a € Ay,
Syﬁ = Wo, 5 = ﬂOa

Let 2 =) ca,Ta; +)_dp,ys, € SH(A ﬂR( ). As | Ta, |l 4, = |IT|| 4, = 1, for all a; € Ay,
applying [17, Th.2.4] and by the fact wo L 4, T(Hp), it follows that

ngHig = || ZCQiT‘TQi ?40 +d?‘30 = Zcih +d%0 S 1'
Thus, ||S||4, = 1. Now for any A > 0, we have
IS+ ATLag = 1S+ AT)ys, |4, > 1.

Similarly for any A < 0, we obtain
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||S+ )\THAO > ||(§+ AT)‘TQHAU > L

Hence, SJ_G(AO)T.

Next we show that 7' Leao) S. Let {x,} C SH(A) NR(A) such that | Tz, |4, — [T ,-
As By(a) N R(A) is closed, convex and bounded with respect to || - |, Bpa) N R(A)
is weakly compact with respect to || - ||. Thus, z, — =z with respect to || - || for some
r € Bya) N R(A). As T is a compact operator on R(A), it follows that Tz, — Tx
with respect to || - || and ||T2|| 4, = ||| 4,- Hence, x € MZO. As S ¢ B y,1/2 (R(A)), it is
easy to see that Sz, — Sz with respect to || - ||. As {, )a, is inner product on R(A),
(T, Sxp)a, — (T, Sx)AO But for any z € MA , we have |(Tx, Sz)a,| = ||T{E||A0 =
1> e Thus, T Lecao) S. Consider U : H — H by

Uz = Sz, x € R(A) and Uz = 0, z € N(A).
Clearly, U = S. Therefore, by Remark 2.10, U LeayTbut T Loy U. O

Remark 3.8. In [9], the authors proved that in infinite-dimensional Hilbert space setting,
any compact operator is right symmetric if and only if it is zero operator. Thus our
theorem generalizes [9, Th.2.8].

As a consequence of Theorem 3.7, we can immediately establish the following corollary,
the proof of which is omitted as it is now trivial.

Corollary 3.9. Let H be an infinite-dimensional separable real Hilbert space. Let € € [0, 1)
and T € K(H). Then T is approximate right symmetric if and only if T is the zero
operator.

Next we characterize (e, A)-approximate left symmetry in the sense of Chmielinski for
A-bounded compact operator in H. To do so we need the following lemmas.

Lemma 3.10. Let €1,€ € [0,1) and €; > €. Then there exists

€ (ee1 — V1 —e2\/1 — €2, ee1 + V1 —€e2\/1 — €?) such that

(1) aeg > e.

(44) \‘/1% <1, where a®> +b%> =1 and b > 0.

Proof. Choose a = ee; + (1 — 2t)v/1 — €2y/1 — €3, where 0 < t < 11— evll 6612)

(1) As e; > e and €1,e € [0,1), it is easy to see that 0 < CV\/P—E% < 1. Ast e (0,1), it

e1V1—e2

follows that a € (ee; — V1 — €2\/1 — €7, €61 + V1 —€2y/1 —€2) C ( . Therefore,
aep > eed + —Y—u L 61 aVvl—e /1 - =ed +e(l—€)) =

1762
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(i) Suppose on the contrary that \%1_7_6,;) > 1. As ae; — €, /1 — €2b > 0, we have

ae; —e>y/1—€2b
a’e? — 2aee; + 2 > (1 — EV?
6%—2&661—&—62—1)2 >0

02*2(16614’6%4’62*1 > 0.
But then a > ee; + V1 —€2\/1 — €2 or a < ee; — V1 — €2y/1 — €2, a contradiction. O

Lemma 3.11. Let H be an infinite-dimensional real Hilbert space. Let Byay N R(A) be
bounded with respect to | - ||. Let € € [0,1) and T € By/2(H) NK(H). If M N R(A)
contains more than one pair of points, then T cannot be (e, A)-approxzimate left symmetric

point in the sense of Chmielinski.

Proof. Let Ag = A |zrzy- Let P be the orthogonal projection on R(A).Let T = PT [Ray-

Since, M7 A, 18 Ao-unit sphere of some subspaces say Ho of R(A), it follows that there
exist z1,22 € Sm(a) N R(A) such that 21 La,22 and |Tz1a, = [|T22)lay = T4,
Without loss of generality we assume that ||T||4, = 1. Clearly, R(A) = ({z}) ® H,
where H = ({z})t40. We define a map S : R(A) — R(A) by S(H) = 6, and
Szy = Tzy. Clearly, S is compact with respect to | - || and MA = {£2z}and ||S|a, = 1.
As Sz = 6, it follows that |(T21,Szl>AO| =0andsoT L e(Ao) S. But [(Szo, Tz) 4, | =
HTZQHAO =1 > e. Hence, S Leao) T. This completes the proof. O

Now we are ready to characterize (e, A)-approximate left symmetric point in the sense
of Chmielinski for A-bounded compact operator in infinite-dimensional Hilbert spaces.

Theorem 3.12. Let H be an infinite-dimensional separable real Hilbert space. Suppose
Bpa) N R(A) is bounded with respect to || - ||. Let € € [0,1) and T € B/2(H) NK(H).
Then T is (e, A)-approzimate left symmetric point in the sense of Chmieliniski if and
only if | T|4 = 0.

Proof. Sufficient part of the theorem follows trivially. We only prove the necessary part.
Suppose on the contrary that ||T'||4 # 0. Without loss of generality, we assume that
IT||a =1. Let Ag = A \m. Let P be the orthogonal projection on R(A). Let T =

PT |m. As ||T||a = 1, therefore ||T||4, = 1. Clearly, T is compact with respect to

| -] Since || - || and || - || 4, are equivalent on R(A) and Bp(a) N R(A) is weakly compact
with respect to || - ||, there exists z € Sp(a) N R(A) such that [Tz 4, = || T4, = 1.
By virtue of Lemma 3.11, we assume MT {#z}. If we can construct S on R(A)
such that T Lecay) S but S Letay) T, then we are done. Clearly, R(A) = ({z}) ® H;,
where H; = ({z})140. Let {x1,22,...} be an Ag-orthonormal basis of H;. Therefore,
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{x,x1,x5,...} is an Ag-orthonormal basis of R(A).

Case (I): T(H,) = {6}.

Consider z; = €12+ +/1 — €221 and 22 = —\/1 — €3x+ €171, where ¢; € [0,1) and €; > e.
Clearly, {z1, 29, %2, ...} is an Ag-orthonormal basis of R(A). It is immediate to see that
R(A) = ({21, 22})®Ha, where Hy = ({21, 22 })40. We defineamap S : R(A) — R(A)
by

S(Hy) = 6,52 = aTx + bw, Sz = a(bTx — aw);

where the choice of a is the same, described in Lemma 3.10 (i.e. a = e + (1 —
2t)V1 — €2y/1 — €}, where 0 < t < (1 — :lv\/ll_ﬁ)) with a® + % = 1, b > 0 and

\;%b <a< mm{l et } and wla, Tz, w € Sgay N R(A). Since, S is of finite

rank and || - || and || - ||A0 are equlvalent on R(A), S is compact with respect to || - || on
R(A). Let z € Spa)NR(A). Hence, z = c121 + 222 +cy, where ¢1,co,c € R and y € H.
Therefore, Sz = (cla + coab)Tx + (¢1b — cya)w. Thus,

||5’z||?4O = (c1a + caab)?® + (c1b — czaa)® = ¢ +a’ch < i+ 5 < 1.

It is easy to see that HSZlHAo va? +b% = 1. Thus, M,; = {£2} and ||S||4, = 1. Now
we show that T L, (40) S but S Kecao) T. By our construction, = e12; — /1 — €229.
So, (Tx,Sx)AO = Ta: 1521 — /1 — 61522 4, = €10 — /1 — e3ab.

By our choice of a, it is easy to see that —e < ea — /1 —€fab < e. Hence,
(T, Sz)a,| < €= €||T| 4,154, and so T' L (4,) S. Again, |<Sz1,Tzl>A0| = |(aTx +
bw, Tz1)a,| = (T + bw,e;Tx) 4,| = |aei| > €. Hence, S Leao) T.

Case (I1): T(H,) # {6}.

Thus, Tz, # 0, for some basis element 2, € H;. Then, Tz, = fw, where w €

Sh(ay N R(A) such that wLAOTx and 8 € R. Without loss of generality we may assume
that 8 > 0. Let z; = eyz+ /1 — €32y, and 25 = —/1 — €2z + €11, where € € [0,1) and
€1 > e. Clearly, {z1, 22, 21, ¥2, .2 —1, k41, ... } I8 an Ag-orthonormal basis of R(A). It is
immediate to see that R(A) = ({z1,22}) ® H3, where Hz = ({21, 22})140. We define a
map S : R(A) — R(A) by

S(Hs) = 0,52 = aTz 4 bw, Sz = a(bTz — aw);

where the choice of a is the same, described in Lemma 3.10 and a®> + 5% =1, b > 0

and % < a < min{1, “16\/1——;;7} Since S is compact with respect to || - || on R(A).
—“ —“

Proceeding in the same manner as in case (I), we obtain MAO = {£2z} and ||S||4, = 1.
Also, we have (Tx, S'x)AO = Tx 6182 —/1—¢ 522 YA, = €1a — /1 — e7ab. By our
choice of a, it is easy to see that —e < eja — /1 — e3ab < e. Hence |(Tx, Sz)a,| <
€ = €||T||a0lIS]|a- Thus T L(a,) S. Again, [(Sz1,Tz1)a,| = [(aTz + bw, Tz1)a,| =
laer 4+ b\/1 — €8] = ae; +by/1 — B > e. Hence, S Lecag) T. This completes the proof
of the theorem. 0O
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The characterization of (e, A)-approximate left symmetric point in the sense of
Chmielinski for A-bounded operators in a finite-dimensional real Hilbert space can be
obtained in the same manner. Therefore, we omit the proof.

Corollary 3.13. Let H be a finite-dimensional real Hilbert space. Let € € [0,1) and T €
B2 (H). Then T is (e, A)-approximate left symmetric point in the sense of Chmieliriski
if and only if |T']|a = 0.

Now we can easily prove the following:

Theorem 3.14. Let H be a finite-dimensional real Hilbert space. Let € € [0,1) and T €
L(H). Then the following conditions are equivalent:

(#) T is left symmetric.
(it) T is approximate left symmetric.
(i41) T is zero operator.

We end this section with the following closing remark:

Remark 3.15. Note that in Theorem 3.12, if we put A = I, we obtain the characterization
of approximate left symmetric point in L(H). Moreover, if we put A = I and e = 0,
we obtain the characterization of left symmetric point in L(H). Hence, Theorem 3.12
generalizes [9, Th.2.10] and [18, Th.3.3] for compact operators on real Hilbert space.
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