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1. Introduction

In recent times, the geometry of operator spaces has been investigated by various 
authors using Birkhoff-James orthogonality techniques [3,8,12–14,18,19]. The notion of 
approximate Birkhoff-James orthogonality [5,6,15] allows us to generalize some of the 
results presented in these articles and also to study some related perturbation and stabil-
ity questions related closely to the geometric and analytic structure of Banach (Hilbert) 
spaces. Our aim in the present article is to study the concept of approximate Birkhoff-
James orthogonality in the semi-Hilbertian structure, as introduced in [1,2]. Let us now 
introduce some relevant notations and terminologies which will be used throughout this 
article.

We use the symbols H and X to denote a Hilbert space and a Banach space, respec-
tively. Unless mentioned specifically, we work with both real and complex Hilbert spaces. 
The scalar field is denoted by K(= R or C). The underlying inner product and the corre-
sponding norm on H are denoted by 〈 , 〉 and ‖ · ‖, respectively. Let L(H)(K(H)) denote 
the Banach space of all bounded (compact) linear operators on H, endowed with the usual 
operator norm. A ∈ L(H) is said to be a positive operator if A = A∗ and 〈Ax, x〉 ≥ 0
for all x ∈ H. A positive operator A is said to be positive definite if 〈Ax, x〉 > 0 for all 
x (�= θ) ∈ H. It is well known [1] that any positive operator A ∈ L(H) induces a positive 
semi-definite sesquilinear form 〈 , 〉A on H, given by 〈x, y〉A = 〈Ax, y〉, where x, y ∈ H. 
It is easy to see that 〈 , 〉A induces a semi-norm ‖ · ‖A on H, given by ‖x‖A =

√
〈Ax, x〉. 

Henceforth we reserve the symbol A for a positive operator on H. The null space and 
the range space of A is denoted by N(A) and R(A), respectively. The symbol I is used 
to denote the identity operator on the concerned space.

In a normed space N , an element x ∈ N is said to be Birkhoff-James orthogonal
[4,10] to another element y ∈ N , written as x⊥By if ‖x +λy‖ ≥ ‖x‖ for all λ ∈ K. If the 
normed space N is a Hilbert space, then the Birkhoff-James orthogonality is equivalent to 
usual inner product orthogonality 〈x, y〉 = 0. In [5], the author introduced the following 
definition of an approximate version of Birkhoff-James orthogonality:

Definition 1.1. Let N be a normed space and ε ∈ [0, 1). An element x ∈ N is said to be 
approximate Birkhoff-James orthogonal to another element y ∈ N , denoted by x⊥ε

By, if 
‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖‖λy‖ for all λ ∈ K.

Clearly, if ε = 0, the above definition coincides with the definition of Birkhoff-James 
orthogonality in a normed space N . In the Hilbert space setting, Definition 1.1 coincides 
with the usual definition of approximate ε-orthogonality. We note that an element x ∈ H

is said to be approximate ε-orthogonal to another element y ∈ H, denoted by x⊥εy, if 
|〈x, y〉| ≤ ε‖x‖‖y‖, where ε ∈ [0, 1) (see [5]). It should be mentioned here that there 
exists another standard notion of approximate Birkhoff-James orthogonality in normed 
spaces (see [7]), which is not dealt with in this work.



J. Sen et al. / Bull. Sci. math. 170 (2021) 102997 3
We now focus on the semi-Hilbertian structure on H induced by the positive operator 
A. An operator T ∈ L(H) is said to be A-bounded if there exists c > 0 such that 
‖Tx‖A ≤ c‖x‖A, ∀x ∈ H. Let BA1/2(H) denote the collection of all A-bounded operators, 
i.e., BA1/2(H) =

{
T ∈ L(H) : ∃ c > 0 such that ‖Tx‖A ≤ c‖x‖A, ∀x ∈ H

}
. The A-norm 

of T ∈ BA1/2(H) is given by:

‖T‖A = sup
x∈H,‖x‖A=1

‖Tx‖A = sup {|〈Tx, y〉A| : x, y ∈ H, ‖x‖A = ‖y‖A = 1} .

Let us now recall some relevant definitions from [1] and [20].

Definition 1.2. Let H be a Hilbert space. An element x ∈ H is said to be A-orthogonal 
to an element y ∈ H, denoted by x⊥Ay, if 〈x, y〉A = 0.

Clearly, in a Hilbert space H, for a positive operator A, x⊥Ay ⇔ ‖x +λy‖A ≥ ‖x‖A
for all λ ∈ K. Further note that if A = I, then the above definition coincides with the 
usual notion of orthogonality in Hilbert spaces, which in turn is equivalent to Birkhoff-
James orthogonality.

Definition 1.3. Let H be a Hilbert space. T ∈ BA1/2(H) is said to be A-Birkhoff-James 
orthogonal to S ∈ BA1/2(H), denoted by T⊥B

AS, if ‖T + γS‖A ≥ ‖T‖A for all γ ∈ K.

Note that the above definition gives a generalization of the Birkhoff-James orthogo-
nality of bounded linear operators on a Hilbert space. We also make use of the following 
notations:
For a positive operator A ∈ L(H), BH(A) and SH(A) denote the A-unit ball and 
the A-unit sphere of H, respectively, i.e., BH(A) = {x ∈ H : ‖x‖A ≤ 1} and SH(A) =
{x ∈ H : ‖x‖A = 1}. For any T ∈ BA1/2(H), the A-norm attainment set MT

A of T was 
considered in [20]:

MT
A = {x ∈ H : ‖x‖A = 1, ‖Tx‖A = ‖T‖A} .

Let us now define (ε, A)-approximate orthogonality in the semi-Hilbertian structure.

Definition 1.4. Let H be a Hilbert space and ε ∈ [0, 1). An element x ∈ H is said 
to be (ε, A)-approximate orthogonal to another element y ∈ H, written as x⊥ε

Ay, if 
|〈x, y〉A| ≤ ε‖x‖A‖y‖A.

It is easy to see that if x ∈ N(A), then x⊥Ay for all y ∈ H and therefore x⊥ε
Ay, for 

all y ∈ H and for any ε ∈ [0, 1). Also, if we consider A = I, the above definition coincides 
with the usual definition of approximate ε-orthogonality in a Hilbert space.
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Definition 1.5. Let H be a Hilbert space and ε ∈ [0, 1). An element x ∈ H is said to 
be (ε, A)-approximate orthogonal in the sense of Chmieliński to another element y ∈ H, 
written as x⊥ε(A)y, if ‖x + λy‖2

A ≥ ‖x‖2
A − 2ε‖x‖A‖λy‖A for all λ ∈ K.

Clearly, if we consider A = I and ε = 0, the above definition is equivalent to the 
usual definition of Birkhoff-James orthogonality in a Hilbert space. Following similar 
motivation, we introduce (ε, A)-approximate orthogonality in the sense of Chmieliński, 
for A-bounded operators in the following way:

Definition 1.6. Let T ∈ BA1/2(H) and ε ∈ [0, 1). Then T is said to be (ε, A)-approximate 
orthogonal in the sense of Chmieliński to another element S ∈ BA1/2(H), written as 
T⊥ε(A)S, if ‖T + λS‖2

A ≥ ‖T‖2
A − 2ε‖T‖A‖λS‖A for all λ ∈ K.

In [12], the author introduced the notions of left symmetric and right symmetric 
points in L(H). Motivated by that we introduce the following notions of symmetry for 
A-bounded operators:

Definition 1.7. Let H be a Hilbert space and let ε ∈ [0, 1). An element T ∈ BA1/2(H)
is said to be (ε, A)-approximate right symmetric in the sense of Chmieliński, if for any 
S ∈ BA1/2(H), S⊥ε(A)T ⇒ T⊥ε(A)S.
Similarly, an element T ∈ BA1/2(H) is said to be (ε, A)-approximate left symmetric in 
the sense of Chmieliński, if for any S ∈ BA1/2(H), T⊥ε(A)S ⇒ S⊥ε(A)T .

Note that by putting A = I, we obtain the following definitions of approximate right 
symmetric points and approximate left symmetric points in L(H): An element T ∈ L(H)
is said to be approximate right symmetric point, if for any S ∈ L(H), S⊥ε

BT ⇒ T⊥ε
BS, 

where ε ∈ [0, 1). Similarly, an element T ∈ L(H) is said to be approximate left symmetric 
point, if for any S ∈ L(H), T⊥ε

BS ⇒ S⊥ε
BT , ε ∈ [0, 1). Taking ε = 0, we obtain 

the corresponding definitions of the symmetric points in L(H). We refer the reader to 
[15,16] for further details on approximate Birkhoff-James orthogonality. In this article, 
our main goal is to explore the concept of approximate Birkhoff-James orthogonality of 
operators in the semi-Hilbertian structure. In the following section we characterize (ε, A)-
approximate orthogonality of A-bounded operators in the semi-Hilbertian structure. In 
the final section we study (ε, A)-approximate left and right symmetric operators in the 
setting of finite-dimensional as well as infinite dimensional Hilbert spaces.

2. (ε, A)-approximate orthogonality of operators

In [11], the authors introduced the notions of the positive part and the negative part 
of an element in a complex Banach space, along a particular direction. In the same spirit, 
for the purpose of our investigation of (ε, A)-approximate orthogonality in the sense of 
Chmieliński, we introduce the following:
Let x ∈ H and let α ∈ U = {γ ∈ C : |γ| = 1, arg γ ∈ [0, π)}. Then
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(x)A+
α = {y ∈ H : ‖x + λy‖A ≥ ‖x‖A for all λ = tα, t ≥ 0} ,

(x)A−
α = {y ∈ H : ‖x + λy‖A ≥ ‖x‖A for all λ = tα, t ≤ 0} .

Using these definitions, we note the following results in the form of a proposition.

Proposition 2.1. Let H be a complex Hilbert space and let x, y ∈ H. Let α ∈ U = {γ ∈
C : |γ| = 1, arg γ ∈ [0, π)}. Then for each α ∈ U , the following are true.

(i) either y ∈ (x)A+
α or y ∈ (x)A−

α .
(ii) x⊥Ay if and only if y ∈ (x)A+

α and y ∈ (x)A−
α for each α ∈ U .

(iii) y ∈ (x)A+
α implies ηy ∈ (μx)A+

α for all η ≥ 0 and μ > 0.
(iv) y ∈ (x)A+

α implies −y ∈ (x)A−
α and y ∈ (−x)A−

α .
(v) y ∈ (x)A−

α implies ηy ∈ (μx)A−
α for all η ≥ 0 and μ > 0.

(vi) y ∈ (x)A−
α implies −y ∈ (x)A+

α and y ∈ (−x)A+
α .

Proof. We only prove the first statement, as all other statements follow trivially. Let 
α ∈ U and let y /∈ (x)A+

α . We claim that y ∈ (x)A−
α . Suppose on the contrary that 

y /∈ (x)A−
α . Then, there exists λ0 < 0 such that ‖x + λ0αy‖A < ‖x‖A. By assumption, 

y /∈ (x)A+
α . So, there exists λ > 0 such that ‖x +λαy‖A < ‖x‖A. As λ0 < 0 and λ > 0, we 

can find t ∈ (0, 1) such that 0 = (1 − t)λ0 + tλ. Thus, x = (1 − t)(x +λ0αy) + t(x +λαy). 
Therefore,

‖x‖A ≤ (1 − t)‖x + λ0αy‖A + t‖x + λαy‖A < (1 − t)‖x‖A + t‖x‖A = ‖x‖A,

a contradiction. Hence, y ∈ (x)A+
α or y ∈ (x)A−

α . This completes the proof of the propo-
sition. �
Remark 2.2. Note that by taking α = 1 in the above proposition, we obtain the analogous 
statements for real Hilbert spaces.

It is easy to see that approximate ε-orthogonality in a Hilbert space is symmetric. In 
our next proposition we note that ⊥ε

A relation is also symmetric.

Proposition 2.3. Let H be a Hilbert space. Let ε ∈ [0, 1) and x, y ∈ H. Then x⊥ε
Ay if and 

only if y⊥ε
Ax.

Proof. The proof follows from the fact that |〈x, y〉A| = |〈y, x〉A| for all x, y ∈ H. �
It is easy to see that A-orthogonality is homogeneous, i.e., if x, y ∈ H are such that 

x⊥Ay, then αx⊥Aβy for all α, β ∈ K. Moreover, in [5], the author proved that approx-
imate Birkhoff-James orthogonality in a Banach space (and therefore in Hilbert space) 
is homogeneous. In fact, one can easily show that ⊥ε

A relation is also homogeneous. In 
our next proposition we observe that ⊥ε(A) relation is homogeneous.
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Proposition 2.4. Let H be a Hilbert space and ε ∈ [0, 1). Then ⊥ε(A) relation is homoge-
neous.

Proof. Let x, y ∈ H be such that x⊥ε(A)y. Let α, β ∈ K (excluding the obvious case 
α = 0). Then,

‖αx + λβy‖2
A ≥ |α|2(‖x‖2

A − 2ε‖x‖A‖λ
β

α
y‖A) = ‖αx‖2

A − 2ε‖αx‖A‖λβy‖A.

This completes the proof of our proposition. �
Following Proposition 2.4, it is easy to see that if T, S ∈ BA1/2(H) are such that 

T⊥ε(A)S, then also αT⊥ε(A)βS for all α, β ∈ K. In [6], the authors proved that in 
a Hilbert space H, for x, y ∈ H, x⊥εy if and only if there exists z ∈ H such that 
x⊥Bz and ‖z− y‖ ≤ ε‖y‖. In the following theorem, we characterize (ε, A)-approximate 
orthogonality in the semi-Hilbertian structure.

Theorem 2.5. Let H be a Hilbert space. Let ε ∈ [0, 1) and x, y ∈ H. Then the following 
conditions are equivalent:

(i) x⊥ε
Ay

(ii) there exists an element z ∈ H such that x⊥Az and ‖z − y‖A ≤ ε‖y‖A.

Proof. (i) ⇒ (ii): If ‖x‖A = 0, i.e., x ∈ N(A), choose z = y. Clearly, x⊥Az and 
0 = ‖z − y‖A ≤ ε‖y‖A.
Next, we assume that ‖x‖A �= 0. Choose z = −〈x,y〉A

‖x‖2
A

x + y. Clearly, 〈x, z〉A =
− 〈x,y〉A

‖x‖2
A
〈x, x〉A + 〈x, y〉A = 0. Therefore, x⊥Az. Again,

‖z − y‖A = | − 〈x, y〉A|
‖x‖2

A

‖x‖A ≤ ε‖x‖2
A‖y‖A

‖x‖2
A

= ε‖y‖A.

(ii) ⇒ (i): Let x⊥Az be such that ‖z − y‖A ≤ ε‖y‖A. Therefore,

|〈x, y〉A| = |〈x, y − z〉A| ≤ ‖x‖A‖y − z‖A ≤ ε‖x‖A‖y‖A.

This completes the proof of the theorem. �
Clearly, in Theorem 2.5, if we consider A = I, we obtain the characterization of 

approximate ε-orthogonality [6] in a Hilbert space. Thus, Theorem 2.5 generalizes the 
concept of approximate ε-orthogonality in a Hilbert space.
It is easy to see that approximate ε-orthogonality and approximate Birkhoff-James or-
thogonality are same in a Hilbert space. Our next aim is to show the equivalence of 
(ε, A)-approximate orthogonality and (ε, A)-approximate orthogonality in the sense of 
Chmieliński in Hilbert space setting. To do so we need the following easy proposition.
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Proposition 2.6. Let H be a Hilbert space. Let x ∈ SH(A) and y ∈ H. Then

lim
λ∈R,λ→0

‖x + λy‖A − 1
λ

= Re〈x, y〉A.

Proof. Clearly,

lim
λ∈R,λ→0

‖x + λy‖A − 1
λ

= lim
λ∈R,λ→0

‖x + λy‖2
A − 1

λ(‖x + λy‖A + 1)

= lim
λ∈R,λ→0

λ(2Re〈x, y〉A + λ‖y‖2
A)

λ(‖x + λy‖A + 1)
= Re〈x, y〉A. �

In our next theorem we establish the equivalence of ⊥ε
A and ⊥ε(A) in the semi-

Hilbertian structure, which generalizes [5, Prop.2.1] in the setting of Hilbert space.

Theorem 2.7. Let H be a Hilbert space and ε ∈ [0, 1). Let x, y ∈ H. Then x⊥ε
Ay ⇔

x⊥ε(A)y.

Proof. Let x, y ∈ H be such that x⊥ε
Ay. Therefore,

‖x + λy‖2
A = ‖x‖2

A + 2Re(λ〈x, y〉A) + |λ|2‖y‖2
A

≥ ‖x‖2
A − 2|λ〈x, y〉A|

≥ ‖x‖2
A − 2ε‖x‖A‖λy‖A.

Hence x⊥ε(A)y. Thus, ⊥ε
A =⇒ ⊥ε(A).

Conversely, let x, y ∈ H be such that x⊥ε(A)y. If either ‖x‖A or ‖y‖A = 0, the result holds 
trivially. So, we assume ‖x‖A, ‖y‖A �= 0. Since ⊥ε(A) relation is homogeneous, without 
loss of generality we may assume that ‖x‖A = ‖y‖A = 1. Therefore, ‖x + λy‖2

A − 1 +
2ε|λ| ≥ 0 for all λ ∈ K. Hence, 〈x, x + λy〉A + 〈λy, x + λy〉A is real and so we have 
Re〈x, x + λy〉A + Re〈λy, x + λy〉A − 1 + 2ε|λ| ≥ 0 for all λ ∈ K. It is easy to see that 
Re〈x, x + λy〉A ≤ |〈x, x + λy〉A| ≤ ‖x + λy‖A. Thus, we have,

‖x + λy‖A + Re〈λy, x + λy〉A − 1 + 2ε|λ| ≥ 0.

Let λ0 ∈ K \ {0} and n ∈ N and λn = λ0
n . Clearly,

‖x + λny‖A + Re〈λny, x + λny〉A − 1 + 2ε|λn| ≥ 0.

Hence,

‖x + λ0
y‖A + Re〈λ0

y, x + λ0
y〉A − 1 ≥ −2ε|λ0 |.
n n n n
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So,

Re〈 λ0

|λ0|
y, x + λ0

n
y〉A +

‖x + λ0
n y‖A − 1
|λ0|
n

≥ −2ε.

Let λ0
|λ0|y = y′ and |λ0|

n = ξn. It is easy to see that ξn −→ 0 as n −→ ∞. Thus,

Re〈y′, x + ξny
′〉A + ‖x + ξny

′‖A − 1
ξn

≥ −2ε.

Therefore, by taking limit and applying Proposition 2.6, we get 2Re〈y′, x〉A ≥ −2ε, i.e., 
Re〈λ0y, x〉A ≥ −ε|λ0|. Similarly by using −λ0 instead of λ0, we get Re〈λ0y, x〉A ≤ ε|λ0|. 
Therefore, |Re〈λ0y, x〉A| ≤ ε|λ0|. Choosing λ0 = 〈y, x〉A, we obtain |〈y, x〉A| ≤ ε. Hence, 
by Proposition 2.3, we have x ⊥ε

A y. This completes the proof of the theorem. �
Next we characterize the (ε, A)-approximate orthogonality in the sense of Chmieliński 

for A-bounded operators in a complex Hilbert space.

Theorem 2.8. Let H be a complex Hilbert space and ε ∈ [0, 1). Let T, S ∈ BA1/2(H). 
Then the following conditions are equivalent:

(i) T⊥ε(A)S

(ii) for each θ ∈ [0, π), there exist sequences {xn(θ)}, {yn(θ)} ⊆ SH(A) such that
(a) limn→∞ ‖Txn(θ)‖A = limn→∞ ‖Tyn(θ)‖A = ‖T‖A.
(b) limn→∞ Re(e−iθ〈Txn(θ), Sxn(θ)〉A) ≥ −ε‖T‖A‖S‖A.
(c) limn→∞ Re(e−iθ〈Tyn(θ), Syn(θ)〉A) ≤ ε‖T‖A‖S‖A.

Proof. Suppose (i) holds. Therefore, ‖T + λS‖2
A ≥ ‖T‖2

A − 2ε‖T‖A‖λS‖A for all λ ∈ K. 
First we choose a sequence {λn} ⊆ K, where λn = eiθ

n , where θ ∈ [0, π) and n ∈ N. 
Clearly, for each n ∈ N, there exists an element xn(θ) ∈ SH(A) such that

‖(T + eiθ

n
S)xn(θ)‖2

A > ‖T‖2
A − 2 ε

n
‖T‖A‖S‖A − 1

n2 .

Hence,

‖Txn(θ)‖2
A + 2

n
Re(e−iθ〈Txn(θ), Sxn(θ)〉A) + 1

n2 ‖Sxn(θ)‖2
A > ‖T‖2

A − 2 ε

n
‖T‖A‖S‖A − 1

n2 .

Thus,

‖Txn(θ)‖2
A > ‖T‖2

A − 2
n
Re(e−iθ〈Txn(θ), Sxn(θ)〉A) − 1

n2 ‖S‖
2
A − 2 ε

n
‖T‖A‖S‖A − 1

n2 .

It is easy to see that {‖Txn(θ)‖A}, {〈Txn(θ), Sxn(θ)〉A} are bounded sequences. So, 
passing onto a subsequence if necessary, it follows that limn→∞ ‖Txn(θ)‖2

A ≥ ‖T‖2
A. 
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Again by the fact xn(θ) ∈ SH(A), clearly, ‖Txn(θ)‖2
A ≤ ‖T‖2

A for all n ∈ N. Therefore, 
limn→∞ ‖Txn(θ)‖A = ‖T‖A. Thus,

2
n
Re(e−iθ〈Txn(θ), Sxn(θ)〉A) > (‖T‖2

A − ‖Txn(θ)‖2
A) − 2 ε

n
‖T‖A‖S‖A − 1

n2 ‖S‖
2
A − 1

n2 .

So,

Re(e−iθ〈Txn(θ), Sxn(θ)〉A) > n

2 (‖T‖2
A − ‖Txn(θ)‖2

A) − ε‖T‖A‖S‖A − 1
2n‖S‖

2
A − 1

2n.

Therefore,

Re(e−iθ〈Txn(θ), Sxn(θ)〉A) > −ε‖T‖A‖S‖A − 1
2n‖S‖

2
A − 1

2n.

Hence, by passing onto a subsequence if necessary and by taking limit, we obtain

lim
n→∞

Re(e−iθ〈Txn(θ), Sxn(θ)〉A) ≥ −ε‖T‖A‖S‖A.

Similarly, for λn = −eiθ

n , we can find a sequence {yn(θ)} ⊆ SH(A), such that

lim
n→∞

‖Tyn(θ)‖A = ‖T‖A

and

lim
n→∞

Re(e−iθ〈Tyn(θ), Syn(θ)〉A) ≤ ε‖T‖A‖S‖A.

This completes the proof of (i) ⇒ (ii).
Next suppose (ii) holds. First, we may assume that λ = |λ|eiθ ∈ K, where θ ∈ [0, π). 

Therefore,

‖T + λS‖2
A ≥ lim

n→∞
‖(T + |λ|eiθS)xn(θ)‖2

A

= lim
n→∞

(‖Txn(θ)‖2
A + 2|λ|Re(e−iθ〈Txn(θ), Sxn(θ)〉A) + |λ|2‖Sxn(θ)‖2

A)

≥ lim
n→∞

(‖Txn(θ)‖2
A + 2|λ|Re(e−iθ〈Txn(θ), Sxn(θ)〉A)

≥ ‖T‖2
A − 2ε‖T‖A‖λS‖A.

Similarly, for λ = −|λ|eiθ ∈ K, where θ ∈ [0, π), we can show that ‖T + λS‖2
A ≥

‖T‖2
A − 2ε‖T‖A‖λS‖A. Thus T⊥ε(A)S and so (ii) ⇒ (i). This completes the proof of the 

theorem. �
The characterization of (ε, A)-approximate orthogonality in the sense of Chmieliński 

for A-bounded operators in a real Hilbert space admits a nicer form due to the fact that 
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in real normed space N and for x, y ∈ N , x⊥ε
By if and only if there exists z ∈ 〈{x, y}〉

such that x⊥Bz and ‖z− y‖ ≤ ε‖y‖ (Theorem 2.2 of [6]). In order to characterize (ε, A)-
approximate orthogonality in the sense of Chmieliński for A-bounded operators in a real 
Hilbert space first we prove the following proposition.

Proposition 2.9. Let H be a real Hilbert space. Let P be the orthogonal projection on 
R(A). Let A0 = A |R(A). Let C ∈ BA1/2(H) and C̃ = PC |R(A). Then,

(i) ‖C‖A = ‖C̃‖A0 for all C ∈ BA1/2(H).
(ii) T̃ +S̃ = T̃ + S for all T, S ∈ BA1/2(H).

(iii) λ̃C = λC̃ for all C ∈ BA1/2(H) and λ ∈ R.
(iv) MC

A ∩R(A) = M C̃
A0

for all C ∈ BA1/2(H).
(v) SH(A) ∩R(A) = SR(A)(A0).

(vi) If MC
A ∩R(A) = SH(A) ∩R(A) for some C ∈ BA1/2(H), then MC

A = SH(A).

Proof. Note that, if z ∈ N(A) and C ∈ BA1/2(H), clearly, ‖Cz‖A = 0.
(i) Let C ∈ BA1/2(H). Clearly,

‖C‖A = sup{‖Cx‖A : ‖x‖A = 1}

= sup{‖Cu + Cv‖A : ‖u + v‖A = 1, x = u + v, u ∈ N(A), v ∈ R(A)}

= sup{‖Cv‖A : ‖v‖A = 1, v ∈ R(A)}

= sup{‖PCv‖A : ‖v‖A = 1, v ∈ R(A)}

= sup{‖C̃v‖A0 : ‖v‖A0 = 1, v ∈ R(A)}

= ‖C̃‖A0 .

We omit the proof of (ii),(iii),(iv),(v); as they follow trivially.
(vi) Suppose on the contrary that MC

A �= SH(A). Then, there exists x ∈ SH(A) such 
that x /∈ MC

A . As H = N(A) ⊕ R(A), x can be uniquely written as x = u + v, where 
u ∈ N(A) and v ∈ R(A). As u ∈ N(A), ‖u‖A = 0 and therefore, ‖x‖A = ‖v‖A = 1. 
Hence, v ∈ SH(A) ∩ R(A) = MC

A ∩ R(A). So, ‖Cv‖A = ‖C‖A. As ‖Cu‖A = 0, it follows 
that ‖Cv‖A = ‖Cx‖A = ‖C‖A. Thus, x ∈ MC

A , a contradiction. �
Remark 2.10. It is clear from (i) of Proposition 2.9 that for any T, S ∈ BA1/2(H) and 
ε ∈ [0, 1), S⊥ε(A)T ⇔ S̃⊥ε(A0)T̃ and S⊥B

AT ⇔ S̃⊥B
A0

T̃ .

Now we are ready to characterize (ε, A)-approximate orthogonality in the sense of 
Chmieliński for A-bounded operators in real Hilbert space.

Theorem 2.11. Let H be a real Hilbert space and T, S ∈ BA1/2(H). Let ε ∈ [0, 1). Then 
the following conditions are equivalent:
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(i) T ⊥ε(A) S

(ii) there exists a sequence {xn} ⊆ SH(A) such that
(a) limn→∞ ‖Txn‖A = ‖T‖A.
(b) limn→∞ |〈Txn, Sxn〉A| ≤ ε‖T‖A‖S‖A.

Proof. As the sufficient part of the theorem follows trivially, we only prove the necessary 
part of the theorem.
As A is positive definite on R(A), 

(
R(A), ‖ ·‖A

)
is a normed space. Let A0 = A |R(A). Let 

P be the orthogonal projection on R(A). Let T̃ = PT |R(A). Clearly, 
(
B

A
1/2
0

(R(A)), ‖ ·
‖A0

)
is a normed space. As T ⊥ε(A) S, it is easy to see that T̃ ⊥ε(A0) S̃. Therefore, by [6, 

Th.2.2], there exists Ũ ∈ B
A

1/2
0

(R(A)) such that T̃⊥B
A0

Ũ and ‖S̃ − Ũ‖A0 ≤ ε‖S̃‖A0 . As 
T̃⊥B

A0
Ũ , by [20, Th.2.2], there exists a sequence of A0-unit vectors {xn} in R(A) such 

that limn→∞ ‖T̃ xn‖A0 = ‖T̃‖A0 and limn→∞〈T̃ xn, Ũxn〉A0 = 0. Thus

|〈T̃ xn, S̃xn〉A0 | ≤ |〈T̃ xn, S̃xn − Ũxn〉A0 | + |〈T̃ xn, Ũxn〉A0 |

≤ ‖T̃‖A0‖S̃ − Ũ‖A0 + |〈T̃ xn, Ũxn〉A0 |

Hence, by taking limit, we obtain limn→∞ |〈T̃ xn, S̃xn〉A0 | ≤ ε‖T̃‖A0‖S̃‖A0 . As A
is positive, N(A) = N(A1/2). Thus, we have, 〈T̃ xn, S̃xn〉A0 = 〈Txn, Sxn〉A and 
‖Txn‖A = ‖T̃ xn‖A0 . Also note that ‖T‖A = ‖T̃‖A0 . Therefore, limn→∞ |〈Txn, Sxn〉A| ≤
ε‖T‖A‖S‖A. �
Remark 2.12. In [6, Th.3.2], the authors proved that if T, S ∈ L(H), where H is a 
real Hilbert space and ε ∈ [0, 1), then T⊥B

ε S if and only if there exists a sequence 
{xn} ⊆ SH such that limn→∞ ‖Txn‖ = ‖T‖ and limn→∞ |〈Txn, Sxn〉| ≤ ε‖T‖‖S‖. Thus 
Theorem 2.11 generalizes [6, Th.3.2].

Next we characterize the (ε, A)-approximate orthogonality in the sense of Chmieliński 
for A-bounded compact operators in complex Hilbert space setting.

Theorem 2.13. Let H be a complex Hilbert space and ε ∈ [0, 1). Suppose BH(A) ∩R(A) is 
bounded with respect to ‖ · ‖. Let T, S ∈ BA1/2(H) ∩K(H). Then the following conditions 
are equivalent:

(i) T⊥ε(A)S

(ii) for each θ ∈ [0, π), there exist xθ, yθ ∈ SH(A) such that
(a) ‖Txθ‖A = ‖Tyθ‖A = ‖T‖A.
(b) Re(e−iθ〈Txθ, Sxθ〉A) ≥ −ε‖T‖A‖S‖A.
(c) Re(e−iθ〈Tyθ, Syθ〉A) ≤ ε‖T‖A‖S‖A.
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Proof. (ii) ⇒ (i): First we may assume that λ = |λ|eiθ ∈ K, where θ ∈ [0, π). Therefore,

‖T + λS‖2
A ≥ ‖(T + |λ|eiθS)xθ‖2

A

= ‖Txθ‖2
A + 2|λ|Re(e−iθ〈Txθ, Sxθ〉A) + |λ|2‖Sxθ‖2

A

≥ ‖T‖2
A − 2ε‖T‖A‖λS‖A.

Similarly, for λ = −|λ|eiθ ∈ K, where θ ∈ [0, π), we can show that ‖T + λS‖2
A ≥

‖T‖2
A − 2ε‖T‖A‖λS‖A. Hence, T⊥ε(A)S.

(i) ⇒ (ii): By Theorem 2.8, for each θ ∈ [0, π), there exist sequences {xn(θ)}, {yn(θ)} ⊆
SH(A) such that

(a) limn→∞ ‖Txn(θ)‖A = limn→∞ ‖Tyn(θ)‖A = ‖T‖A.
(b) limn→∞ Re(e−iθ〈Txn(θ), Sxn(θ)〉A) ≥ −ε‖T‖A‖S‖A.
(c) limn→∞ Re(e−iθ〈Tyn(θ), Syn(θ)〉A) ≤ ε‖T‖A‖S‖A.

As A ∈ L(H) is positive, H = N(A) ⊕R(A). Therefore, each xn(θ) can be uniquely written 
as xn(θ) = un(θ) + vn(θ), where un(θ) ∈ N(A) and vn(θ) ∈ R(A). As un(θ) ∈ N(A), it is 
easy to see that ‖un(θ)‖A = 0 and therefore, ‖xn(θ)‖A = ‖vn(θ)‖A = 1 for each n ∈ N. 
Thus, we conclude that {vn(θ)} ⊆ SH(A) ∩ R(A). Since T, S ∈ BA1/2(H), it is easy 
to see that ‖Tun(θ)‖A = ‖Sun(θ)‖A = 0 and therefore Tun(θ), Sun(θ) ∈ N(A) for all 
n ∈ N. Hence, ‖Txn(θ)‖A = ‖Tvn(θ)‖A and ‖Sxn(θ)‖A = ‖Svn(θ)‖A for each n ∈ N. 
As A is positive, N(A) = N(A1/2) and so A1/2(Tun(θ)) = A1/2(Sun(θ)) = θ. Clearly, 
limn→∞ ‖Txn(θ)‖A = limn→∞ ‖Tvn(θ)‖A = ‖T‖A. Also,

−ε‖T‖A‖S‖A ≤ lim
n→∞

Re(e−iθ〈Txn(θ), Sxn(θ)〉A)

= lim
n→∞

Re(e−iθ〈A1/2(Tun(θ) + Tvn(θ)), A1/2(Sun(θ) + Svn(θ))〉)

= lim
n→∞

Re(e−iθ〈A1/2Tvn(θ), A
1/2Svn(θ)〉)

= lim
n→∞

Re(e−iθ〈Tvn(θ), Svn(θ)〉A).

Since, H is reflexive and BH(A) ∩ R(A) is closed, convex and bounded with respect to 
‖ · ‖, BH(A) ∩ R(A) is weakly compact with respect to ‖ · ‖. Thus, the sequence {vn(θ)}
has a weakly convergent subsequence. Without loss of generality we may assume that 
vn(θ) ⇀ xθ with respect to ‖ · ‖ in H, for some xθ ∈ BH(A) ∩R(A). Since, T, S ∈ K(H), 
it follows that Tvn(θ) −→ Txθ and Svn(θ) −→ Sxθ with respect to ‖ · ‖ in H. Therefore,

lim
n→∞

‖Txn(θ)‖A = lim
n→∞

‖Tvn(θ)‖A = ‖Txθ‖A = ‖T‖A.

Thus, xθ ∈ SH(A). Also we have,
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lim
n→∞

Re(e−iθ〈Txn(θ), Sxn(θ)〉A) = lim
n→∞

Re(e−iθ〈Tvn(θ), Svn(θ)〉A)

= Re(e−iθ〈Txθ, Sxθ〉A)

≥ −ε‖T‖A‖S‖A.

Similarly, we can find yθ ∈ SH(A) such that ‖Tyθ‖A = ‖T‖A and Re(e−iθ〈Tyθ, Syθ〉A) ≤
ε‖T‖A‖S‖A. �

The following corollary is an easy consequence of the above theorem.

Corollary 2.14. Let H be a complex Hilbert space and ε ∈ [0, 1). Suppose BH(A)∩R(A) is 
bounded with respect to ‖ ·‖. Let T, S ∈ BA1/2(H) ∩K(H) and MT

A = {±eiαx, α ∈ [0, π)}. 
Then T⊥ε(A)S if and only if ‖Tx‖A = ‖T‖A and
|Re(e−iθ〈Tx, Sx〉A)| ≤ ε‖T‖A‖S‖A for each θ ∈ [0, π).

The characterization of (ε, A)-approximate orthogonality in the sense of Chmieliński 
for A-bounded compact operators in a complex Hilbert space is obtained by two A-unit 
vectors (Theorem 2.13). But in a real Hilbert space, (ε, A)-approximate orthogonality 
in the sense of Chmieliński for A-bounded compact operators can be characterized by a 
single A-unit vector, which will be discussed in our next theorem.

Theorem 2.15. Let H be a real Hilbert space such that BH(A) ∩ R(A) is bounded with 
respect to ‖ · ‖. Let ε ∈ [0, 1). Let T, S ∈ BA1/2(H) ∩K(H). Then T ⊥ε(A) S if and only if 
there exists an A-unit vector x, such that ‖Tx‖A = ‖T‖A and |〈Tx, Sx〉A| ≤ ε‖T‖A‖S‖A.

Proof. Since the sufficient part follows trivially, we only prove the necessary part 
of the theorem. By Theorem 2.11, T ⊥ε(A) S if and only if there exists a se-
quence {xn} ⊆ SH(A) ∩ R(A) (⊆ SH(A)) such that limn→∞ ‖Txn‖A = ‖T‖A and 
limn→∞ |〈Txn, Sxn〉A| ≤ ε‖T‖A‖S‖A. As BH(A) ∩ R(A) is bounded with respect to 
‖ · ‖, clearly, BH(A) ∩ R(A) is weakly compact with respect to ‖ · ‖. Thus, the sequence 
{xn} has a weakly convergent subsequence. Without loss of generality we may assume 
that xn ⇀ x with respect to ‖ · ‖ in H, for some x ∈ BH(A) ∩R(A). Since T, S ∈ K(H), 
it follows that Txn −→ Tx and Sxn −→ Sx with respect to ‖ · ‖ in H. Therefore,

lim
n→∞

‖Txn‖A = ‖Tx‖A = ‖T‖A.

Thus, x ∈ SH(A). Also we have, limn→∞ |〈Txn, Sxn〉A| = |〈Tx, Sx〉A| ≤ ε‖T‖A‖S‖A. 
This completes the proof. �
Remark 2.16. Note that in Theorem 2.15, if we consider ε = 0, Theorem 2.8 of [17] is 
obtained. Moreover, if H is finite-dimensional, A = I and ε = 0, Bhatia-S̆emrl Theorem 
[3, Th.1.1] follows immediately.
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In [17], the authors proved the following:

Theorem 2.17. Let H be a Hilbert space and ε ∈ [0, 1). Suppose BH(A) ∩R(A) is bounded 
with respect to ‖ · ‖. Let T, S ∈ BA1/2(H) ∩K(H). Then T⊥B

AS if and only if there exists 
v ∈ MT

A such that Tv⊥ASv.

Hence, A-orthogonality of A-bounded compact operator is determined by some A-unit 
vector v ∈ MT

A . In our next theorem we establish that (ε, A)-approximate orthogonality 
in the sense of Chmieliński of A-bounded compact operator can be determined by some 
A-unit vector x ∈ MT

A under some additional conditions.

Theorem 2.18. Let H be a real Hilbert space and ε ∈ [0, 1). Suppose BH(A) ∩ R(A) is 
bounded with respect to ‖ · ‖. Let T, S ∈ BA1/2(H) ∩K(H) be such that MT

A ⊆ MS
A. Then 

T⊥ε(A)S if and only if Tx⊥ε(A)Sx, where x ∈ MT
A .

Proof. By Theorem 2.15, T⊥ε(A)S if and only if there exists x ∈ MT
A such that 

|〈Tx, Sx〉A| ≤ ε‖T‖A‖S‖A. As MT
A ⊆ MS

A , it is easy to see that, |〈Tx, Sx〉A| ≤
ε‖T‖A‖S‖A = ε‖Tx‖A‖Sx‖A. Hence Tx⊥ε(A)Sx.
Conversely let λ ∈ R. Therefore,

‖T + λS‖2
A ≥ ‖(T + λS)x‖2

A ≥ ‖Tx‖2
A − 2|λ〈Tx, Sx〉A| ≥ ‖T‖2

A − 2ε‖T‖A‖λS‖A.

Hence, T⊥ε(A)S. This completes the proof of the theorem. �
3. Symmetry of (ε, A)-approximate orthogonality of operators

By Theorem 2.7 and Proposition 2.3, it is easy to see that x⊥ε(A)y if and only if 
y⊥ε(A)x, where x, y ∈ H. But this is not necessarily true in case of (ε, A)-approximate 
orthogonality of operators in the sense of Chmieliński. We begin this section with an 
easy example to illustrate this fact.

Example 3.1. Consider R2 with usual inner product. Let A(x, y) = (x, 2y) for all (x, y) ∈
R2. Let T (x, y) = (2x, y) and S(x, y) = (0, y) for all (x, y) ∈ R2. Let ε = 1

3 . We show 
that T⊥ε(A)S but S �⊥ε(A) T . Clearly, ‖T‖A = 2 and ‖S‖A = 1. It is easy to see 
that MT

A = {±(1, 0)} and MS
A = {±(0, 1√

2)}. Further note that |〈T (1, 0), S(1, 0)〉A| =
0 ≤ ε‖T‖A‖S‖A but |〈S(0, 1√

2), T (0, 1√
2)〉A| = 1 � ε‖T‖A‖S‖A. Hence, T⊥ε(A)S but 

S �⊥ε(A) T .

It is now natural to ask if T, S ∈ BA1/2(H), then under what conditions T⊥ε(A)S

implies S ⊥ε(A) T . Our next proposition gives an easy sufficient condition fot this to 
happen. The proof is omitted as it follows directly from Theorem 2.15 and Theorem 2.18.
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Proposition 3.2. Let H be a real Hilbert space and ε ∈ [0, 1). Suppose BH(A) ∩ R(A) is 
bounded with respect to ‖ · ‖. Let T, S ∈ BA1/2(H) ∩ K(H) be such that MT

A ⊆ MS
A. If 

T⊥ε(A)S, then S⊥ε(A)T .

In the following corollary we show that T⊥ε(A)S ⇔ S⊥ε(A)T holds under some addi-
tional condition.

Corollary 3.3. Let H be a real Hilbert space and ε ∈ [0, 1). Suppose BH(A) ∩ R(A) is 
bounded with respect to ‖ · ‖. Let T, S ∈ BA1/2(H) ∩K(H) be such that MT

A = MS
A. Then 

T⊥ε(A)S if and only if S⊥ε(A)T .

Proof. The proof follows trivially from Proposition 3.2. �
In [9], the authors proved that in a finite-dimensional real Hilbert space, an operator 

is right symmetric if and only if it is an isometry. In our next theorem, we obtain the 
characterization of (ε, A)-approximate right symmetric A-bounded operator in the sense 
of Chmieliński by means of A-isometry. Note that an element T ∈ BA1/2(H) is said to 
be A-isometry if MT

A = SH(A).

Theorem 3.4. Let H be a real Hilbert space such that dimR(A) < ∞. Let ε ∈ [0, 1)
and T ∈ BA1/2(H). Then T is (ε, A)-approximate right symmetric point in the sense of 
Chmieliński if and only if T is an A-isometry.

Proof. First we consider T to be an A-isometry. Let S ∈ BA1/2(H) be such that S⊥ε(A)T . 
Since, MT

A = SH(A), by Theorem 2.11, it follows that T⊥ε(A)S.
Next we prove the necessary part of the theorem. Let A0 = A |R(A). Let P be the 

orthogonal projection on R(A). Let T̃ = PT |R(A). Suppose on the contrary that MT
A �=

SH(A). Then, by (vi) of Proposition 2.9, M T̃
A0

= MT
A ∩ R(A) �= SH(A) ∩ R(A). Without 

loss of generality we assume that ‖T‖A = ‖T̃‖A0 = 1. By [17, Th.2.4], M T̃
A0

is the 
A0-unit sphere of some subspace H0 of R(A). As A0 is positive definite on R(A), it 
follows that 〈 , 〉A0 , ‖ · ‖A0 are inner product and norm on R(A), respectively. As R(A)
is finite-dimensional, without loss of generality we assume that {x1, x2, ..., xm} be an 
A0-orthonormal basis of H0. Then, {x1, x2, ..., xm, xm+1, ..., xn} is an A0-orthonormal 
basis of R(A). By [17, Th.2.11], it is clear that

‖
m∑
i=1

ciT̃ xi‖2
A0

= ‖T̃‖2
A0

‖
m∑
i=1

cixi‖2
A0

=
m∑
i=1

|ci|2.

As M T̃
A0

�= SH(A)∩R(A), it follows that T̃ (H0) �= R(A). So, there exists an A0-unit vector 
w0 ∈ R(A) such that w0⊥A0 T̃ (H0). Thus, for w0, T̃ xm+1, by (i) of Proposition 2.1, either

‖w0 + λT̃xm+1‖A0 ≥ 1 ∀λ ≥ 0 or ‖w0 + λT̃xm+1‖A0 ≥ 1 ∀λ ≤ 0.
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Let ‖w0 + λT̃xm+1‖A0 ≥ 1 ∀λ ≥ 0. Consider,

S̃ : R(A) −→ R(A)

S̃xi = −T̃ xi for all i ∈ {1, 2, ...,m}
S̃xi = w0 for i = m + 1

S̃xi = 0 for all i ∈ {m + 2,m + 3, ..., n}.

Now we show that S̃⊥ε(A0)T̃ . Let z =
∑n

i=1 cixi ∈ SH(A) ∩ R(A). It is easy to see 
that 

∑n
i=1 |ci|2 = 1. Clearly, ‖S̃z‖2

A0
= ‖ 

∑m
i=1 ciT̃ xi‖2

A0
+ c2m+1 =

∑m
i=1 |ci|2 + c2m+1 ≤∑n

i=1 |ci|2 = 1. We also see that ‖S̃xm+1‖A0 = 1. Thus, ‖S̃‖A0 = 1. Further note that 
xi ∈ M S̃

A0
for all i ∈ {1, 2, ..., m + 1}. Now for λ ≥ 0,

‖S̃ + λT̃‖A0 ≥ ‖(S̃ + λT̃ )xm+1‖A0 = ‖w0 + λT̃xm+1‖A0 ≥ 1.

For λ ≤ 0,

‖S̃ + λT̃‖A0 ≥ ‖(S̃ + λT̃ )xm‖A0 = ‖ − T̃ xm + λT̃xm‖A0 ≥ 1.

Therefore, S̃⊥B
A0

T̃ and so S̃⊥ε(A0)T̃ . Next we show that T̃ �⊥ε(A0) S̃. It is easy to see 

that for any x ∈ M T̃
A0

, |〈T̃ x, S̃x〉A0 | = ‖T̃ x‖2
A0

= 1 > ε. As R(A) is finite-dimensional, 
T̃ , S̃ are compact operators with respect to ‖ · ‖ on R(A). Hence, by Theorem 2.15, 
T̃ �⊥ε(A0) S̃. Consider U : H −→ H by

U(x) = S̃x, x ∈ R(A) and U(x) = 0, x ∈ N(A).

It is easy to see that Ũ = S̃. Thus, by Remark 2.10, U⊥ε(A)T but T �⊥ε(A) U . This 
completes the proof of the theorem. �

As a consequence of Theorem 3.4, we can immediately obtain the following:

Corollary 3.5. Let H be a finite-dimensional real Hilbert space. Let ε ∈ [0, 1) and T ∈
L(H). Then T is approximate right symmetric if and only if T is an isometry.

Remark 3.6. By Theorem 3.4, it follows that if H is finite-dimensional and T ∈ BA1/2(H), 
then T is (ε, A)-approximate right symmetric point in the sense of Chmieliński if and 
only if T is A-isometry. Also note that in Corollary 3.5, if we consider ε = 0, we obtain the 
characterization of right symmetric point in L(H). Hence, Theorem 3.4 is a generalization 
of [9, Th.2.7] and [18, Th.4.4] in finite-dimensional case.

Now we obtain the characterization of (ε, A)-approximate right symmetric point in 
the sense of Chmieliński for A-bounded compact operators in infinite-dimensional Hilbert 
space setting.
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Theorem 3.7. Let H be an infinite-dimensional separable real Hilbert space. Suppose 
BH(A) ∩ R(A) is bounded with respect to ‖ · ‖ and dimR(A) = ∞. Let ε ∈ [0, 1) and 
T ∈ BA1/2(H) ∩K(H). Then T is (ε, A)-approximate right symmetric point in the sense 
of Chmieliński if and only if ‖T‖A = 0.

Proof. We only prove the necessary part of the theorem, as the sufficient part follows 
trivially. Suppose on the contrary that ‖T‖A �= 0. Without loss of generality we assume 
that ‖T‖A = 1. Let A0 = A |R(A). Let P be the orthogonal projection on R(A). Let 
T̃ = PT |R(A). Then, ‖T̃‖A0 = 1. As A0 is positive definite on R(A), ‖ · ‖A0 and 〈 . 〉A0

are norm and inner product on R(A), respectively. It is easy to see that ‖ · ‖ and ‖ · ‖A0

are equivalent norms on R(A) ([17]). Next we show that, if T ∈ BA1/2(H) ∩ K(H) and 
A is positive definite on R(A), then MT

A ∩ R(A) �= SH(A) ∩ R(A). Clearly, MT
A ∩ R(A)

is compact with respect to ‖ · ‖ ([17]). Also note that, as A is positive definite on R(A), 
BH(A) ∩ R(A) is the unit ball of R(A) with respect to ‖ · ‖A0 . As R(A) is infinite-
dimensional, BH(A) ∩R(A) is not compact with respect to ‖ · ‖A0 . As ‖ · ‖ and ‖ · ‖A0 are 
equivalent on R(A), it follows that BH(A) ∩ R(A) is not compact with respect to ‖ · ‖. 
Therefore, MT

A ∩R(A) �= SH(A)∩R(A). Now we are ready to construct S̃ ∈ BA01/2(R(A))
such that S̃⊥ε(A0)T̃ but T̃ �⊥ε(A0) S̃.
By [17, Th.2.4], MT

A ∩ R(A) is A-unit sphere of some subspace H0 of R(A). Therefore, 
M T̃

A0
is A0-unit sphere of some subspace H0. Let {xα, α ∈ Λ1} be an A0-orthonormal 

basis of H0. Extend this to a A0-orthonormal basis {xα, yβ , α ∈ Λ1, β ∈ Λ2} of R(A). 
Clearly, T̃ (H0) �= R(A), otherwise T̃ (BH0) = BH(A) ∩R(A) = BH(A) ∩ R(A) and as T̃
is compact on R(A), it follows that BH(A) ∩ R(A) is compact with respect to ‖ · ‖, a 
contradiction. Therefore, there exists w0 ∈ SH(A) ∩R(A) such that w0 ⊥A0 T̃ (H0). Let 
β0 ∈ Λ2. Hence, for w0, T̃ yβ0 , in view of (i) of Proposition 2.1, either ‖w0+λT̃yβ0‖A0 ≥ 1
for all λ ≥ 0 or ‖w0 + λT̃ yβ0‖A0 ≥ 1 for all λ ≤ 0. Without loss of generality we assume 
that ‖w0 + λT̃ yβ0‖A0 ≥ 1 for all λ ≥ 0. Define a map S̃ : R(A) −→ R(A) by

S̃xα = −T̃ xα, α ∈ Λ1,

S̃yβ = w0, β = β0,

S̃yβ = 0, β �= β0.

Let z =
∑

cαi
xαi

+
∑

dβi
yβi

∈ SH(A)∩R(A). As ‖T̃ xαi
‖A0 = ‖T̃‖A0 = 1, for all αi ∈ Λ1, 

applying [17, Th.2.4] and by the fact w0⊥A0 T̃ (H0), it follows that

‖S̃z‖2
A0

= ‖
∑

cαi
T̃ xαi

‖2
A0

+ d2
β0

=
∑

c2αi
+ d2

β0
≤ 1.

Thus, ‖S̃‖A0 = 1. Now for any λ ≥ 0, we have

‖S̃ + λT̃‖A0 ≥ ‖(S̃ + λT̃ )yβ0‖A0 ≥ 1.

Similarly for any λ ≤ 0, we obtain
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‖S̃ + λT̃‖A0 ≥ ‖(S̃ + λT̃ )xα‖A0 ≥ 1.

Hence, S̃⊥ε(A0)T̃ .
Next we show that T̃ �⊥ε(A0) S̃. Let {xn} ⊆ SH(A)∩R(A) such that ‖T̃ xn‖A0 −→ ‖T̃‖A0 . 
As BH(A) ∩ R(A) is closed, convex and bounded with respect to ‖ · ‖, BH(A) ∩ R(A)
is weakly compact with respect to ‖ · ‖. Thus, xn ⇀ x with respect to ‖ · ‖ for some 
x ∈ BH(A) ∩ R(A). As T̃ is a compact operator on R(A), it follows that T̃ xn −→ T̃ x

with respect to ‖ · ‖ and ‖T̃ x‖A0 = ‖T̃‖A0 . Hence, x ∈ M T̃
A0

. As S̃ ∈ BA01/2(R(A)), it is 
easy to see that S̃xn ⇀ S̃x with respect to ‖ · ‖. As 〈 , 〉A0 is inner product on R(A), 
〈T̃ xn, S̃xn〉A0 −→ 〈T̃ x, S̃x〉A0 . But for any x ∈ M T̃

A0
, we have |〈T̃ x, S̃x〉A0 | = ‖T̃ x‖2

A0
=

1 > ε. Thus, T̃ �⊥ε(A0) S̃. Consider U : H −→ H by

Ux = S̃x, x ∈ R(A) and Ux = 0, x ∈ N(A).

Clearly, Ũ = S̃. Therefore, by Remark 2.10, U ⊥ε(A) T but T �⊥ε(A) U . �
Remark 3.8. In [9], the authors proved that in infinite-dimensional Hilbert space setting, 
any compact operator is right symmetric if and only if it is zero operator. Thus our 
theorem generalizes [9, Th.2.8].

As a consequence of Theorem 3.7, we can immediately establish the following corollary, 
the proof of which is omitted as it is now trivial.

Corollary 3.9. Let H be an infinite-dimensional separable real Hilbert space. Let ε ∈ [0, 1)
and T ∈ K(H). Then T is approximate right symmetric if and only if T is the zero 
operator.

Next we characterize (ε, A)-approximate left symmetry in the sense of Chmieliński for 
A-bounded compact operator in H. To do so we need the following lemmas.

Lemma 3.10. Let ε1, ε ∈ [0, 1) and ε1 > ε. Then there exists
a ∈ (εε1 −

√
1 − ε2

√
1 − ε21, εε1 +

√
1 − ε2

√
1 − ε21) such that

(i) aε1 > ε.
(ii) aε1−ε√

1−ε21b
< 1, where a2 + b2 = 1 and b > 0.

Proof. Choose a = εε1 + (1 − 2t)
√

1 − ε2
√

1 − ε21, where 0 < t < 1
2 (1 − ε

√
1−ε21

ε1
√

1−ε2
).

(i) As ε1 > ε and ε1, ε ∈ [0, 1), it is easy to see that 0 ≤ ε
√

1−ε21
ε1

√
1−ε2

< 1. As t ∈ (0, 1), it 
follows that a ∈ (εε1 −

√
1 − ε2

√
1 − ε21, εε1 +

√
1 − ε2

√
1 − ε21) ⊂ (−1, 1). Therefore,

aε1 > εε21 + ε
√

1 − ε21√
2
ε1
√

1 − ε2
√

1 − ε21 = εε21 + ε(1 − ε21) = ε.

ε1 1 − ε



J. Sen et al. / Bull. Sci. math. 170 (2021) 102997 19
(ii) Suppose on the contrary that aε1−ε√
1−ε21b

≥ 1. As aε1 − ε, 
√

1 − ε21b > 0, we have

aε1 − ε ≥
√

1 − ε21b

a2ε21 − 2aεε1 + ε2 ≥ (1 − ε21)b2

ε21 − 2aεε1 + ε2 − b2 ≥ 0

a2 − 2aεε1 + ε21 + ε2 − 1 ≥ 0.

But then a ≥ εε1 +
√

1 − ε2
√

1 − ε21 or a ≤ εε1 −
√

1 − ε2
√

1 − ε21, a contradiction. �
Lemma 3.11. Let H be an infinite-dimensional real Hilbert space. Let BH(A) ∩ R(A) be 
bounded with respect to ‖ · ‖. Let ε ∈ [0, 1) and T ∈ BA1/2(H) ∩ K(H). If MT

A ∩ R(A)
contains more than one pair of points, then T cannot be (ε, A)-approximate left symmetric 
point in the sense of Chmieliński.

Proof. Let A0 = A |R(A). Let P be the orthogonal projection on R(A). Let T̃ = PT |R(A). 
Since, M T̃

A0
is A0-unit sphere of some subspaces say H0 of R(A), it follows that there 

exist z1, z2 ∈ SH(A) ∩ R(A) such that z1⊥A0z2 and ‖T̃ z1‖A0 = ‖T̃ z2‖A0 = ‖T̃‖A0 . 
Without loss of generality we assume that ‖T̃‖A0 = 1. Clearly, R(A) = 〈{z2}〉 ⊕ H, 
where H = 〈{z2}〉⊥A0 . We define a map S̃ : R(A) −→ R(A) by S̃(H) = θ, and 
S̃z2 = T̃ z2. Clearly, S̃ is compact with respect to ‖ · ‖ and M S̃

A0
= {±z2} and ‖S̃‖A0 = 1. 

As S̃z1 = θ, it follows that |〈T̃ z1, S̃z1〉A0 | = 0 and so T̃ ⊥ε(A0) S̃. But |〈S̃z2, T̃ z2〉A0 | =
‖T̃ z2‖2

A0
= 1 > ε. Hence, S̃ �⊥ε(A0) T̃ . This completes the proof. �

Now we are ready to characterize (ε, A)-approximate left symmetric point in the sense 
of Chmieliński for A-bounded compact operator in infinite-dimensional Hilbert spaces.

Theorem 3.12. Let H be an infinite-dimensional separable real Hilbert space. Suppose 
BH(A) ∩R(A) is bounded with respect to ‖ · ‖. Let ε ∈ [0, 1) and T ∈ BA1/2(H) ∩K(H). 
Then T is (ε, A)-approximate left symmetric point in the sense of Chmieliński if and 
only if ‖T‖A = 0.

Proof. Sufficient part of the theorem follows trivially. We only prove the necessary part.
Suppose on the contrary that ‖T‖A �= 0. Without loss of generality, we assume that 
‖T‖A = 1. Let A0 = A |R(A). Let P be the orthogonal projection on R(A). Let T̃ =
PT |R(A). As ‖T‖A = 1, therefore ‖T̃‖A0 = 1. Clearly, T̃ is compact with respect to 

‖ · ‖. Since ‖ · ‖ and ‖ · ‖A0 are equivalent on R(A) and BH(A) ∩R(A) is weakly compact 
with respect to ‖ · ‖, there exists x ∈ SH(A) ∩ R(A) such that ‖T̃ x‖A0 = ‖T̃‖A0 = 1. 
By virtue of Lemma 3.11, we assume M T̃

A0
= {±x}. If we can construct S̃ on R(A)

such that T̃ ⊥ε(A0) S̃ but S̃ �⊥ε(A0) T̃ , then we are done. Clearly, R(A) = 〈{x}〉 ⊕ H1, 
where H1 = 〈{x}〉⊥A0 . Let {x1, x2, ...} be an A0-orthonormal basis of H1. Therefore, 



20 J. Sen et al. / Bull. Sci. math. 170 (2021) 102997
{x, x1, x2, ...} is an A0-orthonormal basis of R(A).
Case (I): T̃ (H1) = {θ}.
Consider z1 = ε1x +

√
1 − ε21x1 and z2 = −

√
1 − ε21x +ε1x1, where ε1 ∈ [0, 1) and ε1 > ε. 

Clearly, {z1, z2, x2, ...} is an A0-orthonormal basis of R(A). It is immediate to see that 
R(A) = 〈{z1, z2}〉 ⊕H2, where H2 = 〈{z1, z2}〉⊥A0 . We define a map S̃ : R(A) −→ R(A)
by

S̃(H2) = θ, S̃z1 = aT̃x + bw, S̃z2 = α(bT̃ x− aw);

where the choice of a is the same, described in Lemma 3.10 (i.e. a = εε1 + (1 −
2t)

√
1 − ε2

√
1 − ε21, where 0 < t < 1

2 (1 − ε
√

1−ε21
ε1

√
1−ε2

)) with a2 + b2 = 1, b > 0 and 
aε1−ε√
1−ε21b

< α < min{1, aε1+ε√
1−ε21b

} and w⊥A0 T̃ x, w ∈ SH(A) ∩ R(A). Since, S̃ is of finite 

rank and ‖ · ‖ and ‖ · ‖A0 are equivalent on R(A), S̃ is compact with respect to ‖ · ‖ on 
R(A). Let z ∈ SH(A)∩R(A). Hence, z = c1z1 +c2z2 +cy, where c1, c2, c ∈ R and y ∈ H2. 
Therefore, S̃z = (c1a + c2αb)T̃ x + (c1b − c2αa)w. Thus,

‖S̃z‖2
A0

= (c1a + c2αb)2 + (c1b− c2αa)2 = c21 + α2c22 ≤ c21 + c22 ≤ 1.

It is easy to see that ‖S̃z1‖A0 =
√
a2 + b2 = 1. Thus, M S̃

A0
= {±z1} and ‖S̃‖A0 = 1. Now 

we show that T̃ ⊥ε(A0) S̃ but S̃ �⊥ε(A0) T̃ . By our construction, x = ε1z1 −
√

1 − ε21z2. 
So, 〈T̃ x, S̃x〉A0 = 〈T̃ x, ε1S̃z1 −

√
1 − ε21S̃z2〉A0 = ε1a −

√
1 − ε21αb.

By our choice of α, it is easy to see that −ε < ε1a −
√

1 − ε21αb < ε. Hence, 
|〈T̃ x, S̃x〉A0 | ≤ ε = ε‖T̃‖A0‖S̃‖A0 and so T̃ ⊥ε(A0) S̃. Again, |〈S̃z1, T̃ z1〉A0 | = |〈aT̃x +
bw, T̃ z1〉A0 | = |〈aT̃x + bw, ε1T̃ x〉A0 | = |aε1| > ε. Hence, S̃ �⊥ε(A0) T̃ .
Case (II): T̃ (H1) �= {θ}.
Thus, T̃ xk �= θ, for some basis element xk ∈ H1. Then, T̃ xk = βw, where w ∈
SH(A) ∩R(A) such that w⊥A0 T̃ x and β ∈ R. Without loss of generality we may assume 
that β ≥ 0. Let z1 = ε1x +

√
1 − ε21xk and z2 = −

√
1 − ε21x + ε1xk, where ε1 ∈ [0, 1) and 

ε1 > ε. Clearly, {z1, z2, x1, x2, ...xk−1, xk+1, ...} is an A0-orthonormal basis of R(A). It is 
immediate to see that R(A) = 〈{z1, z2}〉 ⊕H3, where H3 = 〈{z1, z2}〉⊥A0 . We define a 
map S̃ : R(A) −→ R(A) by

S̃(H3) = θ, S̃z1 = aT̃x + bw, S̃z2 = α(bT̃ x− aw);

where the choice of a is the same, described in Lemma 3.10 and a2 + b2 = 1, b > 0
and aε1−ε√

1−ε21b
< α < min{1, aε1+ε√

1−ε21b
}. Since S̃ is compact with respect to ‖ · ‖ on R(A).

Proceeding in the same manner as in case (I), we obtain M S̃
A0

= {±z1} and ‖S̃‖A0 = 1. 
Also, we have 〈T̃ x, S̃x〉A0 = 〈T̃ x, ε1S̃z1 −

√
1 − ε21S̃z2〉A0 = ε1a −

√
1 − ε21αb. By our 

choice of α, it is easy to see that −ε < ε1a −
√

1 − ε21αb < ε. Hence |〈T̃ x, S̃x〉A0 | ≤
ε = ε‖T̃‖A0‖S̃‖A0 . Thus T̃ ⊥ε(A0) S̃. Again, |〈S̃z1, T̃ z1〉A0 | = |〈aT̃x + bw, T̃ z1〉A0 | =
|aε1 + b

√
1 − ε21β| = aε1 + b

√
1 − ε21β > ε. Hence, S̃ �⊥ε(A0) T̃ . This completes the proof 

of the theorem. �
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The characterization of (ε, A)-approximate left symmetric point in the sense of 
Chmieliński for A-bounded operators in a finite-dimensional real Hilbert space can be 
obtained in the same manner. Therefore, we omit the proof.

Corollary 3.13. Let H be a finite-dimensional real Hilbert space. Let ε ∈ [0, 1) and T ∈
BA1/2(H). Then T is (ε, A)-approximate left symmetric point in the sense of Chmieliński 
if and only if ‖T‖A = 0.

Now we can easily prove the following:

Theorem 3.14. Let H be a finite-dimensional real Hilbert space. Let ε ∈ [0, 1) and T ∈
L(H). Then the following conditions are equivalent:

(i) T is left symmetric.
(ii) T is approximate left symmetric.

(iii) T is zero operator.

We end this section with the following closing remark:

Remark 3.15. Note that in Theorem 3.12, if we put A = I, we obtain the characterization 
of approximate left symmetric point in L(H). Moreover, if we put A = I and ε = 0, 
we obtain the characterization of left symmetric point in L(H). Hence, Theorem 3.12
generalizes [9, Th.2.10] and [18, Th.3.3] for compact operators on real Hilbert space.
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