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Let F be a nonarchimedean local field of residual characteristic p > 3
and residue degree f > 1. We study a certain type of diagram, called
cyclic diagrams, and use them to show that the universal supersingular mod-
ules of GL2(F) admit infinitely many nonisomorphic irreducible admissible
quotients.
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Introduction

Let F be a nonarchimedean local field of residual characteristic p and residue
degree f . Fix a uniformizer ϖ ∈ F . The theory of smooth representations of
reductive F-groups on Fp-vector spaces has its origins in the paper of Barthel
and Livné [1994] in which they classify all smooth irreducible representations
of GL2(F) with central characters except supersingular representations. The
first examples of supersingular representations of GL2(F) were constructed by
Paškūnas [2004] using equivariant coefficient systems on the Bruhat–Tits tree, or
equivalently, using diagrams . Let K , Z and N denote, respectively, the standard
maximal compact subgroup, the center and the normalizer of the standard Iwahori
subgroup I of GL2(F) so that the stabilizer of the standard vertex of the tree is
KZ and that of the standard edge is N . A diagram is a finite data of a smooth
KZ -representation D0, a smooth N-representation D1 and an IZ -equivariant map
D1 → D0. This data can be glued together (in a noncanonical way) to obtain smooth
representations of GL2(F) inside some injective envelopes.
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Breuil and Paškūnas [2012] developed the theory of diagrams further and con-
structed irreducible supersingular representations of GL2(Qp f ) with prescribed
K -socles from certain indecomposable (but not irreducible) diagrams. Here, Qp f is
the degree f unramified extension of Qp. Their results, in particular, imply that
GL2(Qp f ), with f > 1, has infinitely many irreducible admissible supersingular rep-
resentations on which p acts trivially, unlike GL2(Qp) which has only finitely many
such representations. Since the diagrams considered by them are not irreducible, the
irreducibility of the corresponding representations of GL2(Qp f ) depends on certain
computations with Witt vectors which do not extend to a ramified F or to an F of
positive characteristic. In this note, we focus on irreducible diagrams in order to
construct irreducible supersingular representations of GL2(F) for all local fields F .

The complexity of supersingular representations of GL2(F) for f >1 can already
be seen in the complexity of classifying irreducible diagrams for f > 1. To this
end, we consider a particular type of irreducible diagrams which are rigid enough.
We call them cyclic diagrams. These are irreducible diagrams on direct sums of
extensions of weights such that the action of

(
0 1
ϖ 0

)
permutes characters cyclically.

We show that cyclic diagrams exist for all GL2(F) and the D0 of any cyclic diagram
has more than 2 irreducible subquotients if f > 1 (see Theorem 1.6 and Remark 1.2).
As a result, when f >1, a family of cyclic diagrams parametrized by F×

p gives rise to
infinitely many nonisomorphic irreducible admissible supersingular representations
of GL2(F) with trivial ϖ -action (see Theorem 3.2). This implies that, for all local
fields F with f > 1, the universal supersingular modules of GL2(F) have infinitely
many nonisomorphic irreducible admissible quotients (see Corollary 3.3). While
Corollary 3.3 follows from the main results in [Breuil and Paškūnas 2012] for
F = Qp f , it is a new result, to our knowledge, for F ramified over Qp and for F
of positive characteristic.

We conclude by mentioning a recent note by Wu [2021] in the similar spirit in
which he gives a uniform proof of the fact that the universal supersingular modules
of GL2(F) are not admissible for any p-adic field F ̸= Qp by showing that the
supersingular representations are not of finite presentations.

Notation and convention. Let p >3 be a prime number. Let F be a nonarchimedean
local field of residual characteristic p and residue degree f . Let O ⊆ F be the
valuation ring with a uniformizer ϖ . Let Fp be the algebraic closure of the finite
field Fp f of size p f . Fix an embedding Fp f ↪→ Fp. Let G = GL2(F), K = GL2(O),
0 = GL2(Fp f ) and Z be the center of G. Let B and U be the subgroups of 0

consisting of the upper triangular matrices and the upper triangular unipotent
matrices, respectively. Let I and I (1) be the preimages of B and U , respectively,
under the reduction modulo ϖ map K ↠ 0. The subgroups I and I (1) of K are
the Iwahori and the pro-p Iwahori subgroup of K , respectively. The normalizer N
of I in G is a subgroup generated by I and 5 =

(
0 1
ϖ 0

)
. Note that N is also the
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normalizer of I (1) in G. Let K (1) denote the kernel of the map K ↠ 0, i.e., first
principal congruence subgroup of K . Unless stated otherwise, all representations
considered in this note are on Fp-vector spaces.

A weight is an irreducible representation of 0. Any weight is of the form( f −1⊗
j=0

Symr j F2
p ◦ 8 j

)
⊗ det m

for some integers 0 ≤ r0, . . . , r f −1 ≤ p−1 and 0 ≤ m ≤ p f
−2, where 8 :0 →0 is

the automorphism induced by the Frobenius map α 7→ α p on Fp f and det : 0 → F×
p f

is the determinant character. We denote such a weight by r ⊗ det m , where r is the
f -tuple (r0, . . . , r f −1) of integers. Let σ = r ⊗ det m be a weight; its subspace σU

of U -fixed vectors is 1-dimensional and stable under the action of B because B
normalizes U . The resulting B-character, denoted by χ(σ), sends

(
a b
0 d

)
∈ B to

ar (ad)m , where r =
∑ f −1

j=0 r j p j . Any B-character valued in F×
p factors through

the quotient B/U which is identified with the subgroup of diagonal matrices in B
by the section B/U → B,

(
a 0
0 d

)
U 7→

(
a 0
0 d

)
. For a B-character χ , let χ s be the

inflation to B of the conjugation-by-s character t 7→ χ(sts−1) on B/U , where
s =

(
0 1
1 0

)
. We say that a weight is generic if it is not equal to (0, 0, . . . , 0)⊗det m or

(p − 1, p − 1, . . . , p − 1)⊗ det m for any m. The map σ 7→ χ(σ) gives a bijection
from the set of generic weights to the set of B-characters χ such that χ ̸= χ s . If σ

is a generic weight, let us denote by σ [s] the generic weight corresponding to the
character χ(σ)s . For σ = r ⊗det m , σ [s]

= (p−1−r0, . . . , p−1−r f −1)⊗det m+r .
We refer the reader to [Barthel and Livné 1994, §1] for all nontrivial assertions in
this paragraph.

Given two weights σ and τ , let E(σ, τ ) be the unique nonsplit 0-extension
0 → σ → E(σ, τ ) → τ → 0 if it exists [Breuil and Paškūnas 2012, Corollary 5.6].
We also denote E(σ, τ ) by σ — τ . A finite-dimensional representation of 0 is said
to be multiplicity-free if its Jordan–Hölder factors are multiplicity-free. For any
group H , the socle and the cosocle of an H -representation π are denoted by socH π

and cosocH π , respectively.
Note that a weight is a smooth irreducible representation of K (respectively,

of KZ ) and a B-character is a smooth I -character (respectively, IZ -character) via
the map K ↠ 0 (respectively, K Z ↠ 0). In fact, the weights exhaust all smooth
irreducible representations of K (respectively, of KZ such that ϖ acts trivially).

1. Cyclic modules

We are interested in the following type of representations of 0:

Definition 1.1. A finite-dimensional representation D0 of 0 is called a cyclic
module of 0 if there exists a finite set {σ1, σ2, . . . , σn} of distinct generic weights
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such that E(σi , σ
[s]
i−1) exists for all 1 ≤ i ≤ n, D0 =

⊕n
i=1 E(σi , σ

[s]
i−1) and DU

0 =⊕n
i=1 E(σi , σ

[s]
i−1)

U
=

⊕n
i=1 χ(σi ) ⊕ χ(σi−1)

s with the convention σ0 = σn .

If D0 =
⊕n

i=1 E(σi , σ
[s]
i−1) is a cyclic module of 0, then, by Frobenius reciprocity,

there is a nonzero map Ind0
B χ(σi−1)

s
→ E(σi , σ

[s]
i−1) for all 1 ≤ i ≤ n. Since the

principal series representation Ind0
B χ(σi−1)

s has cosocle σ
[s]
i−1, and σi ̸= σ

[s]
i−1, the

map Ind0
B χ(σi−1)

s
→ E(σi , σ

[s]
i−1) is surjective, and hence σi belongs to the first

graded piece gr1
cosoc

(
Ind0

B χ(σi−1)
s
)

of the cosocle filtration of Ind0
B χ(σi−1)

s for
all 1 ≤ i ≤ n.

Remark 1.2. If D0 =
⊕n

i=1 E(σi , σ
[s]
i−1) is a cyclic module of 0 with n = 1, i.e.,

D0 = E(σ, σ [s]), then the surjective map Ind0
Bχ(σ)s

→ E(σ, σ [s]) is actually an iso-
morphism: if the kernel is nonzero, then it has socle σ because soc0 Ind0

B χ(σ)s
=σ .

But σ also occurs in the image as a subquotient, which contradicts the fact that
a principal series is multiplicity-free [Breuil and Paškūnas 2012, Lemma 2.2].
Therefore Ind0

B χ(σ)s ∼= E(σ, σ [s]), and this forces 0 = GL2(Fp) by [Breuil and
Paškūnas 2012, Theorem 2.4]. In fact, any cyclic module of GL2(Fp) is a principal
series representation. Indeed, if 0 = GL2(Fp) and E(σ, τ ) is a nonsplit 0-extension
between generic weights σ and τ such that E(σ, τ )U

= χ(σ)⊕χ(τ), then τ = σ [s],
and thus E(σ, τ ) = Ind0

B χ(σ)s [Breuil and Paškūnas 2012, Corollary 5.6 (i) and
Proposition 4.13 or Corollary 14.10].

In order to construct cyclic modules of 0 = GL2(Fp f ) for f > 1, we take a
closer look at the weights appearing in the first graded pieces of cosocle filtrations
of principal series. Let x be a formal variable, and let Z ± x := {n ± x : n ∈

Z} denote the set of linear polynomials in x having integral coefficients with
leading coefficient ±1. Let (Z ± x) f be the set of f -tuples of polynomials
in Z ± x . For λ = (λ0(x), . . . , λ f −1(x)) ∈ (Z ± x) f and r ∈ Z f , let λ(r) :=(
λ0(r0), λ1(r1), . . . , λ f −1(r f −1)

)
∈Z f . Recall the polynomial e(λ)∈Z⊕

⊕ f −1
j=0 Zx j

associated to λ ∈ (Z ± x) f in [Breuil and Paškūnas 2012, §2]:

e(λ)(x0, . . . , x f −1)

:=


1
2

( f −1∑
j=0

p j (x j − λ j (x j ))
)
, if λ f −1(x f −1) ∈ {x f −1, x f −1 − 1},

1
2

(
p f

− 1 +

f −1∑
j=0

p j (x j − λ j (x j ))
)
, otherwise.

For each f > 1, let µ ∈ (Z ± x) f be the f -tuple of polynomials defined by

(1.3)

µ0(x) := x − 1,

µ1(x) := p − 2 − x,

µ j (x) := p − 1 − x, for 2 ≤ j ≤ f − 1.
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Let g ∈ S f be the cyclic permutation of an f -tuple mapping its j-th entry to
the ( j + 1)-th entry and the last entry to the first one. If σ = λ(r) ⊗ η is a generic
weight of 0 = GL2(Fp f ) for some determinant-power character η and f > 1, then
gr1

cosoc
(
Ind0

Bχ(σ)s
)

consists of f number of weights which can be described by
the set {

(giµ)(λ(r)) ⊗ det e(gi µ)(λ(r))η : 0 ≤ i ≤ f − 1
}
,

see [Breuil and Paškūnas 2012, Theorem 2.4].
For λ = (λ0(x), . . . , λ f −1(x)) and λ′

= (λ′

0(x), . . . , λ′

f −1(x)) ∈ (Z ± x) f , let

λ ◦ λ′
:=

(
λ0(λ

′

0(x)), . . . , λ f −1(λ
′

f −1(x))
)
∈ (Z ± x) f .

Define an integer l to be equal to f (respectively, 2 f ) if f is odd (respectively,
even). Let

µ(0)
:= (x, x, . . . , x),

µ(k)
:= gk−1µ ◦ gk−2µ ◦ · · · ◦ gµ ◦ µ, for all 1 ≤ k ≤ l.

For r ∈ Z f , let

e0(r) := 0,

ek(r) :=

k−1∑
j=0

e(g jµ)(µ( j)(r)) ∈ Z, for all 1 ≤ k ≤ l.

Lemma 1.4. (1) We have µ(l)
= µ(0)

= (x, x, . . . , x) in (Z ± x) f .

(2) The f -tuples µ(1), µ(2), . . . ,µ(l) are all distinct.

(3) The integer el(r) is independent of r and is 0 modulo p f
− 1.

Proof. (1) It follows from the definition of µ(k) that µ(k)
= gk−1µ ◦µ(k−1) for all

1 ≤ k ≤ l. Hence, for 1 ≤ k ≤ l,

(1.5) µ
(k)
j (x) =


µ

(k−1)
j (x) − 1 if j ≡ 1 − k mod f,

p − 2 − µ
(k−1)
j (x) if j ≡ 2 − k mod f,

p − 1 − µ
(k−1)
j (x) otherwise.

It is now easy to check using (1.5) that for each j , µ
(l)
j (x) = x .

(2) Let us assign to µ(k) an element m(k)
∈ (Z/2Z) f by the rule that its j-th

entry m(k)
j is 0 if and only if the sign of x in µ

(k)
j (x) is +. Here, (Z/2Z) f is the

direct sum of f copies of the group Z/2Z of order 2 and has a natural action of ⟨g⟩

by group automorphisms. We show that the elements m(1), m(2), . . . , m(l) are all
distinct in (Z/2Z) f , which then implies part (2). We have m(1)

= (0, 1, 1, . . . , 1)
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and m(k)
= gk−1m(1)

+m(k−1) for k > 1, because µ(k)
= gk−1µ(1)

◦µ(k−1). Suppose
m(k1) = m(k2) for some 1 ≤ k1 < k2 ≤ l. Then

m(k1) = m(k2) = gk2−1m(1)
+ gk2−2m(1)

+ · · · + gk1 m(1)
+ m(k1).

This gives that

gk1+(k2−k1−1)m(1)
+ gk1+(k2−k1−2)m(1)

+ · · · + gk1 m(1)
= (0, 0, . . . , 0).

The action of g−k1 on both sides then gives

gk2−k1−1m(1)
+ gk2−k1−2m(1)

+ · · · + m(1)
= (0, 0, . . . , 0),

i.e., m(k2−k1) = (0, 0, . . . , 0). This is a contradiction because k2 − k1 < l and for
any l ′ < l, m(l ′)

̸= (0, 0, . . . , 0). The latter fact can be easily checked by looking at
m(l ′)

0 and m(l ′)
1 . One has m(l ′)

0 ̸= m(l ′)
1 for l ′ < l except when l = 2 f and l ′ = f , in

which case m(l ′)
0 = m(l ′)

1 = 1.

(3) Let us first consider f to be odd (so l = f ). Expanding the expression for el(r)
and rearranging the terms, one gets

el(r) = c +

f −1∑
k=1

µ
(k)
0 (r0) + p

f −2∑
k=0

µ
(k)
1 (r1) + p2

f −3∑
k=−1

µ
(k)
2 (r2)

+ · · · + p f −1
0∑

k=−( f −2)

µ
(k)
f −1(r f −1),

where c is the constant term of the polynomial

e(g f −1µ) + e(g f −2µ) + · · · + e(gµ) + e(µ),

and k = −n for positive n means k = f − n in the summation
∑

k . Using (1.5),
one checks that each summand

∑
k µ

(k)
j (r j ) above (with appropriate lower and

upper limit) is independent of r j and equals 1
2( f − 1)(p − 1) − 1. We leave it to

the reader to check that c ≡ (p f
− 1)/(p − 1) mod p f

− 1. Therefore,

el(r) =
p f

− 1
p − 1

(
f − 1

2
(p − 1)

)
≡ 0 mod p f

− 1.

The proof for even f is similar. In this case, c ≡ 2
(
(p f

− 1)/(p − 1)
)

mod p f
− 1,

and
∑

kµ
(k)
j (r j ) = 2

( 1
2( f − 1)(p − 1) − 1

)
for all j . Therefore, el(r) is again

0 modulo p f
− 1. □

Theorem 1.6. The group 0 admits a multiplicity-free cyclic module D0.

Proof. The case f = 1 is treated in Remark 1.2. Let f > 1. The proof is constructive.
Start with a weight σ0 := r ⊗ η of 0 for some 1 ≤ r0, . . . , r f −1 ≤ p − 3 and for
some determinant-power character η. Observe that σ0 := µ(0)(r) ⊗ det e0(r)η. Let

σk := µ(k)(r) ⊗ det ek(r)η
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for all 1 ≤ k ≤ l. We claim that the set {σ1, σ2, . . . , σl} is the required set to construct
a cyclic module. Using (1.5), one checks that

µ
(k)
j (x) ∈ {x, x − 1, x + 1, p − 2 − x, p − 3 − x, p − 1 − x}

for all 1 ≤ k ≤ l and 0 ≤ j ≤ f − 1. Since p > 3, this means that the weights
σ1, σ2, . . . , σl are well defined. Further, by Lemma 1.4 and its proof, one sees that
the weights σ1, σ2, . . . , σl are all distinct generic weights and σl = σ0. Now let
1 ≤ k ≤ l. We know that the weights appearing in gr1

cosoc
(
Ind0

B χ(σk−1)
s
)

are{
(giµ)(µ(k−1)(r)) ⊗ det e(gi µ)(µ(k−1)(r)) det ek−1(r)η : 0 ≤ i ≤ f − 1

}
.

In particular, gr1
cosoc

(
Ind0

Bχ(σk−1)
s
)

contains the weight

(gk−1µ)(µ(k−1)(r)) ⊗ det e(gk−1µ)(µ(k−1)(r)) det ek−1(r)η = µ(k)(r) ⊗ det ek(r)η = σk .

Since gr0
cosoc

(
Ind0

B χ(σk−1)
s
)
=cosoc0 Ind0

B χ(σk−1)
s
=σ

[s]
k−1 is simple, E(σk, σ

[s]
k−1)

exists and is equal to the unique quotient of Ind0
B χ(σk−1)

s with socle σk . Since
(Ind0

B χ(σk−1)
s)U

=χ(σk−1)⊕χ(σk−1)
s , we have E(σk, σ

[s]
k−1)

U
=χ(σk)⊕χ(σk−1)

s .
Therefore, it follows that D0 :=

⊕l
k=1 E(σk, σ

[s]
k−1) is a cyclic module of 0 and has

socle of length l.
It remains to show that D0 is multiplicity-free. By definition, soc0 D0 is

multiplicity-free. Thus also σ
[s]
k1

̸= σ
[s]
k2

for any k1 ̸= k2, 1 ≤ k1, k2 ≤ l, because
(σ [s])[s] = σ . Now, if σk1 = σ

[s]
k2−1 for some 1 ≤ k1, k2 ≤ l, then there is a nonsplit

0-extension between σk1 and σk2 . Consider the elements m(k1) and m(k2) of (Z/2Z) f

assigned to µ(k1) and µ(k2), respectively, in the proof of Lemma 1.4. By [Breuil and
Paškūnas 2012, Lemma 5.6 (i)], the number of 1s in m(k1) and m(k2) have different
parity. However, if f is odd, then one checks that the number of 1s in m(k) is always
even for all 1 ≤ k ≤ l implying that σk1 ̸= σ

[s]
k2−1 for any 1 ≤ k1, k2 ≤ l. If f is even,

then it is not true that the number of 1s in m(k) is always either even or odd, and it is
a priori possible that σk = σ

[s]
k+ f , because m(k)

+ m(k+ f )
= (1, 1, . . . , 1). However,

using (1.5), one explicitly checks that σk ̸= σ
[s]
k+ f for any 1 ≤ k ≤ l. □

Remark 1.7. When f is odd, the argument given in the proof of Theorem 1.6
shows that any cyclic module of 0 is multiplicity-free. This is not true when f is
even (see the next remark). We further point out that the definition of the f -tuple µ

is not canonical. Any other cyclic permutation of µ also gives rise to a cyclic
module of 0 by the same construction as above. We expect that all multiplicity-free
cyclic modules of 0 are obtained in this way, and thus any multiplicity-free cyclic
module of 0 has socle of length l.

Example 1.8. The construction in the proof of Theorem 1.6 produces following
multiplicity-free cyclic modules for f = 2, 3. The weights are written without their
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twists by determinant-power characters.

f = 2 : D0 = (r0−1, p−2−r1) — (p−1−r0, p−1−r1)

⊕ (p−1−r0, p−3−r1) — (p−r0, r1+1)

⊕ (p−2−r0, r1+1) — (r0, r1+2)

⊕ (r0, r1) — (r0+1, p−2−r1).

f = 3 : D0 = (r0−1, p−2−r1, p−1−r2) — (p−1−r0, p−1−r1, p−1−r2)

⊕ (p−1−r0, r1+1, p−2−r2) — (p−r0, r1+1, r2)

⊕ (r0, r1, r2) — (r0, p−2−r1, r2+1).

Remark 1.9. Let Qp f denote the degree f unramified extension of Qp. The
multiplicity-free cyclic module of GL2(Fp2) (respectively, GL2(Fp3)) in Example 1.8
occurs as a submodule of D0(ρ) of a Diamond diagram associated to an irreducible
(respectively, reducible split) generic Galois representation ρ of Qp2 (respectively,
Qp3) (see [Breuil and Paškūnas 2012, §14]).

Schein [2022] constructed irreducible supersingular representations of G =

GL2(F) with K -socles compatible with Serre’s weight conjecture for a ramified
p-adic field F of residue degree 2. His construction is based on constructing
cyclic modules of GL2(Fp2) with prescribed socles. The involved cyclic modules
of GL2(Fp2) have socles of lengths > l and are not multiplicity-free (see [Schein
2022, Example 3.9]).

2. Cyclic diagrams

We recall the definition of a diagram from [Breuil and Paškūnas 2012, §9]. A
diagram (of G) is a data (D0, D1, r) consisting of a smooth KZ -representation
D0, a smooth N-representation D1 and an IZ -equivariant map r : D1 → D0. A
diagram (D0, D1, r) is called a basic 0-diagram if ϖ acts trivially on D0 and D1,
and the map r induces an isomorphism D1 ∼= D I (1)

0 of IZ -representations. Now, let
D0 =

⊕n
i=1 E(σi , σ

[s]
i−1) be a multiplicity-free cyclic module of 0. Viewing D0 as a

smooth KZ -representation via K Z ↠ 0 with trivial ϖ -action, D1 := D I (1)
0 = DU

0
can be equipped with a smooth N-action by defining the action of 5 :χ(σi )→χ(σi )

s

to be multiplication by a scalar ti ∈ F×
p for all i after choosing bases. This defines

a unique N-action on D1 such that ϖ -acts trivially and gives a basic 0-diagram
(D0, D1, can) where can : D1 ↪→ D0 is the canonical inclusion.

Definition 2.1. A basic 0-diagram (D0, D1, can) on a multiplicity-free cyclic mod-
ule D0 is called a cyclic diagram.

Note that a cyclic diagram exists for all G by Theorem 1.6.
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Lemma 2.2. Let (D0, D1, can) be a cyclic diagram on a cyclic module D0 =⊕n
i=1 E(σi , σ

[s]
i−1), and let 5 : χ(σi ) → χ(σi )

s be given by multiplication by a
scalar ti ∈ F×

p for all 1 ≤ i ≤ n. Then

(1) (D0, D1,can) is irreducible, and

(2) the isomorphism class of (D0, D1,can) is determined by the product t1 · · · tn∈F×
p .

Proof. (1) Let V ⊆ D0 be a nonzero KZ -subrepresentation such that V I (1) is
stable under the action of N . Then, for some 1 ≤ i ≤ n, V contains σi and
thus also contains χ(σi ). Since 5(χ(σi )) = χ(σi )

s , V contains χ(σi )
s . By

Frobenius reciprocity, there is a nonzero map Ind0
B χ(σi )

s
→ V whose image

is E(σi+1, σ
[s]
i ). Thus E(σi+1, σ

[s]
i ) ⊆ V . Continuing in this way, we get that

D0 =
⊕n

i=1 E(σi , σ
[s]
i−1) ⊆ V . Hence V = D0.

(2) Let D = (D0, D1, can), and let D′ be a diagram isomorphic to D. Then D′ is
also a cyclic diagram on the cyclic module D0. Let 5 : χ(σi ) → χ(σi )

s in D′ be
given by multiplication by a scalar t ′

i ∈ F×
p for all 1 ≤ i ≤ n. As the diagrams D and

D′ are isomorphic, there is an isomorphism ϕ : D0 → D0 of KZ -representations
such that ϕ(5v) = 5ϕ(v) for all v ∈ D1. Since D0 is multiplicity-free, an easy
application of Schur’s lemma gives

EndK Z (D0) = End0(D0) ∼= End0(E(σ1, σ
[s]
n )) × · · · × End0(E(σn, σ

[s]
n−1))

∼= Fn
p .

So, if the isomorphism ϕ corresponds to (a1, . . . , an) ∈ (F×
p )n , then (a1, . . . , an)

satisfies ai = ai−1t ′

i−1(ti−1)
−1 for all 1 ≤ i ≤ n. This implies that t1t2 · · · tn =

t ′

1t ′

2 · · · t ′
n . On the other hand, if t1t2 · · · tn = t ′

1t ′

2 · · · t ′
n , then the scalar multiplications

by ai =
∏i−1

j=1 t ′

j t
−1
j on E(σi , σ

[s]
i−1) with a1 = 1 give an isomorphism of cyclic

diagrams on D0. See also [Dotto and Le 2021, Proposition 4.4]. □

For a cyclic diagram D = (D0, D1, can), we introduce the notation t (D) =

t1t2 · · · tn for later use. With this notation, Lemma 2.2 (2) says that the map
D 7→ t (D) gives a bijection between the set of isomorphism classes of cyclic
diagrams on D0 and F×

p .

3. Supersingular representations

We now use cyclic diagrams to show that G = GL2(F) admits infinitely many
smooth admissible irreducible supersingular representations when F has residue
degree f > 1. It uses the following key theorem of Breuil and Paškūnas:

Theorem 3.1. Let (D0, D1, r) be a basic 0-diagram such that DK (1)
0 is finite-

dimensional. Then there exists a smooth admissible representation π of G on which
ϖ acts trivially, and such that:

(1) one has the inclusion (D0, D1, r) ⊆ (π |K Z , π |N , id) of diagrams,
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(2) π is generated as a G-representation by D0 and

(3) soc0 D0 = socK D0 = socK π .

Moreover, if (D0, D1, r) is irreducible, then any such G-representation π is irre-
ducible.

Proof. The first part is essentially proved in [Breuil and Paškūnas 2012, Theo-
rem 9.8]. See also the proof of [Breuil and Paškūnas 2012, Theorem 19.8 (i)].
The proof of the irreducibility of π is given in unpublished lecture notes of Breuil
[Breuil 2007, Proposition 5.11]. We reproduce it here: let π ′

⊆ π be a nonzero
G-subrepresentation. Then π ′

∩ D0 is a nonzero KZ -subrepresentation of D0

by (3), and (π ′
∩ D0)

I (1)
= π ′

∩ D1 is stable under the action of 5. Hence,
(π ′

∩ D0, (π
′
∩ D0)

I (1), can) is a nonzero subdiagram of (D0, D1, r). By the
irreducibility of (D0, D1, r), we get that π ′

∩ D0 = D0. Hence, π ′
= π using (2). □

When F has residue degree 1, the cyclic diagrams are the basic 0-diagrams on
principal series representations of GL2(Fp) (Theorem 1.6), and thus Theorem 3.1
applied to cyclic diagrams gives rise to irreducible (ramified) principal series
representations of G (see [Breuil and Paškūnas 2012, §10]). In contrast, when F
has residue degree f > 1, Theorem 3.1 applied to cyclic diagrams gives rise to
irreducible supersingular representations of G as we shall see now. Recall from
[Barthel and Livné 1994] that a smooth irreducible representation π of G with
central character is a quotient of π(σ, λ, χ) := (indG

K Z σ/(T − λ)) ⊗ (χ ◦ det) for
some weight σ , some λ ∈ F×

p and some smooth character χ : F×
→ F×

p . Here,
indG

K Z σ is the compactly induced representation with ϖ acting trivially on σ

and T ∈ EndG(indG
K Z σ) is the distinguished Hecke operator. By definition, π is

supersingular if it is a quotient of some π(σ, 0, χ). The representations π(σ, 0, χ)

are called universal supersingular modules.

Theorem 3.2. Let F be a nonarchimedean local field of residue degree f > 1.
Then the group G admits infinitely many nonisomorphic smooth admissible irre-
ducible supersingular representations on which ϖ acts trivially. Further, all these
representations have the same K -socle.

Proof. We use the existence of multiplicity-free cyclic modules from Theorem 1.6
to construct a family of cyclic diagrams of G. Let D0 be a multiplicity-free cyclic
module constructed in Theorem 1.6 and for each t ∈ F×

p , let D(t) = (D0, D1, can)

be a cyclic diagram on D0 such that t (D(t)) = t . By Theorem 3.1, there is a smooth
admissible representation π(t) (fix one for each D(t)) of G with trivial action of ϖ

such that D(t) ⊆ (π(t)|K Z , π(t)|N , can), D0 generates π(t) as a G-representation
and socK D0 = socK π(t). We claim that {π(t)}t∈F×

p
is the desired family of represen-

tations of G. Indeed, by Lemma 2.2 (1) and Theorem 3.1, each π(t) is an irreducible
G-representation.
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Suppose there is an isomorphism ϕ :π(t) ∼
−→π(t ′) of G-representations for t ̸= t ′.

It restricts to an isomorphism ϕ : D0
∼

−→ D0 of KZ -representations, because
socK D0 = socK π(t) = socK π(t ′) and because D0 is multiplicity-free. This
gives rise to an isomorphism D(t) ∼= D(t ′) of cyclic diagrams which contradicts
Lemma 2.2 (2). Thus π(t) and π(t ′) are not isomorphic for t ̸= t ′.

It remains to show that each π(t) is supersingular. Let σ ∈ socK π(t). Then
HomG(indG

K Z σ, π(t)) = HomK (σ, π(t)K (1)) is a nonzero finite-dimensional Fp-
vector space, because π(t) is admissible. Hence, HomG(indG

K Z σ, π(t)) contains
a nonzero eigenvector for the action of Hecke operator T with eigenvalue, let’s say, λ.
As π(t) is irreducible, it follows that π(t) is a quotient of π(σ, λ, 1). If λ ̸=0, then by
[Barthel and Livné 1994, Lemma 28 and Theorem 33], we have dimFp

π(t)I (1)
≤ 2.

However, as f > 1, socK D0 is not irreducible, and thus dimFp D I (1)
0 = dimFp

D1 ≥ 4
(in fact, dimFp

D1 = 2l). But this implies that dimFp
π(t)I (1) > 2, because π(t)

contains D0. So we get a contradiction. Thus, λ = 0 and π(t) is supersingular. □

Recall from [Barthel and Livné 1994, Corollary 31] that π(σ, λ, χ) has a unique
(admissible) irreducible quotient for λ ̸= 0. However, for λ = 0, we have the
following result as an immediate corollary of Theorem 3.2:

Corollary 3.3. Let F be a nonarchimedean local field of residue degree f > 1.
Then the universal supersingular module π(σ, 0, χ) of G has infinitely many non-
isomorphic admissible irreducible quotients for any given weight σ = r ⊗ η, with
1 ≤ r0, . . . , r f −1 ≤ p − 3 and any smooth character χ .

Proof. As in the proof of Theorem 3.2, consider a family {D(t)}t∈F×
p

of cyclic
diagrams on a cyclic module D0 from Theorem 1.6 whose socle contains the
given weight σ , and let {π(t)}t∈F×

p
be a corresponding family of smooth admissible

irreducible supersingular G-representations. By the proof of Theorem 3.2, each π(t)
occurs as a quotient of π(σ, 0, 1). So the corollary holds for π(σ, 0, 1), and hence
also for its smooth twist π(σ, 0, χ). □

Remark 3.4. If F = Qp f with f > 1, then the recent works of Le [2019] and Ghate
and Sheth [2020] show that the universal supersingular modules of G also admit
infinitely many nonisomorphic nonadmissible irreducible quotients.
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