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1 Introduction

The physics of the horizon of black holes and the geometry behind the horizon have con-
tinued to be problems of interest in quantum gravity. The AdS/CFT correspondence [1]
in principle gives us a handle to study the geometry behind the horizon using bound-
ary correlators of the CFT at finite temperature. Studies in this direction were initiated
some time ago by approximating 2-point functions of massive scalars in terms of space like
geodesics in the large mass limit [2]. Recently Grinberg and Maldacena [3] have argued in
general that even one point functions of massive scalars in AdSd+1 black hole geometries
contain some information of the geometry behind the horizon. This has been investigated
further in [4–7].

One point functions in holographic backgrounds have been studied earlier to establish
sum-rules and high frequency behaviour of transport coefficients [8–10]. Using an example
studied by [10], Grinberg and Maldacena observe the thermal one point function in the
planar AdSd+1 Schwarzschild black hole evaluated for scalars dual to operators of low
dimensions can be analytically continued to large operator dimensions. When this is done,
the thermal one point function exponentiates and one can read out the proper time to
singularity from the event horizon. The one point function is sourced by the coupling of
the scalar to the Weyl tensor squared term. Using the intuition from this exactly solvable
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example, [3] developed a saddle point approximation for large masses. The saddle involved
geodesics at complex radial positions and arguments justifying the location of the saddle
and the contour involved in the WKB approximation. One of the interesting claims of their
saddle point analysis is that for the AdS5 charged black hole which has an inner horizon,
the one point function exponentiates to the form

〈O〉 ∼ exp(−m(`hor + `sing − iτin)) . (1.1)

Here τin is the proper time for a particle to reach the inner horizon from the outer horizon,
`hor is the regularized proper length from the boundary to the outer horizon and `sign is
the proper length from the inner horizon to the singularity. The lengths are shown on the
Penrose diagram of the charged black hole in figure 2. In this analysis, the massive scalar
field is taken to be a probe and its the back reaction is neglected. One of the aims of this
paper is to provide a solvable example similar to the AdSd+1 Schwarzschild black hole to
show indeed that the expectation value of the thermal one point functions in the charged
black hole indeed exponentiates as in (1.1).

In this paper we study one point functions of massive scalars sourced by the Gauss-
Bonnet curvature as well as the Weyl tensor squared. For the solvable case of planar
Schwarzschild black hole we see that the result for the thermal one point function sourced
by the Gauss-Bonnet curvature is identical to that of the Weyl tensor squared term. We
then present examples in which the one point function of massive scalars can be exactly
obtained for small conformal dimensions just as the example seen first in [10] for the AdSd+1
Schwarzschild black hole. The first example is the planar charged black hole in AdSd+1 in
a suitable large d limit. Large d limit has been studied earlier by several groups, see [11]
for a recent review. The large d limit used in this paper also involves a simultaneous limit
on the charge of the black hole, which is distinct from that discussed in [11].1 We see that
the one point function can be obtained exactly and it exponentiates for large scalar masses
just as expected by arguments in [3]. We show that the one can read out all the 3 lengths
in (1.1) from the one point function. We also observe that this result is independent of
whether the one point function is sourced by Gauss-Bonnet curvature or the Weyl tensor
squared.

The second example we study are the black holes with hyperbolic horizons in AdSd+1.
Here we show that the Gauss-Bonnet curvature sources one point function which again
behave as anticipated by [3]. We can read out the τs, the proper time from the horizon
to the singularity from the one point function. The dependence of τs on the AdS radius
is different from Schwarzschild black holes with planar horizons. Therefore this example
serves another check of the general arguments of [3].

Finally we study the one point functions in the background of the rotating BTZ black
hole. By conformal invariance, thermal one point functions of primaries vanish in 2d CFT’s
on a line. However if the spatial directions are periodic, they acquire non-trivial expectation
values. Holographically these one point functions are sourced due to cubic couplings of the

1See the recent work of [12] for another instance in which holographic observables are exactly solvable
in a large d limit.
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massive scalar with other scalars in the theory [13]. The auxiliary scalar sources the scalar
of interest due to the non-trivial windings around the circular horizon of the BTZ. These
one point functions were explored for the non-rotating BTZ in [3]. As expected, they decay
exponentially as exp

(
− 2πL

β

)
, were L is size of the spatial identifications. However, from the

coefficient of this leading term, we can extract the proper time to singularity. We generalize
this computation to the rotating BTZ and obtain the exact one point function sourced due
to the cubic coupling of scalars. We then take a limit which retains the information of the
inner horizon, it is possible to interpret the coefficient of exp

(
− 2πL

β

)
geometrically. From

this coefficient, we see that we can read out both τs and `hor, but there is no dependence on
`sing. We verify that this behaviour is also exhibited by the expectation value of composite
operators 〈O2〉 of large integer scaling dimensions in finite temperature 2d CFT. The WKB
type arguments used in [3] assumed radial symmetry. It will be interesting to generalize
those arguments to the case of rotating black holes in higher dimensions and as well try to
obtain the thermal one point functions exactly to see if they behave as in (1.1).

The organization of the paper is as follows. In section 2, we evaluate the one point
function of massive scalars in the planar Schwarzschild black hole in AdSd+1 sourced by the
Gauss-Bonnet coupling, we observe that the result for the one point function is identical to
that of the Weyl-tensor squared coupling. In section 3, we repeat the analysis for charged
planar black holes in AdSd+1 in a suitable large d limit. Section 4 contains the evaluation
of the one point function in hyperbolic black holes. In section 5 we study the thermal
one point function sourced by cubic coupling of scalars in the rotating BTZ black hole.
Section 6 has our conclusions. Appendix A has details regarding the evaluation of the
Greens functions needed to evaluate the thermal one point function. Appendix B discusses
the details of the planar charged black hole in AdSd+1 in the large d limit developed in
the paper. Appendix C shows that the result for the one point function sourced by the
Weyl tensor squared coupling for the charged planar black hole in the large mass limit is
the same as that obtained due to the Gauss-Bonnet coupling.

2 Gauss-Bonnet induced thermal one point function

In this section we will re-visit the set-up of [3] which results in non-trivial thermal one point
functions due to the presence of a higher derivative coupling in the low energy effective
action. Consider the minimally coupled scalar ϕ of mass m in an asymptotically AdSd+1
background. The scalar is dual to an operator O of dimensions [14]

∆ = d

2 +

√
d2

4 +m2R2
AdS , (2.1)

where RAdS is the radius of AdS. If one considers the conventional quadratic action of ϕ,
the symmetry ϕ → −ϕ prevents the dual operator O developing an expectation value.
In [3], the following the low energy effective action of the scalar was considered

S = 1
16πGN

∫ √
gdd+1x

[1
2
(
∇µϕ∇µϕ+m2ϕ2

)
+ αϕWµνρσW

µνρσ
]
, (2.2)
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where the scalar ϕ couples to the Weyl tensor squared. Such couplings are known to be
present in the low energy effective action and are dual to the 3-point function involving 2
stress tensors and the operator O. Since it is a higher derivative coupling, it is suppressed
in the strong t’Hooft coupling limit. From dimensional analysis it is clear that

α ∼ l2s ∼
R2

AdS√
λ
, (2.3)

where ls is the string length and λ is the t’ Hooft coupling and the gauge theory. One
of the motivations provided in [3] for this choice of the coupling is that the Weyl tensor
vanishes for the pure AdS, which is consistent with the one point function of the operator
O vanishing at zero temperature.

It has been observed that in the study of black hole entropy the Gauss-Bonnet coupling
results in the same corrections to black hole entropy as the Weyl tensor squared [15]. Indeed
low energy effective actions in string theory contain a coupling of the Gauss-Bonnet term
with the dilaton. Motivated by these observations, we will evaluate the expectation value
of the one point function by considering the action

S = 1
16πGN

∫ √
gdd+1x

[1
2
(
∇µϕ∇µϕ+m2ϕ2

)
+ αϕLGB

]
, (2.4)

where the Gauss-Bonnet term is given by

LGB = RµνρσR
µνρσ − 4RµνRµν +R2. (2.5)

We will show that the result for the one point function is identical to that obtained by [3].
Though the Gauss-Bonnet curvature for pure AdS is non-vanishing, the one point function
evaluated using the coupling in (2.4) does vanish for the pure AdS. Therefore the result is
consistent with the vanishing of thermal expectation values at zero temperature.

Using the rules of AdS/CFT , the one-point function is given by

〈O(t, ~x)〉 = α

∫
dz′dt′d~x′

√
gK̃(t, ~x; z′, t′, ~x′)LGB(z′, t′, ~x′) , (2.6)

where d~x′ = (dx)d−1 and K̃(t, ~x; z′, t′, ~x′) is the bulk-boundary propagator. The integral
over t′, ~x′ is carried over the AdSd+1 Schwarzschild black hole. More specifically, the range
of integration for the t′, x′ coordinates runs from −∞ to ∞ and the integral over z′ runs
from the horizon to infinity. The metric of the planar Schwarzschild black hole is given by

ds2 = R2

z2

(
− f(z)dt2 + dz2

f(z) + d~x2
)
, f(z) = 1− zd

zd0
, z0 = βd

4π . (2.7)

Here R is the radius of AdSd+1,2 and β is the inverse temperature. The Gauss-Bonnet
curvature of the geometry in (2.7) is given by

LGB(z) = d(d− 2)(d− 1)2 z2d

z2d
0 R4 + (d− 2)(d− 1)d(d+ 1)

R4 . (2.8)

2From this point onwards R will refer to the radius of AdS.
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It is also useful to evaluate the Weyl tensor squared

WµνρσW
µνρσ(z) = d(d− 2)(d− 1)2 z2d

z2d
0 R4 . (2.9)

Thus the Gauss-Bonnet term and the Weyl tensor squared term differs by a constant. We
will see that this additional constant in (2.8) does not contribute to the one point function.

We follow the strategy of [3] to obtain the bulk-boundary propagator. We first solve
for the bulk-bulk Greens function in the geometry (2.7) by solving the equation

1√
−g

∂µ(
√
−ggµν∂νG(z, z′, t, t′, x, x′))−m2G(z, z′, t, t′, x, x′)= δ(z−z′)δ(t−t′)δd−1(~x−~x′)√

−g
.

(2.10)
Then the bulk-boundary propagator can be obtained by [16, 17]

K(z′, t, t′, x, x′) = lim
z→0

2ν
z∆G(z, z′, t, t′, x, x′) . (2.11)

Since the geometry in (2.7) has translation invariance in t, ~x directions, we can expand the
Greens function in terms of the Fourier modes in these directions3

G(z, z′, t, t′, x, x′) =
∫
dωd~k

(2π)d e
iω(t−t′)−~k·(~x−~x′)Ĝ(z, z′, ω,~k) . (2.12)

The differential equation obeyed by the Fourier coefficient is given by

∂z

(
Rd−1

zd−1 f(z)∂zĜ(z, z′, ω,~k)
)
− Rd+1

zd+1 m
2Ĝ(z, z′, ω,~k) (2.13)

+Rd−1

zd−1

(
ω2

f(z) −
~k2
)
Ĝ(z, z′ω,~k) = δ(z − z′) .

Therefore the bulk-boundary propagator also admits the expansion

K(z′, t, t′, x, x′) =
∫
dωd~k

(2π)d e
iω(t−t′)−~k(~x−~x′)K̂(z′, ω,~k) . (2.14)

This expansion can then be used in (2.6) to obtain Fourier components of the expectation
value, which can be written as

〈O〉
ω,~k

=
∫ √
−gdz′dt′dx′K̂(z′, ω,~k)e−i(ωt′−~k·~x′)LGB(z′, t′, ~x′) . (2.15)

From (2.8) we see that the Gauss-Bonnet curvature only depends on the z coordinate, This
allows us to perform the t′, x′ integral to obtain

〈O〉
ω,~k

= (2π)dδ(ω)δ(~k)
∫
dz′K(z′, 0, 0)LGB(z′) . (2.16)

3For the Euclidean black hole t is periodic, therefore the Fourier modes in this direction are discrete,
this is understood in the paper. For convenience we will denote the sum over these modes by the integral
over ω.
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Thus the only non-zero Fourier coefficient of the expectation value is its zero mode. This
implies that the thermal one point functions 〈O(t, ~x)〉 is uniform, independent of time and
position. It is convenient to define the zero mode of the bulk-boundary Green’s function by

K̂(z′) = K̂(z′, 0, 0) . (2.17)

From (2.11) we see that

K̂(z′) = lim
z→0

2ν
z∆ Ĝ(z, z′) , where, Ĝ(z, z′) = Ĝ(z, z′, ω,~k)|

ω=~k=0 , (2.18)

and Ĝ(z, z′) satisfies the differential equation

∂z

(
Rd−1

zd−1 f(z)∂zG(z, z′)
)
− Rd+1

zd+1 m
2G(z, z′) = δ(z − z′) . (2.19)

Finally the uniform value of the thermal expectation value is given by

〈O〉 = αRd+1
∫ z0

0

dz

z(d+1)K(z)LGB(z) . (2.20)

Though this result is obvious because of the translational invariance of the geometry (2.7),
we have gone through the steps in detail so that we can generalise this discussion when we
consider hyperbolic black holes in section 4.

The Green’s function G(z, z′) has to be regular both at z = 0 and at z = 1. The details
of evaluation of this Greens function is given in the appendix A. Let

w =
(
z

z0

)d
, h = ∆

d
, (2.21)

then

G(w,w′) = −Γ(h)2

Γ(2h)
zd0

Rd−1d

(
ϕinf(w)ϕhor(w′)θ(w′ − w) + ϕhor(w)ϕinf(w′)θ(w − w′)

)
,

ϕinf(w) = wh 2F1(h, h, 2h,w) , ϕhor(w) = wh2F1(h, h, 1, 1− w) . (2.22)

Since the hypergeometric function admits a taylor series expansion around the origin, we
see that ϕinf(w) is well behaved at infinity w = 0, while ϕhor is well behaved at the horizon
w = 1. We can now use (2.18) to obtain the bulk to boundary Greens function

K(w) = −Γ(h)2

Γ(2h)
zd0

Rd−1d

( 2ν
z

∆+
0

)
wh 2F1(h, h, 1, 1− w) . (2.23)

Substituting this in the expression for the one point function in (2.20) we obtain

〈O〉 = −α 2ν
dz∆

0 R
2

Γ(h)2

Γ(2h)

∫ 1

0
dw
[
(d− 2)(d− 1)2wh 2F1(h, h, 1, 1− w)

+(d− 2)(d− 1)(d+ 1)wh−2
2F1(h, h, 1, 1− w)

]
,

= α
(d− 2)(d− 1)2

R2d

Γ(h)2

Γ(2h)

( 2ν
z

∆+
0

)
h(h− 1)π csc(hπ) . (2.24)
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Here the second term in the integrand arising from the constant term in the Gauss-Bonnet
curvature given in (2.8). To obtain the last line we have used the result∫ 1

0
2F1(h, h; 1;w)(1− w)h+n dw = Γ(−h+ n+ 2)Γ(h+ n+ 1)

Γ(n+ 2)2 (2.25)

if Re(h− n) < 2 and Re(h+ n) > −1 .

Note that the integral vanishes for n = −2, therefore the constant contribution of the
Gauss-Bonnet curvature vanishes. This ensures the result for the one point function from
the Gauss-Bonnet coupling is identical to that of the Weyl tensor squared coupling.

Having obtained the one point in (2.24), to extract the time to singularity, we take the
large h limit with h→∞− iε, this results in

lim
h→∞−iε

〈O〉 ∼ e−iπh2−2h, (2.26)

= e−iπ
mR
d 4−

mR
d .

Here we have ignored all the polynomial terms in h and retained only terms which are
exponential in h. We use the fact that Im h < 0 to pick up the negative phase, but we can
very well pick up the positive phase when Im h > 0.

Comparison with geometric lengths. Maldacena and Grinberg [3], identified the
exponential terms occurring in the expectation value of the one point function with the
following geometric lengths associated with the black hole. Consider a radially infalling
geodesic with zero energy released at z = z0, the horizon. The proper time, the particle
takes to reach the singularity z =∞ is given by the integral

ts =
∫ ∞
z0

Rdz

z

√(
z
z0

)d
− 1

, (2.27)

= πR

d
.

Similarly, the regularized space like length from infinity to the horizon is given by

ˆ̀hor = lim
ε→0

∫ z0

ε

Rdz

z

√
1−

(
z
z0

)d , (2.28)

= R

d
log 4−R log

(
ε

z0

)
+O(ε).

The regularized length is obtained by ignoring the divergence as normalised in [3], which
results in

`hor = R

d
log 4 . (2.29)

One point worth mentioning at this stage is that both lengths are independent of the mass
of the black hole. The mass unlike these lengths can be obtained easily by studying the
behaviour of particles in the black hole geometry. Comparing (2.27) and (2.29), we see
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Figure 1. Penrose diagram for the AdS-Schwarzschild metric: τs is the time-like distance between
the horizon and the singularity, and `hor refers to the regularised space-like distance between the
boundary and the horizon.

that in the h → ∞ limit we can re-write the thermal expectation value in the following
geometric form

lim
m→∞−iε

〈O〉 ∼ exp(−imτs −m`hor) . (2.30)

These lengths are shown on the Penrose diagram of the AdS Schwarzschild black hole in
figure 1.

3 The charged planar black hole at large d

Let us consider the planar Reissner-Nördstrom black hole in AdSd+1 whose metric is given
by [18].

ds2 = R2

z2

(
− f(z)dt2 + dz2

f(z) + d~x2
)
, f(z) = 1− zd

zd0
+ q2z2d−2. (3.1)

In this section, we wish to evaluate the one point function of the scalar in this background
with the action (2.4). Maldacena and Grinberg [3] deal with the case of charged black hole
in AdS5. Using a saddle point analysis in terms of complex geodesics, they argue that the
one point function of the operator dual to a minimally coupled scalar is of the form

〈O〉 ∼ exp(−m(`hor + `sing − iτin)) , (3.2)

where `hor is the regularized distance from the boundary to the outer horizon, `sing is the
distance from the inner horizon to the singularity and finally τin is the time from the inner
horizon to the outer horizon. These lengths are shown in the figure 2. Note that here
compared to the case without the inner horizon there is an additional dependence of `sing.

– 8 –
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`sing

τin

`hor

Outer horizon

Inner horizon

Boundary

Singularity

Figure 2. The three lengths τin, `hor, `sing shown on the Penrose diagram of the charged black hole
in AdS.

The argument in [3] involved a saddle with a contour that goes over to complex radial
positions. It would be more satisfying if the direct analysis similar to that performed in for
the Schwarzschild black hole in section 2 can be done for a black hole with inner horizon.
In this section we show that indeed it is possible to arrive at an exact expression for the
thermal one point function in a suitable large d limit. Just as in the Schwarzschild case
in (2.24), the integral which results in the one point function involves an integral from the
outer horizon to infinity.

To begin, let us examine the equation of the minimally coupled scalar (3.1) in the
background for the zero mode in the directions along the boundary.

(1− w)w2ϕ′′(w)− w2φ′(w)− h(h− 1)ϕ(w) (3.3)

+q2w3− 2
d z2d−2

0
d

(
2(d− 1)ϕ′(w) + wdϕ′′(w)

)
= 0 .

Here we have used the co-ordinate

w =
(
z

z0

)d
. (3.4)

We will see that w is always finite in the domain we wish to evaluate the integral involving
the one point function. To obtain a more tractable equation, we take the following large
d limit

d→∞, with q2z2d−2
0 = Q, held fixed. (3.5)

– 9 –
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In this limit the equation (3.3)4 reduces to

(1− w)w2ϕ′′(w)− w2ϕ′(w)− h(h− 1)ϕ(w) +Qw3[2ϕ′(w) + wϕ′′(w)] = 0 . (3.6)

Solutions of this differential equation can be written in terms of hypergeometric functions.
Before we go ahead, let us obtain the locations of the horizons in the limit (3.5). The
function f(z) in (3.1) becomes

f(w) = 1− w +Qw2w−
2
d , (3.7)

f̂(w) = lim
d→∞

f(w) = 1− w +Qw2 .

Therefore the inner and the outer horizons are at

win = 1 +
√

1− 4Q
2Q , wout = 1−

√
1− 4Q

2Q . (3.8)

To construct the Green’s function we need the well behaved solutions of (3.6) at infinity
and at the horizon. These are given by

ϕinf = wh(w − 2−
√

1− 4Q w)−h 2F1

(
h, h, 2h, 2

√
1− 4Q w

2 + (
√

1− 4Q− 1)w

)
, (3.9)

ϕhor = wh(w − 2−
√

1− 4Q w)−h 2F1

(
h, h, 1, 1− 2

√
1− 4Q w

2 + (
√

1− 4Q− 1)w

)
.

It is easy to observe that ϕinf is well behaved at the boundary w → 0, while ϕhor is well
behaved at the outer horizon wout. The Greens function satisfies the equation

∂w(f̂(w)∂wG(z, z′))− h(h− 1)
w2 = zd0

dRd−1 δ(w − w
′) . (3.10)

Here note that the function f(w) has been replaced by its limit f̂(w). The Green’s function
is obtained by using the two solutions in (3.9) and is given by

G(w,w′) = −22h(1− 4Q)h−
1
2

(Γ(h))2

Γ(2h)
zd0

Rd−1d
(3.11)

×
(
ϕinf(w)ϕhor(w′)θ(w′ − w) + ϕhor(w)ϕinf(w′)θ(w − w′)

)
.

The bulk boundary propagator using (2.18) is given by

K(w) = −22h(1− 4Q)h−
1
2

(Γ(h))2

Γ(2h)
zd0

Rd−1d
(−2)h

(
2ν
z∆

0

)
(3.12)

×wh(w − 2−
√

1− 4Q w)−h 2F1

(
h, h, 1, 1− 2

√
1− 4Q w

2 + (
√

1− 4Q− 1)w

)
.

4In appendix B, we discuss how taking the large d limit as in (3.5), the solution in (3.1) satisfies the
leading order Einstein’s equation.
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Finally, we need the limiting value of the Gauss-Bonnet curvature in the large d limit.
Evaluating the Gauss-Bonnet curvature for the geometry in (3.1), we obtain

LGB = (d− 2)(d− 1)
R4 × (3.13)(

(3d− 5)(3d− 4)Q2w4− 4
d − 2Q

[
d{d(4w − 1)− 10w + 5}+ 6(w − 1)

]
w2− 2

d

+d
[
(d− 1)w2 + d+ 1

] )
.

Taking the limit d→∞, the leading contribution to the Gauss Bonnet term is given by

lim
d→∞

LGB = d4

R4

(
9Q2w4 − 8w3Q+ (2Q+ 1)w2 + 1

)
. (3.14)

We now have all the necessary ingredients to evaluate the one point function in the
large d limit. Substituting the leading contribution of the Gauss-Bonnet curvature (3.14)
and the bulk boundary propagator (3.12) in (2.20), we obtain for the thermal one point
function

〈O〉 =− α22hd
2(−2)−h(1−4Q)h−

1
2

R2
Γ(h)2

Γ(2h)

( 2ν
z

∆+
0

)∫ wout

0
dw

[
9Q2w2− 8wQ+ (2Q+1) + 1

w2

]

× wh(w − 2−
√

1− 4Q w)−h 2F1(h, h, 1, 1− 2
√

1− 4Q w

2 + (
√

1− 4Q− 1)w
) . (3.15)

One simple check of this result is to note that when Q → 0, this expression reduces to
the integral obtained in the uncharged planar black hole in (2.24) with d → ∞. Examin-
ing (3.14) and (3.15), we see that we need to keep the ratio d

R to be finite in the large d
limit to ensure these quantities are finite. Note that the integral is from the outer horizon
to infinity, therefore in the domain of integration in w is always finite. We can bring the
range of integration from 0 to 1 by making the substitution

y = 1− 2
√

1− 4Q w

2 + (
√

1− 4Q− 1)w
, (3.16)

The one point function then is given by

〈O〉 = 4d2(1− 4Q)h/2

R2
(Γ(h))2

Γ(2h)

( 2ν
z∆

0

)∫ 1

0
dy 2F1(h, h; 1; y)×[

− 9(1− y)h+2

4Q2w4
in(1− χy)4 + 2(1− y)h+1

Q2w3
in(1− χy)3 −

(2Q+ 1)(1− y)h

4Q2w2
in(1− χy)2 −

(1− y)h−2

4

]
,

(3.17)

where
χ = 1−

√
1− 4Q

1 +
√

1− 4Q
. (3.18)

The integral of the first three terms in the square bracket in (3.17) can be done using
formula (7.512.9) in [19].5 From (2.25), we can see that integral of the last term in the

5∫ 1
0 dx x

γ−1(1−x)ρ−1(1−χx)−σ 2F1(α, β, γ, x) = (1−χ)−σ(Γ(γ)Γ(ρ)Γ(−α−β+γ+ρ))
Γ(−α+γ+ρ)Γ(−β+γ+ρ)

× 3F2
(
ρ, σ,−α−β+γ+ρ;−α+γ+ρ,−β+γ+ρ; χ

χ−1

)
.
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square bracket vanishes. Using the result for the integrals we obtain

〈O〉 =− d2(1− 4Q)
h
2−1

2R2(1−
√

1− 4Q)
(Γ(h))2

Γ(2h)

( 2ν
z∆

0

)
π(h− 1)h csc(πh)×{[(

−3h2 − h+ 10
)
Q+

√
1− 4Q

(
(3h2 − 3h− 2)Q+ 2

)
− 2

]
×

2F1

(
2− h, h+ 1; 2; 1

2 −
1

2
√

1− 4Q

)
+ 4Q(h− 2) 2F1

(
3− h, h+ 1; 2; 1

2 −
1

2
√

1− 4Q

)}
.

(3.19)

Here the 3F2 hypergeometric function simplifies to 2F1 for the values of the parameters
resulting from the integral.

Having obtained the leading contribution to the one point function in the large d limit
we can analytically continue h and take the large h limit. Note that

h = ∆
d
. (3.20)

As we are taking the large d limit, we would need to ensure that ∆ grows faster than linear
in d so that h remains large. h occurs as a parameter of the hypergeometric functions
in (3.19), therefore we need the asymptotic expansion for large orders. To proceed, we
first write down the asymptotic expansion obtained by Watson [20], for hypergeometric
functions at large orders

2F1

(
α+ λ, β − λ, γ; 1

2 −
z

2

)
∼ Γ(1− β + λ)Γ(γ)

πΓ(γ − β + λ) 2α+β−1(1− e−ζ)
1
2−γ(1 + e−ζ)γ−α−β−

1
2

×
∞∑
s=0

[
cse

(λ−β)ζΓ
(
s+ 1

2

)
λ−s−

1
2 + c′se

∓πi( 1
2−γ)e−(λ+α)ζΓ

(
s+ 1

2

)
λ−s−

1
2

]
.

(3.21)

This expansion is valid for large |λ| with α, β, z fixed, the constants cs can be found in [20].
Here

ζ = arcCosh z (3.22)

For our purpose it is sufficient to obtain, the leading term in this expansion. So we can re-
tain the first term with s = 0. All other terms are sub-leading, they are either exponentially
or polynomially suppressed in λ. Therefore we have

2F1

(
α+ λ, β − λ, γ; 1

2 −
z

2

)
∼ Γ(1− β + λ)Γ(γ)

πΓ(γ − β + λ) 2α+β−1(1− e−ζ)
1
2−γ(1 + e−ζ)γ−α−β−

1
2 e(λ−β)ζΓ

(1
2

)
λ−

1
2 ,

(3.23)

– 12 –



J
H
E
P
0
3
(
2
0
2
3
)
2
5
6

with c0 = 1 as given in [20]. Substituting the arguments of the hypergeometric function
that we have in (3.19), we obtain the following leading contributions

lim
h→∞

2F1

(
2− h, 1 + h, 2, 1

2 −
1

2
√

1− 4Q

)
∼ eh arcsech(

√
1−4Q)

h3/2 , (3.24)

lim
h→∞

2F1

(
3− h, 1 + h, 2, 1

2 −
1

2
√

1− 4Q

)
∼ eh arcsech(

√
1−4Q)

h3/2 .

Finally we can substitute the asymptotic form in (3.24) and take the large h limit in
the rest of the terms in the thermal one point function given in (3.19) which results in

lim
h→∞−iε

O〉 ∼ e
−h log

[
4√

1−4Q

]
+h arcsech(

√
1−4Q)

e−iπh
[
1 + e−i2πh + · · ·

]
× (powers of h). (3.25)

Here we have followed the prescription in [3] and given a small imaginary part to h so as
to pick up the phase e−iπh. Now replacing h by the mass in the large h or mass limit we
obtain

〈O〉 ∼ exp
[
m

(
−R
d

log
[ 4√

1− 4Q

]
+ R

d
arcsech(

√
1− 4Q)− iπR

d

)]
. (3.26)

Comparison with geometric lengths. Let us now evaluate the lengths τs, `hor, `sing.
The proper time between the outer and inner horizons is given by

τs =
∫ zout

zin

Rdz

z
√

zd

zd0
− qz2d−2 − 1

. (3.27)

We re-write this integral in terms of w defined in (3.4) and take the large d limit of (3.5)
to obtain

τs = R

d
√
Q

∫ win

wout

dw

w
√

(w − wout)(win − w)
, (3.28)

= πR

d
.

The proper length from the outer horizon to infinity is given by

ˆ̀hor = lim
ε→0

R

d
√
Q

∫ wout(
ε
z0

)d dw

w
√

(wout − w)(win − w)
, (3.29)

= R

d
log

( 4√
1− 4Q

)
−R log

(
ε

z0

)
.

Again the regularised length is obtained by ignoring the divergence, note that from (2.29),
we see that the divergence is identical to that for the planar Schwarzschild black hole.

`hor = R

d
log

( 4√
1− 4Q

)
. (3.30)
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The proper length from the inner horizon to the singularity is given by

`sing = R

d
√
Q

∫ ∞
win

dw

w
√

(wout − w)(win − w)
, (3.31)

= R

d
arcsech(

√
1− 4Q) .

We use these geometric lengths to rewrite the one point function obtained in (3.26) in the
following form

〈O〉 ∼ exp(−m(`hor + `sing − iτs)) . (3.32)

This is the generic structure of the one point function which was argued using a saddle
point approach in [3]. This involved a choice of contour in the complex radial coordinate.
Here we have obtained it by explicitly evaluating the one point function which involves
an integral from the outer horizon to infinity exactly at large d. The one point function
contains the information of the inner horizon. In the appendix C, we show that the same
structure of the one point function is obtained for the Weyl tensor squared coupling.

4 Hyperbolic black holes

In this section, we consider the hyperbolic black hole in AdSd+1 [21, 22] whose metric is
given by

ds2 = R2

z2

[
−
(

1− z2

R2

)
dt2 + dz2

1− z2

R2

+R2(du2 + sinh2 u dΩ2
d−2)

]
, (4.1)

where R is the radius of AdSd+1 and Ωd−2 refers to the sphere Sd−2. The coordinate z
is related to the usual radial co-ordinate by z = R2

r . This metric can be obtained from a
hyperbolic slicing of pure AdSd+1 and can be interpreted as a black hole with a horizon at
z = R with Hawking temperature

T = 1
2πR . (4.2)

This space is holographically dual to a conformal field theory on R × AdSd [23, 24]. We
would like to repeat the analysis done in the previous sections for this background and
check if indeed the one point function contains information of the time from the horizon
to singularity.

We consider the effective action in (2.4) with Gauss-Bonnet coupling. The Gauss-
Bonnet coupling in this case is a constant which is given by

LGB = c

R4 , c = (d− 2)(d− 1)d(d+ 1) . (4.3)

To construct the bulk-boundary propagator, we follow the procedure discussed in sec-
tion. Since the spatial geometry of the boundary is Euclidean AdSd−1, we need to expand
the bulk-bulk Green’s function in terms of normalizable eigen functions on AdSd−1. We
consider the expansion

G(z, z′, t, t′u, u′,Ω,Ω′) =
∫
dωdλ

∑
l,σ

Ĝ(z, z′, λ, l, σ)φλlσ(u,Ω)φ∗λlσ(u′,Ω′)e−iω(t−t′) , (4.4)

– 14 –



J
H
E
P
0
3
(
2
0
2
3
)
2
5
6

where φλlσ are eigen functions of the Laplacian on Euclidean AdSd−1. They satisfy the
equation

2φλlσ = −
(
λ2 +

(
d− 2

2

)2)
φλlσ , (4.5)

and the quantum number λ is a continuous variable that runs from 0 to ∞. The numbers
(l, σ) refer to quantum numbers on Ωd−2 and l in an integer that runs from 0 to∞, σ refer
to the other quantum numbers of the spherical harmonics. These eigen functions have been
explicitly constructed in [25] and they are given by

φλlσ = qλ,l(u)Ylσ(Ω), (4.6)

qλ,l(u) = (i sinh u)l2F1

(
iλ+ d− 2

2 + l,−iλ+ d− 2
2 + l, l + d− 1

2 ;− sinh2 u

2

)
.

What is important for us is their orthonormality property on AdSd−1∫
dudΩd−2(sinh u)d−2 φλlσ(u,Ω)φλ′l′σ′(u,Ω) = δl,l′δσ,σ′δ(λ− λ′) , (4.7)

where the integral is on AdSd−1 with unit radius. Substituting the expansion of the Green’s
function given in (4.4) and using the metric (4.1) we see that the coefficients obey the
differential equation

∂z

((
R

z

)d−1(
1− z2

R2

)
∂zĜ(z, z′, ω, λ, l, σ)

)
+
(
R

z

)d−1 ω2

1− z2

R2

Ĝ(z, z′, ω, λ, l, σ)

−
(
R

z

)d−1 [
m2
(
R

z

)2
+ 1
R2

(
λ2 +

(
d− 2

2

)2)]
Ĝ(z, z′, ω, λ, l, σ)

= 1
Rd−1 δ(z − z

′). (4.8)

Similarly the bulk-boundary Green’s function admits an eigenfunction expansion given by

K(z′, t, t′u, u′,Ω,Ω′) =
∫
dωdλ

∑
l,σ

K̂(z′, ω, λ, l, σ)φλlσ(u,Ω)φ∗λlσ(u′,Ω′)e−iω(t−t′). (4.9)

From (2.11) and the eigen function expansions we see that

K̂(z′, ω, λ, l, σ) = lim
z→0

2ν
z∆ Ĝ(z, z′, ω, λ, l, σ) . (4.10)

Then substituting the eigenmode expansion in the expression for thermal one point function
given in (2.6), we can obtain the expectation value of each mode

〈O〉w,λ,l,σ = α

∫
dz′dt′du′dΩ′

√
g′K̂(z′, ω, λ, l, σ)eiωt′φ∗λlσ(u′,Ω′)LGB(z′, t′, u′,Ω′) , (4.11)

where the metric is that given in (4.1). From (4.3), we see that the Gauss-Bonnet term
is independent of time or coordinates on AdSd−1. This implies that we can perform the t
integral, furthermore since the bulk-boundary propagator is independent of the quantum
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numbers l, σ due to spherical symmetry we can perform the integral on the sphere Sd−2.
This leads to

〈O〉w,λ,l,σ = α 2πδ(w)δl,0δσ,0
∫
dz

R2d

zd+1 K̂(z, 0, λ, 0, 0)LGB(z)
∫
du(sinh u)d−2q∗λ,0(u) . (4.12)

The integral over u needs to be regulated by placing a cut off in the coordinate u which
is along the field theory directions. This will yield a function which just depends on the
mode λ it does not contain the information of the operator O. Therefore, let us define the
thermal one point function of the mode λ, by scaling out the integral over u.

ˆ〈O〉λ = α

∫
dz

R2d

zd+1 K̂(z, λ)LGB(z), (4.13)

K̂(z, λ) = K̂(z, 0, λ, 0, 0) .

Here it is understood we are in the zero mode sector ω = 0, l = 0, σ = 0. It is easy to
see that in case the rescaled expectation value 〈Ô〉λ is independent of λ, then it implies
that the thermal one point function 〈O(t, u,Ω)〉 is uniform in the field theory directions.
This is because if 〈O(t, u,Ω) is constant on R×AdSd−1, then each mode expansion of the
expectation value is given by

〈O〉w,λ,l,σ =
∫
dtdudΩd−2(sinh u)d−2〈O(t, u,Ω)〉eiωtq∗λ,l(u)Y ∗lσ(Ω) , (4.14)

= 〈O〉2πδ(ω)δl,0δσ,0Rd−1
∫
du(sinh u)d−2q∗λ,0 .

In the second line we have used the fact that 〈O(t, u,Ω)〉 is constant on R × AdSd−1.
Comparison of (4.12), (4.13) and the second line of (4.14) shows that in case ˆ〈O〉λ is
independent of λ, then it can be identified with the uniform expectation value of the
operator in the field theory. Therefore we will evaluate the thermal expectation value given
in (4.13) and show that in the regime of our interest, that is large operator dimensions ∆,
the expectation value is independent of λ and it coincides with the uniform expectation
value on the boundary field theory on the hyperbolic space.

To obtain the Green’s function Ĝ(z, z′, 0, λ, 0, 0) ≡ Ĝ(z, z′, λ), it is convenient to go to
coordinates

w = z2

R2 . (4.15)

Then the equation (4.8) is written as

4∂w
[
w(1− d2 )(1− w)∂wĜ(w,w′, λ)

]
(4.16)

−w−(1+ d
2 )
[
m2R2 + w

(
λ2 +

(
d− 2

2

)2 )]
Ĝ(w,w′, λ) = 2

Rd−2 δ(w − w
′) .

The Green’s function is constructed by using the solution to the homogenous equation The
solution which is regular at the boundary z = 0 is given by

ϕinf(w) = w∆/2
2F1

(
−d4 + ∆

2 −
iλ

2 + 1
2 ,−

d

4 + ∆
2 + iλ

2 + 1
2;−d2 + ∆ + 1;w

)
, (4.17)
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while the solution regular at the horizon is given by

ϕhor(w) = w∆/2
2F1

(
−d4 + ∆

2 −
iλ

2 + 1
2 ,−

d

4 + ∆
2 + iλ

2 + 1
2; 1; 1− w

)
. (4.18)

Then the Greens function which solves (4.16) is obtained by the same methods discussed
in the appendix A. This results in

Ĝ(w,w′, λ) = A×
(
ϕinf(w)ϕhor(w′)θ(w′ − w) + ϕhor(w)ϕinf(w′)θ(w − w′)

)
, (4.19)

A = −
R2−dΓ

(
d
2 −∆

)
Γ
(

1
4(−d+ 2∆− 2iλ+ 2)

)
Γ
(

1
4(−d+ 2∆ + 2iλ+ 2)

)
2Γ
(

1
2(d− 2∆)

)
Γ
(

1
2(2∆− d) + 1

) .

The bulk-boundary Greens’ function can be read out using (4.10)

K̂(w, λ) = 2ν
R∆Aϕhor(w) . (4.20)

Substituting this in the expression for the thermal one point function in (4.13), we obtain

ˆ〈O〉λ = α
2ν
R∆

c

2R4AR
d
∫ 1

0
dww−( d2 +1)ϕhor(w) . (4.21)

We change variables from w to 1− w to re-write the integral as

ˆ〈O〉λ = α
2ν
R∆

c

2R4AR
d × (4.22)∫ 1

0
dw (1− w)−

∆
2 −1

2F1

(1
4(d− 2∆− 2iλ+ 2), 1

4(d− 2∆ + 2iλ+ 2); 1;w
)
,

We can perform the integral by using the formula∫ 1

0
(1− w)a 2F1(b, c; 1;w) dw = Γ(a+ 1)Γ(a− b− c+ 2)

Γ(a− b+ 2)Γ(a− c+ 2) , (4.23)

if Re (a) > −1 andRe (a) + 2 > Re (b+ c) ,

which results in
ˆ〈O〉λ = −α 2ν

R∆
c

R2 × (4.24)

Γ
(
−∆

2

)
Γ
(

∆−d
2

)
Γ
(

1
4(−d+ 2∆− 2iλ+ 2)

)
Γ
(

1
4(−d+ 2∆ + 2iλ+ 2)

)
4Γ
(
−d

2 + ∆ + 1
)

Γ
(

1
4(−d− 2iλ+ 2)

)
Γ
(

1
4(−d+ 2iλ+ 2)

) .

Observe the factor R∆+2 provides the right scaling dimension for the expectation value.
Now that we have the exact expectation value of the operator, we can take the large

∆→∞− iε limit with λ fixed we obtain

lim
∆→∞−iε

ˆ〈O〉λ ∼ csc
(
π∆
2

)
e−∆ log(2) × (powers of ∆) . (4.25)

From our earlier discussion, we can conclude that since this value is independent of λ, we
can conclude that in the large ∆ limit the operator acquires uniform expectation value on
the field theory directions R × AdSd−1. Using ∆ ∼ mR in the large ∆ limit and ignoring
corrections due to powers of ∆, we can re-write this uniform thermal expectation value as

lim
∆→∞−iε

〈O〉 ∼ exp
[
m

(
− iπR

2 −R log 2
)]
. (4.26)
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Comparison with geometric lengths. At this stage we can compare the form of
the thermal expectation value in (4.26) with the expression proposed in [3] in terms of
geometric lengths. The proper time from the horizon to singularity for the hyperbolic
black hole in (4.1) is given by

τs = R

∫ ∞
R

dz

z
√

z2

R2 − 1
= πR

2 . (4.27)

Recall that the radial co-ordinate r = R2

z . Note that unlike the planar Schwarzschild black
hole, this length is independent of the dimension d. The proper length from infinity to the
horizon is given by

ˆ̀hor = lim
ε→0

R

∫ R

ε

dz

z
√

1− z2

R2

, (4.28)

= R log(2)−R log
(
ε

R

)
.

The regularized proper length is obtained by ignoring the divergence, so we obtain

`hor = R log(2) . (4.29)

Using the proper time and the regularized proper length, we can write the expectation
value in (4.26) as

lim
m→∞−iε

〈O〉 ∼ exp(−imτs −m`hor) . (4.30)

Therefore we see that the geometric form for the expectation value for operators of large
dimensions is true even in the presence of black holes with hyperbolic horizons. One of the
consequences of our calculation is that generically, we expect operators of large dimensions
on conformal field theories on spatial hyperbolic surfaces to obtain expectation values at
finite temperature.

5 BTZ black holes with angular momentum

In [3], the examples considered did not include the rotating black holes, moreover it is not
clear that the saddle point arguments to arrive at the thermal expectation value provided
in [3] for black holes with inner horizons generalise to that of black holes with rotation.
This is because these metrics which was used in the saddle point arguments had spherical
symmetry. In this section we use the rotating BTZ black hole geometry to study the
behaviour of thermal one point function of scalars dual to primaries in the CFT. Though
many quantities are exactly solvable in this geometry, one apparent difficulty with this is
that in the dual field theory conformal invariance in 2d ensures that primary operators do
not acquire non-trivial expectation values at finite temperature if the CFT is on a real line.
In the 3 dimensional dual holographic description, this is reflected in the fact that both the
Gauss-Bonnet curvature as well Weyl tensor curvature square vanishes in 3d. Therefore
the mechanism discussed in the previous sections does not apply to holographic 2d CFTs.
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ϕ

χ

Figure 3. One point function induced by the cubic coupling χ2ϕ in the BTZ background [13].

However it is known that one point functions of CFTs on a torus do acquire non-trivial
expectation value. In [13], this expectation value was interpreted holographically as arising
due to the cubic coupling of the field ϕ dual to the operator of interest with another bulk
field χ. More explicitly one considers the following action

S = 1
16πGN

∫
d3x
√
g (∂νϕ∂νφ+m2ϕ2 + ∂νχ∂

νχ+ µ2χ2 + gχ2ϕ) . (5.1)

The field χ2 acquires non-trivial expectation value due to the sum of propagators that wind
around the horizon of the BTZ black hole, this in turn induces a one point function for the
field ϕ. This is shown in figure 3.

In [3], the action in (5.1) was used to show that for the Schwarzschild BTZ black hole,
the leading contribution to the expectation value of the operator O dual to ϕ is given by

lim
m→∞−iε
L→∞

〈O〉 ∼ (powers of m) exp(−imτs −m`hor)× e−
2πL
β +O

(
e
− 4πL

β

)
. (5.2)

Here L is the periodicity in the spatial direction, when L → ∞, the expectation value
vanishes. In this section we will show that when one considers the BTZ black hole with
rotation, the thermal one point function behaves as given in (5.2), where now τs, `hor are
evaluated in the rotating BTZ geometry. Note that we do not see the occurrence of `sing,
the proper length from the inner horizon to the origin, unlike what was seen for the black
hole with charge.

To see if this behaviour holds in other situations, we evaluate the expectation value of
the composite made out of the bilinear O2 in 2d CFT on a line but held at distinct left and
right temperatures. The dual description of this CFT at large central charge is the BTZ
black hole with angular momentum. Since the field is a composite, its expectation value
at finite temperature is non-vanishing and can be obtained using conformal invariance. A
closed expression can be obtained for this expectation value when the operator O has large
integer dimensions. We show that this expectation value can be written as

lim
m→∞−iε

〈O2〉 ∼ exp(−2imτs − 2m`hor) . (5.3)

Again we do not see the appearance of the proper length `sing. It will be interesting to see
if this is a feature true for thermal one point functions in rotating black holes in higher
dimensions.
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5.1 Thermal one point function from gravity

We consider the BTZ metric with angular momentum which is given by

ds2 =
(
−r2 + r2

− + r2
+
)
dt2

R2 + r2R2dr2(
r2 − r2

−
) (
r2 − r2

+
) + r2dφ2 − 2r−r+dtdφ

R
. (5.4)

Then by AdS/CFT, the expectation value of the operator dual to the scalar ϕ is given by

〈O(t, φ)〉 = g

∫ √
gd3x′〈χ2(x′)〉K(x′, t, φ) . (5.5)

where K(x′, t, φ) is the bulk-boundary propagator of the ϕ field in the BTZ background,
and the integral is carried out in the BTZ geometry outside the horizon. The expecta-
tion value 〈χ2(x′)〉 is obtained by considering the bulk-bulk propagator of the χ field and
subtracting the coincident limit singularity. We now provide the details for evaluation of
the expectation value χ2, the bulk-boundary propagator K(x′, t, φ) and then proceed to
evaluate the integral in (5.5).

Bulk-Bulk propagator for χ. Bulk-Bulk propagators between 2 points in global AdS3
are known exactly in terms of the geodesic distance between the points. Since the BTZ
is a quotient of global AdS3 through the identification φ → φ + 2π, we first write down
the geodesic length between the following two points at the same radial position and time
coordinate in BTZ but at angular separation of ρ.

x1 : (t, r, φ = 0) , x2 : (t, r, φ = ρ) . (5.6)

The easiest approach to find the geodesic length is to use the embedding of the BTZ
background into the hyperboloid defined by

− T 2
1 − T 2

2 +X2
1 +X2

2 = −R2. (5.7)

Then the BTZ black hole with angular momentum in (5.4) is obtained from the metric

ds2 = −dT 2
1 − dT 2

2 + dX2
1 + dX2

2 . (5.8)

with the following embedding [26].

T1 =
√
r2 − r2

+
r2

+ − r2
−
R sinh

(
r+t− r−Rφ

R2

)
, (5.9)

T2 =
√
r2 − r2

−
r2

+ − r2
−
R cosh

(
r+Rφ− r−t

R2

)
,

X1 =
√
r2 − r2

+
r2

+ − r2
−
R cosh

(
r+t− r−Rφ

R2

)
,

X2 =
√
r2 − r2

−
r2

+ − r2
−
R sinh

(
r+Rφ− r−t

R2

)
.
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From this relations, we see that the location of the 2 points in (5.6), in terms of the co-
ordinates (T1(xi)), T2(xi), X1(xi), X2(xi)) can be obtained. Then the geodesic distance d̂
between these points is obtained using the relation

−R2 cosh d̂ = −T1(x1)T2(x2)− T2(x1)T2(x2) +X1(x1)X1(x2) +X2(x1)X2(x2) . (5.10)

We obtain the following simple formula for the geodesic distance between the points (5.6)

cosh d̂ =
(
r2 − r2

−
)

cosh
(ρr+
R

)
+
(
r2

+ − r2) cosh
(ρr−
R

)
r2

+ − r2
−

. (5.11)

The bulk-bulk propagator in AdS3 is given by [27]

G∆(u) = C∆2∆

u∆ 2F1

(
∆,∆− 1

2 , 2∆− 1,−2
u

)
, (5.12)

where

u = 2 sinh2 d̂

2 =
(r2

+ − r2) cosh
(ρr−
R

)
+ (r2 − r2

−) cosh
(ρr+
R

)
− (r2

+ − r2
−)

r2
+ − r2

−
, (5.13)

C∆ =
Γ(∆)Γ

(
∆− 1

2

)
(4π)

3
2 Γ(2∆− 1)

.

We will consider the case when the field χ has conformal dimensions ∆ = 1, then

G1(r, ρ) = 1
8π

1√
u
2
(
u
2 + 1

) . (5.14)

Substituting for u from (5.13) we obtain

G1(r, ρ) = 1
4π

(r2
+ − r2

−)√[
(r2

+ − r2) cosh( r−ρR ) + (r2 − r2
−) cosh( r+ρR )

]2 − (r2
+ − r2

−)2
. (5.15)

Using this bulk to bulk propagator, we obtain

〈χ2(r)〉 =
∞∑

n=−∞,n 6=0
G1(2πn) = 2

∞∑
n=1

G1(2πn) . (5.16)

Here we have removed the coincident singular limit and summed over all the windings to
ensure periodicity in φ → φ + 2π. Note that the expectation value of χ2 just depends on
the radial position.

The bulk-boundary propagator for ϕ. From the fact that the expectation value of
χ2 depends only the radial position, it is convenient to work in the Fourier expansion of
the bulk-boundary propagator in frequency and the angle φ. Let

K(r′, t, t′, φ, φ′) =
∞∑

n=−∞

∫
dω

2π e
−iω(t−t′)+in(φ−φ′)K̂(r, r′, ω, n) . (5.17)
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Then substituting this Fourier expansion in (5.5) and using the fact that 〈χ2(r)〉 just
depends on the radial position, we can perform the integral over t′, φ′. This leads to

〈O(x, t)〉 = g

∫ ∞
r=r+

r′dr′K̂(r′, 0, 0)〈χ2(r′)〉 . (5.18)

We obtain the zero mode of the bulk-boundary propagator K̂(r′, 0, 0) by examining the
zero mode of the bulk-bulk Green’s function, which satisfies the differential equation

1
r
∂r

(
(r2 − r2

−)(r2 − r2
+)

rR2 ∂rĜ(r, r′, 0, 0)
)
−m2Ĝ(r, r′, 0, 0) = δ(r − r′)

r
. (5.19)

We change variables to

x =
r2 − r2

+
r2 − r2

−
. (5.20)

Then the differential equation for the Green’s function reduces to

4(1− x)2∂x
[
x∂xĜ(x, x′)

]
−m2R2Ĝ(x, x′) = 2(1− x)2R2

r2
+ − r2

−
δ(x− x′) , (5.21)

here it is understood that Ĝ(x, x′) refers to the Fourier zero mode along t, φ directions.
We construct the Green’s function by solving the homogenous equation. Let us define

h = ∆
2 , which is related to the mass by

h = 1
2(1 +

√
1 +m2R2) , ν =

√
1 +m2R2 . (5.22)

The solution which is well behaved near the outer horizon r = r+, x = 0 is given by

ϕhor = (1− x)1−h
2F1(1− h, 1− h; 1;x) , (5.23)

and the solution which is well behaved at the boundary r =∞, x = 1 is given by

ϕinf = (1− x)h 2F1(h, h; 2h; 1− x) . (5.24)

Then the Green’s function is given by

G(x, x′) = A×
[
ϕinf(x)ϕhor(x′)θ(x− x′) + ϕhor(x)ϕinf(x′)θ(x′ − x)

]
, (5.25)

A = − R2Γ(h)2

2.Γ(2h).
(
r2

+ − r2
−
) .

We can now use the bulk-bulk Green’s function to obtain the bulk-boundary Green’s func-
tion. Substituting for z = R2

r in (2.11) and then using (5.20) we obtain

K(x) = lim
x′→1

2ν
R4h

(r2
+ − r2

−)h

(1− x′)h G(x, x′), (5.26)

= 2νA
R4h (r2

+ − r2
−)h(1− x)1−h

2F1(1− h, 1− h; 1;x).
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Thermal one point function. We are ready to substitute the necessary ingredients
in (5.18) to obtain the one point function Using the bulk-boundary Green’s function (5.26),
the expectation value 〈χ2(r)〉 from (5.15) we obtain

〈O〉 = −K(h)
∞∑
n=1

1
sinh

(
2πnr+
R

) ∫ 1

0
dx

(1− x)h−1
2F1(h, h, 1;x)√(

1− χ̂(1)
n x

)(
1− χ̂(2)

n x
) , (5.27)

K(h) = gνR2

4π
(r2

+ − r2
−)h(Γ(h))2

R4hΓ(2h) .

where we have changed the integration variables to x using (5.20) and

χ̂(1)
n =

cosh2 (πnr−
R

)
cosh2 (πnr+

R

) , and χ̂(2)
n =

sinh2 (πnr−
R

)
sinh2 (πnr+

R

) . (5.28)

In (5.27), we have used the fact that the expectation value of the operator is uniform
from (5.18) and dropped the dependence on (t, φ). To take various limits it is convenient
to change variables to w = 1− x in (5.27) in the integrand, this results in

〈O〉 = −K(h)
∞∑
n=1

1
sinh2(πnr+R )− sinh2(πnr−R )

∫ 1

0
dw

wh−1
2F1(h, h, 1; 1− w)√(

1− χ(1)
n w

)(
1− χ(2)

n w
) , (5.29)

where

χ(1)
n = χ̂

(1)
n

χ̂
(1)
n − 1

=
cosh2 (πnr−

R

)
sinh2 (πnr−

R

)
− sinh2 (πnr+

R

) , (5.30)

χ(2)
n = χ̂

(2)
n

χ̂
(2)
n − 1

=
sinh2 (πnr−

R

)
sinh2 (πnr−

R

)
− sinh2 (πnr+

R

) .
We can now expand the denominator in (5.29) using

1√
(1− χ1w)(1− χ2w)

=
∞∑
k=0

Pk

(
χ1 + χ2
2√χ1χ2

)
(√χ1χ2 w)k , (5.31)

where Pk refers to the Legendre polynomial of order k. Substituting this expansion
in (5.27), and integrating term by term we obtain

〈O〉 = K(h)
∞∑

n=1,k=0

1
sinh2 (πnr+

R

)
− sinh2 (πnr−

R

) × (5.32)

Pk
(
χ

(1)
n + χ

(2)
n

2
√
χ

(1)
n χ

(2)
n

)(√
χ

(1)
n χ

(2)
n

)k Γ(−h+ k + 1)Γ(h+ k)
Γ(k + 1)2

 .
The above result is the closed form expression for the thermal one point function of the
operator O, in the rotating BTZ background which is induced by the cubic coupling with
the field χ. It will be interesting to compare this result with that of the CFT by developing
the methods in [13]. This work assumed that the black hole could be modelled as a heavy
state in the CFT, but the case when the heavy state had different left and right conformal
dimensions was not considered.

– 23 –



J
H
E
P
0
3
(
2
0
2
3
)
2
5
6

r− → 0 limit. In [3], the one point function for the Schwarzschild BTZ was obtained.
Let us first reproduce this results from the general expression (5.32). In the limit r− → 0,
we see that

χ(1)
n → − 1

sinh2 (πnr+
R

) and χ(2)
n → 0 ,

Pk

(
χ

(1)
n + χ

(2)
n

2
√
χ

(1)
n χ

(2)
n

)[√
χ

(1)
n χ

(2)
n

]k
→ Γ(2k + 1)

4kΓ(k + 1)2 (χ(1)
n )k, (5.33)

K(h) → gνR2

4π
r2h

+ Γ(h)2

R4hΓ(2h) .

Substituting these leading terms in (5.32), we obtain

〈O〉 = gνR2

4π
Γ(h)2

z2h
0 Γ(2h)

× (5.34)

∞∑
n=1,k=0

1
sinh2 (πnr+

R

) Γ(2k + 1)
4kΓ(k + 1)2 (χ(1)

n )kΓ(−h+ k + 1)Γ(h+ k)
Γ(k + 1)2 ,

= gνR2

4π
Γ(h)2

z2h
0 Γ(2h)

∞∑
n=1

π csc(πh)
sinh2 (πnr+

R

) 3F2

(
1
2 , 1− h, h; 1, 1;− 1

sinh2 (πnr+
R

)) .
To obtain the second line, we have used the Legendre duplication formula to simplify the
Gamma functions in the numerator and then used the definition of the hypergeometric
function 3F2 to sum over k. We have also replaced R2

r+
by z0. The last line in (5.34), is

the expression obtained in [3] for thermal one point function in the Schwarzschild BTZ
background.

To interpret the one point function geometrically, we first take the limit 2πr+
R → ∞.

At this point it is instructive to relate this limit to the one taken in [3], in which the length
of the identification in the spatial direction of the BTZ black hole is large. To do this let
us write the metric of the BTZ Schwarzschild metric from (5.4)

ds2 = R2

z2

[(
1− z2

z2
0

)
dt2 + dz2

1− z2

z2
0

+R2dϕ2
]
. (5.35)

Here we have written the Euclidean BTZ, in which t is identified as t→ t+ β, where

z0 = R2

r+
= β

2π , (5.36)

On re-defining the co-ordinates as

z′ = z

z0
, t′ = t

z0
, x = R

z0
φ . (5.37)

the metric becomes
ds2 = R2

z′2

[
(1− z′2)dt′2 + dz′2

1− z′2 + dx2
]
. (5.38)
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With this scaling, we have the identifications

t′ ∼ t′ + 2π, x ∼ x+ 2π2πR
β

. (5.39)

To arrive at the identification in x we have used the relation between z0 and β in (5.36).
This is the rescaled co-ordinates used in [3]. The periodicity in the spatial direction can
be read from (5.35). It is given by to be L = 2πR and therefore x ∼ x+ 2πL

β . Let us now
examine the ratio r+

R , from (5.36)

2πr+
R

= 2π2πR
β

= 2πL
β

, (5.40)

Therefore taking the limit
2πr+
R
→∞ (5.41)

corresponds to the same limit of large spatial periodicities of [3].
Examining the one point function in (5.34) in the limit (5.41), we see only the n = 1

term contributes and we can also just retain the leading term from the hypergeometric
function which results in

〈O〉 = gνR2

2
Γ(h)2

z2h
0 Γ(2h)

csc(πh)e−
2πr+
R . (5.42)

Note that the z−2h
0 just provides the scaling dimensions for the expectation value. In this

form it is easy to see that on further taking the limit h→∞− iε

lim
h→∞−iε

〈O〉 ∼ e−iπh2−2he−
2πr+
R , (5.43)

∼ e−iπ
mR

2 4−
mR

2 e−
2πr+
R .

To obtain the last line we have used (5.22) to replace h in terms of the mass m. Comparing
the coefficient of e−

2πr+
R in (2.26), we see that it behaves just as seen for thermal one point

functions in higher dimensions.

Limit r−
R
,
r+
R
→ ∞, with r−

r+
held fixed. In this limit, we still can keep track of the

dependence of the one point function on the inner horizon Before we take this limit, it is
convenient to simplify the dependence on r−, r+ in (5.32). We can write

χ
(1)
n + χ

(2)
n

2
√
χ

(1)
n χ

(2)
n

= coth 2πnr−
R

, (5.44)

and √
χ

(1)
n χ

(2)
n =

sinh 2πnr−
R

cosh 2πnr−
R − cosh 2πnr+

R

. (5.45)

We need the limit

lim
r−
R
→∞

Pk

(
coth 2πnr−

R

)
= 1 +O(exp

(
−4πnr−

R

)
. (5.46)
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We substitute (5.44), (5.45) into the expression for the one point function in (5.32) and
take the limit

r−
R
→∞, r+

R
→∞, r−

r+
= δ fixed. (5.47)

Using (5.46), we see that the leading contribution arises from n = 1, k = 0 term in the
sum. All the remaining terms are exponentially suppressed compared to this term, which
is given by

〈O〉 = gνR2

2
(r2

+ − r2
−)hΓ(h)2

R4hΓ(2h) csc(πh)e−
2πr+
R +O

[
exp

(
−2πr+

R
(2− δ)

)]
,

= gνR2

2
Γ(h)2

z2h
0 Γ(2h)

csc(πh)eh log(1−δ2)e−
2πr+
R , (5.48)

with z0 = R2√
r+2−r2

−
.

Finally we can take the h→∞− iε

lim
h→∞−iε

〈O〉 ∼ e−iπhe−h(log 4−log(1−δ2)e−
2πr+
R , (5.49)

= e−i
πmR

2 e−
mR

2 (log 4−log(1−δ2))e−
2πr+
R .

Comparison with geometric lengths. From the metric (5.4, the time to singularity
is given by the integral

τs = R

∫ r+

r−

rdr√
(r2

+ − r2)(r2 − r2
−)

, (5.50)

= Rπ

2 .

The proper length from infinity to the horizon is given by

ˆ̀hor = lim
ε→0

R

∫ R2
ε

r+

rdr√
(r2

+ − r2)(r2 − r2
−)

, (5.51)

= −R2 log(1− δ2) +R log(2)− log ε

z0
, z0 = R2

r+
.

Here we have chosen the same cut off as in (2.28), since r and z are related by r = R2

z .
Therefore the regularized proper length is given by

ˆ̀hor = −R2 log(1− δ2) +R log(2) . (5.52)

Finally one can also evaluate the proper length from the inner horizon to the singularity,
we obtain

ˆ̀sing = R

2 log
(1− δ

1 + δ

)
. (5.53)

Comparing the leading contribution to the thermal one point function in (5.49) with
these geometric lengths, we see that it can be written as

〈O〉 ∼ exp(−imτs −m`hor)e−
2πr+
R . (5.54)

Note that in the limit (5.47) we do not see the presence of `hor, the proper length from the
inner horizon to the singularity.
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5.2 One point function 〈O2〉 from CFT

From the analysis of the rotating BTZ background we saw that in the large horizon radius
limit, or the large spatial length limit, the leading contribution to the thermal one point
function does not see `sing, the geometric length from the inner horizon to the singularity.
We know that composite operators, or operators which do not transform as conformal
primaries gain thermal expectation value in 2d CFT on a plane. In this section we evaluate
this one point function and observe that when their conformal dimensions are large, their
expectation value can be cast into the geometric form, but again there is no information
about `sing.

We consider the bilinear compose O2 of the primary O of dimension 2hO and let 2hO
be an integer. Here the holomorphic and the anti-holomorphic dimension of the operator
is (hO, hO). The one point function of the operator of the composite can be obtained by
the following approach. We first look at the 2 point function at finite temperature

〈O(w, w̄)O(0, 0)〉 =
[
βL
π

sinh
(
πw

βL

)]−2hO[βR
π

sinh
(
πw̄

βR

)]−2hO
. (5.55)

Here the left and right inverse temperatures of the CFT is given by (βL, βR) and since we
are interested in the BTZ black hole with angular momentum we should have βL 6= βR.
The expectation value 〈O2〉 can be obtained by examining the expansion in w, w̄ of (5.55)
and extracting out the constant term. To see that this indeed captures thermal expectation
value, we know that the OPE of O with itself contains the composite O2.

O(z, z̄)O(0, 0) ∼ 1
|z|4hO

+ · · ·+ CO2(0, 0) + · · · . (5.56)

Here the · · · refer to other singular terms or terms which depend on powers of z, z̄ in the
OPE which we are not interested in. The O2 operator occurs in the OPE with no depen-
dence of z and C is the OPE coefficient. Now taking thermal expectation value on both
sides of this equation, we see that the constant term, independent of z, z̄ is proportional
to the expectation value 〈O2〉. To extract the constant term, it is sufficient to look at the
holomorphic two point function and obtain the residue in the Laurent expansion in z. The
residue when 2hO is an integer is given by

a0(β) = 1
2πi

∮
dw

w

[
β

π
sinh

(
πw

β

)]−2hO
, (5.57)

where the integral is around the origin. Then from the OPE expansion of (5.55), the
thermal expectation value is given by

C〈O2〉 = a0(βL)a0(βR) . (5.58)

Examining the residue (5.57), we see that it is non-zero only when 2h0 is an even integer
or hO is an integer. We re-write the residue as

a0(β) = 1
2πi

(
π

β

)2hO ∮
dye−[log y+2hO log(sinh y)] . (5.59)
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hO (a0β
2hOπ

1
2−2hO ) Exact (a0β

2hOπ
1
2−2hO ) Saddle point Error in %

5 −0.280338 -0.279105 0.439624
10 0.199763 0.199308 0.227946
15 −0.163527 −0.163275 0.153875
20 0.141801 0.141637 0.116138
25 −0.126929 −0.126811 0.0932657
30 0.11593 0.11584 0.07792
35 −0.10737 −0.107298 0.0669107
40 0.100463 0.100404 0.0586273
45 −0.0947381 −0.0946887 0.052169
50 0.089892 0.0898497 0.0469923
55 −0.0857207 −0.0856841 0.0427502
60 0.082081 0.0820488 0.0392106
65 −0.0788687 −0.0788402 0.0362124

Table 1. Numerical comparison of the exact value of the residue at integer hO against the saddle
point given in (5.61).

For large 2hO we can perform this integral by the saddle point method. The saddle points
at the leading order are at

ysaddle = ± iπ2 +O

( 1
hO

)
. (5.60)

Adding the contributions at the 2 saddles along with the one loop term at each of the
saddles we obtain

a0(β) = 1
2πi

∮
dw

w

(
β

π
sinh

[
πw

β

])−2hO
≈ 2π2hO− 1

2 cos(πhO)
β2hO

√
2 + π2hO

. (5.61)

We can compare the value of a0 from the saddle point against the numerical value, which
can be obtained by explicitly evaluating the residue. This comparison is shown in the
table 1 as well as in the graph in figure 4, we see that indeed, that the saddle point
approximation is a good approximation at large values of integer 2hO.

From the approximation of a0(β) in (5.61), we see that the thermal one point function
is given by in the large 2hO limit is given by

〈O2〉 = 1
C
a0(βL)a0(βR) , (5.62)

= 1
C

( 1
βLβR

)2hO 4π4hO−1 cos2(πhO)
2 + π2hO

.

The cos2(πhO) term is just unity when hO is an integer, but we keep this factor so that
it enables us to obtain the general form of the result. Let us now recast this expression
in terms of geometric quantities in the bulk. The left and right inverse temperatures are
related to the horizon radii by [28]

1
βL

= r+ − r−
2πR2 ,

1
βL

= r+ + r−
2πR2 . (5.63)
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Figure 4. The blue curve represents the plot of the function log[a0β
2hO sec(πhO)], where a0 is

obtained from the result of our saddle point analysis given in the equation (5.61). The red points
are the exact values of the log[a0β

2hO (−1)hO ] at the integer values of hO obtained by explicitly
evaluating the residue (5.57).

Using this relation in (5.62), we can write

lim
hO→∞+iε

〈O2〉 ∼ 1
Cz4hO

0
e−2hO log 4+2hO log(1−δ2) exp(−i2πhO) . (5.64)

The small imaginary part selects the leading phase to be exp(−2πihO). In gravity the 3
OPE coefficient is given by C =

√
2 [29], therefore they does not grow exponentially in hO.

We can also identify 2hO = ∆O2
2 . With these inputs, the thermal one point function can

be written as

〈O2〉 ∼ exp
[
− iπ∆O2

2 − ∆O2

2
(

log 4− log(1− δ2)
)]
, (5.65)

∼ exp
[
− iπ2mR

2 − 2mR
2
(

log 4− log(1− δ2)
)]
.

Using (5.50), (5.52), we can write the expectation value of the composite as

〈O2〉 ∼ e−i2mτs−2m`hor . (5.66)

Note that m→ 2m since we are evaluating the expectation value of the composite O2, and
we do not see the appearance of `sing.

Though our calculation in the CFT has been done only for integer conformal dimen-
sions, we have written the result so that it is natural to read out the general form of the
result. But, it will be interesting to see if the methods of [30] can be used to verify if indeed
the expectation value of the composite can be written in the form for arbitrary conformal
dimensions.6

6In [30] the expectation value of the composite in which the operator O obeys mean field theory corre-
lators have been written for 2d CFT, but not for the correlator given in (5.55). We have verified that the
expectation value of the composite O2 using the mean field theory correlator does not behave as in (5.62)
in the large hO limit.
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6 Conclusions

We have discussed two examples in which the thermal one point function of massive scalars
can be evaluated exactly. For the charged planar black hole we introduced a large d limit
to achieve this. In both these examples the result for the one point function agreed with
that anticipated in [3] using WKB methods. In particular for the charged black hole which
has an inner horizon we observed the presence of `hor, the proper distance from the inner
horizon to the singularity. The second example involved hyperbolic black holes for which
τs, the time to the singularity has a different dependence on the radius of AdSd+1. We
also saw that these results remain the same for both the Gauss-Bonnet or the Weyl tensor
squared coupling.

We obtained the one point function of massive scalars in BTZ due to a cubic coupling
of scalars. We could interpret this result geometrically in a suitable limit of large horizon
radius, but could not find the dependence of `sing in this limit. It would be interesting
to investigate the case of rotating black hole in higher dimensions. The WKB methods
of [3] assumed radial symmetry and it would be important to generalize those arguments
to backgrounds with axial symmetry. The recent developments [31, 32] regarding the
applications of the solutions to the Heun equation to evaluate thermal 2 point functions
will be helpful in this regard.

We saw that in 2d we could gain some insight on thermal one point functions by
evaluating the expectation value of composite scalars at finite temperature. For this we
used integer conformal dimensions. The methods of [30] can be used to study this question
for arbitrary conformal dimensions. It will be important to develop such methods in field
theory to understand the features of thermal one point function. As we have seen, these
contain some information of the geometry behind the horizon and evaluating one thermal
one point functions directly in the dual field theory can give us new insight to black hole
geometry.
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A Details for the Green’s function

The bulk-bulk Green’s function G(z, z′) satisfies the equation,

∂z

(
Rd−1

zd−1 f(z)∂zG(z, z′)
)
− Rd−1

zd−1 m
2G(z, z′) = δ(z − z′) , (A.1)

and G(z, z′) has to be well-behaved at the boundaries z = 0 and z = z0; f(z) was defined
in the equation (2.7).
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Now, the two linearly independent solutions of the homogeneous part of the differential
equation (A.1) are given by,

ginf(w) = wh 2F1(h, h, 2h,w) , and, ghor(w) = wh2F1(h, h, 1, 1− w) . (A.2)

Where, w =
(
z

z0

)d
, h = ∆

d
, (A.3)

The solutions ginf(w) and ghor(w) are regular at w = 0 and at w = 1 respectively, which
indicates,

G(w,w′) =

A(w′)ginf(w) for w < w′,

B(w′)ghor(w) for w > w′.
(A.4)

Where A(w′) and B(w′) are functions of w′, to be determined.
Now, for the Green’s function to be continuous at w = w′, we should have,

A(w′)ginf(w′) = B(w′)ghor(w′) . (A.5)

The jump of ∂wG(w,w′) around w = w′ is obtained by integrating the both side of
the equation (A.1) with respect to z from z = z′ − ε to z = z′ + ε with ε→ 0 and then we
used the equation (A.5) to get,

B(w′)
ginf(w′)

(
ginf(w′)g′hor(w′)− ghor(w′)g′inf(w′)

)
= zd0
Rd−1d(1− w) . (A.6)

Note that the terms inside the parenthesis in the l.h.s. is equal to the Wronskian of the
homogeneous part of the differential equation (A.1) written in w′ variable. And this Wron-
skian is calculated up to an overall constant factor C̃ directly from the differential equation,
thus we have, (

ginf(w′)g′hor(w′)− ghor(w′)g′inf(w′)
)

= C̃

1− w′ . (A.7)

Now, the constant C̃ is determined by expanding the both side of the above equation in
the taylor series about w = 0. The first term of the series expansion of the l.h.s. is equal
to C̃. Thus one obtains,

C̃ = −Γ(2h)
Γ(h)2 . (A.8)

Hence,

B(w′) = −Γ(h)2

Γ(2h)
zd0

Rd−1d
ginf(w′) , A(w′) = −Γ(h)2

Γ(2h)
zd0

Rd−1d
ghor(w′) . (A.9)

And finally, the bulk-bulk green’s function,

G(w,w′) = −Γ(h)2

Γ(2h)
zd0

Rd−1d

(
ginf(w)ghor(w′)θ(w′ − w) + ghor(w)ginf(w′)θ(w − w′)

)
.
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B The charged planar black hole solution at large d

The consistency of the treatment of large d limit used to evaluate the one point function
for the case of the charged planar black hole requires the metric (3.1) in this limit to satisfy
the Einstien-Maxwell field equation at the leading order in d. In this appendix, we will
verify it by straightforward calculation.

At the limit described in (3.5), the metric (3.1) takes the form,

ds2 ≈ R2
AdS
z2

(
− f̂(z)dt2 + dz2

f̂(z)
+ d~x2

)
, where f̂(z) = 1− zd

zd0
+Q

z2d

z2d
0
. (B.1)

Note that the asymptotic behaviour of the metric at the boundary is kept intact in this
limit, thus the rules of AdS/CFT were implemented to obtain the one-point function.

The above metric should satisfy the following Einstien-Maxwell field equation at large d,

lim
d→∞

(
Rµν −

1
2gµνR− Λgµν

)
= − lim

d→∞
8πTµν , (B.2)

where the cosmological constant Λ = −d(d−1)
2R2

AdS
for the AdSd+1 and Tµν is the energy-

momentum stress tensor evaluated from the gauge potential [18],

A =
(
− qzd−2

c
+ Φ

)
dt, Φ is constant, and c =

√
2(d− 2)
d− 1 . (B.3)

By calculating the l.h.s. and r.h.s. separately for each tensorial component of the equa-
tion (B.2), after incorporating the metric (B.1) in it, we will show that l.h.s=r.h.s. for each
component. For this calculation we need the following results,

R00 = f(z)(−2f(z)d+ z[(1 + d)f ′(z)− zf ′′(z)])
2z2 , (B.4)

R11 = 2f(z)d+ z[−(d+ 1)f ′(z) + zf ′′(z)]
2z2f(z) , (B.5)

Rii = df(z)− zf ′(z)
z2 for i ∈ [2, d] . (B.6)

All other components of Ricci-tensor are zero. And the Ricci-scalar is given by,

R = d(d+ 1)f(z) + z(−2f ′(z)d+ zf ′′(z)) . (B.7)

For the 00-component,

lim
d→∞

(
R00 −

1
2g00R− Λg00

)
= lim

d→∞

(
− d(d− 1)

2 Qz2d−2z−4d
0

[
Qz2d + zd0(−zd + zd0)

])
,

= 1
z2

[
− e2d log( z

z0
) + e

3d log( z
z0

) − e4d log( z
z0

)
]
. (B.8)

− lim
d→∞

8πT00 = − lim
d→∞

((d− 2)(d− 1)
2 Qz2d−4z2−4d

0 [Qz2d + zd0(−zd + zd0)]
)
,

= 1
z2

[
− e2d log( z

z0
) + e

3d log( z
z0

) − e4d log( z
z0

)
]
. (B.9)
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For the 11-component,

lim
d→∞

(
R11 −

1
2g11R− Λg11

)
= lim

d→∞

d(d− 1)Qz2d−2

2(Qz2d + z2
0d− zdzd0)

,

= 1
z2

(
1

e2d log( z0
z

) − ed log
(
z0
z

)
+Q

)
. (B.10)

− lim
d→∞

8πT11 = lim
d→∞

( (d− 2)(d− 1)Qz2
0

2z4[Q+ z−2dzd0(−zd + zd0)]

)
,

= 1
z2

(
1

e2d log( z0
z

) − ed log
(
z0
z

)
+Q

)
. (B.11)

and, for ii-component,

lim
d→∞

(
Rii −

1
2giiR− Λgii

)
= − lim

d→∞

(
d(d+ 1)Qz2d−2z−2d

0
2

)
,

= − 1
z2 e

2d log
(
z
z0

)
. (B.12)

− lim
d→∞

8πTii = lim
d→∞

(
− (d− 2)(d− 1)Qz2d−4z2−2d

0
2

)
,

= − 1
z2 e

2d log
(
z
z0

)
. (B.13)

Thus, for each tensorial component we have shown that l.h.s.= r.h.s., i.e., the Einstien-
Maxwell field equation is satisfied by the metric given in (B.1) at the leading order in d.

C Large d with Weyl tensor squared coupling

We repeat the calculation for the one point function in the charged planar black hole
background at large d, described in section 3, but using the Weyl tensor squared coupling
in place of the GB coupling.

The rules of AdS/CFT prescribe the one point function to be,

〈O(t, ~x)〉 = α

∫
dzdt′d~x′

√
gK̃(t, ~x; z, t′, ~x′)W 2(z, t′, ~x′), (C.1)

where the W 2 = WµνρσW
µνρσ, and it would be sufficient to do only the z part of the above

integral as was argued before.
For the metric given in (3.1),

W 2 = (d− 2)(d− 1)2w2− 4
d [(6− 4d)Qw + dw2/d]2

R4d
. (C.2)

And in the limit d→∞, the leading contribution to the Weyl tensor’s square is given by,

W 2 = w2(1− 4Qw)2d4

R4 . (C.3)
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Now plugging the expression for the bulk-boundary green’s function K(w), given in (3.12),
in the equation (C.1), and using the change of variable defined in (3.16), we get,

〈O〉 =− 4d2(1− 4Q)h/2

R2
(Γ(h))2

Γ(2h)

( 2ν
z

∆+
0

)∫ 1

0
dy(1− y)h2F1(h, h, 1, y)×[

(2Qw+)−2(1− χy)−2 − 16Q(2Qw+)−3(1− y)(1− χy)−3

+ 64Q2(2Qw+)−4(1− y)2(1− χy)−4
]
.

(C.4)

Applying the integration formulae used in the section 3, the integrals in the above equation
are performed to get the analytic expression for the thermal one point function,

〈O〉 =− 4d2(1− 4Q)
h
2−1

R2
(Γ(h))2

Γ(2h)
h(h− 1)π csc(πh)
12(1−

√
1− 4Q)

( 2ν
z

∆+
0

)
×([

3(−1 +
√

1− 4Q) + 8Q(h− 2){h(−1 +
√

1− 4Q) +
√

1− 4Q}
]

× 2F1

(
2− h, 1 + h, 2, 1

2 −
1

2
√

1− 4Q

)
− 8Q(h− 2) 2F1

(
3− h, 1 + h, 2, 1

2 −
1

2
√

1− 4Q

))
.

(C.5)

An important point to note that this Weyl tensor square induced one point function differs
from the one point function enabled by the GB coupling given in (3.19), by the polynomial
factors in front of the hypergeometric functions which are not so crucial in the large h
bahaviour of the one point function as the more dominant contributions come from the
exponential growth of the hypergeometric functions at large h.

Thus, the one point function undergoes the exact similar treatment of taking the large
h limit as was illustrated in section 3 to land up into the form,

〈O〉 ∼ exp
[
m

(
−R
d

log
[ 4√

1− 4Q

]
+ R

d
arcsech(

√
1− 4Q)− iπR

d

)]
. (C.6)

So, we observe that the thermal one point function due to both the Weyl tensor squared
and GB coupling behaves identically at large h.
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