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Abstract
We study Birkhoff-James orthogonality and its local symmetry in some sequence spaces
namely �p, for 1 ≤ p ≤ ∞, p �= 2, c, c0 and c00. Using the characterization of the
local symmetry of Birkhoff-James orthogonality, we characterize isometries of each of these
spaces onto itself and obtain the Banach-Lamperti theorem for onto operators on the sequence
spaces.
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1 Introduction

In recent times, symmetry of Birkhoff-James orthogonality has been a topic of considerable
interest [1, 8, 9, 12–14, 19]. It is now well known that the said symmetry plays an important
role in the study of the geometry of Banach spaces. The present article aims to explore
Birkhoff-James orthogonality and its local symmetry in some well studied sequence spaces.
As an outcome of our exploration, we acquire the Banach-Lamperti Theorem [15] for onto

Saikat Roy and Debmalya Sain have contributed equally to this work.

B Babhrubahan Bose
babhrubahanb@iisc.ac.in

Saikat Roy
saikatroy.cu@gmail.com

Debmalya Sain
saindebmalya@gmail.com

1 Department of Mathematics, Indian Institute of Science, C V Raman Road, Bangalore, Karnataka
560012, India

2 Department of Mathematics, Indian Institute of Technology, Powai, Mumbai, Maharashtra 400076,
India

3 Department of Mathematics, Indian Institute of Information Technology, Yermarsur Campus Road,
Raichur, Karnataka 584135, India

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-023-01420-y&domain=pdf
http://orcid.org/0000-0002-8948-8019


   93 Page 2 of 16 B. Bose et al.

operators on some classical sequence spaces by characterizing the onto isometries of the
same. We would like to mention that recently such a study has been carried out in the context
of �np spaces for 1 ≤ p ≤ ∞, p �= 2 in [3]. It should also be noted that Birkhoff-James
orthogonality is closely related to the norm derivatives and their various properties, which
find applications in understanding the geometry of Banach spaces. Recently, such a study
has been carried out in [22], where the notion of local smoothness induced by the norm
derivatives has been completely characterized. We refer the readers to some of the related
works [4, 5, 25] for more information in this context.

Let us now establish the relevant notations and terminologies to be used throughout the
article. Denote the scalar field R or C byK and recall the sign function sgn : K → K, given
by

sgn(x) =
{

x
|x | , x �= 0,

0, x = 0.

Consider a normed linear space X over K and denote its continuous dual by X
∗. Let J (x)

denote the collection of all support functionals of a non-zero x ∈ X, i.e.,

J (x) := { f ∈ X
∗ : ‖ f ‖ = 1, | f (x)| = ‖x‖}. (1.1)

A non-zero element x ∈ X is said to be smooth if J (x) is singleton.
Given x, y ∈ X, x is said to be Birkhoff-James orthogonal to y [2], denoted by x ⊥B y, if

‖x + λy‖ ≥ ‖x‖, for all λ ∈ K.

James proved in [11] that x ⊥B y if and only if x = 0 or there exists f ∈ J (x) such that
f (y) = 0. In the same article he also proved that a non-zero x ∈ X is smooth if and only if
Birkhoff-James orthogonality is right additive at x , i.e.,

x ⊥B y, x ⊥B z ⇒ x ⊥B (y + z), for every y, z ∈ X.

Birkhoff-James orthogonality is not symmetric in general, i.e., x ⊥B y does not neces-
sarily imply that y ⊥B x . In fact, James proved in [10] that Birkhoff-James orthogonality is
symmetric in a normed linear space of dimension higher than 2 if and only if the space is an
inner product space. However, the importance of studying the local symmetry of Birkhoff-
James orthogonality in describing the geometry of normed linear spaces has been illustrated
in [3, Theorem 2.11], [18, Corollary 2.3.4.]. Let us recall the following definition in this
context from [17], which is of paramount importance in our present study.

Definition 1 An element x of a normed linear space X is said to be left-symmetric (resp.
right-symmetric) if

x ⊥B y ⇒ y ⊥B x (resp. y ⊥B x ⇒ x ⊥B y),

for every y ∈ X.

The left-symmetric and the right-symmetric points of �np spaces where 1 ≤ p ≤ ∞, p �= 2,
were characterized in [3]. Herewe take a step forward towards generalizing these results in the
following sequence spaces: �p, for 1 ≤ p ≤ ∞ and p �= 2, c, c0 and c00. Characterizations
of the smooth points, the left-symmetric points and the right-symmetric points of a given
Banach space are of paramount importance in understanding the geometry of the Banach
space. We refer the readers to [1, 8, 9, 12–14, 19–21, 23, 24] for some prominent work in
this direction.

123



Birkhoff-James orthogonality and its local symmetry... Page 3 of 16    93 

The local symmetry of Birkhoff-James orthogonality in a Banach space also plays an
important role in determining the isometric isomorphisms on the space. Let us observe that
Corollary 2.3.4. of [18] in this regard can be stated in the following generalized form:

Corollary 1.1 LetX andY be two normed linear spaces and let T : X → Y be an onto linear
isometry. Then x ∈ X is left-symmetric (resp. right-symmetric) if and only if T (x) ∈ Y is
left-symmetric (resp. right-symmetric).

This result is used for proving the Banach-Lamperti Theorem for onto operators on the
sequence spaces, i.e., for the case where the measure space is N equipped with the counting
measure by finding the onto isometries of �p , for 1 ≤ p ≤ ∞ and p �= 2. We also do the
same for the spaces c, c0 and c00 as a direct consequence of the results characterizing the local
symmetry of Birkhoff-James orthogonality in these spaces. It can be noted that Lamperti’s
idea in [15] uses the concept of convexity, concavity and Radon-Nikodym derivatives along
with the properties of the integral involved in the definition of the L p norm and therefore
cannot be generalized in case of p = ∞. Our approach using the local symmetry of Birkhoff-
James orthogonality however, has no such restrictions and hence is applied for the p = ∞
case as well.

In the first section we completely characterize Birkhoff-James orthogonality in �∞ over
K and then characterize the left-symmetric and the right-symmetric points of the space. As
a corollary of our results, we obtain characterizations of Birkhoff-James orthogonality and
the left-symmetric and the right-symmetric points in c, c0 and c00. Using Corollary 1.1, we
find the isometries of each of these spaces onto itself.

In the second and third sections we obtain the same characterizations in �1 and �p spaces
for 1 < p < ∞ and p �= 2 respectively. Observe that the p = 2 case is trivial since �2 is a
Hilbert space. We also find all the isometries of these spaces onto themselves using Corollary
1.1.

Since we are proving the Banach-Lamperti Theorem for onto operators on the sequence
spaces by this isometry characterization, we define signed permutation operators onKN, the
vector space of all sequences in K.

Definition 2 Amap T : KN → K
N is said to be a signed permutation operator if there exists

a bijection σ : N → N such that

T (x) = (
cnxσ(n)

)
, x = (xn)n∈N ∈ K

N,

where |cn | = 1, for every n ∈ N.

2 Geometry of �∞

In this section, we characterize Birkhoff-James orthogonality between two elements of �∞
and then obtain characterizations of the smooth points, the left-symmetric points and the
right-symmetric points of the space. To serve our purpose, we review some basic facts about
the convergence of a K-valued sequence under an ultrafilter on N. A detailed treatment on
ultrafilters can be found in [6, 7].

2.1 Ultrafilters onN and convergence of sequences under them

We begin by recalling a few definitions.
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Definition 3 (Filters and Ultrafilters) A non-empty subsetF of the power set of a non-empty
set X is said to be a filter on X if

(i) ∅ /∈ F .

(ii) A, B ∈ F ⇒ A ∩ B ∈ F .

(iii) A ∈ F and A ⊂ B ⇒ B ∈ F .

A filter U on X is said to be an ultrafilter on X if any filter on X containing U must be U .
Note that a filter U is an ultrafilter if and only if for every A ⊂ X , A ∈ U or X\A ∈ U if and
only if for every n ∈ N and A1, A2, . . . An ⊂ X , X = ⋃n

i=1 Ai implies Ai ∈ U, for some
1 ≤ i ≤ n. An ultrafilter U on X is called a principal ultrafilter if there exists x ∈ X such
that {x} ∈ U . An ultrafilter which is not a principal ultrafilter is called a free ultrafilter.

We also recall the definition of a filter base.

Definition 4 A non-empty subset B of the power set of a non-empty set X is said to be a filter
base if

(i) ∅ /∈ B.
(ii) If A, B ∈ B, there exists C ∈ B such that C ⊂ A ∩ B.

Note that every filter base B is contained in a unique minimal filter given by {A ⊂ X : B ⊂
A, for some B ∈ B}. Since every filter is contained in some ultrafilter by Zorn’s lemma,
every filter base is also contained in some ultrafilter.

We now focus on the case X = N. Recall the definition of convergence along a filter:

Definition 5 (Convergence along a filter) Let (xn)n∈N be a sequence in K and let F be a
filter on N. Then we say xn converges to some point x0 ∈ K, denoted by lim

F
xn , under F if

for every ε > 0,

{n ∈ N : |xn − x0| < ε} ∈ F .

Let us state a few well-known results pertaining to the convergence of a sequence under a
filter without proof.

Theorem 2.1 Let F is a filter on N and (xn)n∈N and (yn)n∈N be two sequences in K. Then
the following hold true:

(i) limF xn, if exists, is unique.
(ii) If x = limF xn, and f : K → K is continuous, then f (x) = limF f (xn).
(iii) If x = limF xn and y = limF yn, then x + λy = limF (xn + λyn), for any λ ∈ K. Also,

xy = limF xn yn and
x
y = limF xn

yn
if yn �= 0 �= y, for every n ∈ N.

(iv) If F is an ultrafilter and (xn)n∈N is bounded, then limF xn exists.

It is trivial to see that if U is the principal ultrafilter containing {N }, for some N ∈ N,
lim
U

xn = xN . We establish the following result pertaining to the limit of a bounded sequence

under any free ultrafilter.

Proposition 2.2 Let (xn)n∈N and (yn)n∈N be two bounded sequences inK. Then the following
hold:

(i) x0 = limU xn, for some free ultrafilter U on N if and only if x0 is a subsequential limit
of xn.

(ii) x0 = limU xn and y0 = limU yn, for some free ultrafilter U onN if and only if there exists
an increasing sequence (nk)k∈N on N such that xnk → x0 and ynk → y0 as k → ∞.
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Proof Recall that an ultrafilter is free if and only if it contains no finite subset of N.
(i) We first prove the necessity. Suppose x0 = limU xn, for some free ultrafilter U on N.

If x0 is not a subsequential limit of xn , there exists δ > 0 such that {n ∈ N : |xn − x0| < δ}
is finite which is a contradiction since U is a free ultrafilter.

Now, assume that (nk)k∈N is an increasing sequence in N such that xnk → x0, for some
x0 ∈ K and consider the following set:

{A ⊂ N : {nk : k ∈ N}\A is finite}. (2.1)

Observe that the set defined by (2.1) is a filter base and therefore is contained in some
ultrafilter U on N. Clearly, no finite subset of N is an element of U and hence U is a free
ultrafilter. Since, limU xn = x0, the sufficiency is established.

(i i) The sufficiency can be proved like (i). To prove the necessity, let there be no sequence
(nk)k∈N in N such that xnk → x0 and ynk → y0. Then there exist δ1, δ2 > 0 such that

{n ∈ N : |xn − x0| < δ1} ∩ {n ∈ N : |yn − y0| < δ2} is finite,
a contradiction since U is a free ultrafilter and therefore contains no finite subset of N. This
proves the necessity.

2.2 Birkhoff-James orthogonality and smoothness of a point in �∞

We begin this sub-section by recalling a few known results:

Theorem 2.3 The space �∞ is isometrically isomorphic to C(βN), the Banach space of all
K-valued continuous functions on βN equipped with the supremum norm, where βN denotes
the Stone-Čech compactification of N. Recalling the homeomorphism between βN and the
space of all ultrafilters onN equipped with the Stone topology, one can explicitly write down
such an isometric isomorphism T : �∞ → C(βN), given by

T ((xn)n∈N) (U) = lim
U

xn, U an ultrafilter on N. (2.2)

Also, since βN is compact Hausdorff, by an application of the Riesz representation Theorem
in measure theory, we have the following result:

Theorem 2.4 The dual space of C(βN) is isometrically isomorphic to the space of all regular
K-valued Borel measures on βN equipped with the total variation norm and the functional
corresponding to a regular K-valued Borel measure μ acting on C(βN) is given by

μ : f �→
∫

βN

f dμ, f ∈ C(βN).

We note that by Theorem 2.3 and Theorem 2.4, �∗∞ is isometrically isomorphic to the space
of all regular K-valued Borel measures on βN equipped with the total variation norm. We
begin by characterizing the support functionals of a non-zero f ∈ C(βN) and introduce the
following definition in this regard.

Definition 6 For a given f ∈ C(βN), we define M f to be the collection of all the points in
βN where f attains its norm, i.e.,

M f := {U ∈ βN : | f (U)| = ‖ f ‖}.
Using the above, we now characterize J ( f ), (see (1.1) for definition) for a non-zero f ∈
C(βN).
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Theorem 2.5 Let f ∈ C(βN) be non-zero. Thenμ ∈ J ( f ), for some regularK-valued Borel
measure μ if and only if

|μ| (βN \ M f
) = 0, |μ|(M f ) = 1 and dμ(U) = sgn( f (U))d|μ|(U),

for almost every U ∈ M f with respect to the measureμ, where |μ| denotes the total variation
of μ.

Proof The sufficiency follows by elementary computations.Now, ifμ ∈ J ( f ), then dμ(U) =
eiθ(U)d|μ|(U), for some measurable function θ : βN → R. Note that

‖ f ‖ =
∫

βN

f (U)eiθ(U)d|μ|(U) ≤
∫

βN

| f (U)|d|μ|(U) ≤ ‖ f ‖.

Hence equality must hold in both the inequalities involved. Equality in the second inequality
implies that | f (U)| = ‖ f ‖, for almost every U ∈ βN, giving |μ| (βN\M f

) = 0 (and hence,
|μ|(M f ) = 1) and equality in the first inequality gives that for almost every U ∈ M f , with
respect to μ,

f (U)eiθ(U) = ‖ f ‖ ⇒ eiθ(U) = sgn( f (U)).

We now come to our characterization of Birkhoff-James orthogonality in �∞.

Theorem 2.6 Let x = (xn)n∈N and y = (yn)n∈N be two elements of �∞. Then the following
are equivalent:

(i) x ⊥B y.
(ii) 0 ∈ conv {limU xn yn : limU |xn | = ‖x‖}.
(iii) 0 lies in the convex hull of {xn yn : |xn | = ‖x‖} and {limk→∞ xnk ynk :

nk isanincreasing sequence in N, limk→∞
∣∣xnk ∣∣ = ‖x‖, ynk converge as k → ∞}

Proof The result holds trivially if x = 0. Hence, we assume that x �= 0.
(i) ⇔ (i i)
If 0 ∈ conv{limU xn yn : limU |xn | = ‖x‖}, then there exist ultrafilters Ui on N and

λi ∈ [0, 1], for 1 ≤ i ≤ m such that
∑m

i=1 λi = 1 and

m∑
i=1

λi limUi xn yn = 0, limUi |xn | = ‖x‖, for every 1 ≤ i ≤ m.

Consider the functional 	 : �∞ → K, given by

	 ((zn)n∈N) =
n∑

i=1

λi limUi sgn(xn)zn, (zn)n∈N ∈ �∞.

Then clearly 	 has norm 1 and 	(x) = ‖x‖. Hence 	 is a support functional of x that
annihilates y and establishes the sufficiency.

Now, let us assume that x ⊥B y. Then by Theorem 2.3, we have the two maps f , g :
βN → K, given by

f (U) := lim
U

xn, g(U) := lim
U

yn, U ∈ βN,

satisfying f ⊥B g in C(βN). Observe that M f = {U ∈ βN : limU |xn | = ‖x‖}. Now, by
Theorem 2.5, there must exist a regular positive Borel measure ν on M f with ν(M f ) = 1
such that ∫

M f

sgn( f (U))g(U)dν(U) = 0 ⇔
∫
M f

f (U)g(U)dν(U) = 0.
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Let � be the collection of all regular positive Borel measures μ on M f with μ(M f ) = 1.
Consider the map � : � → K, given by

�(μ) :=
∫
M f

f (U)g(U)dμ(U), μ ∈ �.

Then clearly�(�)must be a convex subset ofK since� is convex. Observe that by Theorem
2.5,� is the collection of all support functionals of | f | ∈ C(βN) and hence is weak* compact
by the Banach-Alaoglu Theorem. Since the map � is continuous under the weak* topology,
�(�) will be compact. Hence by the Krein-Milman Theorem, �(�) must be the closed
convex hull of its extreme points.

We claim that the only extreme points of the set �(�) are of the form f (U)g(U), for
some U ∈ M f . Let �(μ) be an extreme point of �(�) where μ is not a Dirac delta measure
at any point on M f . Clearly, if f g is constant at every point of the support ofμ, then�(μ) =
f (U)g(U), for any U in the support of μ. Therefore, let us assume that U, V are two points
in the support of μ with f (U)g(U) �= f (V)g(V). Fix 0 < ε < 1

2 | f (U)g(U) − f (V)g(V)|
and set:

Gε :=
{
W ∈ M f :

∣∣∣ f (U)g(U) − f (W)g(W)

∣∣∣ < ε
}

.

Then Gε is an open subset of M f containing U and M f \Gε contains a neighbourhood of V
in M f . Henceμ(Gε), μ(M f \Gε) > 0. Now sinceμ can be written as a convex combination
of 1

μ(Gε )
μ|Gε and

1
μ(M f \Gε)

μ|M f \Gε ,

�(μ) = 1

μ(Gε)

∫
Gε

f (W)g(W)dμ(W), for every 0 < ε <
1

2
| f (U)g(U) − f (V)g(V)|,

as �(μ) is an extreme point of �(�). Hence,∣∣∣�(μ) − f (U)g(U)

∣∣∣ = 1

μ(Gε)

∣∣∣∣
∫
Gε

(
f (W)g(W) − f (U)g(U)

)
dμ(W)

∣∣∣∣
≤ 1

μ(Gε)

∫
Gε

∣∣∣ f (W)g(W) − f (U)g(U)

∣∣∣ dμ (W) ≤ ε,

giving �(μ) = f (U)g(U) since 0 < ε < 1
2 | f (U)g(U) − f (V)g(V)| is arbitrary.

Therefore,

0 ∈ conv

{
lim
U

xn yn : lim
U

|xn | = ‖x‖
}

, as �(ν) = 0.

Clearly, since M f is compact, {limU xn yn : limU |xn | = ‖x‖} is also compact. We now
prove that the convex hull of a compact subset of K is closed. Indeed, using Caratheodory’s
theorem, for any element x in conv(K ),where K ⊂ K is compact, there exist x1, x2, x3 ∈ K
and λ1, λ2, λ3 ∈ [0, 1] such that

3∑
i=1

λi xi = x and
3∑

i=1

λi = 1.

Hence if x0 ∈ conv(K ), there exist sequences x (n)
i ∈ K and λ

(n)
i ∈ [0, 1], for 1 ≤ i ≤ 3 and

n ∈ N such that

lim
n→∞

3∑
i=1

λ
(n)
i x (n)

i = x0, and
3∑

i=1

λ
(n)
i = 1, for every n ∈ N.
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Since K and [0, 1] are compact, considering a convergent subsequence of all the six sequences
and passing on to the limits, we have x0 ∈ conv(K ). Combining all the results, we therefore
obtain

0 ∈ conv

{
lim
U

xn yn : lim
U

|xn | = ‖x‖
}

.

(i i) ⇔ (i i i) This is immediate from Proposition 2.2 and the fact that if U is a principal
ultrafilter containing {N }, for some N ∈ N, then limU xn = xN , for every sequence (xn)n∈N
in �∞.

We record the characterization of Birkhoff-James orthogonality in �∞, for the real case as a
corollary below.

Corollary 2.7 Let x = (xn)n∈N and y = (yn)n∈N be two elements of �∞ overR. Then x ⊥B y
if and only if any of the following holds true:

(i) There is an increasing sequence of natural numbers (nk)k∈N such that
∣∣xnk ∣∣ → ‖x‖ and

xnk ynk → 0 as k → ∞.
(ii) There are increasing sequences of natural numbers (nk)k∈N and (mk)k∈N such that∣∣xnk ∣∣ → ‖x‖ and

∣∣xmk

∣∣ → ‖x‖ as k → ∞ with xnk ynk ≥ 0 ≥ xmk ymk , for every k ∈ N.
(iii) There is an increasing sequence of natural numbers (nk)k∈N such that

∣∣xnk ∣∣ → ‖x‖ as
k → ∞ and a natural number N such that |xN | = ‖x‖ and xN yN and xnk ynk are of
different signs for every k ∈ N.

(iv) There are N , M ∈ N such that |xN | = ‖x‖ = |xM | and xN yN ≥ 0 ≥ xM yM.

We conclude this section by characterizing the smooth points of �∞.

Theorem 2.8 Let x = (xn)n∈N be a non-zero element in �∞. Then x is a smooth point if and
only if there is no subsequence of (|xn |)n∈N that converges to ‖x‖ and there exists a unique
N ∈ N such that |xN | = ‖x‖.
Proof We first prove the sufficiency. Suppose, there is no subsequence of (|xn |)n∈N that
converges to ‖x‖ and there exists a unique N ∈ N such that |xN | = ‖x‖. Then it follows
from Theorem 2.6 that x ⊥B y, for some y = (yn)n∈N ∈ �∞, if and only if yN = 0.
Consequently, x ⊥B y and x ⊥B z implies x ⊥B (y + z), proving x is smooth.

Again, if x ∈ �∞ is smooth, then the function f : βN → K, given by

f (U) := lim
U

xn, U ∈ βN,

is smooth in C(βN) (Theorem 2.3). Therefore, if U,V ∈ M f , then 	,� : C(βN) → K,

given by

	(g) := sgn( f (U))g(U), �(g) := sgn( f (V))g(V), g ∈ C(βN),

are two distinct support functionals of f because there exists a continuous map F : βN →
[0, 1] such that F(U) = 0 and F(V) = 1, since βN is compact Hausdorff. Hence M f must
be singleton.

Now, if U ∈ M f is a free ultrafilter, then by Theorem 2.2, there exists an increasing
sequence (nk)k∈N of natural numbers such that

∣∣xnk ∣∣ → ‖x‖ as k → ∞. Consider the
following two collections:

{A ⊂ N : {n2k : k ∈ N}\A is finite } and {A ⊂ N : {n2k−1 : k ∈ N}\A is finite }.
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Clearly, both of these sets are filter bases onN and are therefore contained in free ultrafilters.
Also note that since the first collection contains {n2k : k ∈ N} and the second collection
contains N\{n2k : k ∈ N}, the two ultrafilters must be distinct. However, the sequence (|xn |)
has the same limit under both of the ultrafilters. Hence if M f is singleton, it can contain only
a principle ultrafilter and thus the necessity follows. ��

2.3 Local symmetry of Birkhoff-James orthogonality in �∞

In this sub-section we characterize the left-symmetric and the right-symmetric points of the
space �∞.

Theorem 2.9 The only non-zero left-symmetric points of �∞ are scalar multiples of en for
n ∈ N, where en denotes the sequence having the n-th term 1 and the rest of the terms 0.

Proof Since limU en = 0, for every ultrafilter other than the principal ultrafilter containing
{n}, by Theorem 2.6, en ⊥B x, for some x = (xn)n∈N ∈ �∞ if and only if xn = 0. Hence
for λ ∈ K,

‖x + λen‖ = max {|λ|, ‖x‖} ≥ ‖x‖,
and this proves the necessity.

Now, let x = (xn)n∈N be a left-symmetric point of �∞. If limU |xn | = ‖x‖, for some free
ultrafilter U on N, then set y = (yn)n∈N ∈ �∞, given by yn := 1

n sgn(xn). Then clearly,
limU xn yn = 0, since U is a free ultrafilter. Hence, x ⊥B y. However, by Theorem 2.6, for
some z = (zn)n∈N ∈ �∞, y ⊥B z if and only if zN = 0 where N = min{n ∈ N : xn �= 0}.
Thus y �⊥B x, implying that limU |xn | �= ‖x‖, for any free ultrafilter U on N.

Hence, there exists N ∈ N such that |xN | = ‖x‖. Now, suppose that xM �= 0, for some
M �= N ∈ N. Then clearly, setting y = eM , yields that x ⊥B y and y �⊥B x, by Theorem
2.6, which establishes the necessity. ��
Now, from Corollary 1.1, if T : �∞ → �∞ is an onto linear isometry, then for every n ∈ N,
T (en) = cem, for some m ∈ N and some unimodular constant c. Also, since T is onto, T
is invertible and T−1 is also an onto isometry and hence T must be a signed permutation
operator. Note that this extends the result of Lamperti [15] on L p spaces for 1 ≤ p < ∞ to
the p = ∞ case for onto operators with the measure space as N under counting measure.
We record this result as a corollary.

Corollary 2.10 Let T : �∞ → �∞ be an onto linear isometry. Then T must be a signed
permutation operator.

We conclude this sub-section by characterizing the right-symmetric points of �∞.

Theorem 2.11 x = (xn)n∈N ∈ �∞ is a right-symmetric point if and only if |xn | = ‖x‖ for
every n ∈ N.

Proof Note that if |xn | = ‖x‖, for every n ∈ N, then limU |xn | = ‖x‖, for every ultrafilter U
on N and hence by Theorem 2.6, y ⊥B x, for y = (yn)n∈N ∈ �∞ if and only if

0 ∈ conv

{
lim
U

ynxn : lim
U

|yn | = ‖y‖
}

⇒ 0 ∈ conv

{
lim
U

xn yn : lim
U

|xn | = ‖x‖
}
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⇒ x ⊥B y.

Hence the sufficiency is clear and we therefore focus on proving the necessity.
Now, if x �= 0 is right-symmetric and |xN | < ‖x‖ for some N ∈ N, set y = (yn)n∈N ∈ �∞

given by

yn :=

⎧⎪⎨
⎪⎩
sgn(xn), n �= N ,

− sgn(xN ), n = N and if xN �= 0,

1, n = N and if xN = 0.

Then clearly, by Theorem 2.6, y ⊥B x . However,

xn yn :=
{

|xn |, n �= N ,

−|xN |, n = N .

Hence, if U is an ultrafilter not containing {N },
lim
U

xn yn = lim
U

|xn |. (2.3)

Therefore, since |xN | < ‖x‖, the limit of |xn | under the principal ultrafilter containing {N }
is not ‖x‖ and hence by (2.3) and Theorem 2.6, x �⊥B y establishing the necessity.

2.4 Geometry of c, c0 and c00

Recall that c, c0 and c00 are the collections of all convergent sequences, convergent to zero
sequences and eventually zero sequences respectively. Let us denote the limit of a sequence
x = (xn)n∈N ∈ c by lim x . Since all the three spaces are subspaces of �∞, two elements in any
of these spaces are Birkhoff-James orthogonal if and only if they are Birkhoff-James orthog-
onal in �∞. Keeping this fundamental principle in mind we observe that if x = (xn)n∈N ∈ c,
limU xn = lim x and if x ∈ c0, limU xn = 0, for every free ultrafilter U onN. Thus we obtain
the following result from Theorem 2.6.

Theorem 2.12 Suppose that x = (xn)n∈N and y = (yn)n∈N are two sequences in K. Then
(i) If x, y ∈ c, then x ⊥B y if and only if

0 ∈ conv ({xn yn : |xn | = ‖x‖} ∪ {lim x y}) , if lim|x | = ‖x‖,
and 0 ∈ conv{xn yn : |xn | = ‖x‖}, if lim|x | �= ‖x‖.

In particular, for K = R, x ⊥B y if and only if any of the following is true:

1. There exists N ∈ N such that |xN | = ‖x‖ and yN = 0 or lim|x | = ‖x‖ and lim y = 0.
2. There exists N ∈ N such that |xN | = lim|x | = ‖x‖ and xN yN and lim xy are of different

signs.
3. There exist N , M ∈ N such that |xN | = |xM | = ‖x‖ and xN yN < 0 < xM yM.

(i i) If x, y ∈ c0 or c00, x ⊥B y if and only if

0 ∈ conv{xn yn : |xn | = ‖x‖}.
In particular, for K = R, x ⊥B y if and only if one of the following holds:

1. There exists N ∈ N such that |xN | = ‖x‖ and yN = 0.
2. There exist N , M ∈ N such that |xN | = |xM | = ‖x‖ and xN yN < 0 < xM yM.
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The characterization of the smooth points of these spaces requires a little bit more work.

Theorem 2.13 (i) x = (xn)n∈N ∈ c is smooth if and only if |xn | < ‖x‖, for every n ∈ N, or
there exists a unique N ∈ N, such that |xN | = ‖x‖ and lim|x | �= ‖x‖.

(ii) x = (xn)n∈N ∈ c0 or c00 is smooth if and only if there exists a unique N ∈ N such that
|xN | = ‖x‖.

Proof (i) If there are distinct N , M ∈ N such that |xN | = |xM | = ‖x‖, then the two
functionals 	,� : c → K given by

	(y) := sgn(xN )yN , �(y) := sgn(xM )yM , y = (yn)n∈N ∈ c,

are distinct support functionals of x . Again if |xN | = lim|x | = ‖x‖, for some N ∈ N, then
	 ′,�′ : c → K given by

	 ′(y) := sgn(xN )yN , �′(y) := lim
n→∞ sgn(xn)yn, y = (yn)n∈N ∈ c,

are two distinct support functionals of x , establishing the necessity.
Now, by Theorem 2.12, if there exists a unique N ∈ Nwith |xN | = ‖x‖ and lim|x | < ‖x‖,

then x ⊥B y, for some y = (yn)n∈N ∈ c if and only if yN = 0 and clearly, Birkhoff-James
orthogonality is right additive at x . Again if |xn | < ‖x‖, for every n ∈ N, then lim|x | = ‖x‖
and again by Theorem 2.12, x ⊥B y, for some y ∈ c if and only if lim y = 0 proving the
right additivity of Birkhoff-James orthogonality at x and the sufficiency is established.

(i i) The result for c0 and c00 follows from part (i) of this theo and the observation that
for x ∈ c0 or c00, lim|x | = 0 �= ‖x‖ unless x = 0.

Using these two results and going through the proofs of Theorem 2.9, Theorem 2.11 and
Corollary 2.10, we obtain the following result.

Theorem 2.14 1. The left-symmetric points of each of these spaces are λen for n ∈ N and
λ ∈ K.

2. The right-symmetric points of c are the sequences x = (xn)n∈N such that |xn | = ‖x‖,
for every n ∈ N and the spaces c0 and c00 have no non-zero right-symmetric point.

3. The linear isometries of each of these spaces onto itself are the signed permutations
operators.

3 Geometry of �1

In this section, we characterize Birkhoff-James orthogonality and its local symmetry in �1.
We begin with a known result.

Theorem 3.1 The dual space of �1 is isometrically isomorphic to �∞ with the functional 	a

corresponding to an element a = (an)n∈N ∈ �∞, given by

	a(x) =
∞∑
n=1

anxn, x = (xn)n∈N ∈ �1.

In order to avoid confusion, we denote the norm of an element in �1 by ‖.‖1 and the norm of
an element in its dual, identified with the �∞ space by ‖.‖∞. We come to the following pre-
liminary lemma before giving a complete characterization of Birkhoff-James orthogonality
in �1.
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Lemma 3.2 Let x = (xn)n∈N ∈ �1 be non-zero. Then a = (an)n∈N ∈ �∞ is a support
functional of x if and only if an = sgn(xn) if xn �= 0 and |an | ≤ 1 if xn = 0.

Proof The sufficiency can be established by elementary calculations. For the necessity, note
that

‖x‖1 =
∞∑
n=1

anxn =
∑
xn �=0

anxn ≤
∑
an �=0

|anxn | ≤ ‖a‖∞
∑
xn �=0

|xn | = ‖x‖1.

Hence, equality holds in both the inequalities, giving |an | = ‖a‖∞ = 1 and anxn = |anxn |,
i.e., an = sgn(xn), for every n ∈ N with xn �= 0. Also, since ‖a‖∞ = 1, |an | ≤ 1, for n ∈ N

with xn = 0.

We now come to the characterization of Birkhoff-James orthogonality in �1.

Theorem 3.3 Let x = (xn)n∈N and y = (yn)n∈N ∈ �1. Then x ⊥B y if and only if∣∣∣∣∣
∞∑
n=1

sgn(xn)yn

∣∣∣∣∣ ≤
∑
xn=0

|yn |, (3.1)

where sum over an empty set is defined to be 0.

Proof If x ⊥B y, then there exists a = (an)n∈N ∈ �∞ with ‖a‖∞ = 1 such that 	a ∈ J (x)
and 	a(y) = 0. This yields∣∣∣∣∣∣

∑
xn �=0

sgn(xn)yn

∣∣∣∣∣∣ ≤
∑
xn=0

|an yn | ≤
∑
xn=0

|yn |,

proving the necessity.
Again, if (3.1) holds, set k ∈ K, |k| ≤ 1 such that

∞∑
n=1

sgn(xn)yn = k

⎛
⎝∑

xn=0

|yn |
⎞
⎠ .

Consider a = (an)n∈N given by

an :=
{
sgn(xn), an �= 0,

−k sgn(yn), an = 0.

Then clearly a ∈ �∞ and by Lemma 3.2, 	a ∈ J (x). Since 	a(y) = 0, the sufficiency
follows.

As a corollary to the above result, we mention the case when K = R.

Corollary 3.4 Suppose that x = (xn)n∈N and y = (yn)n∈N ∈ �1 are two members of �1 over
R. Let N1 := {n ∈ N : xn yn > 0}, N2 := {n ∈ N : xn yn < 0} and N0 := {n ∈ N : xn = 0}.
Then x ⊥B y if and only if ∣∣∣∣∣∣

∑
n∈N1

|yn | −
∑
n∈N2

|yn |
∣∣∣∣∣∣ ≤

∑
n∈N0

|yn |.

We now come to the characterization of the smooth points of �1.
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Theorem 3.5 The smooth points of �1 are the sequences having no zero term.

Proof Suppose x = (xn)n∈N ∈ �1 has no zero term. Then by Theorem 3.3, if x ⊥B y and
x ⊥B z where y = (yn)n∈N, z = (zn)n∈N ∈ �1, then

∞∑
n=1

sgn(xn)yn =
∞∑
n=1

sgn(xn)yn = 0.

Hence
∞∑
n=1

sgn(xn)(yn + zn) = 0 ⇒ x ⊥B (y + z),

proving x is smooth.
If x = (xn)n∈N ∈ �1 has a zero term xN , for some N ∈ N, by Lemma 3.2, we obtain that

a = (an)n∈N and b = (bn)n∈N ∈ �∞, given by

an :=
{
sgn(xn), xn �= 0,

0, xn = 0,
and bn :=

⎧⎪⎨
⎪⎩
sgn(xn), xn �= 0,

0, xn = 0 and n �= N ,

1, n = N .

are two distinct support functionals of x . Hence x cannot be smooth.

We finally come to the characterization of local symmetry of Birkhoff-James orthogonality
in �1.

Theorem 3.6 No non-zero point of �1 is left-symmetric.

Proof Suppose that x = (xn)n∈N ∈ �1 is non-zero. If there exists N ∈ N such that xN = 0,
then setting a = (an)n∈N, given by yn := sgn(xn) 1

2n , we have ‖y‖1 < ∞. Thus considering
z := y + 2‖y‖1eN , Theorem 3.3 implies x ⊥B z and z �⊥B x . If xn �= 0, for every n ∈ N,
then there exists M ∈ N such that

M∑
n=1

|xn | �=
∞∑

n=M+1

|xn |.

Set y = (yn)n∈N, given by,

yn :=
{
sgn(xn), 1 ≤ n ≤ M,

− sgn(xn) M
2n−M , n ≥ M + 1.

Then y ∈ �1.Again, by Theorem 3.3, x ⊥B y and y �⊥B x and hence x is not a left-symmetric
point.

We now come to the characterization of the right-symmetric points of �1 and thereby find
the collection of onto isometries of the space.

Theorem 3.7 The only right-symmetric points of �1 are scalar multiples of en, for n ∈ N.

Proof Observe that for y = (yn)n∈N ∈ �1, by Theorem 3.3, y ⊥B λen, for some λ �= 0 if
and only if yn = 0 and hence λen ⊥B y. Again if x = (xn)N ∈ �1 has xn, xm �= 0, for
n �= m, we consider r ∈ N such that

0 < |xr | ≤
∑
k �=r

|xk |.

Hence by Theorem 3.3, x �⊥B er but er ⊥B x .
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We use this result to characterize the onto isometries of �1 with the help of Corollary 1.1 and
thereby establish the Banach-Lamperti theorem for onto operators on �1.

Corollary 3.8 Let T : �1 → �1 be an onto linear isometry. Then T must be a signed
permutation operator.

4 Geometry of �p, for 1 < p < ∞, p �= 2

In this final section, we characterize Birkhoff-James orthogonality and its local symmetry in
�p, for p ∈ (1,∞)\{2}. We begin with a well-known result.

Theorem 4.1 The dual space of �p is isometrically isomorphic to �q where 1
p + 1

q = 1 with
the functional 	a corresponding to a = (an)n∈N ∈ �q , given by

	a(x) =
∞∑
n=1

anxn, x = (xn)n∈N ∈ �p.

Hence, as was done in the case of �1, we continue to denote the norm of an element of �p by
‖.‖p and the norm of an element in the dual of �p , identified with �q , by ‖.‖q . To begin with,
we note down a corollary of this theorem pertaining to the characterization of the support
functional of an element of �p .

Corollary 4.2 Let a = (an)n∈N ∈ �q be a support functional of x = (xn)n∈N ∈ �p \{0}. Then
an = 1

‖x‖p−1
p

sgn(xn)|xn |p−1, n ∈ N.

The proof of this result involves elementary computations and the equality criteria of Holder’s
inequality. Observe also that the corollary establishes the uniqueness of the support functional
of any non-zero element in the space, thereby proving its smoothness.

We now come to our characterization of Birkhoff-James orthogonality in �p which follows
as a direct consequence of Corollary 4.2 and James’ characterization of Birkhoff-James
orthogonality.

Theorem 4.3 Let x = (xn)n∈N and y = (yn)n∈N ∈ �p. Then x ⊥B y if and only if

∞∑
n=1

sgn(xn)|xn |p−1yn = 0.

We now characterize the local symmetry of Birkhoff-James orthogonality in �p.

Theorem 4.4 x = (xn)n∈N ∈ �p is a left-symmetric point if and only if x is a non-zero
right-symmetric point if and only if x = λeN , for some N ∈ N, c ∈ K or x = λ1eN +λ2eM ,

for some N , M ∈ N and λ1, λ2 ∈ K, |λ1| = |λ2|.
Proof We first characterize the left-symmetric points. Let x �= 0. The sufficiency can be
verified by elementary computations. Now, suppose xN , xM �= 0 and |xN | �= |xM |, for some
N , M ∈ N. Set y = sgn(xN )|xM |p−1eN − sgn(xM )|xN |p−1eM and note that by Theorem
4.4, x ⊥B y. However,

∞∑
n=1

sgn(yn)|yn |p−1xn = |xN xM |
(
|xN |p2−2p − |xM |p2−2p

)
�= 0,
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since p �= 2, proving y �⊥B x . Again if xN , xM , xK �= 0, we may assume that |xN | =
|xM | = |xK |, as otherwise, by the previous argument, x cannot be left-symmetric. But then,
setting y = sgn(xN )eN − 1

2 (sgn(xM )eM − sgn(xK )eK ) clearly yields x ⊥B y and y �⊥B x
by Theorem 4.4.

Now, Proposition 2.1 of [16] states that in a smooth, strictly convex space, a point is
left-symmetric if and only if it is right-symmetric. Hence the proof for the right-symmetric
case follows from the left-symmetric case.

As a consequence of this result, we characterize all the onto isometries T : �p → �p and
prove the Banach-Lamperti Theorem for onto operators on �p .

Theorem 4.5 Let T : �p → �p be an onto linear isometry. Then T must be a signed
permutation operator.

Proof Observe that T and T−1 are both onto isometries and hence T (x) and T−1(x) are both
left-symmetric points of �p, for any x ∈ �p left-symmetric, by Corollary 1.1. Hence it is
sufficient to show that for every n ∈ N, there exists m ∈ N such that T (en) = λem, for some
λ ∈ K with |λ| = 1. Suppose by contradiction, T (en) �= λem, for any m ∈ N and |λ| = 1.
Then T (en) = 1

2
1
p
(λ1ei + λ2e j ), for i �= j ∈ N and λ1, λ2 ∈ K, |λ1| = |λ2| = 1. Now,

T−1
(

1

2
1
p
(λ1ei − λ2e j )

)
is a left-symmetric point other than any unimodular multiple of en

and hence must be λem for somem �= n and |λ| = 1 or 1

2
1
p
(ν1ek +ν2el), for some k �= l ∈ N

and |ν1| = |ν2| = 1. In either case, we clearly obtain that T−1(ei ) is not a left-symmetric
point, which establishes the desired contradiction.
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