
E. Aas et al. (2023) “Limiting Directions for Random Walks in Classical Affine Weyl Groups,”
International Mathematics Research Notices, Vol. 2023, No. 4, pp. 3092–3137
Advance Access Publication December 4, 2021
https://doi.org/10.1093/imrn/rnab317

Limiting Directions for Random Walks in Classical Affine Weyl
Groups

Erik Aas1, Arvind Ayyer2, Svante Linusson3,∗, and Samu Potka3

1Department of Mathematics, Pennsylvania State University, PA 16802,
USA, 2Department of Mathematics, Indian Institute of Science,
Bangalore 560012, India, and 3Department of Mathematics, KTH Royal
Institute of Technology, Stockholm, SE-10044, Sweden

∗Correspondence to be sent to: e-mail: linusson@kth.se

Let W be a finite Weyl group and W̃ the corresponding affine Weyl group. A random

element of W̃ can be obtained as a reduced random walk on the alcoves of W̃. By a

theorem of Lam (Ann. Prob. 2015), such a walk almost surely approaches one of |W|
many directions. We compute these directions when W is Bn, Cn, and Dn and the random

walk is weighted by Kac and dual Kac labels. This settles Lam’s questions for types B

and C in the affirmative and for type D in the negative. The main tool is a combinatorial

two row model for a totally asymmetric simple exclusion process (TASEP) called the

D∗-TASEP, with four parameters. By specializing the parameters in different ways,

we obtain TASEPs for each of the Weyl groups mentioned above. Computing certain

correlations in these TASEPs gives the desired limiting directions.

1 Introduction

Let W be a finite Weyl group and W̃ the corresponding affine Weyl group. In [13], Lam

studied large random elements of W̃ obtained by multiplication by a randomly chosen

simple reflection at each step under the condition that the expression stays reduced.

This can also be described as a random walk on the alcoves of the affine Weyl group. In
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Random Walks in Classical Affine Weyl Groups 3093

Fig. 1. Example of a random walk in B̃2. The red lines (xi = k) correspond to the root α0, changing

the sign of the first element, the blue lines (x1±x2 = 2k) to α1, swapping the two elements, and the

black lines (x1 ±x2 = 2k+1) to θ , replacing w1, w2 with w4, w3 in B̃2, which means swapping and

changing the signs of the last two elements in the B-MultiTASEP. The yellow path corresponds to

the word . . . s̃1s̃2s̃0s̃2s̃0s̃1s̃0s̃2. After seven steps it is confined to the chamber of the identity of B2.

The (green) dotted line is the limiting direction of the reduced random walk.

each step, the reduced random walk will cross into a new alcove based on the condition

that it must never cross a hyperplane that has already been crossed. See Figure 1 for

an example of type B. This process is a Markov chain and the walk will after a finite

number of steps almost surely be confined to one chamber of the underlying finite Weyl

group. In that chamber it will by the law of large numbers go in a certain direction. Lam

proved [13] that the probability that such a reduced walk will end up in an chamber

corresponding to an element w ∈ W is given by the stationary distribution πW of a

certain finite state Markov chain with rules defined by the algebra of the group W. He

also proved a formula for the exact direction of the walk in terms of πW .

For the Weyl group of type A, Lam conjectured that this limiting direction is

given by the sum of all positive roots. This was proved to be the case by the second

and third authors [5] by computing correlations in the multispecies totally asymmetric

simple exclusion processes (TASEP) on the ring, a model that had already been

considered in the physics literature with completely different motivation [3, 10]. The

stationary distribution of the multispecies TASEP had previously been independently
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3094 E. Aas et al.

computed by Ferrari and Martin [11] where they introduced the so-called multiline

queues as a combinatorial tool to understand the stationary distribution.

In this article, we study the corresponding exclusion processes for the classical

affine Weyl groups of type B, C, and D, which will give us limiting directions of the

reduced random walks for these groups. Here a natural thing to do is to weigh the walks

with the so-called Kac labels or dual Kac labels [12] for each of the types; see Table 2.

For Ãn the limiting direction was proved to be equal to the sum of positive roots of An in

[5] as conjectured in [13]. It was also claimed [13] that, using the Kac labels as weights, a

similar statement held true for type B and was close to being true for the other types. We

prove here that this is true for type B (Section 3.2), but not true for type D (Section 3.3).

However, the expression looks similar to the sum of positive roots for type C using the

dual Kac labels instead; see Remark 3.2. Strangely, our computations suggest that the

limiting directions for types C and D using Kac labels are closely related; see Remark 3.8.

As a combinatorial tool, we use a two-row model for a more general Markov

chain called the D∗-TASEP, studied in [1]. This model has four parameters, and by

specializing these parameters we get the TASEPs needed for each of the Weyl groups

with Kac and dual Kac labels we consider here. The three TASEPs studied in detail,

named the B-MultiTASEP, Č-MultiTASEP, and D-MultiTASEP, are interesting in their own

right. In particular, the B-MultiTASEP has interesting properties and certain two-point

correlations in that chain have the same curious independence property that was proven

in type A; see Conjecture 3.5. For the multiTASEPs of types C, Č we can lump to a TASEP

that has previously been studied in the literature [2, 4] and we can use the results therein

to find the limiting direction in this case.

The paper is organized as follows. In Section 2 we give the background and

conventions for the Weyl groups and the root systems used. In Section 3 we state our

main results and conjectures. In Section 4 we define the TASEPs used for each Weyl

group and in Section 5, we describe how we project them to TASEPs with only two

species. In Section 6 we give a two row combinatorial interpretation of the D∗-TASEP,

which is a modification of the two-row model given by Duchi and Schaeffer [9]. This

is used in Section 7 use to compute the partition functions and two-point correlations

needed for proving the limiting direction in each case.

2 Background

Weyl groups are finite reflection groups studied extensively in both Lie theory and

combinatorics. A Weyl group W is generated by a number of simple reflections
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{s0, . . . , sn−1} corresponding to simple roots. In the affine group W̃ the corresponding

reflections are written as s̃0, . . . , s̃n−1 and accompanied by one more reflection s̃n in the

so-called highest root θ , which together generate the group. Lam [13] studied the shape

of a random semi-infinite element of W̃. His model of randomness is the following:

at each step, a word is multiplied on the left by a simple reflection subject to the

condition that the word is reduced. This corresponds to a reduced random walk on

the alcoves of the hyperplane arrangement corresponding to W̃, where reduced means

that no hyperplane is crossed twice. For an example of type B, see Figure 1. Such a walk

will, with probability one, be confined to one of the chambers of W and tend to go in a

specific direction, for which Lam gave a formula (see Theorem 2.1) in terms of the sta-

tionary distribution πW of a corresponding TASEP defined on the underlying group W.

A step s̃i, 0 ≤ i ≤ n − 1, in the random walk corresponds to si in the TASEP, and s̃n

corresponding to the reflection rθ in the longest root is also easily interpreted in each

case; see below.

In this article, we will determine this direction for the classical root systems

B̃n, C̃n, and D̃n. For the group Ãn of permutations this was done in [5]. We will use the

combinatorial description in terms of signed permutations for both the finite and affine

groups as presented in [6, Chapter 8]. We think of elements of W̃ in the window notation:

w = [w1, . . . , wn] means that w(i) = wi for 1 ≤ i ≤ n. For an element (w1, . . . , wn) in the

finite W, we have −n ≤ wi ≤ n. Taking each coordinate modulo 2n + 1 gives an element

in W from one in W̃. Recall that Bn = Cn consist of all possible signed permutations,

whereas Dn consists of only those signed permutations that have an even number of

negative signs. We will use both −i and i to denote a signed element. In all the finite

groups si, 1 ≤ i ≤ n − 1, interchanges wi and wi+1. The reflection s0 changes the sign

of w1 in Bn and Cn, whereas in Dn it swaps w1 and w2 and changes the sign of both

of them. The reflection rθ changes the sign of wn in Cn. In Bn and Dn, the reflection rθ

swaps wn−1 and wn and changes the sign of both of them. Note how this follows from

the roots listed below.

We will pick explicit roots in R
n, and let W act on R

n by w · ei = ew−1(i), where

we define e−i = −ei. Lam’s formula is as follows.

Theorem 2.1 ([13, Theorem 2]). The direction for a reduced random walk in the Weyl

group W̃, which is confined to the identity chamber, is parallel to

ψ =
∑

w:rθ w>w

πW(w) w−1 · θ .
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3096 E. Aas et al.

Table 1 Root data for types C, B, and D.

Cn Roots: ±ei ± ej for i < j, together with ±2ei.

Simple roots: (α0, . . . , αn−1) = (2e1, e2 − e1, . . . , en − en−1).

Highest root: θ = 2en.

Bn Roots: ±ei ± ej for i < j, together with ±ei.

Simple roots: (α0, . . . , αn−1) = (e1, e2 − e1, . . . , en − en−1).

Highest root: θ = en−1 + en.

Dn Roots: ±ei ± ej for i < j.

Simple roots: (α0, . . . , αn−1) = (e1 + e2, e2 − e1, e3 − e2,

. . . , en − en−1).

Highest root: θ = en−1 + en.

To determine if rθw > w we use the combinatorial formulas for inversions; see

[6, Chapter 8]. The explicit formula for ψ is given for Cn in (3.1) and for Bn and Dn in (3.2).

We next list the Coxeter group conventions we employ in this article for the

classical types. We note that these conventions are slightly different from those used

by Björner and Brenti [6], but are used in [7, Chapter 17], for example. Lam’s proofs are

uniform for all types and therefore do not need to assume any such choices. For each

type (C, B, and D), we list the choice of roots, simple roots, and highest root in Table 1.

2.1 Kac and dual Kac labels as weights

For the symmetric group An the random walk that assigned equal probability to

each possible step in each situation was the natural choice and corresponds to the

multispecies TASEP on a ring, which was used to compute the limiting direction in [5].

As Lam noted [13, Remark 5], it makes sense to adjust the weights according to the Kac

labels for the other classical groups. They are defined as follows. For positive integers

ai, 0 ≤ i ≤ n − 1, write θ = ∑n−1
i=0 aiαi. See Table 2 for the values of a′

is for each type,

where an = 1 for the highest root. We will then let ai be the rate with which the reduced

walk takes a step corresponding to s̃i.

As Lam also pointed out, another natural choice of weights for the reduced walk

is the dual Kac labels ǎi, for reasons related to the topology of the affine Grassmanian

[13, Section 5.5]. They are also presented in Table 2. For these labels, see [12, Tables
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Table 2 Kac labels ai and dual Kac labels ǎi for the different classical infinite

families of Weyl groups.

Type a0 a1 . . . ai . . . an−1 an

A = Ǎ 1 1 1 1 1

B 2 2 2 1 1

C 1 2 2 2 1

D = Ď 1 1 2 1 1

Type ǎ0 ǎ1 . . . ǎi . . . ǎn−1 ǎn

B̌ 1 2 2 1 1

Č 1 1 1 1 1

Aff1 and Aff2]. The duality of the Dynkin diagrams amounts to reversing the arrows

and since type A and D are simply laced, they are self-dual. We will write the random

walks with these weights as B, B̌, C, Č and D respectively. For each of these cases one

can define the corresponding TASEP. In Section 4 we will define in detail the TASEPs

corresponding to the three cases Č, B, and D, and omit the details for C and B̌. They can

be defined using the same methods.

3 Main Results

The overall strategy of proof will be similar to the proof of Lam’s conjecture for type A

[5]. We will recast the finite version of Lam’s chain on the Weyl chambers in terms of an

exclusion process.

3.1 Type Č

For the calculations of the limiting directions in type Č, we will appeal to the exclusion

process known as the Č-MultiTASEP (see Section 4.1). We will fix n and let πČ denote

the stationary distribution of the Č-MultiTASEP on n sites. In this section, we denote

by 〈i〉 the πČ-probability that the last site in the Č-MultiTASEP on n sites is occupied

by a particle of species i for 1 ≤ i ≤ n. We will appeal to the formula for 〈i〉 given in

Theorem 7.4.
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Theorem 3.1. The limiting direction of Lam’s random walk on the alcoves of the affine

Weyl group C̃n with probabilities weighted by dual Kac labels is given by

n∑
i=1

(2i + 1)ei.

Proof. By Theorem 2.1, the limiting direction is

∑
w

rθ w>w

πČ(w) w−1 · θ =
∑
w

wn>0

πČ(w) ewn
=

n∑
i=1

〈i〉 ei. (3.1)

The first equality follows from the fact that the reflection rθ corresponds to changing

the sign of the last position in w and the formula for the length in Cn (which is the same

as Bn) (see [6, Proposition 8.1.1]) in terms of the number of inversions gives that the

length will increase if the last position becomes negative. The second equality follows

from the definition of 〈i〉. Theorem 7.4 now gives

〈i〉 = 2i + 1

2n(2n + 1)
,

determining the limiting direction up to a constant. �

Remark 3.2. Note that the sum of positive roots for Cn (from Table 1) is

∑
1≤i<j≤n

(ej − ei) +
∑

1≤i<j≤n

(ej + ei) + 2
n∑

i=1

ei =
n∑

i=1

2i ei.

This is very similar to, but different from, the result of Theorem 3.1.

3.2 Type B

For the calculations of the limiting directions in type B, we will appeal to the exclusion

process known as the B-MultiTASEP (see Section 4.2). We will fix n and let πB denote the

stationary distribution of the B-MultiTASEP on n sites. In this section, we denote by 〈i, j〉
the πB-probability that the last two sites in the B-MultiTASEP on n sites are occupied

by particles of species i and j respectively. Here, we take −n ≤ i, j ≤ n and denote −k by

k. We will appeal to the formulas for certain sums of 〈i, j〉 given in Lemma 7.12.
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Theorem 3.3. The limiting direction of Lam’s random walk on the alcoves of the affine

Weyl group B̃n with probabilities weighted by Kac labels is given by

n∑
i=1

(2i − 1)ei.

Proof. By Theorem 2.1, the limiting direction is

∑
w

rθ w>w

πB(w) w−1 · (en−1 + en) =
∑
w

rθ w>w

πB(w)(ewn−1
+ ewn

).

Just as in type Č, we first use the interpretation of rθ as simultaneously switching

position and sign for wn−1, wn. Then we use the length of w in terms of its inversions

in Bn [6, Proposition 8.1.1] and perform a case analysis to determine how the rθ move

affects the length of w to obtain

∑
w

rθ w>w

πB(w) w−1 · (en−1 + en)

=
∑

1≤i<j≤n

( ∑
w

(wn−1,wn)=(j,i)

πB(w)(ei + ej)

+
∑
w

(wn−1,wn)=(j,i)

πB(w)(−ei + ej) +
∑
w

(wn−1,wn)=(i,j)

πB(w)(ei + ej)

+
∑
w

(wn−1,wn)=(i,j)

πB(w)(−ei + ej)

)

=
∑

1≤i<j≤n

(〈j, i〉(ei + ej) + 〈j, i〉(−ei + ej) + 〈i, j〉(ei + ej) + 〈i, j〉(−ei + ej)
)
.

This can be further simplified to

n∑
i=1

ei

⎛⎝ n∑
j=i+1

〈j, i〉 − 〈j, i〉 + 〈i, j〉 − 〈i, j〉
⎞⎠ +

n∑
j=1

ej

⎛⎝j−1∑
i=1

〈j, i〉 + 〈j, i〉 + 〈i, j〉 + 〈i, j〉
⎞⎠ . (3.2)
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3100 E. Aas et al.

With notation from Section 7.3 we can rewrite the coefficient for ek as

n∑
j=−k+1

(〈j, k〉 + 〈k, j〉) −
n∑

j=k+1

(〈j, −k〉 + 〈−k, j〉)
= Rowk(n) − DHookk(n) + Colk(n) − UHookk(n). (3.3)

Plugging in the formulas from Lemma 7.12 for 1 ≤ k ≤ n, this simplifies to 2k−1
n(2n−1)

,

which proves the result. �

Remark 3.4. Note that the sum of positive roots for Bn (from Table 1) is

∑
1≤i<j≤n

(ej − ei) +
∑

1≤i<j≤n

(ej + ei) +
n∑

i=1

ei =
n∑

i=1

(2i − 1) ei.

This is exactly the same as the result of Theorem 3.3 up to an overall scaling. This proves

Lam’s claim [13, Remark 5].

We note that the proof of Theorem 3.3 uses certain sums of 〈i, j〉’s, but our

techniques do not allow us to determine all 〈i, j〉’s. However, we are able to give

conjectures for all two-point correlations. Since we have the identity 〈i, j〉 = 〈i, j〉 from

Theorem 7.11, it will suffice to conjecture 〈i, j〉 and 〈i, j〉. From numerical data for small

values of n, we arrive at the the following.

Conjecture 3.5. We conjecture the following two-point correlations for the last two

positions in the B-MultiTASEP.

1. For 3 ≤ i ≤ n, 1 ≤ j ≤ i − 2,

〈i, j〉 = 1

(2n)2 .

2. For 1 ≤ j ≤ n − 1,

〈j + 1, j〉 = 1

(2n)2 + n2 − j2

4n2(2n − 1)
.

3. For 1 ≤ i ≤ n − 1, i + 1 ≤ j ≤ n,

〈i, j〉 = j − i

2n2(2n − 1)
,
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Table 3 The values of 〈i, j〉B for 1 ≤ j ≤ 4 in the B-MultiTASEP with

n = 4. Since 〈i, j〉B = 〈i, j〉B, we do not show the remaining columns.

The boldfaced areas correspond to cases (1) and (3) in Conjecture 3.5.

i\j 4 3 2 1

4 0 1
32

1
64

1
64

3 1
224 0 19

448
1

64

2 2
224

1
224 0 11

224

1 3
224

2
224

1
224 0

1 4
224

3
224

1
32 0

2 5
224

3
56 0 1

224

3 13
224 0 1

112
3

224

4 0 3
224

5
224

3
112

and for 1 ≤ i ≤ n − 2, i + 2 ≤ j ≤ n,

〈i, j〉 = i + j − 1

2n2(2n − 1)
.

4. For 1 ≤ j ≤ n − 1,

〈j, j + 1〉 = j(n2 − j2 + 2n − 2)

2n2(2n − 1)(n − 1)
.

5. For 2 ≤ i ≤ n, 1 ≤ j ≤ i − 1,

〈i, j〉 = 3(i − j)(i + j − 1)

4n2(2n − 1)(n − 1)
.

In particular, cases (1) and (3) of Conjecture 3.5 resemble the results for type A

in [5, Theorem 4.2]. Notice that the correlations in case (1) behave as if the particles were

independent. We illustrate these with data for n = 4 in Table 3. These cases are marked

in boldface.

3.3 Type D

For the calculations of the limiting directions in type D, we will appeal to the exclusion

process known as the D-MultiTASEP (see Section 4.3). We will fix n and let πD denote

the stationary distribution of the D-MultiTASEP on n sites. In this section, we denote
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3102 E. Aas et al.

Table 4 Table of values of ci from Theorem 3.6 for small values of n. Note

that n = 2 is a special case.

n\i 1 2 3 4 5 6

2 1
2

1
2

3 0 1
6

1
3

4 0 5
58

19
116

1
4

5 0 7
130

147
1495

17
115

1
5

6 0 21
562

1077
16298

381
3886

53
402

1
6

by 〈i, j〉 the πD-probability that the last two sites in the D-MultiTASEP on n sites are

occupied by particles of species i and j, respectively. Here, we take −n ≤ i, j ≤ n and

denote −k by k.

Theorem 3.6. The limiting direction of Lam’s random walk on the alcoves of the affine

Weyl group D̃n with probabilities weighted by Kac labels is given by

n∑
i=1

ciei,

where c1 = 0 if n > 2, and

ci =
i−1

n+i−2

(2n−3
n−i

)
ZD

n,i

−
i−2

n+i−3

( 2n−3
n−i+1

)
ZD

n,i−1

for 2 ≤ i ≤ n, where ZD
n,i = ∑n−i

j=0

(2j
j

)(2n−2j−2
n−j−i

)
. For i = n, ci simplifies to 1

n .

The expression for the limiting direction is the same as for type B in (3.2). The

rest of the proof is very similar to the one for type B and is postponed to Section 7.5.

Since the formula for the limiting direction is not very explicit, we give some data in

Table 4.

Remark 3.7. Note that the sum of positive roots for Dn (from Table 1) is∑
i<j

(ej − ei) +
∑
i<j

(ei + ej) =
∑

i

(2i − 2) ei.

Although Lam seems to suggest that the limiting direction in type D should be

close to this value in [13, Remark 5], the data from Table 4 suggest that this is not the

case.
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Table 5 Table of values of ci for type B̌ for small values of n.

n\i 1 2 3 4

2 1
10

2
5

3 1
22

13
77

2
7

4 5
186

326
3441

52
333

2
9

Table 6 Table of values of ci for type C for small values of n.

n\i 1 2 3 4

1 1
2

2 1
6

1
3

3 5
58

19
116

1
4

4 7
130

147
1495

17
115

1
5

3.4 Type C and B̌

We do not consider the remaining cases of types C and B̌ in detail. Our techniques can

be applied to these cases as well, but we do not work these out because the formulas

are not as nice.

If we write the limiting direction of Lam’s random walk on the alcoves of the

affine Weyl group Bn (resp. Cn) with probabilities weighted by dual Kac labels (resp. Kac

labels) as
∑n

i=1 ciei, then the values of ci are as given in Table 5 (resp. Table 6).

Remark 3.8. Since the data in Tables 4 and 6 are the same, it seems that the limiting

directions for Lam’s random walk for Dn+1 and for Cn have similar formulas. Although

this should be provable by plugging in α = β = 1/2 in Theorem 7.1, we do not have a

conceptual understanding of this phenomenon. It would be interesting to understand

this better.

4 MultiTASEP Models

The proofs of our theorems will follow from the analysis of certain discrete-time Markov

chains known as TASEPs. In this section, we define the TASEPs that we will need to

consider. Although TASEPs can be defined for more general graphs, it will suffice for
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3104 E. Aas et al.

Table 7 Transitions for the Č-MultiTASEP, where n ≤ i < j ≤ n and 1 ≤ k ≤ n. Here the bulk

includes the first and the last two sites.

First site Bulk Last site

Transition Probability Transition Probability Transition Probability

k → k 1
n+1 ji → ij 1

n+1 k → k 1
n+1

our purposes to consider these processes on the path graph with n vertices. The particle

configurations satisfy the constraint that there can be at most one particle at each

vertex. The dynamics is as follows. The edge between a pair of neighboring vertices

is chosen with a certain probability (that depends on the specifics of the model) and the

particle on the left vertex of that edge (if it exists) moves to the site on the right vertex

if it is vacant. If the edge chosen is the leftmost or the rightmost, the transitions can be

different, again depending on the model.

We will need to consider multispecies TASEPs, or multiTASEPs in short, in

which particles of several species are present, and where there is a total order among

the particles. The dynamics is then that the “larger” particle exchanges with the

“smaller” particle if the former is to the left of the latter. We will label the particles

n, . . . , 1, 1, . . . , n, where n is the number of vertices. We think of i as a particle of species

−i so that n is the slowest particle and n is the fastest particle moving right. In each

of the multiTASEPs below, configurations consist of words of length n in the alphabet

{n, . . . , 1, 1, . . . , n} where there is exactly one of either i or i present for all 1 ≤ i ≤ n. The

sites are labeled 1, . . . , n. In the definitions of the processes we use the Kac labels and

the dual Kac labels; see Table 2. We will focus on types Č, B, and D. The processes for

types C and B̌ can be constructed in a completely analogous manner.

4.1 Č-MultiTASEP definition

In the Č-MultiTASEP an edge is chosen between sites � and �+1 with probability 1/(n+1)

for 0 ≤ � ≤ n. If � = 0 (resp. � = n), we take the edge to be the left (resp. right) boundary.

The transition rules are given in Table 7.

4.2 B-MultiTASEP definition

In the B-MultiTASEP, an edge is chosen between sites � and � + 1 with probability 1/n

for 0 ≤ � ≤ n−2, and with probability 1/2n for � = n−1 or � = n. If � = 0, the transition
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Table 8 Transitions for the B-MultiTASEP, where n ≤ k < m ≤ n and 1 ≤ i < j ≤ n. Here the

bulk includes the first two sites.

changes the sign of the first label. If 1 ≤ � ≤ n − 1, the transition results in exchanging

the labels at sites � and �+1. If � = n, it exchanges the last two labels and changes their

signs. The transitions rules are given in Table 8.

4.3 D-MultiTASEP definition

Configurations in this model consist of words as before with the extra condition that

there are an even number of negative entries in each word. The transitions are as

follows: an edge is chosen between sites � and � + 1 with probability 1/(n − 1) for

2 ≤ � ≤ n − 2, and with probability 1/2(n − 1) for � = 0, 1, n − 1, n. If 1 ≤ � ≤ n − 1,

the transition results in exchanging the labels at sites � and � + 1. If � = 0 or � = n, it

exchanges the labels of the first or last two sites, respectively, and changes their signs.

The transitions rules are given in Table 9.

In a similar way one may define C-TASEP and B̌-TASEP. We omit the details.

5 Lumping to Two-Species TASEPs

Given a Markov chain (Xt) on a state space � and an equivalence relation ∼ on �, we

naturally obtain a partition S of � into subsets. For ω ∈ �, let [ω] denote the subset

containing ω. One can project (Xt) to a stochastic process (Yt) on S by setting Yt = [Xt].

In general, (Yt) will not be a Markov process. Set PX(σ → [ω′]) = ∑
σ ′∈[ω′] PX(σ → σ ′). In

First site Bulk Last site

Transition Probability Transition Probability Transition Probability

ji → ij

ji → ij

ji → ij

ji → ij
i → k 1

n mk → km 1
n

ij → ji
1

2n

ij → ji

ij → ji

ij → ji

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/4/3092/6449111 by J.R
.D

. Tata M
em

orial Library, Indian Institute of Science, Bengaluru user on 25 M
ay 2023



3106 E. Aas et al.

Table 9 Transitions for the D-MultiTASEP, where n ≤ k < m ≤ n and 1 ≤ i < j ≤ n.

the special case that PX(σ → [ω′]) = PX(τ → [ω′]) for all σ , τ ∈ [ω], then (Yt) becomes

a Markov process and we say that Y is a lumping of X. Equivalently, we can express

lumping by saying that the following diagram commutes

(5.1)

where MX and MY are the transition matrices for the two processes. One important

consequence of lumping for our purposes is the relationship between the stationary

distributions of the two processes.

Proposition 5.1. Let (Xt) be a Markov chain on � and (Yt) be a lumping of (Xt) on a

partition S of �. Further, let πX and πY denote the respective stationary distributions.

Then, for each S ∈ S,

πY(S) =
∑
σ∈S

πX(σ ).

We will use various lumpings to compute stationary probabilities and correla-

tions in the Č-MultiTASEP, the B-MultiTASEP, and the D-MultiTASEP. To help the reader

keep track of all the lumpings used in this article, we summarise these in Figure 2.

First two site Bulk Last site

Transition Probability Transition Probability Transition Probability

ij → ji ji → ij

ij → ji ji → ij

ij → ji ji → ij

ij → ji 1
2(n−1)

mk → km 1
n−1

ji → ij 1
2(n−1)

ji → ij ij → ji

ji → ij ij → ji

ji → ij ij → ji

ji → ij ij → ji
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Random Walks in Classical Affine Weyl Groups 3107

Fig. 2. All the TASEPs used in this article and their interrelations. All arrows correspond to

lumpings. For completeness, we have also included the C-MultiTASEP and B̌-MultiTASEP although

we do not discuss the details in this article.

Table 10 Transitions for the Č-TASEP

First site Bulk Last site

Transition Probability Transition Probability Transition Probability

11 → 11

1 → 1 1
n+1 10 → 01 1

n+1 1 → 1 1
n+1

01 → 10

5.1 Two-species TASEPs

In this section, we will define two-species TASEPs on a finite one-dimensional lattice of

size n, where the number of vacancies (i.e., 0’s) is fixed to be n0. Let

�n,n0
= {τ ∈ {1, 0, 1}n | the number of 0′s in τ is n0}.

We give the details for Č-TASEP, B-TASEP, and D-TASEP whose transition

probabilities are given in Tables 10, 11, and 12. We omit the details for C-TASEP and

B̌-TASEP.
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Table 11 Transitions for the B-TASEP

Table 12 Transitions for the D-TASEP

We observe one symmetry property for the C-TASEP and the B̌-TASEP, which will

prove useful later. The proof is an easy exercise and can be proved by a case analysis.

Proposition 5.2. The Č-TASEP and the D-TASEP on �n,n0
are invariant as Markov

chains under the transformation τ = (τ1, . . . , τn) → (−τn, . . . , −τ1), where −1 and −1

are to be interpreted as 1 and 1, respectively.

We will now define a special class of lumpings for multiTASEPs. For each

X-MultiTASEP on n sites, where X ∈ {B, B̌, C, Č, D}, we will define a lumping to the

X-TASEP as follows. Fix 1 ≤ k ≤ n. The k-coloring is a map fk : �X
n → �n,k defined

as follows:

fk(τ1, . . . , τn) = (fk(τ1), . . . , fk(τn)), (5.2)

First site Bulk Last site

Transition Probability Transition Probability Transition Probability

11 → 11

11 → 11
11 → 11

01 → 10
1 → 1 1

n 10 → 01 1
n

01 → 10

1
2n

01 → 10
10 → 01

10 → 01

First two sites Bulk Last site

Transition Probability Transition Probability Transition Probability

11 → 11 11 → 11

11 → 11 11 → 11

10 → 01
11 → 11

01 → 10

10 → 01
1

2(n−1)
10 → 01 1

n−1
01 → 10

1
2(n−1)

01 → 10
01 → 10

10 → 01

01 → 10 10 → 01
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Random Walks in Classical Affine Weyl Groups 3109

where

fk(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 i ≥ k,

1 i ≤ −k,

0 −k < i < k.

The reason this map is called k-coloring is that if one imagines all particles to be of

different colors, then this is the TASEP imagined through the eyes of a colorblind person,

whose blindness is one that distinguishes only between “higher”, “lower”, and “medium”

colors.

Proposition 5.3. For X ∈ {B, B̌, C, Č, D}, the k-coloring is a lumping from the

X-MultiTASEP with n sites to the X-TASEP with n sites and k − 1 0’s.

Proof. We will check the commutativity (5.1) of the k-coloring for all possible

transitions. In principle, this will have to be done on a case-by-case basis depending

on the particles hopping. However, one can group many of these cases together.

We illustrate this for the bulk transitions in the Č-MultiTASEP. The argument

is similar for the other types. Compare the central columns of Tables 7 and 10. If both

i, j > k, then there is no transition in the Č-TASEP. Similarly, if −k ≤ i, j ≤ k or i, j < −k.

If j > k ≥ i ≥ −k, then the transition becomes 10 → 01. In both cases, the probability is

1/(n + 1). Similarly, one can check all other cases. For the boundary transitions, this is

again a case analysis and is left to the reader. �

5.2 The D∗-TASEP

We will prove results for the classical types by appealing to a two-species exclusion

process known as the D∗-TASEP studied in [1]. The D∗-TASEP is defined on a finite one-

dimensional lattice of n sites. On each site, we have exactly one particle from the set

{∗, 1, 0, 1} subject to the following conditions:

• the number of 0’s is fixed to be n0;

• sites 1 and n can only be occupied by 0 and ∗;

• sites 2 through n − 1 can only be occupied by 1, 0, and 1.

Let �∗
n,n0

denote the possible configurations. For example,

�∗
3,1 = {(0, 1, ∗), (0, 1, ∗), (∗, 1, 0), (∗, 1, 0), (∗, 0, ∗)}.

Let α, α∗, β, β∗ ∈ [0, 1].
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Table 13 Transitions for the D∗-TASEP

First two sites Bulk Last two sites

Transition Probability Transition Probability Transition Probability

∗1 → ∗1 α
n−1 11 → 11 1∗ → 1∗ β

n−1

∗0 → 01 α∗
n−1 10 → 01 1

n−1 0∗ → 10 β∗
n−1

01 → ∗0 1
n−1 01 → 10 10 → 0∗ 1

n−1

For our purposes, it will be convenient to think of the D∗-TASEP as a (discrete-

time) Markov chain. Although this is defined as a continuous-time Markov process in [1],

the stationary distributions in both cases are identical and that is what is relevant for

us here.

The transitions are as follows. With probability 1/(n − 1), the edge between

sites � and � + 1 is chosen, where � ∈ [n − 1]. If 2 ≤ � ≤ n − 2, then a transition occurs

interchanging the particles at sites � and � + 1 if the particle at site � is larger than that

at �+1, where we interpret 1 as −1. If � = 1 or � = n−1 the probability of a transition is

multiplied with the parameters according to Table 13. With the remaining probability,

the configuration remains unchanged.

The stationary distribution of the D∗-TASEP, denoted π∗, was obtained using the

technology of the matrix ansatz in [1]. Here, it will be more convenient for us to obtain

the stationary distribution using a process which lumps to the D∗-TASEP. This is done

in Section 6.

As stated already in [1], one can check that if α∗ or β∗ are zero, then the

D∗-TASEP is not ergodic. If the former, there are no outgoing transitions from states that

begin with a ∗. Similarly for the latter. If α∗ = β∗ = 0, there are no outgoing transitions

from states that both begin and end with a ∗. The following result is then easy to see.

Proposition 5.4. Suppose α, β > 0 and α∗, β∗ ≥ 0.

1. If both α∗ or β∗ are nonzero, the D∗-TASEP is irreducible.

2. If α∗ = 0 and β∗ �= 0, the D∗-TASEP restricted to configurations that have a ∗
at the first site is irreducible.

3. If α∗ = β∗ = 0, the D∗-TASEP restricted to configurations that have a ∗ at

both the first and last sites is irreducible.

We are now in a position to prove the main result of this section.
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Theorem 5.5.
1. In the D∗-TASEP with n + 2 sites and n0 0’s and α∗ = β∗ = 0, α = β = 1, the

marginal process of sites 2 through n + 1 is isomorphic to the Č-TASEP on n

sites with n0 0’s.

2. The B-TASEP with n sites and n0 0’s lumps to the marginal process of sites

2 through n + 1 of the D∗-TASEP on n + 1 sites with n0 0’s and α∗ = 0,

α = 1, β = β∗ = 1/2.

3. The D-TASEP with n sites and n0 0’s lumps to the D∗-TASEP on n sites with

n0 0’s and α = α∗ = β = β∗ = 1/2.

Proof. From Proposition 5.4(3) and Tables 10 and 13, the proof of (1) immediately

follows.

The idea for the proofs of parts (2) and (3) is another kind of coloring argument,

namely for particles 1 and 1 can be identified at the endpoints. For the B-TASEP with

n sites and n0 0’s, this identification is done at site n and the resulting “particle” is

labelled ∗. For the D-TASEP with n sites and n0 0’s, this identification is done for both

sites 1 and n. We will give the idea of the proof for the B-TASEP. Similar ideas hold for

the D-TASEP.

Using Proposition 5.4(2) and comparing Tables 11 and 13, it is clear that the

transitions at the first site and the bulk are unaffected, just as for Č-TASEP the first

site of D∗-TASEP stays a ∗. We only need to compare transitions at the last two sites.

For the reader’s convenience, we reproduce the transition rates here after adjusting the

value of n and setting β = β∗ = 1/2.

By identifying 1 and 1 to ∗ in the last site, the six transitions in the first column

become the transitions in the third column. It is also easy to see that the rates match

B-TASEP D*-TASEP

Transition Probability Transition Probability

11 → 11
1∗ → 1∗ 1

2n11 → 11

01 → 10
1

2n 0∗ → 10 1
2n01 → 10

10 → 01
10 → 0∗ 1

n10 → 01

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/4/3092/6449111 by J.R
.D

. Tata M
em

orial Library, Indian Institute of Science, Bengaluru user on 25 M
ay 2023



3112 E. Aas et al.

correctly. In particular, the rates of the last pair of transitions on the left add up to give

the last rate on the right. This completes the proof. �

As a consequence of Proposition 5.3 and Theorem 5.5, it is enough to study

correlations in the D∗-TASEP to determine the necessary correlations in the various

multiTASEPs. This is the major technical part of this work and is taken up in Section 7.

First, we study a two-row process in Section 6.

6 The Two-Row D∗ Process

In this section, we define a Markov chain we call the two-row D∗ process and we will

prove that it lumps to the D∗-TASEP. The strategy is similar to the one used by Duchi

and Schaeffer [9] for what they call the 3-TASEP.

The configurations for the two-row D∗ process are as follows. A two-row

configuration is a pair of rows of n sites, each of which contains exactly one of 1, 0,

1 or ∗, satisfying the following conditions:

• A 0 or a ∗ occurs in the top row of a column if and only if it occurs in the

bottom row of the same column. A column containing 0’s or ∗’s is called a

0-column or a ∗-column, respectively.

• Leftmost and rightmost columns can only be 0- or ∗-columns. In addition,

∗-columns cannot appear elsewhere.

• The balance condition: there is an equal amount of 1’s and 1’s between any

0-columns.

• The positivity condition: there are at least as many 1’s as 1’s to the left of

any column.

Let �̂∗
n,n0

be the set of two-row configurations with n columns and n0 0-columns.

For example,

�̂∗
3,1 =

{
0

0

1

1

∗
∗ ,

0

0

1

1

∗
∗ ,

∗
∗

0

0

∗
∗ ,

∗
∗

1

1

0

0
,

∗
∗

1

1

0

0

}

and

�̂∗
4,0 =

{
∗
∗

1

1

1

1

∗
∗ ,

∗
∗

1

1

1

1

∗
∗ ,

∗
∗

1

1

1

1

∗
∗ ,

∗
∗

1

1

1

1

∗
∗ ,

∗
∗

1

1

1

1

∗
∗

}
.

For ω ∈ �̂∗
n,n0

, we say that the wall i is the vertical line between columns i and i + 1

for 1 ≤ i ≤ n − 1, and we denote by ω[i] the four sites around the wall i. Let j1 < i
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Fig. 3. A bulk transition of type (B1).

Fig. 4. A bulk transition of type (B2).

Fig. 5. Transitions of type (L1) at the left border.

be the leftmost wall such that there are only 1’s on the top row between it and the

wall i − 1. In particular, if there is no 1’s on the top row at site i − 1, then j1 = i − 1.

Similarly, let j2 > i be the rightmost wall such that there are only 1’s between the walls

i + 1 and j2 on the top row. To define the two-row D∗ process, we will first need a map

T∗ : �̂∗
n,n0

× [n − 1] → �̂∗
n,n0

given as follows. Let ω ∈ �̂∗
n,n0

and i ∈ [n − 1]. We describe

ω′ = T∗(ω, i) now. There are three cases to consider:

• 2 ≤ i ≤ n − 2, called a bulk transition:

(B1) If ω[i] = 1
? |1

1 or 0
0 |1

1 , then ω′ is obtained by moving the 1
1 from the right-

hand side of i to the right of the wall j1. See Figure 3 for an illustration.

(B2) If ω[i] = 1
? |1

1 or 1
1 |0

0 , then ω′ is obtained by removing the two particles that

form the 1 |1 or the 1
1 at i and placing them at j2 so that they form a 1 |1 if

there is a 1 on the right-hand side of j2 in the top row, or otherwise form

a 1
1 on the left-hand side of j2. An illustration is provided in Figure 4.

• i = 1, called a left border transition:

(L1) If ω[1] = ∗
∗ |1

1 , we ignore the first site and obtain ω′ by removing the 1
1 on

the left border and placing the particles at j2 so that they form a 1 |1 if

there is a 1 on the right-hand side of j2 in the top row, or otherwise form

a 1
1 on the left-hand side of j2. See Figure 5 for an illustration.

(L2) If ω[1] = ∗
∗ |0

0 , we pretend ∗
∗ is 1

1 and perform bulk transition (B2).
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Fig. 6. A transition of type (R1) at the right border.

(L3) If ω[1] = 0
0 |1

1 , then we make a transition to ω′, where the only change is

that ω′[1] becomes ∗
∗ |0

0 .

• i = n − 1, called a right border transition:

(R1) If ω[n − 1] = 1
1 | ∗

∗ , we ignore the last site and obtain ω′ by removing

the rightmost 1
1 and forming a 1

1 on the right-hand side of wall j1. See

Figure 6 for an illustration.

(R2) If ω[n − 1] = 0
0 | ∗

∗ , we pretend ∗
∗ is 1

1 and perform bulk transition (B1).

(R3) If ω[n − 1] = 1
1 |0

0 , then we make a transition to ω′, where the only change

is that ω′[n − 1] = 0
0 | ∗

∗ .

In all other cases, T∗(ω, i) = ω. Let α, α∗, β, β∗ ∈ [0, 1]. The two-row D∗ process on

�̂∗
n,n0

is then given by first picking a wall i uniformly at random among [n − 1] and then

making the transition to T∗(ω, i) with probability λ(ω[i]) given by the following table:

(6.1)

Proposition 6.1. If α, α∗, β, β∗ ∈ (0, 1], the two-row D∗ process described above is

irreducible and aperiodic.

Proof. Restricting to columns 2, . . . , n − 1 and transitions (B1), (B2), (L1), and (R1),

the process coincides with the Duchi–Schaeffer two-row process with a fixed number

of neutral particles; see [9, Section 4]. They show in [9, Section 6] that this process is

irreducible. Since (L3) changes a 0-column into a *-column and (L2) vice versa at the

left border, and (R3) and (R2) are their counterparts at the right border, the two-row D∗

process is irreducible. Since there are several transitions for which ω′ = ω, the process

is clearly aperiodic. �

Before we compute the stationary distribution of the two-row D∗ process,

we state an important property justifying the usefulness of this process. Recall the

definition of lumping from Section 5.
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Proposition 6.2. The two-row D∗ process lumps to the D∗-TASEP.

Proof. By comparing with Table 13, one can see that the transitions in the top row of

the two-row D∗ process are identical to those of the D∗-TASEP. In particular, transitions

(L1), (L2), and (L3) match those in the left columns, transitions (B1) and (B2) match those

in the middle columns, and transitions (R1), (R2), and (R3) match those in the right

columns. The fact that the probabilities are the same is obtained by comparing Table 13

with (6.1). �

We now extend the map T∗ to T̄∗ : �̂∗
n,n0

× [n − 1] → �̂∗
n,n0

× [n − 1] where, if

(ω′, j) = T̄∗(ω, i), then ω′ = T∗(ω, i) and the value of j depends on the transition according

to the following rules:

(6.2)

If T∗(ω, i) = ω, we define j = i.

Proposition 6.3. The map T̄∗ is a bijection.

Proof. To see why T̄∗ is a bijection from �̂∗
n,n0

× [n−1] to itself, consider the 34 possible

local configurations ω′[j]. It is straightforward to check that 24 of these satisfy T̄∗(ω′, i) =
(ω′, i). We then have essentially four different cases left for which we find the pre-images

(ω, i).

• If ω′[j] = ∗
∗ |0

0 (so j = 1), the transition performed must have been (L3), so

i = 1 and ω[i] = 0
0 |1

1 . The remaining columns of ω and ω′ are the same, so

whenever ω′ is a valid configuration, the pre-image (ω, i) has to exist.

• If ω′[j] = 0
0 | ∗

∗ (so j = n − 1), the transition performed must have been (R3), so

i = n − 1 and ω[i] = 1
1 |0

0 . The remaining columns of ω and ω′ are the same, so

whenever ω′ is a valid configuration, the pre-image (ω, i) must exist.

• If ω′[j] = ∗
∗ |1

1 , 0
0 |1

1 , 1
1 |1

1 or 1
1 |1

1 , the transition performed must have been (B1),

(L1), or (R2). To find the pre-image (ω, i), we remove the 1
1 and move to the

right until encountering a 1, * or 0 on the top row in some column c. In the

first two cases the 1
1 is inserted to the left of column c. In the third, we insert

the 1
1 to the right of column c, but if it is the rightmost column, it becomes a

*-column. In all cases, i is the wall between the inserted column and c. Note

that if ω′ is valid, no conditions can become violated in ω.
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3116 E. Aas et al.

Fig. 7. A two-row configuration and its labelling.

• If ω′[j] = 1
1 | ∗

∗ , 1
1 |0

0 , 1
1 |1

1 or 1
1 |1

1 , the transition performed must have been (B2),

(L1), or (L2). To find the pre-image (ω, i), in the first two cases we remove the
1
1 and in the latter two the 1 |1 , and then move to the left until encountering

a 1, * or 0 in the top row in some column c. If a 1
? is encountered first, we

insert a 1 |1 to get 1
? |1

1 = ω[i]. In the *-case we place 1
1 to the right of column

c. Finally, in the 0-case, we insert 1
1 to the left of column c, but if it is the

leftmost column, it becomes a *-column. In both cases i is the wall between

column c and the inserted column. Again, if ω′ is valid, no conditions can

become violated in ω. Note, in particular, that changing 1
? to 1

?
1
1 preserves

the balance and positivity conditions.

This completes the proof. �

A block is a part of a two-row configuration of the form |1
1 |ω′|1

1 |, where ω′ is

called the inside of the block. For the purpose of describing the stationary distribution,

we introduce the following labelling for ω ∈ �̂∗
n,n0

:

z. Label each 1 on the bottom row, to the right of the rightmost 0 (if n0 > 0),

and not in a block by a z.

z′. Label each 1 on the bottom row, to the left of the leftmost 0 (if n0 > 0), and

not in a block by a z′.
y. Label each 1 on the bottom row, to left of the leftmost 0 (if n0 > 0), not inside

a block, and such that there is no z′ to the left by a y.

An example is provided in Figure 7. Note that for n0 = 0, a 1 may be labelled

with both z and z′ simultaneously. Now, we define ny(ω) to be the number of y-labels,

nz(ω) the number of z-labels,

ny∗(ω) =
⎧⎨⎩1, if there is a *-column at the left border

0, otherwise,
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and

nz∗(ω) =
⎧⎨⎩1, if there is a *-column at the right border

0, otherwise.

Let

q(ω) = 1

αny(ω)α
ny∗ (ω)
∗ βnz(ω)β

nz∗ (ω)
∗

. (6.3)

For example, q(ω) = 1
αββ∗ for the configuration in Figure 7.

We now state the main result of this section. By Proposition 6.1, the two-row D∗

process has a unique stationary distribution, which we will denote by π̂∗.

Theorem 6.4. The stationary distribution of the two-row D∗ process is given by

π̂∗(ω) = q(ω)

Z∗
n,n0

,

where

Z∗
n,n0

=
∑

ω∈�̂∗
n,n0

q(ω).

Remark 6.5. When α∗ = 0, the transition (L2) does not occur. Therefore, the two-row

D∗ process is irreducible only on configurations which begin with a ∗-column, for which

ny∗(ω) = 1. The way we interpret the stationary weights q(ω) from (6.3) is that we simply

ignore the factor proportional to α∗. Similar remarks apply to the case when β∗ = 0.

When both α∗ and β∗ are zero, we ignore both these factors in q(ω).

The lemma below is key in the proof of Theorem 6.4.

Lemma 6.6. For (ω, i) ∈ �̂∗
n,n0

× [n − 1],

λ(ω[i])q(ω) = λ(ω′[j])q(ω′),

where (ω′, j) = T̄∗(ω, i).

Proof. The proof is case-by-case. We begin with an observation. In 1
? |1

1 , the bottom 1

does not have a label. If ? = 1, it is inside a block, and if ? = 1, there either is a z′ or a

0-column to the left, or it is inside a block.
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3118 E. Aas et al.

The cases below are labelled according to the definition of the transitions.

• Bulk:

(B1) Changing the place of the column 1
1 does not affect the labels of other

particles since it does not alter blocks and cannot have the label z′. We

have two initial cases, 1
? |1

1 and 0
0 |1

1 . The possible local configurations

around j = j1 after a transition are 1
? |1

1 (λ(ω′[j]) = 1), 0
0 |1

1 (λ(ω′[j]) = 1),

and ∗
∗ |1

1 (λ(ω′[j]) = α). In the first case, the moved column 1
1 remains

unlabelled by the observation. In the second case, 1
1 cannot pass the

leftmost 0-column and hence remains unlabelled. Finally, in the third

case, we introduce a label y either by the observation or since the moved

column passes the leftmost 0-column.

(B2) We have two initial cases, 1
? |1

1 and 1
1 |0

0 . In the latter, moving the 1
1 has

no effect on other particles. In the former, the bottom 1 is in a block

and thus has no label. Moving the 1 |1 leaves either 1
1 , which is in a

block and has no label, or 1
1 if the initial configuration was 1

1 |1
1 . No other

particles are affected. The label of the remaining bottom 1 is preserved.

The possible local configurations around j = j2 after a transition are
1
? |1

1 (λ(ω′[j]) = 1), 1
1 |0

0 (λ(ω′[j]) = 1), and 1
1 | ∗

∗ (λ(ω′[j]) = β). In the first case,

the bottom 1 has no label since it is in a block. The same is true in the

second since there is a 0-column to the right. In the third, the 1 gets the

label z. No other particles are affected in these cases.

• Left border:

(L1) The removal of 1
1 removes a label y. λ(ω[i]) = α. There are three cases:

either there is a 1 to the right of j and we insert 1 |1 , there is a 0-column

to the right and we insert 1
1 to its left, or there is a *-column to the right

and we insert 1
1 to its left. In the latter two the insertion of 1

1 clearly does

not have an effect on other labels. In the 0-column case the 1 is labelled

by z′. Hence λ(ω[i])q(ω) = λ(ω′[j])q(ω′), since λ(ω′[j]) = 1. In the *-case,

λ(ω′[j]) = β and we introduce the label z. Hence λ(ω[i])q(ω) = λ(ω′[j])q(ω′).
Finally, in the remaining case, the 1 inserted in 1 |1 is not labelled since

it is in a block. It is straightforward to see that the insertion of 1 |1 does

not change other labels, so λ(ω[i])q(ω) = λ(ω′[j])q(ω′).
(L2) In this case we remove the ∗

∗ , which causes ny∗(ω′) = 0, and

have λ(ω[i]) = α∗. We have the same three cases as above, but

instead of ny(ω) = ny(ω′) + 1 and multiplying q(ω) by α we have
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ny∗(ω) = ny∗(ω′) + 1 and multiply q(ω) by α∗. Hence the same analysis

works here.

(L3) Before the transition the 1 in the second column 1
1 does not have a

label as it is not left of the leftmost 0. The transition only introduces

a 1/α∗, and λ(ω′[j]) = α∗ as j = i. Hence λ(ω[i])q(ω) = λ(ω′[j])q(ω′), since

λ(ω[i]) = 1.

• Right border:

(R1) In this case we remove the 1
1 to the left of ∗

∗ . This removes a label z, so

nz(ω) = nz(ω
′) + 1. Then, a 1

1 is inserted to the right of j = j1. Note that

this has no effect on the labels of other particles. There are three cases:
1
? , 0

0 , or ∗
∗ to the left of j. The second introduces no new label since there

is a 0-column to the left. The claim follows from λ(ω′[j]) = 1. The third

case introduces a label y. Then ny(ω′) = ny(ω) + 1, and λ(ω[i])q(ω) =
λ(ω′[j])q(ω′), since λ(ω[i]) = β, λ(ω′[j]) = α. In the first ? = 1 and the 1

in the inserted 1
1 is in a block, or ? = 1 and there is a label z to the

left. Hence no new label is introduced in this case, and λ(ω[i])q(ω) =
λ(ω′[j])q(ω′), since λ(ω′[j]) = 1.

(R2) This case is similar to the one above (replace β by β∗ and z by z∗).

(R3) Before the transition the 1 in the penultimate column 1
1 has label z′.

The transition only introduces a 1/β∗, and λ(ω′[j]) = β∗ as j = i. Hence

λ(ω[i])q(ω) = λ(ω′[j])q(ω′).

We have thus shown the claim to be true in each case separately, thereby

completing the proof. �

We are now in a position to prove the formula for the stationary distribution.

Proof of Theorem 6.4. By Proposition 6.1, the two-row D∗ process has a unique

stationary distribution. Therefore, it suffices to show that π̂∗ satisfies the balance

equation,

π̂∗(ω) =
∑

ω′∈�̂∗
n,n0

P(ω′ → ω)π̂∗(ω′). (6.4)

By definition of the process, P(ω′ → ω) �= 0 if and only if T∗(ω′, i) = ω for some i, and if

so, P(ω′ → ω) = λ(ω′[i])/(n − 1). For each i, there is also the possibility that no transition

occurs with probability 1−λ(ω[i]) if we are already in state ω. Therefore, we can rewrite
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3120 E. Aas et al.

the right hand side of the balance equation (6.4) as

1

n − 1

n−1∑
i=1

∑
ω′∈�̂∗

n,n0
T∗(ω′,i)=ω

λ(ω′[i])π̂∗(ω′) + 1

n − 1

n−1∑
i=1

(1 − λ(ω[i]))π̂∗(ω).

But by Proposition 6.3, we know that the map T̄∗ taking (ω′, i) �→ (ω, j) is a bijection and

hence we can rewrite the first sum as

1

n − 1

n−1∑
j=1

(ω′,i)=T̄∗−1
(ω,j)

λ(ω′[i])π̂∗(ω′) + 1

n − 1

n−1∑
i=1

(1 − λ(ω[i]))π̂∗(ω).

Now, by Lemma 6.6, the summand in the first sum is λ(ω[j])π̂∗(ω). Therefore, we obtain

1

n − 1

n−1∑
j=1

λ(ω[j])π̂∗(ω) + 1

n − 1

n−1∑
j=1

(1 − λ(ω[j]))π̂∗(ω),

which is easily seen to sum up to π̂∗(ω), giving the balance equation as desired. �

For ω ∈ �̂∗
n,n0

, let ω1 denote the top row of ω. From Propositions 5.1 and 6.2,

we immediately obtain a combinatorial formula for the stationary probabilities in the

D∗-TASEP. Recall that the stationary probabilities in the latter are denoted by π∗.

Corollary 6.7. The stationary probability of a configuration τ ∈ �∗
n,n0

in the D∗-TASEP

is given by

π∗(τ ) =
∑

ω∈�̂∗
n,n0

ω1=τ

π̂∗(ω).

7 Correlations in MultiTASEPs

7.1 Limiting direction for type Č

To understand correlations in the Č-MultiTASEP, it will suffice to consider the Č-TASEP.

By Theorem 5.5 we can use the D∗-TASEP with α∗ = β∗ = 0. Removing the ∗’s at the

first and last sites, this is equivalent to a model solved in [2] and is known as the

semipermeable exclusion process. We will in this subsection borrow results from there

instead of using the two-row D∗-process. We can obtain our results by setting α = β = 1.
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The semipermeable exclusion process is ergodic and thus has a unique station-

ary distribution. Various properties of the process are known due to work of Arita [2].

The physics of the model has been studied in [4].

First recall that the ballot numbers Cn
k are given by

Cn
k =

(
n + k

n

)
−

(
n + k

n + 1

)
= n − k + 1

n + 1

(
n + k

n

)
, 0 ≤ k ≤ n. (7.1)

The ballot numbers Cn
k count the number of up-right paths from (0, 0) to (n, n), which

stay on or below the diagonal x = y and which touch the diagonal n − k + 1 times

(counting both endpoints). The first few rows of the triangular array of ballot numbers

are as follows:

1

1 1

1 2 2

1 3 5 5

1 4 9 14 14

The array satisfies the Pascal triangle-like recurrence

Cn
k = Cn−1

k + Cn
k−1, 0 < k < n. (7.2)

The last two diagonals Cn
n = Cn

n−1 give the n’th Catalan number, Cn = 1
n+1

(2n
n

)
.

Theorem 7.1 ([2, Eq. (27)]). For α �= β, the partition function of the semipermeable

exclusion process is given by

Zn,n0
(α, β) =

n−n0∑
k=0

Cn+n0−1
n−n0−k

β−k − α−k

β−1 − α−1 .

For α = β, the partition function is given by

Zn,n0
(α, α) =

n−n0∑
k=0

(k + 1)Cn+n0−1
n−n0−kα−k.

Corollary 7.2. When α = β = 1, the partition function is

Zn,n0
(1, 1) = Cn+n0+1

n−n0
.
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Proof. Plug in α = 1 in the second formula for the partition function in Theorem 7.1,

Zn,n0
(1, 1) =

n−n0∑
k=0

(k + 1)Cn+n0−1
n−n0−k =

n−n0∑
k=0

(k + 1)

((
2n − k − 1

n + n0 − 1

)
−

(
2n − k − 1

n + n0

))
.

Now, use the fact that k + 1 = (k+1
1

)
and the “dual” Chu–Vandermonde identity,

p∑
m=0

(
m

j

)(
p − m

� − j

)
=

(
p + 1

� + 1

)
, valid for all 0 ≤ j ≤ �,

to evaluate both binomial sums. Then

Zn,n0
(1, 1) =

(
2n + 1

n + n0 + 1

)
−

(
2n + 1

n + n0 + 2

)
,

which gives the desired result. �

We want to calculate the probability in the stationary distribution that the last

site is occupied by a 1. Fortunately for us, this has also been computed by Arita.

Theorem 7.3 ([2, Eq. (38)]). The probability of the j’th site being occupied by a 1 in the

semipermeable exclusion process with n sites and n0 0’s is given by

P
n,n0
α,β (wj = 1) =

n−j−1∑
i=0

Ci

Zn−i−1,n0
(α, β)

Zn,n0
(α, β)

+ Zj−1,n0
(α, β)

Zn,n0
(α, β)

n−j∑
k=0

Cn−j−1
n−j−k

βk+1
.

Setting j = n and α = β = 1 in Theorem 7.3 leads using Corollary 7.2 and the

fact that C−1
0 = 1 to

P
n,n0
1,1 (wn = 1) = Cn+n0

n−1−n0

Cn+n0+1
n−n0

= (n − n0)(n + n0 + 2)

2n(2n + 1)
. (7.3)

We are now in a position to prove our main result for type C.

Theorem 7.4. The probability that the last site is occupied by i in the Č-MultiTASEP

of size n is given by

〈i〉Č = 2i + 1

2n(2n + 1)
.
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Proof. We use the coloring argument from Section 5. Using the k-coloring procedure,

we can lump the Č-MultiTASEP to the Č-TASEP with n sites and k − 1 0’s by Proposition

5.3 for 1 ≤ k ≤ n. If the last site is an i in the Č-MultiTASEP, it will become a 0 (resp. 1)

if k > i (resp. k ≤ i) in the Č-TASEP. It then follows that the stationary probability in

Č-MultiTASEP that the last site is occupied by a particle of species i is the difference of

the stationary probabilities in the Č-TASEP with i−1 0’s and i 0’s. As a result, we obtain

〈i〉Č = P
n,i−1
1,1 (wn = 1) − P

n,i
1,1(wn = 1) = (n − i + 1)(n + i + 1)

2n(2n + 1)
− (n − i)(n + i + 2)

2n(2n + 1)
,

using (7.3), which proves the result. �

The result for the limiting direction of Lam’s random walk in Theorem 3.1 now

follows from Theorem 7.4.

7.2 Partition function and correlations in B-TASEP

In this section we use the combinatorial description of the stationary distribution of

the two-row D∗ process explained in Section 6 to compute the partition function, and

the probabilities of the entries of the last two positions in a state.

Recall the ballot numbers Cm
n from (7.1). They also enumerate Dyck paths from

the origin to (2m + 2, 0) with m − n intermediate returns to the x-axis. Recall also that

Cn = Cn
n = Cn

n−1 is the n’th Catalan number.

A Motzkin path of length k is a path from (0, 0) to (k, 0) that does not go below the

x-axis and uses steps (1, 1), (1, −1), and (1, 0). There is a translation from the two-row

model to bicolored Motzkin paths (in which the horizontal steps can have two different

colors). For non-zero and non-star columns we translate to steps in a Motzkin path as

follows:

This map is also used in [9, Section 7]. A configuration in the two-row D∗ process without

zeros corresponds directly to a bicolored Motzkin path (ignoring the star columns in the

ends). In terms of Motzkin paths, the weights can be described as follows. The weight

is 1/β on all horizontal steps of the second color that are on the x-axis. The weight 1/α

is assigned to all up-steps from the x-axis and horizontal steps of the first color on the

x-axis, with the extra condition that no 1/α-weights are counted if they are to the right

of a 1/β-weight. The weight of a path is the product of its step weights.
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Fig. 8. The five bicolored Motzkin paths of length k = 2 and the corresponding Dyck paths of

length 6.

There is a well-known bijection from bicolored Motzkin paths of length k to Dyck

paths of length 2k + 2, where the Dyck path starts with an up and ends with a down-

step, the up and down-steps of the Motzkin path are doubled, and the horizontal steps

are mapped to up-down and down-up, respectively. Here, the color that has label 1/α

corresponds to an up-down step. Using this bijection, Dyck paths will have the following

weights: every down-step to the x-axis will be weighted 1/β, except for the last one, and

every up-step from the horizontal line x = 1 with no preceding 1/β will be weighted 1/α.

The number of bicolored Motzkin paths of length k with i steps of weight 1/β is thus

Ck
k−i, using the interpretation above.

Let Vk(α, β) be the generating function for bicolored Motzkin paths of length k

with weights as above. For example,

V2(α, β) = α−2 + β−2 + α−1β−1 + α−1 + β−1;

see Figure 8. Let Mk(β) := Vk(1, β). Then the bijection to Dyck paths of length 2k+2 gives

Vk(1, 1) = Ck+1 and

Mk(β) =
k∑

i=0

Ck
k−iβ

−i.

We will need a sequence of identities, which we formulate as lemmas. They are

probably not new, but we have not found good references.

Lemma 7.5. For a ≥ b ≥ j ≥ 0, we have

b∑
i=j

Ca−i
b−i · Ci

i−j = Ca+1
b−j .

Proof. The right-hand side is also the number of non-negative NE-SE paths from (0, 0)

to (a + 1 + b − j, a + 1 − b + j). The left-hand side counts the same, but summing over the

last time the path has y-coordinate a − b, which happens in position (a + b − 2i, a − b)
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for j ≤ i ≤ b. The number of paths to this position is Ca−i
b−i . We then take one NE-step and

the number of possible ways to continue from there is Ci
i−j. �

Lemma 7.6. For n ≥ b and b − d − a ≥ 0, we have

n−b∑
i=0

Ci+d
i

(
2n − 2i − d − a

n − b − i

)
=

(
2n − a + 1

n − b

)
.

Proof. The right-hand side counts NE-SE lattice paths from (0,0) to (2n−a+1,2b−a+1).

On the left-hand side we are summing over the last position (2n − 2i − d − a, 2b − d − a)

where the path is below the line y = 2b − d − a + 1. Note that
(2n−2i−d−a

n−b−i

)
counts all

NE-SE paths from (0, 0) to (2n − 2i − d − a, 2b − d − a), and Ci+d
i , after shifting, NE-SE

paths from (2n − 2i − d − a + 1, 2b − d − a + 1) to (2n − a + 1, 2b − a + 1) staying weakly

above the line y = 2b − d − a + 1. There is a northeast-step between the two parts. �

The next result appears as [8, Equation (A11)], but we restate it because we will

use the proof strategy later.

Lemma 7.7. For k ≥ 0, we have

Vk(α, β) =
k∑

i=0

k−i∑
j=0

Ck−1
k−i−jα

−iβ−j.

Proof. We use the interpretation of Dyck paths of length 2k + 2. A standard recursion

for Vk is given by letting i be the first index for which step 2i + 2 is on the x-axis and

thus labelled 1/β if i < k. Further, let j be the number of intermediate returns to the line

x = 1 by the path before 2i − 1, and r the number of intermediate returns to the x-axis

by the path after 2i + 2. We get the equation

Vk(α, β) =
k−1∑
j=0

α−j−1Ck−1
k−1−j +

k−1∑
i=0

β−1
k−i−1∑

r=0

β−rCk−i−1
k−i−1−r

i−1∑
j=0

α−j−1Ci−1
i−1−j

=
k−1∑
r=0

k−1∑
j=0

β−r−1α−j−1
k−r−1∑
i=j+1

Ck−i−1
k−i−1−rCi−1

i−1−j +
k−1∑
j=0

(β−j−1 + α−j−1)Ck−1
k−1−j.

The statement now follows from Lemma 7.5. �

Lemma 7.8. For k ≥ 0, we have Mk(1
2 ) = (2k+1

k

)
and Vk(1

2 , 1
2 ) = 22k.
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Proof. For the first identity, we note that it is clearly true for k = 0. We have

Mk

(
1

2

)
=

k∑
i=0

Ck
k−i2

i.

If we let 2i be the first return of the path to the x-axis, we get the recursion

Mk

(
1

2

)
= Ck +

k∑
i=1

Ci−1 · 2 · Mk−i

(
1

2

)
.

By induction this gives

Mk

(
1

2

)
= Ck + 2

k∑
i=1

Ci−1

(
2(k − i) + 1

k − i

)
,

which by Lemma 7.6 becomes

Mk

(
1

2

)
= Ck + 2

(
2k

k − 1

)
=

(
2k + 1

k

)
.

For the second identity, we use that in the proof of Lemma 7.7 we get

Vk(α, β) =
k−1∑
i=0

k−1−i∑
r=0

β−r−1Ck−i−1
k−i−1−r

i−1∑
j=0

α−j−1Ci−1
i−j−1 +

k−1∑
j=0

α−j−1Ck−1
k−1−j

=
k−1∑
i=0

β−1Mk−i−1(β)α−1Mi−1(α) + α−1Mk−1(α),

which by the first identity gives

Vk

(
1

2
,

1

2

)
=

k−1∑
i=0

2
(

2k − 2i − 1

k − 1 − i

)
2
(

2i − 1

i − 1

)
+ 2

(
2k − 1

k − 1

)
=

k∑
i=0

(
2k − 2i

k − i

)(
2i

i

)
= 22k,

which completes the proof. �

Now we start analysing the two-row model in more detail. First, note that for

k consecutive columns with no zeros and α = β = 1 there are Vk(1, 1) = Ck+1 possible

two-row configurations [9]. We use this as base case for the following inductive proof.
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Lemma 7.9. For k consecutive columns in the two-row model with n0 zeros and

α = β = 1 the (weighted, each with weight 1) number of possible configurations is

Ck+n0+1
k−n0

.

Proof. We perform induction on n0. Let i be the position of the last zero column. Then

by induction the number of configurations is

k∑
i=n0

Ci−1+(n0−1)+1
i−1−(n0−1)

Ck−i+1 =
k+n0−1∑
i=2n0−1

Ci
i−2n0+1Ck+n0−i

k+n0−i−1,

since Cn = Cn
n−1. The statement now follows from Lemma 7.5. �

Now we are in a position to compute the partition function for the B-TASEP,

which we will denote in this section by Zn,n0
.

Theorem 7.10. For any n ≥ n0 ≥ 0, the partition function for the B-TASEP is Zn,n0
=( 2n

n−n0

)
.

Proof. Recall that in the B-TASEP we have α∗ = 0, α = 1, and β = β∗ = 1
2 . If n0 = 0, then

a two-row configuration must end with stars and thus Zn,0 = 2Mn−1(1
2 ) = 2

(2n−1
n−1

) = (2n
n

)
,

by Lemma 7.8. The number 2 is the weight of the star at the end. For n0 > 0, let i be

the position of the last 0-column. Since the β-weights only contribute to the right of the

rightmost zero column, the total weight is, using Lemma 7.9, given by

Zn,n0
= Cn−1+(n0−1)+1

n−1−(n0−1) +
n−1∑
i=n0

Ci+n0−1
i−n0

Mn−i−1

(
1

2

)
· 2 = Cn+n0−1

n−n0
+2

n−1∑
i=n0

Ci+n0−1
i−n0

(
2n − 2i − 1

n − i − 1

)
,

where the first term corresponds to i = n. Using Lemma 7.6, we obtain

Zn,n0
= Cn+n0−1

n−n0
+ 2

(
2n − 1

n − n0 − 1

)
=

(
2n

n − n0

)
,

proving the result. �

We fix n and n0 such that n ≥ n0 ≥ 0. In this subsection, let 〈i〉n,n0
and 〈i, j〉n,n0

denote the stationary probability of having an i in the last position and i, j in the last

two positions, respectively, in the B-TASEP on n sites with n0 0’s.
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3128 E. Aas et al.

Theorem 7.11. For any n ≥ n0 ≥ 0 and β = 1/2, we have the following table for

Zn,n0
· 〈i, j〉n,n0

in the B-TASEP.

i\j 1 0 1

1
( 2n−2
n−n0−2

)
Cn+n0−1

n−n0−1
( 2n−2
n−n0−2

)
0 Cn+n0−2

n−n0−1 Cn+n0−3
n−n0

Cn+n0−2
n−n0−1

1 2
( 2n−3
n−n0−2

)
Cn+n0−2

n−n0−1 2
( 2n−3
n−n0−2

)

Proof. From the lumping to the D∗-TASEP by Theorem 5.5(2), we know that 1 and 1

have the same probability of being at the last site, and so the corresponding columns are

equal. By the computation in the proof of Theorem 7.10, the column sums are
( 2n−1
n−n0−1

)
and for column 0 the sum is Cn+n0−1

n−n0
. By Lemma 7.9 we get directly that Zn,n0

〈0, 0〉n,n0
=

Cn−2+(n0−2)+1
n−2−(n0−2) and Zn,n0

〈0, 1〉n,n0
= Cn−2+(n0−1)+1

n−2−(n0−1) as desired. A word ending in 10 must

have a bottom row ending in 10 in the two-row D∗ configuration, which means that

again Lemma 7.9 is applicable and we get Zn,n0
〈1, 0〉n,n0

= Cn−2+(n0−1)+1
n−2−(n0−1) . We can then

also deduce that

Zn,n0
〈1, 0〉n,n0

= Zn,n0
(〈0〉n,n0

− 〈1, 0〉n,n0
− 〈0, 0〉n,n0

) = Cn+n0−1
n−n0−1

using the recursion for ballot numbers. A word ending in 1∗ in the D∗-TASEP must have

a bottom row ending in 1∗ in the two-row D∗ configuration. We get a factor 1/β = 2 from

the 1 in the bottom row, and the factor 1/β∗ = 2 cancels by the fact that both 1 and 1

lump to ∗. Letting i be the position of the last 0, we get, as in the proof of Theorem 7.10,

Zn,n0
〈1, 1〉n,n0

=
n−2∑
i=n0

Ci+n0−1
i−n0

Mn−i−2

(
1

2

)
· 2 = 2

n−2∑
i=n0

Ci+n0−1
i−n0

(
2n − 2i − 3

n − i − 2

)
=2

(
2n − 3

n − n0 − 2

)
,

where the last equality follows from Lemma 7.6. Finally,

Zn,n0
〈1, 1〉n,n0

= Zn,n0
(〈1〉n,n0

− 〈0, 1〉n,n0
− 〈1, 1〉n,n0

)

=
(

2n − 1

n − n0 − 1

)
−

(
Cn+n0−2

n−n0−1 + 2
(

2n − 3

n − n0 − 2

))
=

(
2n − 2

n − n0 − 2

)
,

completing the proof. �
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7.3 Limiting direction for type B

In this section, we will prove formulas for the two-point correlations for the B-

MultiTASEP using the two-point correlations in Section 7.2 for the B-TASEP. As before

〈i, j〉B means the stationary probability of having a particle of species i at site n−1 and a

particle of species j at site n in the B-MultiTASEP on n sites. To avoid confusion, we will

reuse the notation 〈i, j〉n,n0
as in Theorem 7.11 to mean the corresponding probability

in the B-TASEP with n sites and n0 0’s. We will continue to use Zn,n0
for the partition

function of the latter.

We will use the lumping described in Proposition 5.3. There are only n different

such lumpings and this is not enough to determine all the 4n2 two-point correlations

〈i, j〉B; see Table 3. But it turns out that we can get just enough information to prove

Theorem 3.3. As usual, we identify −k and k. There are no zeros in the B-MultiTASEP

but for ease of notation we write 〈j, 0〉B = 〈0, j〉B = 0. We define row and column sums,

and up and down-hooks as follows.

Coli(n) :=
n∑

j=−n

〈j, i〉B, −n ≤ i ≤ n

Rowi(n) :=
n∑

j=−n

〈i, j〉B, −n ≤ i ≤ n

DHooki(n) :=
n∑

j=i+1

〈i, −j〉B + 〈j, −i〉B, 1 ≤ i ≤ n

UHooki(n) :=
n∑

j=i+1

〈−j, i〉B + 〈−i, j〉B, 1 ≤ i ≤ n.

See Figure 9 for an illustration.

Lemma 7.12. For any n ≥ 1, we have in the B-MultiTASEP on n sites,

Coli(n) = 1

2n
− n ≤ i ≤ n, i �= 0,

Rowi(n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2n −n ≤ i ≤ −2,

n−1
2n(2n−1)

i = −1,

n2+2n(2i−1)−3i2−i+1
2n(2n−1)(n−1)

1 ≤ i ≤ n,

DHooki(n) = (n − i)(n + 3i − 1)

2n(2n − 1)(n − 1)
1 ≤ i ≤ n,

UHooki(n) = n − i

n(2n − 1)
1 ≤ i ≤ n.
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3130 E. Aas et al.

Fig. 9. The (A) down-hook DHooki(n) and (B) up-hook UHooki(n) are shaded.

Proof. Since 〈1〉n,k = ∑
i>k 〈i〉B, we have 〈i〉B = 〈1〉n,i−1 − 〈1〉n,i. By Theorem 7.11 we can

compute

〈1〉n,n0
=

( 2n−2
n−n0−2

) + Cn+n0−2
n−n0−1 + 2

( 2n−3
n−n0−2

)
Zn.n0

= n − n0

2n

using (7.1) and Theorem 7.10. This gives Coli(n) = 〈i〉B = 1
2n . Similarly, we can compute

Rowi(n) by first computing the row sum for the B-TASEP from Theorem 7.11. We obtain

〈1, ·〉n,n0
= 2

( 2n−3
n−n0−2

) + Cn+n0−2
n−n0−1 + 2

( 2n−3
n−n0−2

)
Zn.n0

= (n2 − n2
0)(2n − n0 − 2)

2n(2n − 1)(n − 1)
.

Similar computations give 〈1, ·〉n,n0
= n−n0

2n for n0 ≥ 1 and 〈1, ·〉n,0 = n−1
2n−1 . For i ≥ 2 we

get, from the same argument as above,

Row−i(n) = 〈−i, ·〉B = 〈1, ·〉n,i−1 − 〈1, ·〉n,i = 1

2n
,

whereas

Row−1(n) = n − 1

2n − 1
− n − 1

2n
= n − 1

2n(2n − 1)
.
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For any i ≥ 1 we get

Rowi(n) = 〈1, ·〉n,i−1 − 〈1, ·〉n,i = (n2 − (i − 1)2)(2n − (i − 1) − 2) − (n2 − i2)(2n − i − 2)

2n(2n − 1)(n − 1)
,

which simplifies to the desired formula. The (i + 1)-coloring procedure (see Section 5)

gives that 〈1, 1〉n,i = ∑
j,k≥i+1 〈j, −k〉B, which means DHooki(n) = 〈1, 1〉n,i−1 − 〈1, 1〉n,i. By

Theorem 7.11 this becomes

DHooki(n) = 2
( 2n−3
n−(i−1)−2

)
Zn,i−1

− 2
( 2n−3
n−i−2

)
Zn,i

= (n − i)(n + 3i − 1)

2n(2n − 1)(n − 1)

as claimed. Similarly

UHooki(n) = 〈1, 1〉n,i−1 − 〈1, 1〉n,i =
( 2n−2
n−(i−1)−2

)
Zn,i−1

−
( 2n−2
n−i−2

)
Zn.i

= n − i

n(2n − 1)
,

completing the proof. �

Lemma 7.12 is the key ingredient in the proof of the limiting direction of Lam’s

walk of type B in Theorem 3.3. From Lemma 7.12 and the fact that 〈i〉B = Coli(n), we

immediately arrive at the following curious observation, which might be of independent

interest.

Corollary 7.13. The probability of an i at the last site in the B-MultiTASEP on n sites

is 1/(2n) for all −n ≤ i ≤ n, i �= 0.

Let πB(w1 = i) be the probability of having a particle of species i in the first site

of the B-MultiTASEP on n sites. Another interesting curiosity is that the coefficient of

ek in the type B limiting direction is twice P(w1 = −k) for 1 ≤ k ≤ n, as we shall see

next.

Theorem 7.14. Let n ≥ 2. Then

πB(w1 = k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2|k|−1

2n(2n−1)
−n ≤ k ≤ −1,

n2+n−1
2n(2n−1)

k = 1,

1
2n 1 < k ≤ n.
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3132 E. Aas et al.

Proof. We use the coloring argument, which gives πB(w1 = k) = 〈1〉n,k−1 − 〈1〉n,k for

k ≥ 1. Similarly, πB(w1 = −k) = 〈1〉n,k−1 − 〈1〉n,k for k ≥ 1.

Consider the two-row D∗ process. If the second position of the top row contains

a 1, then the bottom row must contain a 1 in the same position. Hence

〈1〉n,k =
( 2n−2
n−k−1

)( 2n
n−k

)
by Theorem 7.11 since the 1 does not contribute any extra weight. This yields, after

some computations, the claim for πB(w1 = −k), 1 ≤ k ≤ n. Now, for 〈1〉n,k we use

〈1〉n,k = 1 − 〈0〉n,k − 〈1〉n,k. For k > 0,

〈0〉n,k =
(2n−2

n−k

)( 2n
n−k

) ,

and for k = 0, 〈0〉n,0 = 0. Using these formulas for different values of k, one can compute

the remaining cases. �

7.4 Partition function and correlations in D-TASEP

In this section, we will denote the partition function for the D-TASEP by Zn,n0
.

Theorem 7.15. For n ≥ n0 ≥ 1, the partition function of the D-TASEP is

Zn,n0
=

n−n0∑
j=0

(
2j

j

)(
2n − 2j − 2

n − j − n0

)
.

For n0 = 0, 1, we get Zn,n0
= 4n−n0 .

Proof. Recall that in the D-TASEP we have α∗ = β∗ = α = β = 1
2 . First, assume n0 ≥ 2.

We will appeal to the D∗-TASEP and use the lumping from Theorem 5.5(3). We divide

configurations of the D∗-TASEP into four classes depending on the first and last sites.

Case 1: First we study all words starting and ending with 0. By Lemma 7.9, these

configurations sum to Cn+n0−3
n−n0

.

Case 2: The second case is all words starting with 0 and ending in ∗. This is the same as

the second case in the computation of the partition function ZB
n−1,n0−1 of the B-TASEP in

Theorem 7.10, which is given by 2
( 2n−3
n−n0−1

)
.

Case 3: The third case is words starting with ∗ and ending in 0, which by Case 2 and the

symmetry in Proposition 5.2 also gives 2
( 2n−3
n−n0−1

)
.
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Case 4: The fourth case is words starting and ending with ∗. Let i, j be the positions of

the first and last zeros, respectively. The weight of the part to the right of the last zero

is then 2Mn−j−1

(1
2

)
, and by the symmetry in Proposition 5.2 the weight of the part to the

left of the first zero is 2Mi−2

(1
2

)
. This gives

n−n0∑
i=2

n−1∑
j=n0+i−1

2Mi−2

(
1

2

)
Cj−i−1+(n0−2)+1

j−i−1−(n0−2)
2Mn−j−1

(
1

2

)

=
n−n0∑
i=2

n−1∑
j=n0+i−1

(
2i − 2

i − 1

)
Cj−i−1+(n0−2)+1

j−i−1−(n0−2)

(
2n − 2j

n − j

)

=
n−n0∑
i=2

(
2i − 2

i − 1

)(
2(n − i)

n − i − n0 + 1

)
−

n−n0∑
i=2

(
2i − 2

i − 1

)
Cn−i+n0−2

n−i−n0+1,

where the last equality is from Lemma 7.6. To simplify the last sum for n > n0 (both

sums are 0 for n = n0), we use again the same lemma, which, after a suitable variable

substitution, gives

n−n0∑
i=2

(
2i − 2

i − 1

)
Cn−i+n0−2

n−i−n0+1 =
(

2n − 2

n − n0

)
− Cn+n0−3

n−n0
−

(
2n − 2n0

n − n0

)
.

Adding this result to those of Cases 1, 2, and 3, we get

Zn,n0
=

n−n0+1∑
i=1

(
2i − 2

i − 1

)(
2n − 2i

n − i − n0 + 1

)
−

(
2(n − n0 + 1) − 2

n − n0

)

−2
(

2n − 2

n − n0

)
+ 2Cn+n0−3

n−n0
+

(
2n − 2n0

n − n0

)
+ 4

(
2n − 3

n − n0 − 1

)
.

The last terms cancel and the theorem is proved for n0 ≥ 2. Note that for n = n0 the

only contribution comes from Case 1, which gives the required result.

For n0 = 1, Case 1 is empty but Case 2 and 3 are still 2
(2n−3

n−2

) = (2n−2
n−1

)
each. Case

4 is the same sum, with i = j, which becomes
∑n−1

i=2

(2i−2
i−1

)(2n−2i
n−i

)
. Together the cases give

the desired formula, which simplifies to 4n−1.

When n0 = 0 this is given by Lemma 7.8, and that completes the proof. �

Remark 7.16. One may rewrite the sum in Theorem 7.15 in several different ways, for

example Zn,n0
= ∑n−n0

j=0

(2j−1
j

)(2n−2j−1
n−j−n0

)
, or as a recursion Zn,n0

= 4Zn−1,n0
+ Cn+n0−3

n−n0
. We

do not need it here, but we note that the recursion is useful for proving a formula for a
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generating function of the partition function:

∞∑
n=n0

Zn,n0
tn = tn0

1 − 4t

(
1 − √

1 − 4t

2t

)2n0−2

.

Fix n and n0 such that n0 ≤ n. Let, as before, 〈i〉n,n0
denote the stationary

probability of having an i Similarly, let 〈i, j〉n,n0
be the probability of having i, j in the

last two sites.

Theorem 7.17. For any n ≥ n0 ≥ 1, we have the following table for values of Zn,n0
·

〈a, b〉n,n0
in the last two positions of the D-TASEP.

a\b 1 or 1 0

1
∑n−n0

j=2

(2j−2
j

)(2n−2j−2
n−j−n0

) ( 2n−3
n−n0−1

)
0

( 2n−4
n−n0−1

) (2n−4
n−n0

)
1

∑n−1−n0
j=1

(2j
j

)( 2n−2j−4
n−j−n0−1

) ( 2n−4
n−n0−1

)

Note that having a 1 in the last position has the same probability as having a 1.

Proof. Using the cases in the proof of Theorem 7.15, we first compute 〈0〉n,n0
= (2n−2

n−n0

)
and

〈1〉n,n0
=

n−n0∑
j=0

(
2j

j

)(
2n − 2j − 2

n − j − n0

)
−

(
2n − 2

n − n0

)
.

Clearly 〈0, 0〉n,n0
, 〈1, 0〉n,n0

, and 〈0, 1〉n,n0
can be directly deduced from 〈0〉n,n0

with

an appropriate shift of n and n0. Then use 〈1, 0〉n,n0
= 〈0〉n,n0

− 〈0, 0〉n,n0
− 〈1, 0〉n,n0

. Note

that 〈1, 1〉n,n0
must (because of β = 1/2) be twice 〈1〉n−1,n0

and 〈1, 1〉n,n0
= 〈1〉n,n0

−
〈0, 1〉n,n0

− 〈1, 1〉n,n0
. The equality of probabilities replacing 1 with 1 in the last position

follows from the lumping in Theorem 5.5. �

7.5 Limiting direction for type D

In this section, we will follow the strategy of Section 7.3 and prove formulas for the two-

point correlation for the D-MultiTASEP using the two-point correlations in Section 7.2

for the D-TASEP. As before, let 〈i〉D and 〈i, j〉D mean the stationary probability in the
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D-MultiTASEP of having a particle of species i at the last site and the last two sites,

respectively. We will continue to use Zn,n0
for the partition function of the D-TASEP

with n sites and n0 0’s.

The limiting direction for the D-MultiTASEP can now be determined from

Theorem 7.17 in the same way as the limiting direction for the B-MultiTASEP in

Section 7.3 since both have the same expression. Again, define

Coli(n) :=
n∑

j=−n

〈j, i〉D, −n ≤ i ≤ n

Rowi(n) :=
n∑

j=−n

〈i, j〉D, −n ≤ i ≤ n

DHooki(n) :=
n∑

j=i+1

〈i, −j〉D + 〈j, −i〉D, 1 ≤ i ≤ n

UHooki(n) :=
n∑

j=i+1

〈−j, i〉D + 〈−i, j〉D, 1 ≤ i ≤ n.

Proof of Theorem 3.6. The formal expression for the limiting direction for type D

is (3.2), that is, the same as that of type B. This follows from that the highest root is

the same and that inversions are computed in similar ways for Bn and Dn. Thus the

coefficient of the root ek in the limiting direction ψ is again given by

n∑
j=−k+1

(〈j, k〉D + 〈k, j〉D

) −
n∑

j=k+1

(〈j, −k〉D + 〈−k, j〉D

)
= Rowk(n) − DHookk(n) + Colk(n) − UHookk(n). (7.4)

Plugging in the formulas in Lemma 7.18 for k = 1 and 2 ≤ k ≤ n proves the theorem.

The case n = 2 can be checked separately. �

Lemma 7.18. For any n ≥ 3, we have in the D-MultiTASEP

Coli(n) =

⎧⎪⎨⎪⎩
(2n−2

n−1 )
22n−1 |i| = 1,

(2n−2
n−i )

2Zn,i
− ( 2n−2

n−i+1)
2Zn,i−1

1 < |i| ≤ n.
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Rowi(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2n−4
n−2 )

4n−1 i = 1,

(2n−3
n−2 )

4n−1 i = −1,

2
∑n−i+1

j=2 (2j−2
j )(2n−2j−2

n−j−i+1)+(2n−3
n−i )

Zn,i−1

−2
∑n−i

j=2 (2j−2
j )(2n−2j−2

n−j−i )+( 2n−3
n−i−1)

Zn,i
−n ≤ i < −1,

2
∑n−i

j=1 (2j
j )(

2n−2j−4
n−j−i )+(2n−4

n−i )
Zn,i−1

−2
∑n−i−1

j=1 (2j
j )(

2n−2j−4
n−j−i−1)+( 2n−4

n−i−1)
Zn,i

1 < i ≤ n.

DHooki(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(2n−4
n−2 )

4n−1 i = 1,∑n−i
j=1 (2j

j )(
2n−2j−4

n−j−i )
Zn,i−1

−
∑n−i−1

j=1

(2j
j

)(2n−2j−4
n−j−i−1

)
Zn,i

2 ≤ i ≤ n.

UHooki(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(2n−3
n−2 )

4n−1 i = 1,∑n−i+1
j=2 (2j−2

j )(2n−2j−2
n−j−i+1)

Zn,i−1

−
∑n−i

j=2

(2j−2
j

)(2n−2j−2
n−j−i

)
Zn,i

2 ≤ i ≤ n.

Proof. The proof is more or less the same computation as the proof of Lemma 7.12,

using Theorems 7.15 and 7.17 instead. �
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