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We provide real-space and Fock-space (FS) characterizations of ergodic, nonergodic extended (NEE) and
many-body localized (MBL) phases in an interacting quasiperiodic system, namely, the generalized Aubry-
André-Harper model, which possesses a mobility edge in the noninteracting limit. We show that a mobility
edge in the single-particle (SP) excitations survives even in the presence of interaction in the NEE phase. In
contrast, all single-particle excitations get localized in the MBL phase due to the MBL proximity effect. We give
complementary insights into the distinction of the NEE states from the ergodic and MBL states by computing
local FS self-energies and decay length associated, respectively, with the local and the nonlocal FS propagators.
Based on a finite-size scaling analysis of the typical local self-energy across the NEE to ergodic transition, we
show that MBL and NEE states exhibit qualitatively similar multifractal character. However, we find that the
NEE and MBL states can be distinguished in terms of the distribution of local self-energy and the decay of the
nonlocal propagator in the FS, whereas the typical local FS self-energy cannot tell them apart.
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I. INTRODUCTION

Understanding thermalization or ergodicity and its break-
down in isolated quantum systems has been one of the central
problems of recent times in many-body quantum physics.
While a typical interacting quantum system thermalizes ad-
hering to the eigenstate thermalization hypothesis (ETH)
[1,2], a nonergodic behavior may arise in the presence of
strong disorder leading to many-body localization (MBL)
[3,4]. MBL and its phenomenology in one dimension have
been studied quite extensively both in theory [5–12] and ex-
periments [13–15]. These works provide strong evidences in
favor of the existence of MBL phase in one dimension. To
this end, while the universal properties of MBL to thermal
transition [16–23] and the regime of stability [24–29] of MBL
phase remain under active debate, MBL is arguably the only
well-established generic example of the nonequilibrium states
of quantum matter that violates ETH [30–33].

It is thus an interesting question whether there are other
type of nonergodic many-body phases intermediate between
ergodic and MBL. There have been several proposals in
different situations, and associated debates [34–56] for real-
izing such states, typically dubbed as nonergodic extended
(NEE) states, as a distinct phase. Strong evidence [49–55]
of NEE states have been found in systems with a particu-
lar type of quasiperiodic disorder, namely, the generalized
Aubry-André-Harper (GAAH) model [50,57], in the certain
regime of many-body energy density and quasiperiodic po-
tential strength. In this system, the NEE states, in contrast
to the ergodic and MBL states, are characterized by volume-
law entanglement entropy and finite eigenstate-to-eigenstate
fluctuations of local observable [49,55]. The noninteracting

GAAH model hosts a single-particle (single-particle) mobility
edge, and thus, naively, all the many-body eigenstates are
expected to be ergodic due to coupling between localized
and delocalized single-particle (single-particle) states through
interaction. The existence of the MBL state in the GAAH
model is rationalized [50] in terms of “MBL proximity ef-
fect” [58–60]. Through this mechanism, a strongly localized
system can localize a weakly ergodic bath when coupled with
each other in the absence of any symmetry or topological
protections [61–64] of the delocalized states in the bath. In the
GAAH model, the localized and delocalized single-particle
states, existing in the different parts of the energy spectrum,
constitute the localized system and the ergodic bath, respec-
tively.

In this work, we unravel direct signatures of the MBL
proximity effect and the fate of the single-particle mobil-
ity edge in the MBL and NEE states of the interacting
GAAH model through real-space single-particle excitations.
We further characterize the nonergodic and ergodic states by
considering the interacting problem on the real-space lattice
as an effective noninteracting problem on the Fock-space (FS)
graph or lattice, albeit with correlated disorder [65–70]. From
this perspective, the MBL states are themselves multifractal
or nonergodic extended in nature [16,71–73], i.e., they are
extended over ∼ND

F (0 < D < 1) FS sites, a vanishing frac-
tion of the total NF ∼ exp (L) FS sites corresponding to a
real-space lattice with L sites; here D is a fractal dimension.
In this scenario, how are the NEE states of GAAH model
different from the MBL states then? We show that, though the
NEE and MBL states are both multifractal in nature, they can
be distinguished based on the existence or absence of a mo-
bility edge in real-space single-particle excitations and an FS
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localization length extracted from the nonlocal propagation of
an effective excitation on the FS lattice.

We characterize the single-particle excitation in real space
by computing via exact diagonalization (ED) the typical value
ρt (ω) of local density of states at excitation energy ω. To
quantify localization properties in Fock space, we obtain local
and nonlocal FS propagators of an excitation on the FS lattice
using a recursive Green’s function method [74]. We extract
the statistical properties, e.g., the typical values �t and ξF , of
the imaginary part of the local Feenberg self-energy [67] and
an FS length scale, respectively, from the local and nonlocal
FS propagator; ξF captures the decay length of the nonlocal
propagator on the FS graph.

We demonstrate that the above two diagnostics along with
the multifractality, provide much more clear-cut distinctions
of MBL, NEE, and ergodic phases for the GAAH model,
compared to the probes used in earlier studies [50,55], at least,
within finite-size numerics. Thus our work serves two main
goals: (a) classification of the MBL, NEE and ergodic phases
in terms of real- and Fock-space properties and (b) characteri-
zation of NEE-ergodic phase transition through FS propagator
in the GAAH model. We study the NEE-ergodic transition as a
function of many-body energy density E through a finite-size
scaling of �t . In this work, we do not study the MBL-NEE
transition with E in much detail since the MBL phase only
appears over a limited region in the many-body spectrum, near
the lower edge close to the ground state. As a result, it is hard
to carry out a controlled finite-size scaling analysis for the
MBL-NEE transition with E . For marking the critical value
of E for the MBL-NEE transition, we use the estimate from
earlier studies [55], which are consistent with our results. As
far as the classification of the phases is concerned, we tune
both the energy density and quasiperiodic strength to access
robust MBL, NEE, and ergodic states. Our main results are
the following.

(1) By tuning either the many-body energy density and/or
quasiperiodic potential strength, we explicitly demonstrate
the MBL proximity effect on the single-particle excitations
from the system size dependence of ρt (ω). Remarkably, we
find a single-particle mobility edge, even in the presence of
interaction, separating localized and delocalized excitations
in the NEE phase. This is in contrast to the ergodic and MBL
phases, where all the excitations get delocalized and localized,
respectively.

(2) We show that �t remains finite in the ergodic phase and
vanishes as �t ∼ N−(1−Ds )

F with the fractal dimension 0 <

Ds < 1 in the NEE and MBL phases, reflecting multifractal
nature of both kinds of nonergodic states on the FS lattice.

(3) We show that the FS length scale ξF varies with system
size in the NEE phase, like in the ergodic phase but unlike the
MBL phase, where ξF becomes system size independent.

The remainder of the paper is organized as follows. In
Sec. II, we describe the model and the parameters. In Sec. III,
we calculate the standard diagnostics such as the entangle-
ment entropy, level-spacing ratio, etc. to distinguish the three
phases: ergodic, NEE, and MBL. We discuss the characteriza-
tion of the phases in terms of single-particle excitations in real
space for noninteracting and interacting systems in Secs. IV A
and IV B, respectively. Then in Sec. V, we define the FS
propagator and discuss the FS lattice structure. We study the

nonergodic-ergodic phase transition in FS in Sec. V A, fol-
lowed by a finite-size scaling analysis for the same transition
in Sec. V B. We also provide a comparative analysis of the
inverse participation ratio and self-energy for our system in
Sec. V C. In Sec. V D, we analyze the distribution of the FS
Feenberg self-energy. In Sec. VI, we define FS localization
length and distinguish different phases using it. Finally, we
conclude in Sec. VII.

II. MODEL

We consider interacting spinless fermions in a 1D
quasiperiodic potential described by the following Hamilto-
nian:

H = −t
L−1∑
i=1

[c†
i ci+1 + H.c.] +

L∑
i=1

hini + V
L−1∑
i=1

nini+1, (1)

with open boundary conditions. Here ci is the fermion anni-
hilation operator at site i and ni = c†

i ci. The nearest-neighbor
hopping and the nearest-neighbor interaction strengths are t =
1 and V = 1, respectively. The quasiperiodic potential is hi =
h cos(2πχ i + φ)/(1 − α cos(2πχ i + φ)), where χ = (

√
5 −

1)/2, α = −0.8, and h is the strength of the potential with a
global phase φ ∈ (0, 2π ]. The noninteracting model (V = 0)
has a single-particle mobility edge (SPME) at an energy εc =
sgn(h)(2|t | − |h|)/α [57], i.e., all states with energy ε < εc

are localized and those with energy ε > εc are delocalized.
For the interacting system (V = 1), we consider quarter fill-
ing, i.e., N = L/4 fermions on L sites. The choice of the filling
is motivated by the earlier studies [55], where MBL, NEE, and
ergodic phases were identified at the quarter filling. In our ED
calculations, we use L = 8, 12, 16, 20, and for the recursive
Green’s function calculations, we access larger systems L =
16, 20, 24, consistent with the filling. As mentioned earlier,
we study the phases for the GAAH model as a function of
quasiperiodic potential strength h and the energy density (per
site) E = E/L, where E is the many-body energy. To compute
a quantity, e.g., entanglement entropy, for eigenstates at an
energy density E , we bin the energy eigenvalues and compute
the average over around 5 eigenstates in a given bin whereas
for energy level-statistics we average over around 10-100
eigenstates in a given bin for smaller to larger system sizes.
We also average over the phase φ appearing in the quasiperi-
odic potential, taking 5000, 2000, 500, 100 samples in the
ED for L = 8, 12, 16, 20, respectively and 2000, 1000,

400 samples in the recursive calculation for L = 16, 20, 24,
respectively.

III. DISTINGUISHING MBL, NEE, AND ERGODIC
PHASES WITH STANDARD DIAGNOSTICS

Previous studies [49,55] have identified MBL, NEE and
ergodic phases in the many-body energy spectrum of the
interacting model of Eq. (1) as a function of energy density
E and h. We reconfirm this in Figs. 1(a)–(c) by computing
three well-known quantities, the bipartite entanglement en-
tropy SA of the subsystem A consisting of the half of the
chain, the variance of particle number δ2NA in A, and the
energy level-spacing ratio r. We calculate these quantities
via ED by choosing three combinations of h and E such
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TABLE I. Classification of MBL, NEE, and ergodic phases in the GAAH model based on various real-space and Fock-space diagnostics.
Here L and NF are the number of sites on the real-space and Fock-space lattices, respectively.

that we have robust ergodic (h = 0.6, E = 0), NEE (h = 0.6,

E = −0.49), and MBL (h = 1.8, E = −0.49) states, i.e., we
are deep within the phases. We also look at another combi-
nation, h = 0.6, E = −0.66, which should correspond to the
MBL phase based on previous studies [55]. However, as we
discuss later, we find that states for this parameter do not show
very clear-cut MBL behaviors; they appear MBL-like in some
diagnostics and NEE-like in others. Below we briefly describe
the classification of the phases based on these diagnostics. A
summary can be found in Table I.

Half-chain entanglement entropy SA. The entanglement
entropy is obtained as SA = −Tr(ρA ln ρA) from the reduced

FIG. 1. Standard diagnostics for MBL, NEE, and ergodic phases:
(a) the half-chain (A) entanglement entropy SA, (b) subsytem particle
number fluctuations (variance) δ2NA, and (c) energy level-spacing
ratio r as function of L in the three phases, ergodic (h = 0.6, E = 0),
NEE (h = 0.6, E = −0.49), and MBL (h = 1.8, E = −0.49). (d) r
as a function of E for increasing L for h = 0.6.

density matrix ρA = TrB(ρ) for the pure-state density
matrix, ρ = |�E〉 〈�E |. Here |�E〉 is a many-body eigenstate
at an energy density E . As shown in Fig. 1(a), SA increases
with L in ergodic and NEE phases, implying a volume-law
entanglement ∼L. On the contrary, SA remains almost in-
dependent of system size in the MBL phase, i.e., exhibits
an area law SA ∼ L0, as expected [16]. Thus, though the
system-size dependence of bipartite entanglement can tell
MBL and the extended states apart, NEE and ergodic phases
cannot be distinguished easily based on this diagnostic. Er-
godic eigenstates have a thermal volume-law entanglement,
i.e., SA � sth(E )L/2, with sth(E ) thermal entropy per site at
energy density E , for large L. NEE states, on the other hand,
are expected to exhibit [53,75] a subthermal volume-law en-
tanglement entropy, i.e., the coefficient of linear L dependence
less than sth(E ). However, this distinction might be hard to
verify for the limited system sizes accessed in ED [53].

Subsystem particle number variance. δ2NA measures
fluctuations of total number of particles N̂A = ∑L/2

i=1 ni in
the subsystem A compared to the average number NA =∑L/2

i=1 〈�E | ni |�E〉 at an energy density E . As shown in
Fig. 1(b), δ2NA decreases with L in the ergodic phase, as
expected from ETH [30–33], while it increases and then tends
to saturate with L in MBL and the NEE phases [55]. As a
result, this quantity can differentiate the ergodic states from
nonergodic states.

Level-spacing ratio. The level-spacing ratio [5,76] ri =
min(si, si+1)/ max(si, si+1) is obtained from si = Ei+1 − Ei

with Ei’s being the many-body energy eigenvalues arranged
in ascending order. We compute the arithmetic mean of ri to
obtain the average level-spacing ratio r(E ) at energy density
E . The ergodic phase can be identified with the gaussian-
orthogonal ensemble (GOE) value r � 0.528 and the MBL
phase with the Poissonian value r � 0.386. In Fig. 1(c), r
approaches GOE and Poissonian values with increasing L for
the ergodic and MBL phases, respectively, whereas r tends to
an intermediate value for the NEE phase. We also discuss the
level-spacing distribution in the three phases in Appendix A.
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Since r is expected to change discontinuously across the
MBL-to-ergodic transition, r has been used [5,16,20,23,77]
as an “order parameter” to detect the MBL transition, e.g.,
through finite-size scaling analysis of r in the models with the
random and quasiperiodic disorder. However, as we show in
Fig. 1(d) for h = 0.6, r is not a good diagnostic of the MBL-
NEE and NEE-MBL transitions in the quasiperiodic model
[Eq. (1)] for the system sizes accessed in ED. r fluctuates
[55] a lot as a function of E and L in the putative nonergodic
phases, even after averaging over a large number of values of
φ. As a result, we cannot do a reasonable finite-size scaling
analysis of r for the transitions in the GAAH model. We
show later that the FS diagnostics vary smoothly across the
NEE-MBL transition and thus enable us to do more controlled
finite-size scaling. We also show in Appendix A that the level
spacing statistics do not exhibit proper Poisson statistics in
the putative MBL phase for h = 0.6, presumably because the
corresponding states are too close to the ground state in en-
ergy. As a result, distinguishing states at finite-energy density
(relative to the ground state) and obtaining good statistics for
them by energy binning becomes challenging. Hence, to attain
a clear distinction of the phases, we look at MBL states for
(h = 1.8, E = −0.49), where the level statistics convincingly
converge to Poisson distribution, as shown in Appendix A.
A comparison between the level statistics for (h = 1.8, E =
−0.49) and (h = 0.6, E = −0.66) can be found in Figs. 11(c)
and 11(d).

In the next section, we provide the anatomy of the above
phases in terms of single-particle excitations.

IV. SINGLE-PARTICLE EXCITATIONS
AND MBL PROXIMITY EFFECT

In this section, we characterize single-particle excita-
tions in the MBL, NEE, and ergodic phases via eigenstate
single-particle Green’s function and the associated local
density of states (LDOS). The single-particle Green’s func-
tion in the nth many-body eigenstate |�n〉 with energy
En of the N-particle system is obtained from Gn(i, j, t ) =
−iθ (t ) 〈�n| {ci(t ), c†

j (0)} |�n〉 for sites i and j. The Fourier
transform of the onsite element Gn(i, i, t ) = Gn(i, t ) is

Gn(i, ω) =
∑

m

[
| 〈�+

m | c†
i |�n〉 |2

ω + iη − Em + En
+ | 〈�−

m | ci |�n〉 |2
ω + iη + Em − En

]
.

(2)

|�+
m 〉 and |�−

m 〉 are the mth eigenstate with energy Em of
the system with N + 1 and N − 1 particles, respectively. For
the interacting system (V �= 0), the broadening parameter η

is taken to be the typical value or the geometric mean of
the many-body level spacing (∼e−L) at energy En (see Ap-
pendix C for details).

The single-particle excitation at energy ω is charac-
terized by the local density of states (LDOS) ρn(i, ω) =
−(1/π )Im[Gn(i, ω)]. In particular, we obtain the typi-
cal LDOS ρt (ω), the geometric mean, from ln ρt (ω) =
〈ln ρn(i, ω)〉 and the average LDOS as ρa(ω) = 〈ρn(i, ω)〉,
where 〈...〉 denotes an arithmetic average over the lattice sites
and φ. In the localized phase, for both noninteracting (V =0)

(a) (b)

FIG. 2. LDOS for noninteracting (V = 0) GAAH model.
(a) ρt (ω) vs ω for increasing system sizes L. (b) ρa(ω) vs ω for
increasing L. The vertical dashed line shows the position of the single
particle mobility edge for α = −0.8 and h = 0.6. The number of
disorder realizations over φ is at least 100 for all the plots.

and interacting (V �= 0) systems, the local single-particle
excitations originate from a finite number of discrete poles
of the Green’s function Gn(i, ω), effectively corresponding to
a finite system having the size of the localization length. Thus
the poles of Gn(i, ω) lead to discrete peaks in ω, having zero
measure in the LDOS even in the thermodynamic limit. As a
result, the typical value ρt (ω) decreases with system sizes and
ρt (ω) → 0 in the thermodynamic limit. In contrast, the poles
of Gn(i, ω) form a continuum in the delocalized phase for L →
∞ and ρt (ω) approaches a nonzero value with increasing
system size [57] for ω lying within the single-particle bands
of states. Thus the typical LDOS ρt (ω) acts as a probabilistic
order parameter [78–80] for localization of an excitation at en-
ergy ω. In contrast, the arithmetic mean ρa(ω) averages LDOS
over all the sites and approaches nonzero value with increas-
ing system size both in the delocalized and localized phases.

A. Noninteracting system: V = 0

In the noninteracting limit, (V = 0), Eq. (2) can be simpli-
fied and the local single-particle density of states (LDOS) can
be written as

ρ(i, ω) = 1

π

L∑
ν=1

|ψν (i)|2 ηs

(ω − εν )2 + η2
s

. (3)

Here ψν (i) and εν are the single particle eigenfunction and
energy that can be obtained by diagonalizing the noninteract-
ing GAAH model. In this case, the broadening parameter ηs

is chosen to be the mean single-particle energy level spacing
(∼1/L). We then calculate the typical value ρt (ω) of LDOS,
and the average value of LDOS ρa(ω) as discussed earlier.

The L dependence of ρt (ω) can be used to detect the single-
particle mobility edge εc = sgn(h)(2|t | − |h|)/α [57] of the
GAAH model in the noninteracting limit (V = 0). Apart from
the mobility edge, the single-particle spectrum of the GAAH
model also has gaps, i.e., O(1) interval of ω that does not
contain any eigenenergy εν . We use ρt (ω) in combination with
ρa(ω) to classify for small finite systems—(a) localized exci-
tation, when ρt (ω) decreases and ρa(ω) approaches a finite
value with L, (b) delocalized excitation, when both ρt (ω) and
ρa(ω) tend to saturate with L, and (c) gapped excitation, when
both ρt (ω) and ρa(ω) decrease with L. In Fig. 2, we show
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FIG. 3. Single-particle excitations in the interacting GAAH model. (a) ρt vs ω for increasing L in the ergodic phase (h = 0.6, E = 0),
(b) NEE phase (h = 0.6, E = −0.49), (c) MBL phase (h = 1.8, E = −0.49), and (d) for (h = 0.6, E = −0.66). The vertical dot-dashed line
shows the location of the single particle mobility edge in the noninteracting limit.

that single-particle excitations are localized for ω < εc, where
ρt decreases with L but ρa does not. For ω > εc, the excita-
tions are delocalized, and both ρt and ρa remain finite in the
thermodynamic limit. In Fig. 2, the gapped region are marked
by dashed curves where both ρt (ω) and ρa(ω) decrease with
L. Hence by combining both ρt (ω) and ρa(ω), we are able
to detect the mobility edge as well as the gapped region in
the single-particle excitation spectrum of the GAAH model.
In the following, we employ the same diagnostics to look for
localized and delocalized excitations in the interacting system.

B. Interacting system: V �= 0

In the interacting case, we use Eq. (2) to obtain the LDOS
via ED for system sizes L = 8, 12, and 16. Remarkably, as
we show in Figs. 3(a)–3(c), different types of excitations, i.e.,
localized, delocalized, and gapped, as discussed in the preced-
ing section, also exist for V �= 0. For the ergodic phase (h =
0.6, E = 0) [Fig. 3(a)] ρt (ω) approaches a finite value over
the entire band (|ω| � 4) except the gapped region (dashed
line), implying many-body delocalization of all single-particle
excitations due to interaction.

In contrast, in the MBL phase (h = 1.8, E = −0.49)
[Fig. 3(c)] all single-particle excitations, below and above
the noninteracting mobility edge εc, are localized, as evinced
by the reduction of ρt (ω) for all ω with L. This is a di-
rect signature of the MBL proximity effect [58–60]. Through
this mechanism, an otherwise delocalized system can become
localized when coupled with a localized system. The delocal-
ized system effectively sees an additional disorder through the
coupling to the localized system [58]. The MBL proximity
effect has been studied via perturbative and ED calculations
[58–60] in two coupled chains of particles or spins. In this
ladder-like system, one of the chains is in the delocalized
phase and the other in the MBL phase, and the chains are
coupled via local density-density type interaction. Reference
[58–60] have shown that the delocalized chain can become
localized due to the coupling with the MBL chain.

In previous studies [50–53,55,56], the MBL proximity ef-
fect has been invoked to rationalize the existence of the MBL
phase in the GAAH model with single-particle mobility edge.
In this case, the Hamiltonian of Eq. (1) can be rewritten in the
basis of the single-particle eigenstates ψν (i) as

H =
∑

μ

εμc†
μcμ +

∑
μνδγ

Vμνδγ c†
μc†

νcδcγ , (4)

where c†
μ = ∑

i ψ
∗
μ(i)c†

i and Vμνγ δ = V
∑

i ψ
∗
μ(i)ψ∗

ν (i +
1)ψγ (i)ψδ (i + 1). Thus the single-particle states for εν > εc

constitute the delocalized system and those for εν < εc form
the localized system here. They are coupled via more generic
and nonlocal interaction than the simpler models considered
in previous studies [58–60] of MBL proximity effect.
Nevertheless, we can clearly observe the MBL proximity
effect in Fig. 3(c), where the delocalized single-particle
excitations (ε > εc) of the noninteracting (V = 0) system are
localized in the presence of interaction V �= 0, presumably
due to the coupling with the localized single-particle states
(ε < εc).

On the contrary, in the NEE phase (h = 0.6, E = −0.49),
ρt (ω) decreases with L for ω � εc and approaches a finite
value increasing with L for ω � εc, as shown in Fig. 3(b). This
clearly indicates the persistence of many-body single-particle
mobility edge, that separates localized and delocalized excita-
tion even for V �= 0, in the NEE phase. The mobility edge for
single-particle excitations can be deduced more clearly in the
semilog plots of Figs. 12(a) and 12(b) in Appendix B. Thus,
in the NEE phase, neither the localized single-particle states
are able to localize all the delocalized excitations via the MBL
proximity effect nor the delocalized states are able to act as a
bath to delocalize all the localized excitations via interaction.
However, it is not possible to determine the mobility edge for
single-particle excitations accurately for the interacting case
(V �= 0), e.g., from Fig. 3(b).

Figure 3(d) shows single-particle excitations for (h=0.6,

E = −0.66). In terms of the single-particle excitations, the
states at this parameter value, which has been previously
characterized as part of the MBL phase [55], are hardly dis-
tinguishable from the NEE states. This is consistent with the
level statistics not converging to the Poisson value in this
regime as discussed earlier (Appendix A). Although the states
in this regime show MBL-like behavior through SA [55], i.e.,
SA approaches an area-law (constant), for system sizes acces-
sible in ED. Note, however, that the computation of the LDOS
requires ED in three particle sectors (N − 1, N, N + 1), as
evident from Eq. (2), and thus is limited to smaller system
sizes (L � 16) than those employed for the calculations of SA,
δ2NA, and Fock-space diagnostics, discussed later. As a result,
the NEE-like single-particle excitation spectrum [Fig. 3(d)]
for the MBL states at (h = 0.6, E = −0.66) might be an
artifact of the limited system size, and the energy binning too
close to the ground state, as discussed earlier in Sec.III. The
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NEE-like level spacing statistics (Appendix A) at this param-
eter value might also be due to energy binning. Future studies
with larger systems and finer energy binning is required for
(h = 0.6, E = −0.66) to resolve this issue.

Overall, we find that qualitative distinctions between MBL,
NEE, and ergodic phases in the GAAH model can be made
based on single-particle excitations in real space, as cap-
tured by typical LDOS. Thus the latter provides a diagnostic
complementary to standard diagnostics, like entanglement
entropy, subsystem particle number fluctuations, and level
spacing statistics, to distinguish the phases (Table I). Due to
the many-body nature of an interacting system, yet another
complementary perspective [65–73] of the phases and noner-
godic to ergodic phase transition can be obtained by looking
at the localization and ergodicity in the Fock space, as we
discuss in the next section.

V. FOCK-SPACE PROPAGATOR

In the Fock-space the Hamiltonian of Eq. (1) can be
rewritten as a tight-binding model in terms of the occupation
number basis {|I〉} as [66,67,70]

H =
∑
I,J

TIJ |I〉 〈J| +
∑

I

EI |I〉 〈I| , (5)

where |I〉 = |nI1nI2...nIL〉 with onsite real-space occupation
ni ∈ 0 or1. Here “FS hopping” TIJ = −t when |I〉 and |J〉
are connected by a single nearest-neighbor hop in real space
and TIJ = 0 otherwise. The onsite potential at the FS site I ,
EI = ∑

i hinIi + V
∑

i nIinI,i+1, acts like correlated disorder
[65–70]. The many-body density of states (MDOS) (per FS
site) of the GAAH model, D(E ) = (1/NF )

∑
n δ(E − En), for

large L approaches a Gaussian function of the many-body
energy E with the mean energy Ē ∝ L and variance μ2

E ∝
L, where the proportionality constants are found from ED
(Appendix C). In order to approach a well-defined thermody-
namics limit through our numerical calculations we consider
the rescaled Hamiltonian H̃ = H/

√
L, as in the earlier studies

[66,67,69].
The FS sites can be organized in slices [74], such that

any site in a particular slice is connected to the sites of
nearest-neighbor slices via a single FS hopping, as shown
in Fig. 4(a). This locality in the FS lattice allows for an
efficient implementation of the standard recursive Green’s
function method [81–84], which has been recently applied to
FS lattice [74] for a system with the random disorder. The
scaled retarded FS propagator at energy E is given by G(E ) =
(E

√
L + iη − H̃ )−1 with a broadening η = 1/[

√
LNF D(E )],

i.e. the scaled mean many-body level spacing, at the energy
density E = E/L. Note that that recursive Green’s function
method [81–84] obtains the G(E ) exactly and there is no ap-
proximation involved here. The organization [Fig. 4(a)] of the
FS lattice into slices facilitates a transparent implementation
[74] of the method in the Fock space. Here we also note that
the calculations of FS propagator do not have any energy
binning issue, unlike the other diagnostics discussed earlier,
since the FS propagator by definition is calculated at given
energy density E .

In particular, we compute GIJ (E ) = 〈I|G(E )|J〉 for I, J on
the middle slice [Fig. 4(a)]. The diagonal element GII provides

FIG. 4. Feenberg self energy and multifractality in the Fock
space. (a) FS lattice constructed out of real-space occupation-number
basis states (orange circles), illustrated for L = 8 at quarter filling,
starting at the top with |11..0000〉, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (grey lines) are indicated. (b) ln �t as
a function of lnNF for increasing E (color bar). (c) The fractal
dimension Ds is found from the finite size scaling theory. Ds = 1
in the ergodic phase and Ds < 1 in the nonergodic extended (NEE)
and MBL phases. Ds jumps at the nonergodic-ergodic transition
point Ec = −0.38 denoted by the dark dashed vertical line. The
grey dashed vertical line denotes the MBL-NEE transition at Enc =
−0.56, estimated from previous study [55] and statistics of Feenberg
self-energy [Sec.V D]. Inset shows Ds extracted from (a) by directly
fitting �t ∼ N−(1−Ds )

F .

an order parameter [74] for nonergodic-to-ergodic transition,
namely, typical value �t = exp [〈ln �I〉] of the imaginary part
of the Feenberg self energy �I (E ) = Im[G−1

II (E )] − η. Here
〈. . . 〉 denotes the average over disorder realizations and FS
sites in the middle slice. The off-diagonal elements GIJ (E )
(I �= J) encode information about the nonlocal propagation of
an FS excitation. A Fock-space localization length or decay
length ξF can be extracted from GIJ in the MBL phase, as
we discuss below. For numerical computation in the FS, we
average over 2000 and 1000 values of φ for L = 16 and 20,
respectively. For L = 24, we average over 400 and 100 φ

values for the local and nonlocal propagators, respectively.

A. Nonergodic-to-ergodic transition in the Fock-space

We study the transition as a function of energy density for
h = 0.6. Based on standard diagnostics like transport, entan-
glement entropy, and variance of local observable, previous
studies [49,55] have detected MBL-to-NEE and NEE-to-
ergodic transition around energy density E1 ≈ −0.60 and
E2 ≈ −0.39, respectively.

We compute the imaginary part �I (E ) of Feenberg self en-
ergy for −0.7 � E � −0.1. �I (E ) quantifies the inverse life-
time of an excitation created at FS site I with energy E [85].
Hence �I provides information of ergodicity or its absence.
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We expect �I ∼ O(1) in the ergodic phase and �I → 0
in the nonergodic phase as NF → ∞ in the thermodynamic
limit. In Fig. 4(b), we show ln �t as a function of lnNF ∝ L.
Deep in the ergodic phase �t saturates to O(1) value as L is
increased, whereas in the nonergodic phase, which includes
both NEE and MBL phases, �t falls off with a power law
in NF . Also the typical value Dt (E ) of the local many-body
density of states DI (E ) = (−1/π )ImGII (E ) shows similar be-
havior (Fig. 14 in Appendix D).

As discussed in Refs. [37,74], for nonergodic phase with
multifractal eigenstates, �t ∼ ηθ

c ∼ N−(1−Ds )
F for a broad-

ening parameter η ∝ N−1
F � ηc, where θ > 0 and ηc ∼

N−z
F (0 < z < 1) is a characteristic energy scale much larger

than the mean many-body level spacing. The spectral fractal
dimension Ds = 1 − zθ lies between 0 and 1. In the inset of
Fig. 4(c), we show Ds as function of E , extracted from linear
fitting of the ln �t vs lnNF plots in Fig. 4(b). Deep in the
ergodic phase Ds = 1, whereas in the MBL and NEE phases
0 < Ds < 1. This implies that both MBL and NEE states are
essentially nonergodic extended, i.e., multifractal. However,
as we will discuss in Sec. V D, the distinction between NEE
and MBL states can be made in terms of the distribution of
�I .

At quarter filling, we only have a few system sizes ac-
cessible to our numerics. Thus, following Ref. [74], we use
a finite-size scaling analysis [40,72] across the ergodic-to-
nonergodic transition to estimate Ds more accurately in the
thermodynamic limit which we discuss in the next section.

B. Finite-size scaling for nonergodic-ergodic transition

To analyze the nonergodic-ergodic transition and obtain a
more accurate estimate of Ds, we perform scaling collapse of
our data in Fig. 4(b) using the following finite-size scaling
form [74]:

ln
�t

�c
=

⎧⎨
⎩
Fvol

(NF
�

)
: E > Ec

Flin
( lnNF

ξ

)
: E < Ec

(6)

with �c = �t (E = Ec) ∼ N−(1−Dc )
F . In the entire nonergodic

phase, which includes MBL and NEE phases, we are able
to obtain a data collapse using the linear scaling for E <

Ec, where ξ plays the role of correlation length in the
FS [71,72,74]. In the asymptotic limit, x = (lnNF )/ξ � 1,
the scaling function is given by Flin(x) ∼ −(1 − Dc)x with
ξ = (1 − Dc)/(Dc − Ds) [74]. Figure 5(a) shows the scal-
ing collapse of the data in the nonergodic phase for Ec =
−0.38. The fit to asymptotic scaling leads to ln(�t/�c) =
−0.18(lnNF )/ξ with ξ ∼ |δE |−β where δE = E − Ec and
β � 0.34, as shown in the inset of Fig. 5(a). The asymptotic
scaling form implies the critical spectral fractal dimension
Dc = 0.82. The Ds extracted from ξ is shown in Fig. 4(c).

In the ergodic phase, we use volumic scaling for E > Ec

where � represents the nonergodic volume in FS [40,72,74].
The scaling collapse is shown in Fig. 5(b). For x = NF /� �
1, the asymptotic scaling form is Fvol(x) ∼ (1 − Dc) ln x
[74]. From the scaling collapse, we find ln(�t/�c) =
0.18 ln(NF /�) with Dc = 0.82, which is consistent with Dc

extracted from the asymptotic scaling in the nonergodic phase,
as discussed in the preceding paragraph. The extracted Dc

FIG. 5. Finite-size scaling collapse across nonergodic-ergodic
transition. (a) Finite-size scaling collapse of ln(�t/�c ) in the non-
ergodic phase using linear scaling. The asymptotic scaling form
is given by ln(�t/�c ) = −0.18(lnNF )/ξ where lnNF ∝ L. In-
set shows the power-law divergence of the correlation length ξ ∼
|δE |−β with β � 0.34 and δE = (E − Ec ). (b) Finite size scaling
of ln(�t/�c ) in the ergodic phase with a volumic scaling form
Fvol(NF /�) where nonergodic-ergodic transition point is at Ec =
−0.38. In the asymptotic limit, ln(�t/�c ) ∼ 0.18 ln(NF /�) deep
in the ergodic phase implies (1 − Dc ) ≈ 0.18 at E = Ec, where
�c ∼ N−(1−Dc )

F . Inset shows KT-like essential singularity of the
nonergodic volume � ∼ exp[b/(δE )γ ] with γ ≈ 0.4, b ∼ O(1) and
δE = E − Ec near Ec.

is also consistent with Dc ≈ 0.8 directly found [Fig. 4(c)
(inset)] by fitting the data of Fig. 4(b) with �t ∼ N−(1−Ds )

F .
The nonergodic volume � shows a KT-like essential sin-
gularity such that � ∼ exp[b/(δE )γ ] where b ∼ O(1) and
γ ≈ 0.4, as shown in Fig. 5(b) (inset). In the ergodic phase
�t ∼ �−(1−Dc ) [74] such that it continuously vanishes as �

diverges on approaching the critical point. We find similar
kind of volumic and linear scaling collapses for a choice of Ec

within −0.38 ± 0.02 although the optimized scaling collapse
is obtained when Ec = −0.38.

Hence, this analysis reveals that Ds = 1 throughout the
ergodic phase and it discontinuously jumps to Ds < 1 in the
nonergodic phase with a critical Ds = Dc � 0.8. In the next
section, we compare the fractal dimension directly extracted
from many-body wave function with the spectral fractal di-
mension Ds computed from the typical Feenberg self-energy.

C. Comparison between fractal dimensions from inverse
participation ratio and FS self-energy

The inverse participation ratio (IPR) is one of the most
important quantities in the context of localization transition.
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(a) (b)

(c) (d)

FIG. 6. Comparison of D2 and Ds. (a) Plots of (− ln I2) as a
function of lnNF for increasing E . (b) The slopes D2 extracted by
linear fitting as a function of E . (c) Variation of D2(L) with E for
increasing system size L. (d) Variation of Ds(L) with E for increasing
system size L. The vertical light and dark dashed lines indicate the
MBL-NEE and NEE-ergodic transitions, respectively.

The IPR can be obtained as I2 = ∑NF
J=1 |�J |4 for a normalized

eigenstate |�〉 = ∑
J �J |J〉. I2 scales with NF as I2 ∼ N−D2

F ,
where D2 is the fractal dimension. D2 = 0 and 1 imply lo-
calized and ergodic states, respectively, whereas 0 < D2 < 1
corresponds to a (multi) fractal state. The fractal dimension
D2 and spectral dimension Ds have been shown to match with
each other exactly for a noninteracting particle in the presence
of uncorrelated disorder on Bethe lattice and Rosenzweig-
Poter random matrices [37]. No explicit results showing the
comparison of D2 and Ds are available in the literature for the
MBL phase, which occurs in the presence of correlated disor-
der on the FS lattice. Hence, it is worth making an attempt to
compare them in our system.

In Fig. 6(a), we show (− ln I2) as a function of lnNF . The
slope of the curves gives fractal dimension D2. The values of
D2 extracted from the linear fitting of these plots are shown
as a function of E in Fig. 6(b). The behavior of D2 with E
matches with that of Ds [Fig. 4(c)], albeit only qualitatively.
This may be due to smaller system sizes accessed in ED (L �
20) to compute D2 compared to those (L � 24) for extracting
Ds from the recursive Green’s function method. The linear
fitting to extract D2 clearly seems to be an underestimation,
especially in the ergodic phase, as the slopes of the (− ln I2)
vs lnNF curves clearly increase with lnNF . To illustrate this
more clearly we show plots of D2(L) = − ln I2

lnNF
as a function

of E for increasing system sizes L in Fig. 6(c). On the other
hand, in Fig. 6(d), we show plots of Ds(L) = 1 + ln �t

lnNF
as a

function of E for increasing L. It is evident that the plots of
D2(L) suffer more from a finite-size effect than that of Ds(L).
We note that the relation between D2 and Ds needs more
careful investigation, which is beyond the scope of this work.

D. The distribution of Feenberg self-energy
in the MBL, NEE, and ergodic phases

To gain a better understanding of the statistical properties
of �I , we also study its distribution. In Fig. 7, we plot the
distribution P(ln �I ) of ln �I in the MBL [Figs. 7(a) and
7(b)], NEE and the ergodic phases [Figs. 7(c) and 7(e)], and at
the NEE-ergodic transition [Fig. 7(d)]. In an earlier study [67]
on a model with the random disorder, P(ln �I ) was found to
be close to a Gaussian, i.e., P(�I ) is a log-normal distribution,
deep in the delocalized phase. We also find the log-normal
(LN) distribution to be a good description of our data, deep
in the ergodic phase (h = 0.6, E = −0.10) as shown by the
Gaussian fit in Fig. 7(e). In contrast, in the nonergodic phases,
especially in the MBL phase, P(ln �I ) significantly deviates
from the Gaussian fit as shown in Figs. 7(a) and 7(b) for the
MBL (h = 0.6, E = −0.66) and in Fig. 7(c) for NEE (h =
0.6, E = −0.50) phases. At the NEE-ergodic transition (h =
0.6, E = −0.38), P(ln �I ) looks scale-invariant, i.e., P(ln �I )
becomes independent of system size, and the distribution is
close to a Gaussian, as shown in Fig. 7(d). However, a closer
inspection through various non-Gaussian measures reveals de-
viations from the scale invariance and Gaussian distribution,
as we discuss below.

The LN distribution is ubiquitous for noninteracting sys-
tems on regular lattices with an uncorrelated disorder, both
in the localized and delocalized phases [86], and naturally
arises in the nonlinear σ model description of such systems
[87,88]. On the FS lattice, however, the disorder is highly
correlated [65,67,69,70] and P(�I ) is found to have a long
Lévy-like power-law tail in the thermodynamic limit in a
self-consistent theory of localization on the FS lattice [67]. We
also find power-law tails in P(�I ) as shown in Figs. 7(f)–7(j).
The power-law tail of P(�I ) is also an indicator of non-
Gaussianity and is quite evident in both the nonergodic phases
[see Figs. 7(f), 7(g) and 7(h)]. Less prominent power-law tails
in P(�I ) can be inferred even in the ergodic phase and at the
NEE-ergodic transition [see Figs. 7(i) and 7(j)]. We find that
the nonergodic-ergodic transition corresponds to a shift of the
most probable value of �I in P(�I ) from zero to nonzero
values across the transition point. This is of course consistent
with the behavior of �t in Figs. 4 and 14(a) (Appendix D).
At the transition point P(�I ) for small �I [Fig. 7(i)] shows a
plateau.

We quantitatively characterize the quality of the Gaussian
fits in Figs. 7(a)–7(d) via the Binder cumulant, Bc = 1 −
〈x4〉 /3 〈x2〉2 for x = ln �I , and the skewness. The nonzero
value of Bc quantifies the deviation from the Gaussian distri-
bution, and the nonzero skewness measures the asymmetry of
P(ln �I ) around the mean. As shown in Fig. 8(a), we find that
Bc ≈ 0 deep in the ergodic phase, whereas it is negative deep
in the nonergodic phase. Interestingly, with increasing E start-
ing from the lowest energy density (� −0.7), Bc changes sign
and then seems to reach a system size-independent positive
value at E = Enc ≈ −0.56, which is consistent with the previ-
ous estimate [55] of critical energy density for the MBL-NEE
transition. We thus take Enc as an estimate for the putative
MBL-NEE transition [55]. With further increase of E , Bc

remains negative more or less throughout the NEE phase and
across the NEE-ergodic transition at Ec ≈ −0.38, where |Bc|
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(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

FIG. 7. Distributions of ln �I and �I . [(a)–(e)] Probability dis-
tribution P(ln �I ) in the MBL phase for (h = 1.8, E = −0.49)
and (h = 0.6, E = −0.66), NEE phase (h = 0.6, E = −0.50), at the
nonergodic-ergodic transition (h = 0.6, E = −0.38) and in the er-
godic phase (h = 0.6, E = −0.10), respectively. [(f)–(j)] Probability
distribution P(�I ) in the same phases as mentioned for (a)–(e),
respectively. The dashed dark lines indicating the power-law depen-
dence in the distributions are drawn as a guide to eye.

shows a broad peak. The magnitude of the peak increases with
L. The skewness of P(ln �I ), shown in Fig. 8(b), is also ∼0
deep in the ergodic phase and deviates from zero in the most

(a) (b)

(c)

FIG. 8. Measures of non-Gaussianity of the distributions of �I .
(a) Binder cumulant Bc, and (b) skewness of P(ln �I ) as a func-
tion of energy density E in the MBL, NEE, and ergodic phases.
(c) (2μs + σ 2

s ) calculated for the distribution P(�̃I ) plotted as a
function of energy density E . The grey and dark vertical lines in
all the plots denote the MBL-NEE and nonergodic-ergodic phase
transitions, respectively.

part of the nonergodic phases and close to the NEE-ergodic
transition. The skewness tends to reach a system-size indepen-
dent value at the putative MBL-NEE transition and changes its
sign thereafter with increasing E .

Another way to verify the applicability, or lack thereof,
of the LN distribution is to look at �̃I , namely, �I nor-
malized by its (arithmetic) mean. In this case, since the
distribution P(�̃I ) is normalized and has a unit mean, the LN
distribution P(�̃I ) = exp[−(ln �̃I − μs)2/2σ 2

s ]/(
√

2πσ 2
s �̃I )

implies 2μs = −σ 2
s [86]. As shown in Fig. 8(c), we find

this relation to be satisfied quite well deep in the ergodic
phase. Approaching the ergodic-NEE transition Ec from the
ergodic side, (2μs + σ 2

s ) starts deviating from zero. (2μs +
σ 2

s ) also changes sign at the putative MBL-NEE transition
Enc ≈ −0.56 and becomes L independent just like the Binder
cumulant and skewness [Figs. 8(a) and 8(b)]. Here it is worth
mentioning that the full distribution P(ln �I ) in MBL phase
for two choices of parameters, as shown in Figs. 7(a) and
7(b), are quite different. However, the non-Gaussian measures
like the Binder cumulant, skewness and (2μs + σ 2

s ) have very
similar value and system-size dependence.

In summary, the behaviors of the Binder cumulant, skew-
ness, and (2μs + σ 2

s ) for the distribution P(ln �I ) imply the
general non-Gaussian nature of the distribution, except deep
in the ergodic phase. Moreover, the non-Gaussianity measures
of P(ln �I ) also tend to become system size independent at the
MBL-NEE transition Enc. Hence, unlike the typical value �t

discussed in Secs.V A and V B, the distribution of Feenberg
self-energy in the FS seems to show a signature of a tran-
sition as a function of energy density E at Enc for h = 0.6.
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FIG. 9. Fock-space localization length. [(a)–(d)] Variation of
ln[G(rIJ )] with FS-hopping distance rIJ in the ergodic (h =
0.6, E = −0.18), NEE (h = 0.6, E = −0.46), and MBL phases
[(h = 1.8, E = −0.49), (h = 0.6, E = −0.66)], respectively. G(rIJ )
for the smallest rIJ has been scaled such that plots for different L all
start from the same point.

This is in spite of the fact that the states for h = 0.6 and
E < Enc show anomalous behaviors, in between MBL and
NEE, when all the other diagnostics, like entanglement en-
tropy, subsystem particle number fluctuations [55], level
spacing statistics (Appendix A) and real-space single-particle
excitations [Fig. 3(d)], are combined. Here we would like to
note that, currently, we do not have any theoretical under-
standing of behavior of the distribution of the FS Feenberg
self-energy and its various Gaussian/non-Gaussian character-
istics in the MBL, NEE, and ergodic phases and across the
transitions. We report here the apparent scale invariance of
the non-Gaussian characteristics at the putative MBL-NEE
transition as interesting observations. In the future, it will
be worthwhile to get a better theoretical understanding of
the distribution of the local self-energy and find out suitable
finite-size scaling ansatzes for the non-Gaussianity parameters
across the MBL-NEE and NEE-ergodic transition.

In the next section, we show that another distinction be-
tween the MBL and NEE states can be obtained from the
system-size dependence of an FS localization length.

VI. FOCK-SPACE LOCALIZATION LENGTH

We now show that, unlike �t (L), the typical non-
local propagator G(rIJ ) = exp [〈ln GIJ (E )〉] can tell NEE
and MBL states apart. Here 〈. . . 〉 denotes average over
φ and all the off-diagonal elements GIJ for pair of FS
sites connected by hopping distance rIJ , i.e., the min-
imum number of nearest-neighbor hops to reach from
I to J on the middle slice. Figure 9(a)–9(d) show
ln[G(rIJ )] as a function of rIJ for increasing L in the
ergodic, NEE, and MBL [Figs. 9(c) and 9(d)] phases, re-
spectively, for (h, E ) values same as in Figs. 3(a)–3(d).
In all the phases, the plots show a linear regime, ln G(rIJ ) ∝

FIG. 10. Fock-space transitions from localization length.
System-size L dependence of FS localization length ξF extracted
from GIJ (see main text) as a function of E for h = 0.6. The grey and
dark dashed vertical lines denote the MBL-NEE and NEE-ergodic
transitions at Enc ≈ −0.56 and Ec ≈ −0.38, respectively.

rIJ , before deviating from the linearity at larger rIJ depending
on L. The deviation of linearity of ln G(rIJ ) vs rIJ for larger
rIJ ’s in Figs. 9(a)–9(c) presumably corresponds to rare hop-
ping paths and associated multiple length scales in the FS. The
linear regime implies existence of an FS decay length ξF (L)
through the relation G(rIJ ) ∼ exp [−rIJ/ξF (L)]. The curves
for different L approximately overlap for a certain range of rIJ

in the MBL phase (h = 1.8, E = −0.49) [Fig. 9(c)] indicating
a localization length ξF almost independent of L or weakly
dependent on L, unlike the decay length in the ergodic (h =
0.6, E = −0.18) and NEE phases (h = 0.6, E = −0.46) in
Figs. 9(a,b), where ξF evidently has quite strong dependence
on L.

In Fig. 9(d), we show ln[G(rIJ )] as a function of FS-
hopping distance rIJ for h = 0.6 and E = −0.66. Similar
to Fig. 9(c), which corresponds to the MBL phase, in
Fig. 9(d), we also find that all the curves in the linear
regime, ln G(rIJ ) ∝ rIJ , for different L almost overlap, im-
plying G(rIJ ) ∼ exp(−rIJ/ξF ) with L-independent ξF . Hence,
the states for (h = 0.6, E = −0.66) [Fig. 9(d)] show MBL
behavior, consistent with that of SA [55], unlike the NEE-
like behavior seen in single-particle excitations spectrum
[Fig. 3(d)] and in level-spacing statistics [Fig. 11(d)]. We
show the L dependence of ξF as a function of E in Fig. 10
for h = 0.6 across the MBL, NEE, and ergodic phases. It is
evident that ξF is almost independent of L in the MBL phase,
whereas ξF increases with L in the NEE and ergodic phases.
Based on this and the non-Gaussianity of the distribution
of ln �I (Sec. V D), we deduce an MBL-to-NEE transition
around E ≈ −0.56 consistent with previous estimates [55].
We leave a detailed finite-size scaling analysis of the FS local-
ization length across the MBL-NEE and NEE-ergodic phase
transitions for future study.

VII. DISCUSSION AND CONCLUSIONS

In summary, by combining the diagnostics of real-space
single-particle excitation, and multifractality, statistics of lo-
cal self-energy and decay length in Fock space, we provide a
direct signature of MBL proximity effect and classification of
the MBL, NEE, and ergodic phases in the GAAH model.
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Like all first-principle numerical studies, e.g., via ED,
of MBL phenomena and MBL-ergodic transition, our
computations of standard diagnostics, like entanglement en-
tropy, and single-particle excitation spectrum are limited to
relatively small systems. Our exact recursive Greens’ function
calculations for FS propagators access slightly larger systems,
almost comparable [74] to those achieved by state-of-the-art
shift-invert [16] and polynomially filtered [21] ED studies.
The latter can access up to L � 24 for random Heisenberg
or XXZ models. However, Ref. [21] estimates a system size
L � 50 to conclusively access the MBL-ergodic transition.
But, even this estimation is only based on the extrapolation
of the data for L � 24. The same issues of strong finite-size
effects, of course, exist for extrapolating the classification of
the MBL, NEE and ergodic phases and the characterization of
the phases transitions in the GAAH model to the thermody-
namic limit L → ∞ in all previous studies [49–56,89], and in
our current work.

The finite-size artifacts in small-system exact numerical
studies have become more of a concern recently since the
region of stability of the MBL phase accessed in the ED
studies of models with the random disorder has been ques-
tioned [24–28]. It has been argued that the MBL transition
captured via ED is a finite-size crossover due to the possibility
of long-range resonances and avalanche instability from rare
weak-disorder regions in larger system sizes, not accessible
via ED. In the same vein, the region of stability of the non-
ergodic phases in the GAAH model could also be affected
by long-range resonances in larger system sizes. However,
unlike the systems with the random disorder, the quasiperiodic
systems are not susceptible to the usual avalanche instability
[90] due to the absence of rare weak-disorder regions [91].
Hence the nonergodic phases, like the MBL phase, in the
GAAH model could be more robust. However, the NEE states
may be more fragile than the MBL states and become unstable
in the thermodynamics limit [89]. For example, the stability
of the NEE phase has been highly debated and led to huge
controversies [34–41,92,93] for noninteracting fermions on
locally treelike graph with uncorrelated random disorder.

Nevertheless, our results of single-particle excitations,
Fock-space multifractality, self-energy statistics, and localiza-
tion length suggest curious distinctions between MBL, NEE,
and ergodic phases in the GAAH model for finite systems,
and put forward the NEE phase an intriguing possibility if it
persists in the thermodynamic limit. However, we note that
the distinction between MBL and NEE phases as a function of
many-body energy density in the GAAH model is not easy to
capture within the system sizes accessed in our current work,
and would require larger systems and finer energy binning in
future.

Moreover, recently, the GAAH model has been realized
experimentally in cold-atomic systems of bosons with mean-
field-like interactions [94]. The single-particle mobility edge,
weakly renormalized by the mean-field interactions, has also
been seen in this experiment. In the future, it will be inter-
esting to realize the interacting GAAH model [Eq. (1)] in a
similar setup. While the FS diagnostics, of course, cannot be
probed in the experiment, our results on the single-particle
excitations in Sec. IV B suggest a feasible way to distinguish
MBL, NEE, and ergodic phases based on the existence, or lack

thereof, of the single-particle mobility edge in the interacting
system. In Ref. [94], the mobility edge has been detected
through the participation ratio. In future, with development
and improvement of energy-resolved spectroscopies [95–99]
for the cold-atomic systems, it might be possible to probe
LDOS. Theoretically, it will be an interesting future direction
to study short- and long-range resonances [25–27,100,101], as
well as more subtle Fock-space correlations and their connec-
tions to entanglement [102,103] in the nonergodic phases of
the GAAH model.
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APPENDIX A: ENERGY LEVEL STATISTICS
IN DIFFERENT PHASES

As already mentioned, it is hard to use the level spacing
ratio r for any controlled finite-size scaling analyses as r
strongly fluctuates in the nonergodic phases of the GAAH
model [Fig. 1(d)] [55]. In Figs. 11(a)–11(d), we show the
distributions P(s) of consecutive energy-level spacing s,
normalized by the (arithmetic) mean level spacing, for the
same values of (h, E ) as in Figs. 3(a)–3(d). For system size

(a) (b)

(c) (d)

FIG. 11. Level statistics. [(a)–(d)] Probability distribution P(s)
of consecutive energy-level spacing for increasing system sizes L =
12, 16, 20 and parameters (h, E ) used in Figs. 3(a)–3(d), respectively.
The solid dark lines represent GOE distribution whereas the dashed
lines represent the curves with data fitted to the Brody distribution
for L = 20.
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(a) (b)

FIG. 12. Figures 3(a) and 3(b) on a semilogarithmic scale.
[(a) and (b)] ρt (ω) vs ω for (a) ergodic phase (h = 0.6, E = 0)
and (b) NEE phase (h = 0.6, E = −0.49) with increasing system
size. For the NEE phase, ρt decreases in the yellow shaded region,
unlike the ergodic state where it saturates everywhere. The vertical
dot-dashed lines represent the noninteracting single-particle mobility
edge εc.

L = 20, we fit the data with the Brody distribution given
by P(s) = Asa exp(−Asa+1/(a + 1)) where A = (a + 1)
�( a+2

a+1 )(a+1). a = 1 and a = 0 correspond to GOE and Poisson
distributions, respectively. From Fig. 11(a) for ergodic phase
(h = 0.6, E = 0), we find a ≈ 0.91 approaching the GOE
distribution. From Fig. 11(b), we find that the data in the NEE
phase (h = 0.6, E = −0.49) do not really fit well to Brody’s
distribution and substantially deviate from either of GOE and
Poisson distributions. Figure 11(c) shows Poisson distribution
with a ≈ 0.02 in the MBL (h = 1.8, E = −0.49) phase. On
the contrary, in Fig. 11(d), for (h = 0.6, E = −0.66), which
is expected to be in the MBL phase [55], the distribution does
not conform to the Poisson distribution, as discussed earlier.

APPENDIX B: SEMILOG PLOTS OF ρt

In Figs. 12(a) and 12(b), we replot Figs. 3 with the typ-
ical LDOS ρt on a logarithmic scale as a function of ω for
the ergodic [Fig. 12(a)] and NEE [Fig. 12(a)] states, respec-
tively, to clearly bring out the existence of a mobility edge in
single-particle excitations in the NEE phase. The plots make
it evident that for ω within the bandwidth (|ω| � 4) of the sys-
tem, in the NEE phase, ρt decreases with L for single-particle
excitations below ω ≈ εc and saturates for single-particle ex-
citations above ω ≈ εc. On the other hand, for an ergodic
state, ρt (ω) tends to saturate with L for all the single-particle
excitations.

APPENDIX C: MANY-BODY DENSITY OF STATES AND
THE CHOICE OF THE BROADENING PARAMETER η

Here we show that the disorder-averaged many-body den-
sity of states (MDOS) in the quasiperiodic GAAH model
approaches a Gaussian function in the thermodynamic limit,
similar to that in the models with random disorder [66,67].
The Gaussian MDOS is given by [67]

D(E ) = 1√
2πμE

exp

[
− (E − Ē )2

2μ2
E

]
, (C1)

where E is the many-body energy. Ē and μE are the mean
energy and the standard deviation, respectively. An analytical

FIG. 13. Gaussian many-body density of states. (a) The average
many-body density of states D(E ) vs many-body energy E for h =
0.6 and L = 20. The dashed line is a Gaussian fit to the data. (b) The
values of Ē/L, μE/

√
L extracted from Gaussian fit and theoretical

value of μTh
E /

√
L as a function of L for h = 0.6. (c) D(E ) vs E and a

Gaussian fit for h = 1.8 and L = 20. (d) Ē/L, μE/
√

L, and μTh
E /

√
L

as a function of L for h = 1.8. The disorder realizations over φ are
16000, 4000, and 120 for L = 12, 16, and 20, respectively.

estimate (μTh
E ) for the standard deviation in energy for our

one-dimensional model can be obtained following method
similar to that described in Ref. [66]. The expression is given
by

μTh
E =

√
L[2t2 f (1 − f ) + f (1 − f )〈ε2〉 + V 2 f 2(1 − f )2

+ 4V 〈ε〉 f 2(1 − f )]1/2, (C2)

with filling fraction f and disorder-averaged onsite potential
〈ε〉. In case of random disorder and quasiperiodic AAH model
〈ε〉 = 0. For the GAAH model, f = 1/4 and 〈ε〉 = −5h/6.
Figure 13(a) shows MDOS numerically calculated for h = 0.6
and L = 20 via exact diagonalization. We then extract μE and
Ē via Gaussian curve fitting. In Fig. 13(b), we show Ē/L and
μE/

√
L, which we compare with μTh

E /
√

L, as a function of L.
We find that Ē/L is essentially a constant implying extensivity
of Ē . μE/

√
L is almost a constant approaching the analytically

estimated value in Eq. (C2) as L is increased. Figure 13(c)
shows the MDOS for h = 1.8 and L = 20. The MDOS in
this case shows more fluctuations than that for h = 0.6.
Figure 13(d) shows similar behavior of Ē/L and μE/

√
L as

in Fig. 13(b).
For numerical calculations in FS, we assume μE ∝ √

L,
Ē ∝ L and we use the proportionality constants obtained from
numerical fitting for L = 20, which are closest to the analyt-
ical values. We then obtain D(E ) by replacing μE (L) and
Ē (L) in Eq. (C1). The broadening parameter η(E ) is then
given by η(E ) = 1/[NF D(E )]. For the energy density E , the
broadening parameter η(E ) = 1/[LNF D(E )].
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FIG. 14. Feenberg self-energy and LDOS in FS. (a) �t as a
function of the many-body energy density E for increasing values
of L. (b) Dt vs E for increasing values of L. Disorder realizations
over φ used for the plots are 2000, 1000, and 400 for L = 16, 20,

and 24, respectively.

APPENDIX D: NONERGODIC-ERGODIC TRANSITION:
SELF-ENERGY AND LDOS IN FOCKSPACE

Here we discuss the nonergodic-to-ergodic transition in
terms of the typical value of the imaginary part of the Feen-
berg self-energy �t , which acts as an order parameter for the
transition. The typical value Dt (E ) of the local many-body
density of states DI (E ) = (−1/π )ImGII (E ) also shows sim-
ilar behavior.

Previous work [55] has shown the existence of MBL, NEE,
and ergodic phases for h = 0.6 as the many-body energy
density E is increased from lower to higher values [55]. As
discussed in the main text, �t and Dt are calculated from
the geometric mean of �I and DI , respectively, by averaging
over disorder realizations and sites I on the middle slice. In
Figs. 14(a) and 14(b), we show the variation of �t and Dt

with E for increasing system sizes L. In the ergodic phase
(E > Ec with Ec ≈ −0.4) both �t and Dt approaches O(1)
value in the thermodynamic limit, i.e., with increasing L. On
the other hand, in the nonergodic phases (E < Ec), both the
quantities decrease exponentially with L and vanish in the

FIG. 15. Figure 10 on a logarithmic scale. FS localization length
ξF on a logarithmic scale (of Fig. 10) as a function of E for increas-
ing system sizes L = 12, 16, and 20. The vertical light and dark
dashed lines indicate the MBL-NEE and NEE-ergodic transitions,
respectively, based on previous study [55] and analyses of Feenberg
self-energy in Sec. V.

thermodynamic limit. Thus, though �t and Dt can be used
to distinguish nonergodic and ergodic phases, these quantities
show qualitatively similar behavior in the MBL and NEE
phases. This is evident in terms of the fractal dimension Ds,
extracted from �t ∼ N−(1−Ds )

F behavior in Fig. 4(b), where
0 < Ds < 1 indicating multifractal nature of both the MBL
and NEE states. Analysis of Dt also leads to similar conclu-
sions.

APPENDIX E: SEMILOG PLOTS
OF LOCALIZATION LENGTH

Figure 15 shows FS localization length on a logarithmic
scale as a function of E . There is no sharp crossing point in
the plots, but evidently ξF becomes very weakly L-dependent
in the MBL phase, and it acquires clear L dependence in
the NEE phase (−0.56 � E � 0.4) and in the ergodic phase
(E � −0.4).
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