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Abstract

Background

Snakebite in India results in over 58,000 fatalities and a vast number of morbidities annually.

The majority of these clinically severe envenomings are attributed to Russell’s viper (Daboia

russelii), which has a near pan-India distribution. Unfortunately, despite its medical signifi-

cance, the influence of biogeography on the composition and potency of venom from dispa-

rate D. russelii populations, and the repercussions of venom variation on the neutralisation

efficacy of marketed Indian antivenoms, remain elusive.

Methods

Here, we employ an integrative approach comprising proteomic characterisation, biochemi-

cal analyses, pharmacological assessment, and venom toxicity profiling to elucidate the

influence of varying ecology and environment on the pan-Indian populations of D. russelii.

We then conducted in vitro venom recognition experiments and in vivo neutralisation assays

to evaluate the efficacy of the commercial Indian antivenoms against the geographically dis-

parate D. russelii populations.

Findings

We reveal significant intraspecific variation in the composition, biochemical and pharmaco-

logical activities and potencies of D. russelii venoms sourced from five distinct biogeo-

graphic zones across India. Contrary to our understanding of the consequences of venom

variation on the effectiveness of snakebite therapy, commercial antivenom exhibited surpris-

ingly similar neutralisation potencies against the majority of the investigated populations,
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with the exception of low preclinical efficacy against the semi-arid population from northern

India. However, the ability of Indian antivenoms to counter the severe morbid effects of

Daboia envenoming remains to be evaluated.

Conclusion

The concerning lack of antivenom efficacy against the north Indian population of D. russelii,

as well as against two other ‘big four’ snake species in nearby locations, underscores the

pressing need to develop pan-India effective antivenoms with improved efficacy in high

snakebite burden locales.

Author summary

The Russell’s viper (Daboia russelii), with a near-countrywide distribution, is arguably the

deadliest snake species in India. Despite being responsible for the majority of snakebite

deaths in the country, the influence of biogeography on its venom composition and

potency, and the impact of this variation on snakebite therapy, is yet to be understood.

Evaluation of the composition, biochemical activities, pharmacological implications and

potencies of D. russelii venoms from five distinct biogeographic zones in India (>5,800

km) revealed remarkable intraspecific differences in venom profiles. Surprisingly, these

observed differences did not seem to affect the marketed effectiveness of the commercial

Indian antivenoms in countering the lethal effects of D. russelii venoms, with the excep-

tion of the North Indian semi-arid population. A similar lack of antivenom potency has

also been documented in two other ‘big four’ snake species in these regions that suffer the

brunt of snakebite. These alarming findings underscore the pressing need to develop pan-

India efficacious antivenoms, especially for the treatment of snakebites in regions that are

worst affected by this neglected tropical disease.

Introduction

Globally, 5.4 million people suffer from snakebite, which results in over 137,000 annual deaths

and nearly three times as many morbidities [1]. Asia accounts for over 70% of these cases, with

India being its snakebite capital [1,2]. In India, the so-called ‘big four’ snakes, namely the spec-

tacled cobra (Naja naja), common krait (Bungarus caeruleus), Russell’s viper (Daboia russelii)
and saw-scaled viper (Echis carinatus), are considered to be the most medically important,

with D. russelii seemingly being responsible for the majority of fatal envenomings and cases of

long-term morbidity [2].

Variation in venom composition among and within snake species is seemingly driven by

differing ecologies and environment and is a well-documented phenomenon [3–7]. These

adaptive changes, particularly in a biodiverse region like the Indian subcontinent, can critically

impact the clinical efficacy of antivenoms and, thus, poses an arduous challenge for countering

geographical variations in snakebite pathologies. Considering its geological history and highly

variable climatic and topological conditions, India can be divided into ten biogeographic

zones: 1. Himalayas; 2. Trans-Himalayas; 3. Semi-arid regions; 4. Desert; 5. Western Ghats; 6.

Deccan Plateau; 7. Gangetic Plain; 8. Coasts; 9. Northeast India; and 10. Islands [8]. Russell’s

viper is arguably amongst the most widely distributed of the medically important Indian
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snakes and can be found in all biogeographical zones, with the exception of Trans-Himalayas,

most of Northeast India and the Islands. The near-countrywide distribution across diverse

habitats and presence even at elevations of 2,000 m and above in the Himalayan region is sug-

gestive of the remarkable adaptability of this snake species. Despite this wide distribution, the

influence of varying ecology and environment on D. russelii venom has not been comprehen-

sively investigated to date. While some studies have assessed variability in venom proteomes

and the influence of this variation on antivenoms via in vitro binding experiments [9–13], neu-

tralisation potencies of commercial antivenoms are yet to be determined. Consequently, the

absence of preclinical data has impeded the identification of the most medically important

populations that may require more targeted therapy.

Here, we aim to bridge this knowledge gap by performing proteomic, biochemical and

pharmacological characterisation of D. russelii venoms from five distinct biogeographic zones

in India. We evaluate the influence of varying ecology and environment on the toxicity profiles

of the pan-Indian populations of this species. Furthermore, using the World Health Organiza-

tion (WHO)-recommended murine efficacy assays, we investigate the capability of conven-

tional antivenoms to neutralise the venoms of geographically disparate D. russelii populations.

Methods

Ethics statement

WHO-recommended preclinical experiments were performed in the mouse model (CD-1

male mice; 18–22 g), following guidelines issued by the Committee for the Purpose of Control

and Supervision of Experiments on Animals (CPCSEA), Government of India. All experi-

ments were performed after obtaining the requisite approval from the Institutional Animal

Ethics Committee (IAEC), Indian Institute of Science (IISc), Bangalore (CAF/Ethics/643/

2018). A single best-binding antivenom was down-selected using in vitro assays (enzyme-

linked immunosorbent assay) for testing the in vivo neutralisation potency of antivenom

against D. russelii venoms. This down-selection strategy was crucial in greatly reducing the

number of animals used in the in vivo experiments and minimising animal suffering. For

investigating the coagulopathic effects of D. russelii venoms on human blood, ethical clearance

was obtained from the Institute Human Ethical Committee (IHEC No: 5–24072019), and sub-

sequently, blood was collected from healthy volunteers with informed consent.

Sampling permits, snake venoms and antivenoms

Snake venoms were sourced from 48 individuals across a range of over 5800 km from various

biogeographic zones of India, with appropriate permissions from the respective State Forest

Departments: North- (Punjab: #3615;11/10/12), South- (Tamil Nadu), Southeast- (Andhra

Pradesh:#13526/2017/WL-3), East- (West Bengal: 386/WL/4R-6/2017), Southwest- (Maha-

rashtra: Desk-22(8)/Research/CR-80(16–17) /943/2017-18), and Central- (Madhya Pradesh:

#/TK-1/48-II/606) India. The venoms were sampled individually or by pooling, flash-frozen

with liquid nitrogen, and stored at -80˚ C after lyophilisation until further use. Sourced venom

samples were subjected to preliminary reducing sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE) as a quality control measure and, thereafter, representative sam-

ples were down-selected for assessment. The details of D. russelii venom and commercial

Indian antivenom samples analysed in this study are provided in Table 1 and S1 Table,

respectively.

Locations of D. russelii venoms sourced from various biogeographic zones in the country

are listed in this table. State codes are indicated in parentheses, and the number of individual

snakes from which these venoms were collected, and their protein concentrations have also
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been provided. The asterisk indicates the venom sample sourced from the Irula Snake Catchers

Industrial Cooperative Society.

Protein concentration

Lyophilised venom was reconstituted with molecular grade water, and the Bradford method

was used for estimating protein concentration, with Bovine Serum Albumin (BSA) used as a

standard [[14]; Table 1]. The total IgG content of antivenom was estimated by reconstituting

the lyophilised contents of antivenom vials following the manufacturer’s guidelines and using

the Bovine Gamma Globulin (BGG) standard curve (S1 Table).

Gel electrophoresis

Reducing SDS-PAGE was performed to separate venom toxins. Venom samples, which were

normalised for their protein content (12 μg), were run on a 12.5% gel in Tris-Glycine-SDS

(TGS) buffer at 80 V [15], and the Precision Plus Protein Dual Color Standard (Bio-Rad) was

used as a marker. The gel was stained with Coomassie Brilliant Blue R-250 (Sisco Research

Laboratories Pvt. Ltd, India) and visualised in an iBright CL1000 gel documentation system

(Thermo Fisher Scientific, USA).

Reversed-phase high-performance liquid chromatography (RP-HPLC)

A slightly modified version of a previously published protocol [16] was used to fractionate the

reconstituted venoms in a Shimadzu LC-20AD series HPLC system (Kyoto, Japan). A reverse

phase C18 column with dimensions 4.6 x 250 mm, 5 μm particle size, and pore size of 300 Å
(Shimadzu, Japan), was equilibrated with solution A [0.1% Trifluoroacetic acid (TFA) in water

(v/v)] and loaded with 200 μg of each venom sample for fractionation. A constant flow rate of

1 ml/min was used for eluting fractions with the following concentration gradients of solution

B [0.1% TFA in 100% acetonitrile (v/v)]: 5–15% for 10 mins, 15–45% over the next 60 mins,

and finally 45–70% for 10 mins, and the absorbance was monitored at 215 nm.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

HPLC fractions (40 μg each) were subjected to electrospray ionisation tandem mass spectrom-

etry (ESI-MS/MS) for the characterisation of proteomic profiles. Samples were reduced with

dithiothreitol (DTT; 10 mM), alkylated using iodoacetamide (IAA; 30 mM), and subsequently

digested with trypsin (0.2 μg/μl) overnight and desalted. A Thermo EASY nLC 1200 series sys-

tem (Thermo Fisher Scientific, MA, USA) with a C18 nano-LC column (dimension 50 cm x

75 μm, 3 μm particle size and 100 Å pore size) was used for liquid chromatography of these

processed samples. A sample volume of 2 μl was injected into the column and run with buffer

A (0.1% formic acid in HPLC grade water) and buffer B (0.1% formic acid in 80% acetonitrile)

Table 1. Details of D. russelii venom samples.

Region Biogeographical Zone No. of individuals Protein content (mg/ml)

North India Nawanshahr, Punjab (PB) Semi-arid 2 0.430

South India Kancheepuram, Tamil Nadu (TN) Coastal �Multiple 0.680

Southeast India Visakhapatnam, Andhra Pradesh (AP) Coastal 1 0.449

East India Kolkata, West Bengal (WB) Gangetic Plain 1 0.488

West India Mahad, Maharashtra (MH) Western Ghats 5 0.95

Central India Jabalpur, Madhya Pradesh (MP) Deccan Plateau 3 0.293

https://doi.org/10.1371/journal.pntd.0009247.t001
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solutions at a constant flow rate of 300 nl/min for 120 mins. The gradient of buffer B (10–45%)

was used for the elution over the first 98 mins, followed by 45–95% over the next 4 mins and

finally 95% for the last 18 mins. A Thermo Orbitrap Fusion Mass Spectrometer (Thermo

Fisher Scientific, MA, USA) was used for mass spectrometric analyses of the samples. MS

scans were performed using the following parameters: scan range (m/z) of 375–1700 with a

resolution of 120000 and maximum injection time of 50 ms. Fragment scans (MS/MS) were

performed using an ion trap detector with high collision energy fragmentation (30%), scan

range (m/z) of 100–2000, and maximum injection time of 35 ms.

For identification of various toxin families in the proteomic profiles of venom fractions, the

raw MS/MS spectra were searched against the SwissProt database (www.uniprot.org) using

PEAKS Studio X Plus (Bioinformatics Solutions Inc., ON, Canada) with the following parame-

ters: parent and fragment mass error tolerance limits of 10 ppm and 0.6 Da, respectively;

‘monoisotopic’ precursor ion search type; and ‘semispecific’ trypsin digestion. Carbamido-

methylation and oxidation were specified as fixed and variable modifications, respectively.

Error in peptide identification was minimised by fixing the False Discovery Rate (FDR) for

peptide-spectrum matching at 0.1%, and the corresponding -10lgP cutoff value was automati-

cally determined by PEAKS Studio. Hits with at least one unique matching peptide were con-

sidered for downstream analyses. Mass spectrometry data have been deposited to the

ProteomeXchange Consortium via the PRIDE partner repository [17], with data identifier:

PXD021060. The relative abundance of each toxin hit in a fraction was determined by estimat-

ing its area under the curve (AUC) for spectral intensities, obtained from PEAKS analysis [18],

relative to the total AUC for all toxins in that fraction. These values were further normalised

across fractions using the percentage of peak areas for the respective RP-HPLC fractions [19].

Thus, the relative abundance of a toxin hit (X) was calculated as follows:

Relative abundance of X %ð Þ

¼
XN

n¼1

AUC of X in Fraction Fn � AUC of the chromatographic fraction Fnð%Þ
Total AUC of all toxin hits in fraction Fn

Here, N indicates the number of fractions obtained from RP-HPLC.

Venom biochemistry

Venom samples were assayed for various biochemical activities following previously described

protocols [20] and are thus detailed in brief below.

Phospholipase A2 (PLA2) assay

The PLA2 activity of the venom samples was assessed via turbidimetric assay. The substrate for

the reaction was freshly prepared with chicken egg yolk dissolved in 0.9% NaCl solution, and

its absorbance was made up to one at 740 nm [20,21]. The time-dependent kinetic assay was

performed in triplicate with different concentrations of each venom sample (0.01 μg, 0.1 μg,

0.5 μg, and 1 μg) prepared in a 20 mM Tris-Cl buffer. The resulting absorbance was measured

at 1-minute intervals for 60 mins at 740 nm using an Epoch 2 microplate spectrophotometer

(BioTek Instruments, Inc., USA). Unit activity was calculated as the amount of crude venom

required to reduce the absorbance of the substrate by 0.01 OD unit per min at the given wave-

length [22].
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Snake venom protease assay

Proteolytic venom activity was assayed following a previously described protocol [23], wherein

a pre-defined volume of azocasein substrate was incubated with a known concentration of

crude venom at 37˚ C for 90 mins. The reaction was stopped with trichloroacetic acid post-

incubation, and the resulting mixture was further subjected to centrifugation at 1000 x g for 5

mins, mixed with an equal volume of 0.5 M NaOH and finally, absorbance was measured at

440 nm. The relative protease activity of crude venoms was calculated in comparison with the

purified protease from the bovine pancreas (Sigma-Aldrich, USA).

L-amino acid oxidase (LAAO) assay

LAAO activity of snake venoms was evaluated with an endpoint assay that uses L-leucine as

substrate, following a previously described protocol [20,24]. A mixture of crude venom and L-

leucine (5 mM L-leucine, 50 nM Tris-HCl buffer, 5 IU/ml horseradish peroxidase, 2 mM o-

phenylenediamine dihydrochloride) in 1:9 proportion was incubated at 37˚ C for an hour. The

reaction was terminated with 2 M H2SO4, and an Epoch 2 microplate spectrophotometer was

used to record the absorbance at 492 nm.

DNase assay

The DNase activities of the venoms were assessed using a method described by Gercerker et al.
[25] with slight modifications [20]. A predefined concentration of crude venom (0.05 μg/μl)

was incubated with purified calf thymus DNA (Sigma-Aldrich, USA), reconstituted in phos-

phate buffer saline (PBS), followed by incubation at 37˚C for 60 mins. Reaction mixtures were

then subjected to electrophoresis on a 0.8% agarose gel and visualised on an iBright CL1000

gel documentation system.

Fibrinogenolytic assay

The ability of Daboia venoms to degrade human fibrinogen was evaluated using an electropho-

resis-based method, previously described by Ouyang and Teng [26]. Human fibrinogen

(Sigma-Aldrich, USA) dissolved in PBS was incubated with a known concentration of venom

(1.5 μg) at 37˚C for 60 mins. Following the addition of an equal volume of loading dye (1 M

Tris-HCl pH 6.8, 50% Glycerol, 0.5% Bromophenol blue, 10% SDS, 20% β-mercaptoethanol),

the mixture was heated at 70˚ C for 10 mins. Samples were further subjected to 15%

SDS-PAGE, and the gel was stained with Coomassie Brilliant Blue R-250 before visualisation

in an iBright CL1000 (Thermo Fisher Scientific, USA) gel documentation system. The results

were interpreted in comparison to a negative control consisting of human fibrinogen only,

where all three bands (different chains of reduced fibrinogen) are observed intact.

Blood coagulation assays

To assess the capability of D. russelii venom to perturb the coagulation cascade, specifically the

extrinsic and intrinsic pathways, we quantified venom-induced alterations to the prothrombin

time (PT) and partial thromboplastin time (aPTT), respectively. Blood samples collected from

healthy male volunteers were centrifuged at 3000 x g for 10 mins at 4˚ C to separate platelet-

poor plasma (PPP). Prewarmed calcium thromboplastin reagent (Uniplastin; Tulip diagnos-

tics, Mumbai; 200 μl) and activated cephaloplastin reagent (Liquicelin-E; Tulip diagnostics,

Mumbai; 100 μl) with 0.02 M Calcium chloride (CaCl2; 100 μl) were mixed with 50 μl of PPP

as per the manufacturer’s protocol, for measuring PT and aPTT, respectively. Following this,

the mixture was treated with different concentrations of D. russelii venoms (0.5 or 5 μg in
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50 μl), and the time taken for the appearance of the first fibrin clot was measured using a

Hemostar XF 2.0 coagulometer. The results have been represented in the form of a heat-map

generated using Graphpad Prism 8 (GraphPad Software, San Diego, California USA, www.

graphpad.com).

Turbidimetric coagulation assay

Procoagulant activities of D. russelii venoms were assessed by mixing various concentrations

of venoms (15.6 to 250 ng/ml) with equal volumes of freshly collected PPP and 0.2 M CaCl2

(60 μl for 1 ml of PPP) at 37˚C, following a previously described protocol [27]. The increase in

turbidity of the mixture was recorded by measuring the optical density (OD) at 340 nm for

every 60 seconds, over a period of 60 mins, in an Epoch 2 microplate spectrophotometer. A

graph showing time versus absorbance was plotted, and the clotting time was defined as the

time point where the OD increases by 0.02 units over the average OD units measured at the

first two time points [27]. Subsequently, the neutralisation of procoagulant activities by the

Indian polyvalent antivenom (Premium Serums) was assessed by incubating various concen-

trations of the venom (15.6 to 250 ng/ml) with 0.25 μg/μl (1:4) and 0.0625 μg/μl (1:16) of the

antivenom at 37˚ C for 30 mins, followed by the addition of plasma and CaCl2 [28]. The assays

were performed in triplicates.

Haemolytic assay

The haemolytic activity of snake venom was determined by assessing the degradation of

human red blood cells (RBC) using a previously described protocol [29]. RBCs isolated from

whole blood were resuspended with 1X PBS and centrifuged at 3000 x g for 10 mins at 4˚ C.

After centrifugation, the supernatant was discarded, and the RBC pellet was resuspended

again in 1X PBS. The above procedure was repeated five times to remove undesirable blood

factors and cellular debris. Thereafter, a 1% RBC suspension was prepared and mixed with var-

ious concentrations of the venoms (5, 10, 20 and 40 μg) in a 10:1 ratio and the reaction mixture

incubated at 37˚ C for 24 hours. Following incubation, samples were centrifuged at 3000 x g

for 10 mins, and the absorbance of the supernatant was measured at 540 nm using an Epoch 2

microplate spectrophotometer. The relative haemolytic activity of the venoms was calculated

using 0.5% Triton X as the positive control and after accounting for background absorbance.

Enzyme-linked immunosorbent assay (ELISA)

We investigated the in vitro venom recognition (i.e., binding) of commercial antivenoms

using a previously described ELISA protocol [20,30]. Venom samples (100 ng) were diluted in

a carbonate buffer (pH 9.6) and coated onto 96-well plates. Following overnight incubation at

4˚ C, the unbound venom was removed by washing with Tris-buffered saline with 1% Tween

20 (TBST). The venom-bound plate was then incubated with a blocking buffer (5% skimmed

milk in TBST) for 3 hours at room temperature. The plate was then subjected to another

round of TBST washing, which was followed by the addition of various dilutions of commer-

cial equine Indian antivenoms (Premium Serums, VINS, Bharat, and Haffkine). Plate was

then incubated overnight at 4˚C, and the unbound antibodies removed by a TBST wash the

next day. Horseradish peroxidase (HRP)-conjugated rabbit anti-horse secondary antibody

(Sigma-Aldrich, USA) diluted in PBS (1:1000) was added, and the plate was incubated at room

temperature for 2 hours. Post incubation, ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sul-

fonic acid)) substrate solution (Sigma-Aldrich, USA) was added and the absorbance measured

at a wavelength of 405 nm for 40 mins in Epoch 2 microplate reader. IgG from a naive horse
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(Biorad) was used as the negative control to determine the cut-off for non-specific antibody

binding, as described previously [20,30].

Immunoblotting

Venom and antivenom immunoblotting experiments were performed following a previously

described protocol [20,30]. Following the electrophoretic separation of crude venoms using

SDS-PAGE (12.5%), a nitrocellulose membrane was used to electrotransfer the proteins as per

the manufacturer’s instructions (BioRad, USA). To verify transfer efficacy, Ponceau S revers-

ible stain was used, and the membrane was then incubated with a blocking buffer at 4˚ C over-

night. After washing with TBST, the membrane was incubated with a known concentration of

commercial antivenom at 4˚ C. On the following day, an HRP-conjugated rabbit anti-horse

secondary antibody was added at a dilution of 1:2000, followed by six TBST washes to remove

the unbound antivenom. Finally, following the manufacturer’s instructions (Thermo Fisher

Scientific, USA), an enhanced chemiluminescence substrate was used to visualise the binding

efficacy of commercial antivenoms to venom, and the membrane was imaged in an iBright

CL1000 (Thermo Fisher Scientific, USA).

In vivo venom toxicity and antivenom efficacy assays

Preclinical experiments were conducted using a murine model of envenoming to evaluate the

toxicity of D. russelii venoms from various biogeographical zones and the efficacy of the mar-

keted Indian antivenom in neutralising the lethal effects of these venoms.

The intravenous median lethal dose (LD50)

The potencies of Daboia venoms from distinct biogeographic zones were determined by calcu-

lating the LD50 values (or the amount of venom required to kill 50% of the test population) by

following WHO-recommended murine assay protocols [31]. Five concentrations of each

crude venom were prepared in physiological saline (0.9% NaCl) and injected intravenously

into the caudal vein of male CD-1 mice (500 μl/mouse). Subsequently, the number of dead and

surviving mice in each venom dose group (n = 5) was recorded 24 hours later, and the LD50

and 95% confidence intervals were calculated using Probit statistics [32].

The median effective dose (ED50) of antivenom

The preclinical efficacy of commercial antivenom in neutralising the venoms of pan-Indian

populations of D. russelii was evaluated by calculating the ED50 value or the minimum amount

of antivenom required to protect 50% of the test population injected with lethal doses of

venom [31]. We selected the antivenom manufactured by Premium Serums for use in ED50

testing based on its superior in vitro venom recognition potential (determined by ELISA and

western blotting experiments). This in vitro guided strategy significantly reduced the number

of mice sacrificed in ED50 experiments. Briefly, various volumes of antivenoms were mixed

with the challenge dose of venom (equivalent to 5X LD50 of each venom), followed by an incu-

bation period of 30 mins at 37˚C. Post incubation, each venom-antivenom mixture (n = 4 per

venom) was intravenously injected into a group of five male CD-1 mice (18–22 g). The num-

ber of surviving and dead animals were monitored over 24 hours, and the resulting ED50 val-

ues and 95% confidence intervals were calculated using Probit statistics [32]. The volume of

antivenom (μl) required to neutralise one milligram of venom was estimated following a

recently proposed method [33]. The neutralisation potency of the commercial antivenom was

calculated with the equation [20,34]. Here, n represents the number of LD50 used as the
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challenge dose.

Antivenom neutralisation potency mg=mlð Þ ¼
ðn � 1Þ�LD50 of venomðmg=mouseÞ

ED50ðmlÞ

Statistical analysis

Statistical comparisons of data generated in the various biochemical and ELISA assays were

performed using One-way ANOVA and Two-way ANOVA with Tukey’s and Dunnett’s multi-

ple comparison tests in GraphPad Prism (GraphPad Software 8.0, San Diego, California USA,

www.graphpad.com).

Results

Venom proteomics

Venoms sourced from D. russelii populations from five distinct biogeographical zones across

India were separated using SDS-PAGE under reducing conditions (Table 1 and Fig 1). Analy-

ses of SDS-PAGE profiles revealed considerable differences in band intensities and patterns,

highlighting the significant interpopulation venom variation in this species (Fig 1).

To further resolve intraspecific variation, D. russelii venom samples were subjected to

RP-HPLC, which unravelled finer differences in the venom compositions across the

Fig 1. Map of India, prepared with QGIS 3.8.2 [35], depicts (A) sampling locations and (B) SDS-PAGE profiles of D. russelii venoms. M: Protein

marker (units in kDa); PB: Punjab; TN: Tamil Nadu; AP: Andhra Pradesh; WB: West Bengal; MH: Maharashtra; MP: Madhya Pradesh.

https://doi.org/10.1371/journal.pntd.0009247.g001
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biogeographical zones (Fig 2). RP-HPLC profiles revealed ten major fractions/peaks, with

notable differences observed in peaks #1, #6, #7 and #8 between samples. Interestingly, peak #6

was completely absent in the Western Ghats (MH) and Gangetic Plain (WB) populations

while dominating the venom of the Deccan Plateau (MP) population. Similarly, peak #8

enriched the venoms of the semi-arid (PB) and Deccan Plateau (MP) populations while being

absent from one of the coastal (TN) populations.

Populations from the Gangetic Plain (WB), Western Ghats (MH) and Deccan Plateau (MP)

were selected for mass spectrometry analyses based on their unique HPLC and toxicity profiles

(see below). Tandem mass spectrometry of venom fractions (n = 10) from these samples iden-

tified between 49 and 66 proteins from 13 toxin families, including phospholipase A2 (PLA2),

Kunitz-type serine protease inhibitor (Kunitz), snake venom serine protease (SVSP), cysteine-

rich secretory protein (CRISP), snaclec, snake venom metalloproteinase (SVMP), three-finger

toxin [3FTx; neurotoxic-3FTx (N-3FTx) and cytotoxic-3FTx (C-3FTx)], L-amino-acid oxidase

Fig 2. Venom variability in pan-Indian D. russelii populations. This figure depicts RP-HPLC profiles of D. russelii venoms sourced from distinct

biogeographic zones. Venom profiles, shown here, highlight the considerable differences in the protein compositions of geographically distinct

populations. The area under the curve for all labelled and uniquely colour coded fraction peaks are depicted in the corresponding doughnut charts.

https://doi.org/10.1371/journal.pntd.0009247.g002
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(LAAO), nerve growth factor (NGF), disintegrin, vascular endothelial growth factor (VEGF),

5’ Nucleotidase (5’-NTD) and C-type lectin (CTL) (S2–S4 Tables, S1 Data). The identification

of 3FTx in Daboia venoms is particularly noteworthy as these toxins are rarely reported in the

venom proteomes of viperid snakes [36,37].

Tandem mass spectrometry revealed significant differences in the venom compositions of

the investigated D. russelii populations (Fig 3). Kunitz-type serine protease inhibitors were

found to be more abundant in the venom of the Gangetic Plain (WB) population (~39%), in

line with previous reports [38], whereas the Deccan Plateau (MP) and the Western Ghats

(MH) populations contained very limited amounts of this toxin: 7% and 4%, respectively

(Fig 3 and S2–S4 Tables). Considerable differences in the proportions of PLA2s were also

observed. While 59% of the venom of the Western Ghats (MH) population consisted of PLA2,

the Gangetic Plain (WB) and the Deccan Plateau (MP) populations respectively contained

35% and 45% of this toxin in their venom. In contrast to the previous report [9], SVSPs were

found to be comparatively more abundant in the Western Ghats (MH) population (27%) than

the Deccan Plateau (MP, 13%) and Gangetic Plain (WB, 8%) populations. Interestingly, sna-

clecs constituted nearly ~20% of the venom proteome of the Deccan Plateau (MP) population,

whereas the Gangetic Plain (WB) and the Western Ghats (MH) populations contained only

5% and 2% of this toxin, respectively. While VEGF, a family of toxins responsible for inducing

vascular permeability and lower blood pressure [39,40], was only identified in trace amounts

in the other populations of D. russelii (<1%), it was found to constitute ~8% of the venom of

the Deccan Plateau (MP) population (S2–S4 Tables).

Fig 3. Comparative venom profiles of the biogeographically disparate D. russelii populations. This figure represents the relative composition of various toxins

constituting D. russelii venoms, as estimated from the mass spectrometry and HPLC data. Each toxin type is uniquely colour coded, and its relative abundance is

indicated.

https://doi.org/10.1371/journal.pntd.0009247.g003
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Venom biochemistry

The snake venom arsenal, which is composed of toxins with tremendous compositional and

functional diversity, can inflict varied clinical manifestations in snakebite victims. To under-

stand the differences in the biochemical and pharmacological effects of venoms from the pan-

Indian populations of D. russelii, we subjected them to a battery of biochemical (PLA2, prote-

ase, LAAO, DNase, fibrinogenolytic) and pharmacological (haemolytic assay, plasma coagula-

tion assay, prothrombin time and activated partial thromboplastin time) assessments.

PLA2 assay

Snake venom PLA2s are known to exert a wide range of pharmacological effects in bite victims,

including cytotoxicity, neurotoxicity, myotoxicity and perturbation of haemostasis [41]. Given

their medical relevance, we assessed the abilities of D. russelii venoms in hydrolysing phospho-

lipid substrates. The enzymatic PLA2 activity profiles of D. russelii differed between popula-

tions (p<0.05), with the Deccan Plateau (MP) population exhibiting the highest activity, while

the coastal populations (TN and AP) showed intermediate activities that were indistinguish-

able from each other (S1A Fig). While D. russelii populations from the Western Ghats (MH)

and Gangetic Plain (WB) were statistically similar to each other in their PLA2 activities, they

were significantly lower than all other D. russelii venom samples under study (p<0.05). The

semi-arid (PB) population exhibited the lowest PLA2 activity among all the tested populations.

Low PLA2 activity, despite relatively high abundance in the proteome, is probably suggestive

of the presence of non-catalytic PLA2s that enrich the venoms of many viperid snakes [42–44].

Snake venom protease assay

Venoms of many snake species may contain a variety of proteolytic enzymes that cause serious

clinical pathologies in bite victims [45,46]. Viperid venoms, in particular, are known to be

dominated by SVSPs and SVMPs that disrupt haemostasis by targeting various factors

involved in the blood coagulation cascade (e.g., thrombin, fibrinogen, plasminogen and plate-

lets), often synergistically [47–49]. Examination of D. russelii venoms from distinct biogeo-

graphic locations revealed highly variable degrees of proteolysis. While the Deccan Plateau

(MP) population and one of the coastal populations (AP) exhibited the highest proteolytic

activities, followed by the population from the Western Ghats (MH), all others showed negligi-

ble effects (p<0.05; S1B Fig). Interestingly, the Western Ghats (MH) population that was rich

in the overall protease content (SVSP and SVMP) exhibited relatively reduced proteolytic

activity in comparison to the SVMP-rich Deccan Plateau (MP) population (p<0.05). Similarly,

the low proportion of proteases in the Gangetic Plain (WB) population could be reflective of

the negligible protease activity observed.

LAAO assay

Snake venom LAAOs are theorised to contribute to the oxidative stress in bite victims as they

catalyse the oxidative deamination of L-amino acids into ɑ-keto acids, releasing H2O2 as a

byproduct [50]. Consequently, despite being secreted in relatively minimal amounts in many

snake venoms, LAAO may contribute to a diversity of toxic effects, including cytotoxicity,

induction of cell death, haemorrhage and inhibition of platelet aggregation [51–53]. When the

crude venoms of D. russelii were tested for their ability to catalyse the oxidative deamination of

L-amino acids, they exhibited substantial activity (S1C Fig). Though statistically significant dif-

ferences in LAAO activities were observed between populations (p<0.05), further experiments

are required to assess the clinical importance of this difference.
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DNase assay

Recently, it has been shown that the venoms of certain viperid snakes are capable of inducing a

phenomenon called ETosis in bite victims, wherein cells extrude their nuclear DNA to form

extracellular traps (ETs) [54,55]. As these traps restrict the diffusion of venom toxins, ETosis

may significantly contribute to local tissue damage. However, the DNase activity of certain

snake venoms can facilitate the diffusion of venom toxins by cleaving such extracellular traps

[56,57]. Taking this into account, the DNase activities of the geographically distinct D. russelii
venoms were assessed. With the exception of the semi-arid (PB) population, which showed

atypically high activity, all other populations exhibited low to negligible DNase venom activi-

ties (S1D and S2 Figs). Additional experiments are necessary to understand the biological con-

sequence of the unusually high DNase activity of the semi-arid (PB) D. russelii population.

Fibrinogenolytic assay

Snake venoms are capable of perturbing the haemostasis of bite victims by cleaving the fibrino-

gen glycoprotein complex [58], which is composed of Aɑ, Bβ and γ subunits. When the fibri-

nogenolytic potential of D. russelii venoms was assessed, barring the semi-arid (PB) and

Gangetic Plain (WB) populations, all D. russelii venoms either completely or partially cleaved

the Aɑ subunit, while none of the venoms degraded the Bβ- and γ-chains (S3 Fig).

Blood coagulation assays

Viperid venoms are known to perturb hemostasis by inducing a range of clinical symptoms,

such as local and systemic haemorrhage, venom-induced consumption coagulopathy (VICC),

and alteration of blood pressure and vascular permeability [59]. Amongst the plethora of tox-

ins in viper venoms, PLA2, SVSP and SVMP are known to exhibit potent procoagulant or anti-

coagulant effects by cleaving coagulation factors involved in the intrinsic or extrinsic

coagulation cascade [60–62]. To evaluate the effects of D. russelii venoms on the intrinsic and

extrinsic coagulation cascades, we estimated the prothrombin time (PT) and activated partial

thromboplastin time (aPTT), respectively. The venoms of D. russelii from distinct biogeogra-

phies exhibited potent procoagulant activities, altering both the extrinsic and intrinsic path-

ways (Fig 4A and 4B). Notably, even at very low concentrations (5 μg), all Daboia venoms

exhibited significant procoagulant effects within ~5 seconds (Fig 4A and 4B). In contrast, cer-

tain D. russelii populations have been preclinically [63] and clinically [64] documented to

induce potent anticoagulant effects at higher venom concentrations. Anticoagulatory effects in

bite victims are primarily caused by VICC, wherein the coagulation factors of the blood are

depleted due to the activities of the procoagulant snake venom toxins, resulting in life-threat-

ening haemorrhage [59]. As D. russelii can inject very large amounts of venom (an average of

200 mg of venom was extracted from 12 Russell’s vipers in this study), potent anticoagulant

effects are likely seen in bite victims [65].

A turbidimetric plasma clotting time assay revealed similar procoagulatory effects of

Daboia venoms. Consistent with the results of the PT and aPTT experiments, all populations

were found to exhibit strong procoagulant effects (clotting time between 2 and 5 mins) (Fig 4C

and S4 Fig). Moreover, when the ability of the best binding antivenom (Premium Serums; see

the outcomes of binding experiments below) in neutralising these effects were tested under in
vitro conditions, the clotting time of the plasma mixed with either the venom of the semi-arid

(PB) population or the Deccan Plateau (MP) population was considerably prolonged (Fig 4D

and S4 Fig). This is, perhaps, indicative of the neutralisation of procoagulant toxins, and not

those responsible for anticoagulant effects. These experiments yielded identical results despite

the repetition. In complete contrast, despite the treatment with the antivenom, considerable
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procoagulant effects were still seen in the Gangetic Plain (WB) and one of the coastal (AP)

populations (Fig 4D and S4 Fig). Interestingly, the addition of antivenom to the venom of D.

russelii from Western Ghats (MH) and the other coastal (TN) region resulted in clotting times

that were comparable to the blank, suggesting the presence of procoagulant toxin-neutralising

antibodies in the antivenom (Fig 4D and S4 Fig).

Haemolytic assay

Intravascular haemolysis, which often results in adverse conditions, including renal failure,

has been demonstrated as one of the major clinical pathologies of D. russelii envenomings

[66]. The haemolytic effect of D. russelii venoms is predominantly attributed to secretory

PLA2s that hydrolyse the phospholipid bilayer on the cellular membrane [67,68]. Since a sig-

nificant effect of the venom was observed on egg yolk phospholipids in PLA2 assays, we

assessed the direct haemolytic activity of D. russelii venoms on human erythrocytes. Here, the

Gangetic Plain (WB) and coastal (AP and TN) populations of D. russelii exhibited negligible to

no direct haemolytic activities (0 to 18%) at the highest venom concentration tested (40 μg),

Fig 4. Coagulopathies induced by the biogeographically distinct populations of D. russelii. Heatmaps depict the influence of D. russelii venoms in

impeding the (A) extrinsic and (B) intrinsic blood coagulation pathways, respectively. (C) The impact of varying concentrations of venoms (15.6 to 250

ng) on plasma clotting time (mins), and the ability of Premium Serums antivenom (1:4 dilution of 1 mg/ml or 0.25 μg/μl antivenom) in neutralising

these effects are shown as bar graphs. The error bars represent the standard deviation among the replicates. (D) Haemolytic activities of D. russelii
venoms have also been shown. Numbers inside each tile in A and B denote the plasma clotting time in seconds, and the numbers in D indicate the

percentage of relative activity with respect to the positive control (0.5% Triton X). Blank: plasma control; ASV Blank: plasma + antivenom (1:4); NC:

negative control; PB: Punjab; TN: Tamil Nadu; AP: Andhra Pradesh; WB: West Bengal; MH: Maharashtra; MP: Madhya Pradesh.

https://doi.org/10.1371/journal.pntd.0009247.g004
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whereas the semi-arid (PB), Western Ghats (MH) and Deccan Plateau (MP) populations

exhibited moderately increased haemolytic effects [26 to 31%; (Fig 4E)]. It is interesting to

note that the semi-arid (PB) population showed increased haemolysis despite low PLA2 activ-

ity (S1A Fig), suggesting the potential pharmacological role of non-catalytic PLA2s or other

toxin constituents [42,43].

In vitro venom recognition potential of commercial Indian antivenoms

The compositional differences in snake venoms from distinct populations are known to signif-

icantly affect the immunological cross-reactivity of antivenoms [5,10,63,69], thereby reducing

their potential clinical effectiveness. We, therefore, assessed the venom recognition potential

of the major Indian commercial polyvalent antivenoms against the venoms of the pan-Indian

populations of D. russelii. In indirect ELISA experiments, the Premium Serums antivenom

consistently recognised the venoms of the pan-Indian populations of D. russelii to a greater

extent (end-point titres between 1:2500 to 1:12500) than that of its comparators, followed by

the VINS antivenom (1:2500) (Fig 5 and S5 Fig). On the contrary, antivenoms manufactured

by Bharat Serums (1:500 to 1:2500) and Haffkine (1:500) exhibited considerably poorer venom

Fig 5. Immunological cross-reactivity of commercial Indian antivenoms against the pan-Indian populations of D. russelii venoms. Heatmaps,

shown here, quantify the binding of commercial Indian antivenoms to the venoms of pan-Indian populations of D. russelii. Multiple dilutions of

antivenoms (1:500, 1:2500 and 1:12500) were tested in indirect ELISA experiments. Non-specific binding of naive horse IgGs (1:4 dilution) to Daboia
venoms is also shown in the first plate for reference. A gradient colour scale has been shown indicating the degree of binding from low (black) to high

(cream). PB: Punjab; TN: Tamil Nadu; AP: Andhra Pradesh; WB: West Bengal; and MH: Maharashtra; MP: Madhya Pradesh.

https://doi.org/10.1371/journal.pntd.0009247.g005
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recognition capabilities. Surprisingly, despite sourcing venoms from the Maharashtra Daboia
population as immunogens for antivenom production, the Haffkine antivenom failed to

exhibit high binding titres against all populations, including this source population.

Furthermore, immunoblotting experiments, which were performed to identify venom tox-

ins that are recognised by antivenoms, revealed that the Premium Serums antivenom recog-

nised many low-, mid- and high-molecular-weight toxins found in the venom of the pan-

Indian populations of D. russelii (S6A and S6B Fig). In contrast, the commercial products

manufactured by VINS and Haffkine exhibited increased recognition only towards high-

(> 50 kDa) and low- (<15 kDa) molecular weight toxins, while poor immunorecognition was

observed in the case of Bharat Serum antivenoms (S6A and S6B Fig).

Venom potency by murine median lethal dose (LD50) assay

The proteomic composition and potency of venoms is significantly influenced by the ecology

and environment of the snake species [4–7,70]. Evaluation of murine intravenous toxicity pro-

files revealed interesting differences between the pan-Indian populations of D. russelii venoms.
While the Deccan Plateau (MP; 0.11 mg/kg) and the semi-arid (PB; 0.14 mg/kg) populations

were highly potent, the Gangetic Plain (WB; 0.34 mg/kg) population was found to be consider-

ably less potent, while the coastal (AP; 0.18 mg/kg) and Western Ghats (MH; 0.19 mg/kg) pop-

ulations exhibited near equivalent, intermediary, potencies (Fig 6A and S5 Table).

Antivenom efficacy via median effective dose (ED50) assay

Though the in vitro recognition and inhibition of biochemical/pharmacological activities by

commercial antivenoms has been demonstrated against venoms of D. russelii from certain

populations in India [9–13], their ability to neutralise the lethal effects in animal models is yet

to be robustly evaluated. Considering its increased venom recognition capabilities, the Pre-

mium Serums antivenom was selected for use in the assessment of in vivo neutralisation

against the pan-Indian venoms of D. russelii. Perhaps surprisingly, given the extent of venom

Fig 6. Venom potencies of the pan-Indian populations of D. russelii and the neutralisation potencies of the Premium Serums antivenom. This

figure depicts (A) venom potencies (mg/kg) of various D. russelii populations and (B) the neutralising potencies (mg/ml) of the Premium Serums

antivenom against them. The error bars show 95% confidence intervals, and the marketed neutralising potency (0.60 mg/ml) of the commercial product

against D. russelii venom is shown as a vertical dotted line (panel B).

https://doi.org/10.1371/journal.pntd.0009247.g006
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compositional and functional variation observed in this study, the venom neutralising poten-

cies for all populations of D. russelii (0.84–0.99 mg/ml) met the manufacturer’s marketed

claim (0.6 mg/ml), with the exception of observations of poor neutralisation of the semi-arid

(PB) population (0.39 mg/ml) (Fig 6B and S6 Table). These findings contrast with those

recently observed with venom sourced from Indian Naja populations, where venom variation

resulted in a dramatic lack of preclinical antivenom efficacy [71].

Discussions

Biogeographic variation in Russell’s viper venom

Biotic and abiotic factors are well-known to dictate snake venom compositions and potencies

[5]. Unfortunately, the influence of diverse biogeographic conditions on the composition and

potency of the medically most important Indian snakes, and the consequence of this variation

on snakebite treatment, remains elusive. Here, evaluation of proteomic profiles of the pan-

Indian populations of D. russelii from distinct biogeographic zones revealed considerable com-

positional differences in venom toxins, including PLA2, Kunitz, SVSP and snaclec. As varia-

tion in venom proteomes can significantly alter biochemical and pharmacological activities of

snake venoms, we also subjected D. russelii venoms to a variety of biochemical assessments,

including PLA2, LAAO, DNase, fibrinogenolytic, haemolytic and blood coagulation assays.

The outcomes of these experiments highlighted significant differences in the activities of D.

russelii venoms from distinct biogeographical zones. Moreover, they are suggestive of the dif-

ferential abilities of these populations in inflicting cytotoxic, haemotoxic and procoagulant

effects in human snakebite victims [65,72,73]. Such stark differences in composition and activ-

ities may be underpinned by a variety of factors across distinct agro-climatic conditions,

including temperature, humidity, altitude, phylogenetic divergence and prey and predator

abundance. Differences in toxin composition were also found to correlate with altered poten-

cies of Daboia venoms, where the protease-rich Deccan Plateau (MP) and Kunitz-rich Gan-

getic Plain (WB) populations of D. russelii were the most and the least toxic populations,

respectively (Figs 3 and 6A and S2–S4 Tables).

Inadequacy of antivenom therapy in North Indian snakebite hotspots

Despite being the only curative therapeutic for snakebite in India, commercial polyvalent anti-

venoms that are marketed by several manufacturers across the country suffer from several crit-

ical limitations. Perhaps, their major potential limitation is a lack of effectiveness against

geographically disparate snake populations, as antivenoms are customarily manufactured

using venoms sourced from the ‘big four’ snakes in the southeastern part of the country [74].

Venom recognition experiments in this study revealed that the majority of marketed products

lacked antibodies specific to several high-, mid- and low-molecular-weight toxins (S6A Fig),

which was in line with previous findings [9,11,13,20]. Preclinical experiments conducted in a

murine model of envenoming were undertaken to evaluate the neutralising potential of the

Premium Serums antivenom, which exhibited superior in vitro venom recognition potential

over its competitors. Though this antivenom met the marketed neutralising potency (0.60 mg/

ml) for four out of the five D. russelii populations sampled across the various biogeographical

zones in India (0.84 to 0.99 mg/ml), its potency against the semi-arid (PB) population was sig-

nificantly lower (0.39 mg/ml). Similar concerning inefficacy of this antivenom has been previ-

ously reported against two of India’s other ‘big four’ snake species (B. caeruleus and N. naja) in

this region [20,71], while a complete lack of neutralisation (challenge dose: 5X LD50) has also

been recently reported against the Desert (Rajasthan) population of N. naja [71]. Improved

neutralisation potential of the other commercial antivenoms (i.e., VINS, Bharat Serums and
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Haffkine) seems unlikely, as these products largely rely on the same venom source for immuni-

sation and follow very similar immunisation protocols. This assertion is further supported by

the outcomes of our in vitro binding experiments, which revealed comparably worse immuno-

logical binding of these antivenoms to venoms. Similarly, deficiencies in the neutralisation

potency of Indian antivenoms (VINS) towards D. russelii from Pakistan has also been docu-

mented previously [75]. These disturbing findings, perhaps, explain the alarming rates of

snakebite mortalities in the northern and (north)western regions of the country (Fig 7; [2]),

further highlighting the pressing need to develop a pan-India effective antivenom therapy [20].

Fig 7. The preclinical inefficacy of Indian antivenom therapy in snakebite hotspots. This figure depicts the alarming preclinical ineffectiveness of

commercial antivenoms in the major snakebite hotspots of India (highlighted in red circles). The relative differences in neutralisation potencies of

antivenoms against the geographically distinct populations of N. naja (green vials) [71], D. russelii (yellow vials) and B. caeruleus (purple vial) [20] are

shown in comparison to the venom source (for antivenom production) population in southern India. The red dotted lines on vials represent the

marketed neutralising potency of the commercial products. Sampling locations have been indicated with uniquely coloured markers (top right box) on

the biogeographical map of India that was prepared with QGIS 3.8.2 [35]. The intensity of purple clouds on the map is indicative of the estimated

standardised snakebite death rates per million reported by Suraweera et al. 2020 [2], with the brighter regions representing the major hotspots.

https://doi.org/10.1371/journal.pntd.0009247.g007
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Compositional variation in venoms cannot predict the underlying clinical

outcomes

Intraspecific differences in venom composition, resulting from multiple biotic and abiotic fac-

tors, has been well-documented in snakes [63,70,76]. As a local adaptation to the changing

ecology and environment, species that are characterised by large geographical distribution

exhibit stark variations in the proteomic composition and toxicity. For instance, the venoms

sourced from the pan-Indian populations of N. naja, yet another medically important Indian

snake species with a near-countrywide distribution, has been shown to exhibit substantial dif-

ferences in the abundances of lethal neurotoxins and cytotoxins [71,77–79]. These composi-

tional differences led to reduced preclinical effectiveness of the marketed antivenoms in

mitigating snakebite pathologies [71]. In complete contrast, despite the observed geographic

variability in venom composition and toxicity profiles, we find that the lethal effects induced

by venoms of the majority of investigated D. russelii populations are neutralised by the Pre-

mium Serums polyvalent antivenom, matching the marketed claim of effectiveness (S6 Table).

Thus, the considerable variation observed in the venom proteomes of both N. naja and D. rus-
selii, surprisingly, mostly translate into treatment challenges only for the former species. These

contrasting findings highlight that intraspecific venom variation in itself cannot be a predictor

for the (pre)clinical effectiveness of antivenoms. It should be noted, however, that the results

presented here do not shed light on the effectiveness of antivenoms in mitigating the local,

morbidity-causing effects associated with D. russelii envenomings, and this would be a valuable

research line to pursue in the future.

In summary, comparative proteomics, biochemical and pharmacological assessments, and

toxicity profiling experiments performed in this study reveal significant intraspecific variation

in D. russelii venoms from five distinct biogeographic regions of India. The results of in vitro
immunological assays identified the Premium Serums antivenom to be superior to its competi-

tors (VINS, Bharat Serums and Haffkine) in terms of its venom recognition potential. Despite

the considerable differences in venom proteomic profiles revealed, the Premium Serums anti-

venom exhibited surprisingly similar efficacy in countering the lethal effects of venom from

four out of the five D. russelii populations in a mouse model of envenoming. However, this

antivenom was found to be inefficacious in neutralising the lethal effects of the North Indian

semi-arid (PB) population, a caveat previously also highlighted for two other ‘big four’ snakes

[20,71]. These inadequacies of existing antivenom further highlight the compelling need to

develop pan-India effective antivenoms to safeguard human lives in high snakebite burdened

locales of India.

Limitations of the study

Russell’s viper is amongst the most medically important Indian snakes, as it accounts for over

40% of snakebite fatalities in the country [2]. Surprisingly, though the polyvalent antivenom

neutralised the lethality of D. russelii venoms from four out of five biogeographic zones investi-

gated in this study, these conclusions were derived with respect to the neutralisation potency

advertised by the antivenom manufacturers. However, since Indian antivenoms have not been

evaluated through robust human clinical trials, it is essential to validate the accuracy of this cut

off for effective treatment of D. russelii envenomings. Moreover, the neutralisation experi-

ments in the mouse model employed here do not inform us of the ability of this commercial

product in countering the morbid symptoms that incapacitate hundreds of thousands of Indi-

ans annually. Therefore, future work is warranted to evaluate the abilities of antivenoms to

neutralise local pathologies (e.g., necrosis and haemorrhage) that result in immutable morbidi-

ties. Moreover, certain populations of D. russelii from Sri Lanka have been shown to secrete a
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form of basic PLA2 (U1-viperitoxin-Dr1a) that makes their venoms highly neurotoxic [73].

While their counterparts in South India have also been proposed to exhibit such neurotoxic

effects [64,80], robust clinical evidence has been lacking. In our in vivo toxicity experiments,

we did not observe any neurotoxic symptoms (e.g., ptosis, paralysis of the limbs, etc.) in mice

injected with the venoms of the pan-Indian populations of Daboia snakes. Nonetheless, it will

be important in the future to conduct neurotoxicity assays in mammalian model systems to

delineate the abilities of the pan-Indian populations of D. russelii in inflicting neurotoxic

symptoms. Furthermore, systematic documentation of epidemiological data and clinical evalu-

ation of antivenom’s effectiveness is indispensable for assessing the shortcomings of the con-

ventional antivenom therapy, particularly in regions that suffer the brunt of snakebite. Finally,

assessing the avidity of venom-antivenom interactions and characterisation of unrecognised

medically important toxins could further provide valuable information for improving the effi-

cacy of conventional antivenoms.
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