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A B S T R A C T   

The spatial assessment of soil organic carbon (SOC) is a major environmental challenge, notably for evaluating 
soil carbon stocks. Recent works have shown the capability of Sentinel-2 to predict SOC content over temperate 
agroecosystems characterized with annual crops. However, because spectral models are only applicable on bare 
soils, the mapping of SOC is often obtained on limited areas. A possible improvement for increasing the number 
of pixels on which SOC can be retrieved by inverting bare soil reflectance spectra, consists of using optical images 
acquired at several dates. This study compares different approaches of Sentinel–2 images temporal mosaicking to 
produce a composite multi-date bare soil image for predicting SOC content over agricultural topsoils. A first 
approach for temporal mosaicking was based on a per-pixel selection and was driven by soil surface charac-
teristics: bare soil or dry bare soil with/without removing dry vegetation. A second approach for creating 
composite images was based on a per-date selection and driven either by the models performance from single- 
date, or by average soil surface indicators of bare soil or dry bare soil. To characterize soil surface, Sentinel-1 
(S1)-derived soil moisture and/or spectral indices such as normalized difference vegetation index (NDVI), 
Normalized Burn Ratio 2 (NBR2), bare soil index (BSI) and a soil surface moisture index (S2WI) were used either 
separately or in combination. This study highlighted the following results: i) none of the temporal mosaic images 
improved model performance for SOC prediction compared to the best single-date image; ii) of the per-pixel 
approaches, temporal mosaics driven by the S1-derived moisture content, and to a lesser extent, by NBR2 
index, outperformed the mosaic driven by the BSI index but they did not increase the bare soil area predicted; iii) 
of the per-date approaches, the best trade-off between predicted area and model performance was achieved from 
the temporal mosaic driven by the S1-derived moisture content (R2 ~ 0.5, RPD ~ 1.4, RMSE ~ 3.7 g.kg-1) which 
enabled to more than double (*2.44) the predicted area. This study suggests that a number of bare soil mosaics 
based on several indicators (moisture, bare soil, roughness…), preferably in combination, might maintain 
acceptable accuracies for SOC prediction whilst extending over larger areas than single-date images.   

1. Introduction 

There is a growing need to update and monitor soil organic carbon 
(SOC) content over territories, recently emphasized through the 4p1000 
initiative (Arrouays and Horn, 2019; Minasny et al., 2017). This holds 
especially true for topsoil, which is directly impacted by tillage practices 
and receives organic amendments. 

Because the standard method for soil C content measurement is both 

time-consuming and expensive, alternative approaches have emerged, 
relying on proximal sensing, and by extension, on remote sensing. As a 
matter of fact, soil reflectance is strongly influenced by SOC: empirical 
spectral models relating SOC content to reflectance have been success-
fully built, from lab spectra (eg. Viscarra-Rossel et al., 2006), but also 
over bare soils from airborne hyperspectral image spectra of bare soils 
(Selige et al., 2006; Stevens et al., 2010; Vaudour et al., 2016), and more 
recently, from bare soils image spectra acquired by the new generation 
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multispectral Sentinel-2 satellites (Gholizadeh et al., 2018; Castaldi 
et al., 2019a, b; Vaudour et al., 2019a,b; Žížala et al., 2019). 

Launched in 2015 and then 2017 Sentinel-2 satellites (S2A and S2B, 
respectively) provide time series with frequent revisit every 5 days, 
while their MultiSpectral Instrument (MSI) has more spectral bands (13) 
than previous multispectral satellite sensors, covering the visible near- 
infrared shortwave infrared range (400–2500 nm). S2 data are imaged 
over large areas with a 290 km-swath width, at a spatial resolution of 
either 10 m (490, 560, 665, 842 nm-central wavelengths) or 20 m (705, 
740, 783, 842, 865, 1610, 2190 nm-central wavelengths). 

Although Sentinel-2 images are relevant for predicting SOC content 
for annual crop soils, at least at certain adequately targeted dates 
(Vaudour et al., 2019b), the area that is likely to be predicted at a given 
single date is limited as many pixels are covered with crop vegetation. 
This is the reason why there is a need to investigate the possibility for 
increasing the predicted area by stacking several dates into a composite 
image. Recent attempts used Landsat time series at national scales of 
Switzerland (Diek et al., 2017) or Germany (Rogge et al., 2018) or over 
large regions of Southeastern Brazil (Demattê et al., 2018; Gallo et al., 
2018). Particularly, at the scale of the national territory of Switzerland, 
Diek et al. (2017) used Landsat time series over several years to make 
soil composites with largest bare areas, and concluded that such mosaics 
were very encouraging for further studies about soil property prediction 
at a larger, continental scale. In a similar attempt, Loiseau et al. (2019) 
elaborated a mosaic of Sentinel-2 at the scale of mainland France, and 
incorporated the reflectance and spectral indices computed from it into a 
larger set of non-spectral covariates and other spectral covariates (such 
as derived from MODIS) to predict topsoil clay content. They found that 
incorporating Sentinel-2 data contributed to slightly improve the pre-
dicting performance for clay content. 

These previous studies relied on varied approaches for elaborating 
the multidate mosaic image of bare soil area, in turn named “barest soil 
composite” (Diek et al. 2017), “mosaic of exposed soils” (Rogge et al., 
2018), “synthetic soil image” (Demattê et al., 2018), “bare soil com-
posite image” (Gallo et al., 2018), or “bare soil mosaic” (Loiseau et al., 
2019). Besides atmospheric correction and the masking of clouds and 
cloud shadows, that all these previous studies share (with variants), the 
common procedure of these approaches relied on the empirical defini-
tion of a spectral index threshold in order to discriminate between bare 
soil and vegetated surface, and in some cases urban surfaces. Never-
theless, they covered large spatial extent and had no specific focus on 
agricultural soils, by means of land parcel register. The spectral index 
used for sieving the bare soils pixels were either the normalized differ-
ence vegetation index (NDVI) (Rogge et al., 2018; Loiseau et al., 2019) 
or the so-called “bare soil index” (BSI) (Diek et al., 2017) or the NDVI 
jointly to the mid infrared index “Normalized Burn Ratio 2” (NBR2) 
(Demattê et al., 2018, 2020; Gallo et al., 2018; Castaldi et al., 2019b; 
Tziolas et al., 2020) (see §2.6 for index formulae). 

When carrying out a multidate mosaic, the pixels of such a mosaic 
have a reflectance spectrum of bare soil, each originating from different 
dates acquired in contrasted soil surface conditions of soil moisture, 
roughness, green or dry vegetation cover that vary over time. Ap-
proaches including the NBR2 index into the process chain for bare soil 
compositing have relied on Landsat8 series (Demattê et al., 2018, 2020; 
Gallo et al., 2018) and the NBR2 index was used to account for the 
presence of dry vegetation on surface. As a matter of fact, the NBR2 
index was initially defined by Van Deventer et al. (1997) as “Normalized 
Difference Tillage index” (NDTI) for the Landsat TM, to detect crop 
residue cover for conservation tillage fields. As recently demonstrated 
from Sentinel-2, crop residue cover as characterized through the NBR2 
index leads to deteriorating SOC prediction performance (Castaldi et al., 
2019b). However, soil moisture might also worsen SOC prediction 
models, as verified in lab conditions (Minasny et al., 2011; Rienzi et al., 
2014); yet, none of these previous approaches has accounted for the 
specific influence of soil moisture. Relying on a previously studied 
Sentinel-2 time series, for which the SOC prediction performances have 

been compared for single dates (Vaudour et al., 2019b), the present 
study intends to account for soil moisture information for the purpose of 
multidate mosaicking and raises two main questions: i) to what degree a 
multidate composite image performs well for cultivated soils with 
annual crops and rotating bare soil area; ii) in such specific agro-
ecosystem, what is the optimal elaboration strategy for scoring best 
performance of SOC content prediction and should it rely on incorpo-
rating soil moisture information? (Rienzi et al., 2014). 

The term “mosaicking” might refer to the spatial juxtaposition of 
several image tiles, or else to the spatio-temporal combination of several 
multidate images within a same tile, or both. 

The present paper deals with two main approaches for the spatio- 
temporal combination of several multidate images into a composite 
image within a same tile, hereby referred to as “temporal mosaicking”: 
either “per-pixel”, i.e. computed on the base of each pixel vector of 
values across the time series, or “per date”, i.e. relying on a global in-
dicator per date. Both sets of mosaics were driven by soil surface char-
acteristics: bare soil, or dry soil, or both. To characterize soil surface, 
Sentinel-1 (S1)-derived soil moisture and/or spectral indices such as 
normalized difference vegetation index (NDVI), Normalized Burn Ratio 
2 (NBR2), bare soil index (BSI) and a soil surface moisture index (S2WI) 
were used either separately or in combination. Per-pixel mosaics were 
driven by either “bare soil”, obtained from least NDVI, least NBR2 or 
highest BSI value; or “driest soil”, derived from least soil moisture S2WI 
index or least S1-derived estimated water content applied to bare soil. 
Per date mosaics were driven by either the best single prediction per-
formance by decreasing order amongst dates (“best date”), or the least 
average NBR2 index value amongst several dates (“bare date”), or the 
least average soil moisture index or value amongst several available 
dates (“driest date”). 

2. Materials and methods 

2.1. Study area: The Versailles Plain 

The Versailles Plain, or ‘Plaine de Versailles’, located west of Paris 
(North of France, 48◦46′-48◦56′N; 1◦50′-2◦07′E) is in the NW-SE view of 
the esplanade of the Palace of Versailles and covers a total extent of 221 
km2, of which about half (105.65 km2 in 2017) undergoes intensive 
annual crop cultivation (Vaudour et al., 2016) (Fig. 1). The main crop 
rotations in the area involve winter wheat, winter rapeseed, winter and 
spring barley and maize on occasion. As cultivation practices are mainly 
conventional, with early winter ploughing applied at least 1 year out of 
every 3, it can be assumed that topsoil SOC is homogenized by 
ploughing. Crop rotations last three or four years in average. Landforms 
are either flat or gently sloping, and structured into a lower limestone 
plateau at ~120-m elevation in the center and an upper millstone clay 
plateau at ~170-m elevation along the northern and southern edges of 
the area. Quaternary loessic deposits and loessic colluvium leave a mark 
everywhere, and particularly on plateaus, where haplic or glossic luvi-
sols develop according to the FAO classification (World Reference Base 
WRB, 2014; Crahet, 1992; Vaudour et al., 2019a,b) (Fig. 2). 

Arenic cambisols develop from the Fontainebleau acid sands across 
the largely forested upper plateau flanks, while calcaric cambisols derive 
from limestone, and colluvial surficial formations are observed in the 
lower plateau flanks. Along the lower slopes and at the valley bottoms, 
stagnic colluvic cambisols originate from marls, alluvio-colluvial mate-
rials or chalk. Highest SOC values are located in the valley bottoms, 
followed by lower slopes, then lower plateau, while the lowest contents 
characterize the higher plateau, followed by those of the plateau flanks 
(Zaouche et al., 2017) (Fig. 2). 

2.2. Sentinel-2 time series 

A Sentinel-2A time-series was gathered, initially composed of 13 
dates corresponding to a maximum coverage of bare soil, from 1 March 
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to 30 April in 2016 and 2017 and 1 November to 31 December in 2016. 
For each date, ten atmospherically corrected bands with correction of 
slope effects were downloaded from the Muscate platform of the French 
land data center, called Théia (Theia.cnes.fr, 2018) in Level-2A pro-
cessing at 10 or 20 m resolution (Band: 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, 

Table 1), then stacked with 10 m resolution. 
A so-called “geophysical mask” (masque géophysique or MG2) is 

provided together with the images and enables to remove clouds, cloud 
and topographical shadows (Baetens et al., 2019). The images differed in 
terms of cloud and shadow cover, which ranged from null to almost 

Fig. 1. Agricultural area of the Versailles Plain and infrared coloured images (RGB = B8, B4, B3) of the Sentinel-2 time series gathered for this study. RPG2017 (for 
Registre Parcellaire Graphique 2017) is the Land Parcel Registry map composed of the 2017 crops declared by farmers in the framework of the European Common 
Agricultural Policy. 

Fig. 2. Soilscape map of the study area, main soil types and distribution of soil samples according to the soilscape units and the soil texture triangle (larger circles 
indicate higher SOC contents). 
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85.5% within the entire tile, and from null to nearly 100% at the very 
location of the study area. Therefore, four images were removed from 
the time series because of their too large cloud and shadow coverage and 
we finally retained 9 images (Table 2, Fig. 1). 

2.3. Soil moisture series derived from Sentinel-1 

Nine soil moisture maps with 10 m-resolution provided by the Theia 
platform (https://www.theia-land.fr/en/product/soil-moisture-with 
-very-high-spatial-resolution) were selected as close as possible to the 
Sentinel-2 acquisition dates (Table 3). 

The Sentinel-1/Sentinel-2-derived soil moisture product at plot scale 
(S2MP) is obtained by coupling Sentinel-1 SAR data and Sentinel-2 
optical data. The S2MP product provides soil moisture estimates over 
the agricultural areas at plot scale with six days revisit time. To estimate 
the surface soil moisture values (0–10 cm depth), El Hajj et al. (2017) 
inverted the Water Cloud Model (WCM) parameterized by Baghdadi 
et al. (2017) for C-band combined with the Integral Equation Model, as 
modified by Baghdadi et al. (2006). The WCM-inversion approach uses 
the Neural Network (NN) technique to invert the radar signal into soil 
moisture value. In addition to Sentinel-1 images characteristics (inci-
dence angle and radar backscattering coefficient), the normalized dif-
ference vegetation index (NDVI) derived from Sentinel-2 is used in input 
to the NN in order to characterize the vegetation cover where it is pre-
sent. The S2MP maps are produced for agricultural areas (except for 
vineyards and orchards). Forest and urban areas are masked using the 
land cover map of Inglada et al. (2017).The S2MP are available in free 
open access mode via the Theia French Land Data Center (http://www. 
theia-land.fr/en/thematic-products). Soil moisture is derived with a 
precision of 6 vol% for agricultural parcels with or without vegetation 
(El Hajj et al., 2017; Bazzi et al., 2019). In our approach, only the bare 
S2MP pixels within land parcel register were retained. 

The difference Δθ in soil moisture between S1 and S2 imaging dates 

was assessed for 0–10 cm depth by means of the topsoil volumetric soil 
moisture monitored daily at the Integrated Carbon Observation System 
(ICOS, https://www.icos-ri.eu) ecosystem site FR-Gri, located in the 
middle of the study area (Loubet et al., 2011). This ICOS site pertains the 
soilscape unit of the lower limestone plateau mainly characterized by 
haplic or truncated luvisols. Soil moisture was averaged for a 0–10 cm 
depth by four CS650 (Campbell Scientific, Logan, USA) soil water con-
tent reflectometers. The ICOS site was vegetated with wheat at the 
beginning of stem elongation in March–April 2016, and then with 
oilseed rape in winter 2016 (~15 cm high) and in spring 2017 (60 to 
170 cm high). Though not measured on bare soil, the soil moisture from 
the ICOS site provided information on the temporal changes in volu-
metric soil moisture between two close dates. 

The number of days separating Sentinel-1 from Sentinel-2 acquisi-
tion dates was comprised between zero (3 images acquired the same 
day) and five at most (Table 3). The difference in soil moisture between a 
given Sentinel-1/Sentinel-2 pair was assumed to be negligeable, as i) 
rainfall measured at INRAE Meteorological Station at Thiverval-Grignon 
(located in the middle of the study area) during this time lapse, was null 
(most dates) or as little as 10 mm (for 20 March 2016); ii) the Δθ for the 
FR-Gri ICOS site was comprised between 0 and − 4% at 0–10 cm depth. 

2.4. Soil samples 

This study used 329 topsoil samples collected from 2010 to 2017 for 
the purposes of earlier studies (e.g. Vaudour et al., 2019a,b). All of the 
samples were composed of roughly 10 sub-samples collected to a depth 
of 8 cm from random locations within a 2.7 × 2.7 m square area centered 
at the sampling plot as recorded at its center using a Trimble Pathfin-
der®Power DGPS of 50 cm precision (Vaudour et al., 2014a). Such 
sampling plot size proved suitable for matching soil reflectance spectra 
measured in the field with 10 m-multispectral satellite radiance while 
performing empirical atmospheric correction (Vaudour et al., 2014a). 
Topsoil samples were bulked and air-dried. They were then gently 
crushed and sieved to 2 mm prior to conventional soil property de-
terminations (Baize and Jabiol, 2011). The SOC content ranged between 
6.2 and 35.9 g.kg-1 (mean 15.4 g.kg-1, standard deviation 5.22 g.kg-1, 
skewness of 0.96). Loam and clay loam textures were dominant, with 
SOC content all the more higher than the clay content was high (Fig. 2). 
As most sampled fields i) never receive any organic amendment, or only 
in very few amounts (Noirot-Cosson et al., 2016) ii) have been cultivated 
for decades (>30 years) and, as such, might be considered close to 
steady state having reached the SOC stock equilibrium (Chenu et al., 
2018), it can be assumed that SOC content change was negligible over 
the 7 y-period used for the soil samplings. 

2.5. Spectral models of SOC content prediction 

The partial least squares regression (PLSR) method was chosen to 
construct SOC prediction models based on bare soil samples drawn at 
each mosaic. Details of the PLSR method can be found in Geladi and 

Table 1 
Specifications of Sentinel-2A MultiSpectral Instrument sensor (in bold charac-
ters, bands provided by the Muscate platform).  

Spectral 
band 

Spectral 
domain 

Central 
wavelength (nm) 

Bandwidth 
(nm) 

Spatial 
resolution (m) 

B1 Vis 443 20 60 
B2 Vis 490 65 10 
B3 Vis 560 35 10 
B4 Vis 665 30 10 
B5 R-edge 705 15 20 
B6 R-edge 740 15 20 
B7 R-edge 783 20 20 
B8 NIR 842 115 10 
B8A NIR 865 20 20 
B9 NIR 945 20 60 
B10 SWIR 1380 30 60 
B11 SWIR 1610 90 20 
B12 SWIR 2190 180 20 

Vis, visible; R-edge, red edge; NIR, near infrared; SWIR, shortwave infrared 

Table 2 
Main characteristics of the studied scenes (tile TUDQ31).  

Imaging date Time of acquisition (U.T GMT) Viewing incidence  
zenith angle (◦) 

Sun azimuth (◦) Sun elevation (◦) Cloud/shadow cover of the  
entire tile (%) 

Cloud/shadow cover of  
study area (%) 

12 March 2016 10:50:37 <5.1 160.5 36.1 68.6 0.2 
15 March 2016 11:01:57 <8.8 153.5 37.8 7.3 0 
14 April 2016 10:57:23 ≤8.8 163.5 49.5 80.0 46.6 
30 November 2016 11:04:18 ≤8.8 172.2 18.7 1.7 1.0 
27 December 2016 10:55:27 ≤5.0 166.9 16.5 4.4 1.0 
27 March 2017 10:50:21 ≤5.0 160.2 42.0 0.6 0.9 
30 March 2017 11:03:34 <8.8 163.5 43.7 29.2 51.9 
9 April 2017 11:05:29 ≤8.8 163.5 47.3 0 0 
19 April 2017 11:06:01 <8.8 163.4 51.2 2.9 0.9  
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Kowalski (1986) and Wold et al. (2001). For the target SOC content 
property, a PLSR model was constructed from image reflectance spectra 
with 10 selected spectral bands (Table 2). The optimal number of latent 
variables was determined from the prediction residual error sum of 
squares (PRESS). A leave-one-out cross-validation procedure was 
applied (Wold, 1978). The quality of model fit was evaluated from the 
root mean squared error of cross-validation (RMSECV), from the coeffi-
cient of determination of cross-validation (R2cv), from the residual 
prediction deviation (RPDCV), i.e., the ratio between the standard de-
viation of the calibration dataset to the RMSECV; and finally, from the 
ratio of performance to interquartile distance (RPIQCV) (Bellon-Maurel 
et al., 2010). 

For the models enabling the best cross-validation performances for a 
given number of dates and relying on a sufficient number of samples 
(≥150), the selected point locations were intersected between models 
enabling to gather a common dataset. This common dataset was then 
split into 2/3 calibration and 1/3 validation subsets, according to a 
random stratified sampling based on measured SOC contents. The root 
mean squared error of validation (RMSEval), the coefficient of determi-
nation of validation (R2

val), the validation RPD (RPDval), and RPIQ 
(RPIQval) were calculated to evaluate the quality of model fit. 

PLSR models were used through R version 3.2.1 (R Development 
Core Team, 2015) employing the “pls” package (Wehrens and Mevik, 
2007). 

Spectral models were already obtained for single images in a previ-
ous study (Vaudour et al., 2019b) (Table 4). 

2.6. Methods for temporal mosaicking of bare soil area 

To consider cropland soil only, urban and forests were masked using 
Land Parcel Registry maps (Vaudour et al., 2019a,b). Cropland pixels 
with normalized difference vegetation index (NDVI) values exceeding 
an expert-calibrated threshold were masked. The NDVI was retrieved 
using bands of 842 nm and 665 nm and was used to create a mask of 
vegetation. Amongst the agricultural area, vegetated or clouded or 

shadowed pixels were discarded using this mask of vegetation combined 
with the MG2 mask (Fig. 3). 

Two main approaches for multitemporal mosaicking were con-
structed, either “per-pixel”, i.e. computed on the base of each pixel 
vector of values across the time series, or “per date”, i.e. relying on a 
global indicator per date. Both sets of mosaics were driven by soil sur-
face characteristics: bare soil, or dry soil, or both (Fig. 3, Table 5). To 
characterize soil surface, Sentinel-1 (S1)-derived soil moisture and/or 
spectral indices such as normalized difference vegetation index (NDVI), 
Normalized Burn Ratio 2 (NBR2), bare soil index (BSI) and a soil surface 
moisture index (S2WI) were used either separately or in combination. 
Per-pixel mosaics were driven by either “bare soil”, obtained from least 
NDVI, least NBR2 or highest BSI value; or “driest soil”, derived from 
least soil moisture S2WI index or least S1-derived estimated water 
content applied to bare soil. Per date mosaics were driven by either the 
best single prediction performance by decreasing order amongst dates 
(“best date”), or the least average NBR2 index value amongst several 
dates (“bare date”), or the least average soil moisture index or value 
amongst several available dates (“driest date”). 

2.6.1. Per-pixel approaches 
The pixelwise or ‘per-pixel’ approach implies that each temporal 

mosaic be composed of pixels selected on an individual basis, which thus 
may represent a high number of dates, with varied soil surface condi-
tions due to their temporal diversity. 

2.6.1.1. Bare soil approaches. A first set of mosaics, named “Bare soil” 
rely on minimizing a vegetation index (NDVI, equation (1)) or a crop 
residue index (NBR2, equation (2)) or maximizing a bare soil index (BSI, 
equation (3)), in order to get the pixels most likely to be bare across the 
time series. 

NDVI =
ρNIR− ρRed

ρNIR + ρRed
(1)  

Table 3 
Main characteristics of the Sentinel-1 (S1)-derived soil moisture maps. θ: volumetric water content (vol. %), Nbpixθ: number of bare cropland soil pixels (NDVI ≤ 0.35) 
with estimated θ), Δθ: measured difference in volumetric water content (vol.%) between S1 and S2 dates at 0–10 cm depth, at the FR-Gri ICOS monitoring site. S1 
images used were acquired at 18:00 UT.  

Imaging date of the S1 
image 

Nbpixθ Mean θ (vol. 
%) 

Min θ (vol. 
%) 

Max θ (vol. 
%) 

Standard deviation of θ 
(vol.%) 

Day difference with 
S2 (d) 

Rainfall (mm) during day 
difference 

Δθ (vol. 
%) 

8 March 2016 70,208 34.1 22.0 37.4 2.7 4 0.0 0 
20 March 2016 75,998 21.1 2.2 28.0 5.1 5 10.0 +1 
13 April 2016 26,207 18.4 1.6 28.42 5.6 1 3.5 − 1 
27 November 2016 225,988 26.5 5.0 28.8 2.8 3 0.0 − 4 
27 December 2016 156,939 26.2 2.0 28.2 3.1 0 0.0 0 
27 March 2017 93,140 19.4 1.2 28.2 6.6 0 0.0 0 
2 April 2017 51,768 25.1 18.6 35.0 4.1 3 0.0 − 3 
8 April 2017 53,070 13.5 0.8 27.8 7.0 1 0.5 − 1 
20 April 2017 42,365 9.8 0.2 26.6 5.3 1 0.5 0  

Table 4 
Sentinel-2 (S2) cross-validation performance of SOC content prediction by date (in bold characters, intermediate performance)—NDVI > 0.35.  

Imaging date Number of samples Number of  
latent variables 

RMSECV (g.kg− 1) R2
CV RPDCV RPIQCV Area covered (km2)  

for NDVI ≤ 0.35 
Average NBR2  
amongst samples 

Average S2WI  
amongst samples 

12 March 2016 83 3 4.78 0.16 1.10 1.60 17.07 0.117 − 0.445 
15 March 2016 84 5 3.79 0.48 1.39 2.06 18.55 0.079 − 0.403 
14 April 2016 54 1 5.86 0.005 1.02 1.32 7.90 0.113 − 0.305 
30 November 2016 199 3 5.07 0.02 1.01 1.43 52.21 0.157 − 0.357 
27 December 2016 172 6 4.83 0.25 1.16 1.49 37.36  − 0.340 
27 March 2017 147 4 4.45 0.33 1.23 1.51 24.28 0.091 − 0.409 
30 March 2017 67 5 5.44 0.35 1.25 1.26 12.76 0.159  
9 April 2017 125 5 3.38 0.46 1.37 1.92 19.30 0.049 − 0.396- 
19 April 2017 122 6 3.02 0.58 1.54 2.15 16.24 0.046 − 0.441  
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NBR2 =
(ρSWIR1 − ρSWIR2)

(ρSWIR1 + ρSWIR2)
(2)  

BSI =
(ρSWIR2 + ρRed) − (ρNIR + ρBlue)

(ρSWIR2 + ρRed) + (ρNIR + ρBlue)
(3) 

Where ρ is the surface reflectance (%) of the far shortwave infrared 
(SWIR) (i.e., SWIR1 = B11 band and SWIR2 = B12 band for Sentinel-2), 
near-infrared (NIR = B8), red and blue spectral regions. Values range 
between − 1 and 1, where a higher NDVI value indicates a higher 
coverage of chlorophyllian vegetation, while both higher BSI or NBR2 
indicate a bare soil without straw. 

Driven by the lowest NDVI value amongst a time series. A first bare soil 
method was based on NDVI and initially designed and used by Loiseau 
et al. (2019). It requires first choosing a threshold NDVI value for 
defining a bare soil, in order to discard those pixels with values higher 
than the chosen threshold, that are assumed to be vegetated. The bare 
soil pixel at coordinate (x;y) of the date t is then kept into the composite 
image if its NDVI value, i.e. the coverage of photosynthetically active 
vegetation, is the lowest across the whole time series with the same pixel 
coordinates (equation (4)). 

bare soil(x,y) = min
(t∈[1,T ])

NDVI(x,y,t) AND NDVI ≤ 0.27 or 0.35 (4) 

Where x, y are the geographic coordinates of a given pixel; t is the 
time when the image is acquired across the whole series ranging from 1 
to T (last date). 

This method was initially defined at the national scale of mainland 
France, for which the harmonized threshold of 0.27 proved to be the best 
trade-off for getting the highest bare soil area while reducing the effects 
of sparse vegetation at national scale (Loiseau et al., 2019). In line with 

this national study, the 0.27 threshold value was tested in this study for 
NDVI (temporal mosaic named Bare_soil0.27, Table 5), but for the 
remaining methods, the 0.35 threshold value (previously used for this 
area) was retained for extracting the bare soils (temporal mosaic named 
Bare_soil0.35, Table 5). 

The NDVI-based method was applied on the whole series, then on a 
reduced time series based on the most extended available sequences of 
bare soil dates for each threshold. For each date, the NDVI image was 
binarized into bare soil (value 1) and vegetated or cloud or shadow pixel 
(value 0). Binarized images were stacked and at each pixel, binary 
values were added, to compute the frequency of bare soil coverage 
across the 9 dates-series. 

In order to characterize the frequency of bare soil coverage into more 
details, the temporal sequence of binary values was assessed, by adding 
each binarized NDVI image of a given date multiplied by 109 (first date 
of 12 March 2016) then 10i (ith date, i comprised between 8 and 1, in 
decreasing order), to 1 (last date of 19 April 2017). For instance, the 
“111110000” sequence corresponds to bare soil occurring from 12 
March to 27 December 2016 and followed by vegetated pixels for the 
remaining dates. The most extended sequences of 9 values were there-
fore identified, and their area calculated. 

Driven by the highest BSI value amongst the S2 time-series. The BSI 
index (equation (2)) used by Diek et al. (2017) with Landsat series at the 
scale of Switzerland was also tested for extracting the bare soil area at 
each pixel across the S2 time series (equation (5)). 

bare soilBSI(x,y) = max
(t∈[1,T ])

BSI(x,y,t) (5) 

This method was the sole not based on any NDVI threshold, as it was 
meant to supplant the use of NDVI. The whole series was tested, fol-
lowed by a reduced time series relying on the quartiles of maxBSI values 

Fig. 3. General flowchart for the mosaicking approach (s = NDVI threshold of either 0.27 or 0.35; BGP = best global performance).  
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amongst the sample set (Table 6). 
Driven by the lowest NBR2 value amongst a S2 time-series. The NBR2 

index (equation (3)), initially defined by Van Deventer et al. (1997) 
using the SWIR Landsat TM bands 7 and 5, was later used by Demattê 
et al. (2018) for extracting the bare soil area at each pixel across a 
Landsat8 time series in Brazil then adapted for Sentinel-2 by Castaldi 
et al. (2019b) in Germany. Following these authors, differences between 
B3 and B2 (green vegetation index GVI1) and B4 and B3 (green vege-
tation index GVI2) higher than zero (equation (6)) were calculated prior 
to the NBR2 index (equation (6)). 

bare soilNBR2(x,y) = min
(t∈[1,T ])

NBR2(x,y,t) AND GVI1 > 0 AND GVI2 > 0

(6) 

Prior to this bare_soilNBR2 method, vegetated pixels were discarded 
when NDVI value was > 0.35 (Table 5). 

The whole S2 series with 9 dates was tested, then reduced time series 
after discarding the bare soils sample locations having NBR2 values 
higher than 3rd quartile, then median, and finally 1st quartile, i.e. 
keeping the least (or none) dry vegetation cover across the series 
(Table 6). These threshold values were applied to the min NBR2 image to 
calculate the corresponding areas. 

2.6.1.2. Driest soil approaches. A second set of per-pixel approaches, 
named “driest soil approaches”, consists in extracting, for a sequence of 

bare soil pixels, those having the lowest soil water content or likely to be 
driest according to a soil moisture index. The seek of driest soil is aimed 
at minimizing the disturbing effects that soil moisture may have on SOC 
content prediction according to previous studies (Minasny et al., 2011), 
(Rienzi et al., 2014). Driest soil already includes the use of spectral 
indices meant to remove either green vegetation (NDVI) or dry vege-
tation (NBR2), ie selecting bare soil. 

Driven by the lowest S2WI value amongst S2 time-series, the 
‘DriestS2WI_bare_soil’ method relies on the soil moisture index ‘S2WI’ 
calculated from S2 images (Vaudour et al., 2019b) as follows (equation 
(7)): 

S2WI =
ρ(865nm)− ρ(1610nm)− ρ(2190nm)

ρ(865nm) + ρ(1610nm) + ρ(2190nm)

(7) 

Where ρ is surface reflectance (%). 
This S2WI index results in negative values for bare soils, ranging 

from ~ -0.5 to 0 and is useful for separating between very moist (higher 
values) and very dry soils (lower values) along this time series. 

The bare soil pixel at coordinate (x, y) of the date t is kept in this 
composite image if its S2WI value is the lowest across the whole time 
series with the same pixel coordinates. Similarly to the bare soil 
(equation (1)), the driest pixels for each tile are those for which the S2WI 
value, i.e. an indication of the soil moisture, is minimized across the 
whole time series for non-masked pixels with the same pixel coordinates 
(equation (8)). 

DriestS2WI bare soil(x,y) = min
(t∈[1,T ])

S2WI(x,y,t) AND NDVI ≤ 0.35 (8) 

Where x ,y are the geographic coordinates of a given pixel; t is the 
time when the image is acquired across the whole series ranging from 1 
to T (last date). 

For this DriestS2WI_bare_soil method, vegetated pixels were discarded 
when NDVI value was > 0.35. As a matter of fact, when comparing SOC 
prediction performances for bare soils extracted from threshold values 
of either 0.27 or 0.35, very similar results were obtained (Vaudour et al., 
2019b). 

The whole S2 series with 9 dates was tested, then reduced time series 
after discarding the bare soils sample locations having minS2WI values 
higher than 3rd quartile, then median, and finally 1st quartile, i.e. 
keeping the driest of the driest soil samples across the series (Table 6). 
These threshold values were applied to the min S2WI image to calculate 
the areas covered. 

Driven by the lowest S2WI value amongst a S2 time-series for NBR2- 
derived bare soil, the ‘DriestS2WI_bare_soilNBR2′ method relies on the 
soil moisture index ‘S2WI’ for bare soil pixels retrieved according to the 
Bare_soilNBR2 method, as follows (equation (9)). 

DriestS2WI bare soilNBR2(x,y) = min
(t∈[1,T ])

S2WI(x,y,t) AND bare soilNBR2(x,y,t)

(9) 

The whole S2 series with 9 dates was tested, then reduced time series 
after discarding the bare soils sample locations having both NBR2 and 
S2WI values higher than 3rd quartile each, then median (1st quartile not 
retained because of insufficient sample size), i.e. keeping both least (or 
none) dry vegetation cover and driest soils across the series. The areas 
covered were obtained by crossing the quartile classified images of both 
NBR2 and S2WI. 

Driven by the lowest S1-estimated soil moisture amongst a time-se-
ries, the “driest bare soil’ method relies on minimizing the S1-derived soil 

Table 5 
Conditions fulfilled by a pixel from a given date for integrating its reflectance 
spectrum into the mosaic according to temporal mosaicking methods.  

Approach Driver Name of temporal mosaic Way for selections 

Per pixel Bare 
soil 

Bare_soil 0.27 NDVI ≤ 0.27 AND 
minNDVI 

Per pixel Bare 
soil 

Bare_soil 0.35 NDVI ≤ 0.35 AND 
minNDVI 

Per pixel Bare 
soil 

Bare_soilBSI MaxBSI 

Per pixel Bare 
soil 

Bare_soilNBR2 NDVI ≤ 0.35 AND GVI1 
> 0 AND GVI2 > 0 AND 
minNBR2 

Per pixel Driest 
soil 

DriestS2WI_bare_soil NDVI ≤ 0.35 AND 
minS2WI 

Per pixel Driest 
soil 

DriestS2WI_bare_soilNBR2 NDVI ≤ 0.35 AND GVI1 
> 0 AND GVI2 > 0 AND 
minNBR2 AND minS2WI 

Per pixel Driest 
soil 

Driest_bare_soil NDVI ≤ 0.35 AND minθ 
(%vol.) 

Per pixel Driest 
soil 

Driest_bare_soil, θ < 25%vol. NDVI ≤ 0.35 AND minθ 
(%vol.) < 25%vol. 

Per-date Best 
date 

BGP NDVI ≤ 0.35 AND 
maxRPD 

Per-date Bare 
date 

Bare_dateNBR2 NDVI ≤ 0.35 AND min 
(meanNBR2) 

Per-date Driest 
date 

Driest_dateS2WI NDVI ≤ 0.35 AND min 
(meanS2WI) 

Per-date Driest 
date 

Driest_datet NDVI ≤ 0.35 AND min 
(meanθ(%vol.)) 

Per-date Driest 
date 

Best areal_driest date, meanθ(% 
vol.) < 25%vol. 

NDVI ≤ 0.35 AND min 
(meanθ(%vol.)) < 25% 
vol. AND maxArea 

Per-date Driest 
date 

Best areal_driest date, meanθ(% 
vol.)) < 25%vol. NBR2 < 0.09 

NDVI ≤ 0.35 AND min 
(meanθ(%vol.)) < 25% 
vol. AND maxArea AND 
NBR2 < 0.09  

Table 6 
Indices statistics for the largest sample sets available. Skewness is of type 3 according to Joanes and Gill (1998).  

Index Number of samples Min 1st quartile median mean 3rd quartile Max Standard deviation skewness 

max BSI across 9 dates 329 − 0.545 0.026 0.134 0.081 0.188 0.299 0.176 − 1.9 
min NBR2 across 9 dates 299 0.02 0.053 0.088 0.112 0.159 0.358 0.05 0.7 
min S2WI across 9 dates 261 − 0.53 − 0.44 − 0.41 − 0.40 − 0.36 − 0.17 0.06 0.7  
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moisture content θ for bare soils, according to the NDVI-threshold of 
0.35, amongst the 9 dates (equation (10)). 

Driest bare soil(x,y) = min
(t∈[1,T])

θ(x,y,t) AND NDVI ≤ 0.35 (10) 

Because of limited sample size, only one reduced time series relying 
on the pixels the min θ was lower than 25% vol. was tested. The 
threshold value of 25%vol. was applied to the min θ image to calculate 
the area covered. 

2.6.2. Per-date approaches 
Per-date approaches rely on the ranking of images according to an 

average or global indicator. They were tested on the whole series, then 
on reduced series removing one date each time. The area reached by 
each mosaic was computed by adding successively the bare soil pixels of 
a given date that were not already included from the previous date, 
through conditional requests. This set of approaches implies that a sig-
nificant part of each mosaic will contain pixels originating from a same 
date, while a minority of pixels will be retained from other dates ac-
cording to their ranking. 

Driven by the highest global performance value amongst a time se-
ries, the “best date” mosaicking consists of ranking the best global per-
formance for each date, according to the RPD value of a given date 
(Vaudour et al., 2019b, Table 4). The bare soil pixel of the tile t remains 
in the composite image if the prediction performance obtained for the 
single tile t is the best one across the whole time series (BGP, equation 
(11)). 

BGPt = max
(t∈[1,T ])

RPD(t) AND NDVI ≤ 0.35 (11) 

For this performance-based mosaicking, vegetated pixels were dis-
carded when NDVI value was > 0.35; the same as for the other per-date 
mosaics. 

Driven by the NBR2-based bare image amongst a time series, the 
“bare date” mosaicking consists of ranking by date the average NBR2 
index computed for bare soils (equation (12)). 

Bare dateNBR2t = min
(t∈[1,T ])

(meanNBR2)t AND NDVI ≤ 0.35 (12) 

Driven by the S2WI-based driest image amongst a time series, the 
“driest dateS2WI” mosaicking consists of ranking by date the average soil 
water index computed for bare soils (equation (13)). 

Driest dateS2WIt = min
(t∈[1,T])

(meanS2WI)t AND NDVI ≤ 0.35 (13) 

Driven by the S1-derived soil water content amongst a time series, 
the approach selecting the driest image, or “driest date” mosaicking, 
consists of ranking by date the average S1-derived soil water content 
computed for bare soils (Table 3) (equation (14)). 

Driest datet = min
(t∈[1,T ])

(meanθ)t AND NDVI ≤ 0.35 (14) 

The main purpose of mosaicking is to extend the predicted area. To 
comply with such purpose the spatial extent covered shall be taken into 
account when adding a date. Considering that only soil water content 
higher than 25% will have a dramatic effect on prediction performance 
(Rienzi et al., 2014), a variant of this driest date method named 
«areal/driest date compromise » consists of discarding the dates with 
mean water content ≥ 25% and then ordering the dates by increasing 
mean water content θ, and for two dates with values of θ differing 
by<6%, selecting the date covering the largest area. 

3. Results 

Mosaicking approaches were analysed according to i) their perfor-
mances of SOC content prediction and ii) the total area on which pre-
dictions could be performed. 

3.1. Maximum bare area mapped across the time series 

Globally, using a NDVI threshold of 0.27, slightly more than half of 
the area (51.9%) was never detected as bare soil across the time series, 
while such no detection dropped to as low as 36.7% for a 0.35 value, i.e. 
63.3% of the agricultural area was detected as bare across the whole 9- 
dates time series (Table 7). Whatever threshold, the frequency of bare 
soil detection ranged from 0 to 9 times, but with a very low occurrence 
for>5 times (Table 7). 

For the 0.35-threshold, the bare soil coverage of the agricultural area 
varied from 8 to 49% amongst dates, being generally close to 16% in late 
Spring (Fig. 4). About half of the bare soils were detected either once 
(16.5 km2) or twice (15.3 km2), while the remaining were detected three 
times or up to 8 (10 to 15% additional area each) or even 9 times (~6% 
additional area) (Fig. 5). 

For NDVI ≤ 0.35, over the whole time series, about a hundred binary 
sequences of bare/non bare soil were observed, amongst which ten only 
covered>1 km2 each (Table 8). The most extended sequence was the 4- 
dates “110110000” sequence of bare soil in March, then November and 
December 2016 (>5 km2), followed by the 6 dates “000111111” 
sequence of bare soil from November 2016 to April 2017 (3.8 km2). 

3.2. Composition and spatial distribution of the samples gathered for each 
mosaic 

The sample sizes resulting from the selection process for each mosaic 
were comprised between 40 and 329 and 143 and 268 for the per-pixel 
approaches (Table 9) and per-date approaches (Table 10) respectively. 
Distributions of SOC contents were slightly positively skewed whatever 
sample set (type 3 skewness according to Joanes and Gill (1998)), but 
normal according to D’Agostino, Shapiro-Wilks, Cramer von Mises and 
Anderson-Darling normality tests (Wuertz et al., 2020). 

For most samples, SOC contents values ranged between 6 and 8 and 
32–36 g.kg− 1, were around 14–15 g.kg− 1 in average with a standard 
deviation of ~ 5 g.kg− 1. This holds particularly true for per-dates ap-
proaches (Table 10), suggesting that mosaic samples were very similar 
to the whole sample set, and homogeneously spread over the area. 

However, the smallest samples of per-pixel approaches were specific 
samples, with lower mean and tighter range compared to the others. 

3.3. Performances of per_pixel mosaics 

Most of PLSR models based on per-pixel mosaics constructed from 
minimizing or maximizing a spectral index value per pixel yielded poor 
performances (R2

cv ≤ 0.3, RPDcv ≤ 1.2, RPIQ < 1.7, Table 11), whatever 
the number of dates incorporated. Only models based on 3 mosaics 
provided suitable SOC prediction performances: the DriestS2WI_bar-
e_soilNBR2 mosaic, obtained with indices values lower than the median 
for both indices, the Bare_soilNBR2 mosaic obtained with indices values 
lower than the 1st quartile (0.053)) and the Driest bare soil mosaic, ob-
tained with θ < 25% vol.. These 3 best performing approaches incor-
porated less dates (4 dates only for the DriestS2WI_bare_soilNBR2 and 
Bare_soilNBR2 mosaics) and relied on small datasets (around 40 samples 
for the highest RPD values obtained with the Driest bare soil mosaic, with 
θ < 25% vol) (Table 11). 

According to our previous analysis of the SOC prediction perfor-
mances (Vaudour et al., 2019b), poor results can be explained by the 
composition of the dates incorporated into mosaics (Fig. 6&7), which is 
dominated by dates characterized by disturbing factors such high soil 
moisture (ie., Spring date of 12 March 2016) and both high soil moisture 
and surface roughness (30 November 2016, 27 December 2016). These 
dates did not enable sufficient individual performances, having RPD 
values below 1.2 (Table 4). For the per-pixel approaches, such poorly 
predictive dates remain predominant for the NDVI-based Bare-soil even 
when 4 dates only compose a mosaic (Fig. 7), and remain well repre-
sented for DriestS2WI_bare_soil and Bare_soilBSI. 
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Table 7 
Proportion of bare soil detected and detection frequency among 9 dates according to NDVI threshold. Detection frequency range from 0 (never detected) to 9 (always 
detected).   

Number of times bare soil was detected among the 9 dates  

NDVI 0 1 2 3 4 5 6 7 8 9 

% of pixels detected 
(area detected km2) 

<0.27 51.9 (55.1) 13.0 (13.8) 9.5 (10.1) 6.8 (7.2) 7.6 (8.0) 6.4 (6.8) 3.3 (3.5) 0.7 (0.8) 0.5 (0.6) 0.3 (0.3) 
<0.35 36.7 (38.9) 16.5 (17.5) 15.3 (16.2) 7.0 (7.4) 8.1 (8.6) 9.2 (9.8) 4.8 (5.1) 1.1 (1.2) 0.9 (1.0) 0.4 (0.4)  

Fig. 4. Map of the percentage of bare soil coverage for the agricultural area according to acquisition date (NDVI ≤ 0.35).  

Fig. 5. Map of the frequency of bare soil detection for the agricultural area over the whole time series (NDVI ≤ 0.35).  
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While obtained from a reduced dataset, the best predicting per-pixel 
approaches suggest that driest soils enable to better predict SOC con-
tents. The 4 dates- DriestS2WI_bare_soilNBR2 mosaic exhibits some syn-
ergy between the soil moisture index S2WI and the bare soil index NBR2, 
but this mosaic obtained from minimizing two indices (minS2WI, 
≤-0.41, minNBR2 ≤ 0.087) relied on a very low sample size (40), and 
covered a small extent while the NBR2-derived mosaic with values lower 
than 0.05 covered<1/10 of the agricultural area. The 7 dates- Driest bare 
soil mosaic for θ < 25% vol. provided a high RPDcv showing an artifi-
cially good performance that is contradicted by a low RPIQcv, pre-
sumably because of higher skewness and limited spread of values. 

Finally, none of these per-pixel mosaics with acceptable performance 
covered an area higher than the individual images yielding comparable 
performance (Table 4). While the date of 19 April 2017 was predomi-
nant in their composition (Fig. 6&7), none of these approaches yielded 

higher performance than that obtained from this best single date of 19 
April 2017 (RPDcv = 1.54, Table 4). 

3.4. Performances of per_date mosaics 

Overall, compared to per pixel-mosaics based on the whole time 
series, a higher number of mosaics constructed from minimizing a 
spectral index value per date yielded acceptable performance, with 3 
dates at least (Table 12). The best performance was reached for the 
Driest_date approach with 3 dates (RPDcv of 1.50), followed by the 
Best_areal_Driest_date compromises with 4 dates (RPDcv of 1.43) and 4 
dates plus NBR2 ≤ 0.09 (RPDcv of 1.47), the Bare_dateNBR2 with 3 dates 
(RPDcv of 1.46), and finally the BGP with 3 or 4 dates (RPDcv of 1.43 
and 1.41, respectively). Yet the performance of the mosaic constructed 
from 5 dates based on the BGP approach was still close to fair. Of these 
best models, the 4-dates Best_areal_Driest_date compromises and the 4 
dates-BGP had acceptable RPIQcv value comprised between 1.8 and 2.0 
for both cross-validation (Table 12) and validation (Table 13). 

As observed for the per-pixel mosaics, and for the same reasons 
(Fig. 8), using the whole series resulted in poor performances. 

The Best_areal_Driest_date mosaic with 4 dates enables the most 
extended predicted area, covering nearly 60% of the largest NDVI-based 
bare soil predictable area (Table 7). While the size of the contributing 
sample (180) was very close to that of BGP obtained with 4 dates (187), 
the spatial distribution of the contributing fields was more evenly spread 
over the study area, with greater areal contribution of the third and 
fourth dates incorporated (Fig. 9). 

The aerial gain enabled by the best mosaics (Table 7) was more than 
twofold that of the single image of 19 April 2017 (Table 4), which was 
not only the first image standing out in their composition, but also the 
one giving rise to the best single-date performance (RPDcv of 1.54, 
Table 4). The spatial patterns of the best 4-dates mosaics were very 
similar (Fig. 10), with a median value of the residual of SOC content 
prediction slightly lower for the Best_areal_Driest_date mosaic (Fig. 11). 

The above-mentioned best models suggest that it is not advisable to 
add>4 dates if one wishes to maintain an acceptable SOC prediction 
performance. The more the pixels heterogeneity due to date is limited, 

Table 8 
Most extended sequences of detected bare soil.  

Sequence Number of 
dates 

area (km2) for 
NDVI ≤ 0.27 

area (km2) for 
NDVI ≤ 0.35 

000100000, bare soil in Dec16 1 10.52 14.76 
000110000, bare soil in 

Dec16 + beginning of 
March17 

2 3.68 10.75 

110000000, bare soil in 
March16 

2 3.30 2.44 

110100000, bare soil in 
March + Nov16 

3 1.63 1.51 

111000000, bare soil in 
March + Apr16 

3 1.35 1.39 

110110000, bare soil in 
March + Nov + Dec16 

4 2.68 5.15 

111100000, bare soil from 
March to Nov16 

4 2.02 1.14 

111110000, bare soil from 
March to Dec16 

5 0.89 2.66 

000011111, bare soil from 
Dec16 to Apr17 

5 1.52 1.51 

000111111, bare soil from 
Nov16 to Apr17 

6 2.59 3.84  

Table 9 
Statistics of soil organic carbon (SOC) contents (g.kg–1) according to per-pixel mosaics. Please refer to Table 6 for the meaning of the chosen thresholds. N, number of 
calibration samples; q1; first quartile; μ, mean; q3; third quartile; σ, standard deviation; Sk, skewness.  

Mosaic N min q1 μ q3 max σ Sk 

Bare_soil, NDVI ≤ 0.27 239 6.20 11.40 15.45 18.30 35.90 5.20 1.14 
Bare_soil, NDVI ≤ 0.27, 000,111,111 167 6.20 11.40 15.01 17.45 35.90 5.25 1.51 
Bare_soil, NDVI ≤ 0.27, 000,011,111 134 6.20 11.60 15.43 18.98 28.40 4.74 0.56 
Bare_soil, NDVI ≤ 0.27, 111,100,000 131 6.20 11.60 15.40 18.55 28.40 4.73 0.61 
Bare_soil, NDVI ≤ 0.27, 110,100,000 118 6.20 11.80 15.55 18.98 28.40 4.84 0.55 
Bare_soil, NDVI ≤ 0.35 271 6.20 11.40 15.44 18.45 35.90 5.29 1.04 
Bare_soil, NDVI ≤ 0.35, 000,111,111 193 6.20 11.10 15.04 17.80 35.90 5.40 1.33 
Bare_soil, NDVI ≤ 0.35, 111,110,000 164 6.20 11.45 15.38 19.30 29.10 4.96 0.57 
Bare_soil, NDVI ≤ 0.35, 110,110,000 157 6.20 11.30 15.32 19.10 29.10 4.99 0.61 
Bare_soil, NDVI ≤ 0.35, 110,100,000 144 6.20 11.20 15.43 19.30 29.10 5.10 0.56 
Bare_soilBSI 329 6.20 11.28 15.42 18.50 35.90 5.23 0.97 
Bare_soilBSI, >0.027 245 6.20 11.40 15.49 18.30 35.90 5.23 1.14 
Bare_soilBSI, >0.134 164 8.92 11.40 15.11 17.73 35.00 4.66 1.21 
Bare_soilBSI, >0.188 83 9.06 11.40 14.98 17.90 31.90 4.27 1.09 
Bare_soilNBR2 299 6.38 11.10 15.40 18.50 35.90 5.29 1.00 
Bare_soilNBR2, ≤0.159 245 7.04 11.40 15.35 18.30 35.90 5.18 1.18 
Bare_soilNBR2, ≤0.087 163 7.04 11.40 15.19 18.15 31.90 4.72 0.87 
Bare_soilNBR2, ≤0.053 81 8.92 10.50 13.73 16.20 26.60 3.80 0.96 
DriestS2WI_bare_soil 261 6.20 11.40 15.57 18.50 35.90 5.33 1.01 
DriestS2WI_bare_soil, ≤-0.36 198 7.04 11.40 15.52 18.30 35.90 5.39 1.24 
DriestS2WI_bare_soil, ≤-0.41 138 8.92 11.40 15.86 19.60 35.00 5.36 0.99 
DriestS2WI_bare_soil, ≤-0.44 81 9.13 12.10 15.92 19.30 31.90 4.81 0.84 
DriestS2WI_bare_soilNBR2 143 7.04 11.40 15.44 18.50 35.90 5.65 1.23 
DriestS2WI_bare_soilNBR2, minS2WI, ≤-0.36, minNBR2 ≤ 0.159 83 7.04 11.40 14.92 15.85 35.90 5.80 1.78 
DriestS2WI_bare_soilNBR2, minS2WI, ≤-0.41, minNBR2 ≤ 0.087 40 9.04 11.40 14.23 16.32 24.60 3.87 0.95 
Driest_bare_soil 84 8.09 11.00 15.18 18.07 31.90 5.82 1.14 
Driest bare soil, , θ < 25%vol. 42 8.92 10.35 14.17 14.80 31.90 5.63 1.62  
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the better is prediction performance. When examining the residuals of 4 
dates-mosaics (Fig. 12), the dates of 19 April 2017, and in a lesser de-
gree, 9 April 2017, are those giving rise to the lowest residuals, followed 
by 15 March 16, and then 27 and 30 March 2017 (less performing dates). 

None of the multidate models reached a performance as high as the 
single date of 17 April 2017, i.e. multidate mosaics enabled to increase, 
and more than double, the predicted area but not the prediction per-
formance compared to the best single date. Benefiting volumetric soil 

moisture information derived from S1 contributed to the most efficient 
strategy for reaching the best areal compromise whilst maintaining 
acceptable performance. Whatever approach, the best models are 
models retaining the driest soil conditions. 

4. Discussion 

Single date acquisitions hardly enable to derive SOC prediction over 

Table 10 
Statistics of soil organic carbon (SOC) contents (g.kg–1) according to per-date mosaics. N, number of calibration samples; q1; first quartile; μ, mean; q3; third quartile; 
σ, standard deviation; Sk, skewness.  

Mosaic, NDVI ≤ 0.35 Number of dates included t N min q1 μ q3 max σ Sk 

BGPt 9 268 6.20 11.40 15.48 18.50 35.90 5.31 1.03 
BGPt 8 241 6.20 11.40 15.53 18.50 35.90 5.28 1.05 
BGPt 7 237 6.20 11.40 15.45 18.30 35.90 5.29 1.09 
BGPt 6 235 6.20 11.40 15.46 18.30 35.90 5.30 1.10 
BGPt 5 198 6.38 11.43 15.64 18.38 35.90 5.35 1.14 
BGPt 4 187 6.38 11.40 15.77 18.50 35.90 5.44 1.08 
BGPt 3 173 6.38 11.40 15.08 18.00 31.90 4.72 0.86 
Bare_dateNBR2 7 268 6.20 11.40 15.48 18.50 35.90 5.31 1.03 
Bare_dateNBR2 6 203 6.38 11.45 15.71 18.85 35.90 5.34 1.08 
Bare_dateNBR2 5 201 6.38 11.50 15.72 18.60 35.90 5.35 1.09 
Bare_dateNBR2 4 197 6.38 11.40 15.64 18.40 35.90 5.36 1.14 
Bare_dateNBR2 3 173 6.38 11.40 15.08 18.00 31.90 4.72 0.86 
Driest_dateS2WI 6 268 6.20 11.40 15.48 18.50 35.90 4.77 1.03 
Driest_dateS2WI 5 266 6.20 11.40 15.44 18.38 35.90 5.31 1.05 
Driest_dateS2WI 4 199 6.38 11.40 15.63 18.45 35.90 5.36 1.13 
Driest_dateS2WI 3 198 6.38 11.43 15.66 18.48 35.90 5.36 1.12 
Driest_date 9 268 6.20 11.40 15.48 18.50 35.90 5.31 1.03 
Driest_date 8 241 6.20 11.40 15.53 18.50 35.90 5.28 1.05 
Driest_date 7 204 6.38 11.47 15.71 18.73 35.90 5.33 1.08 
Driest_date 6 202 6.38 11.50 15.72 18.57 35.90 5.33 1.09 
Driest_date 5 184 6.38 11.57 15.72 18.50 35.90 5.34 1.16 
Driest_date 4 172 6.38 11.68 15.87 18.73 35.90 5.45 1.10 
Driest_date 3 143 6.38 11.55 15.87 18.40 35.90 5.56 1.21 
Areal_driest_date compromise, θ ≤ 25%, NBR2 ≤ 0.09 4 157 6.36 11.40 15.64 18.40 35.90 5.36 0.84 
Best areal_driest_date compromise, θ < 25% 4 180 6.38 11.47 15.71 18.43 35.90 5.34 1.18 
Common calibration dataset 4 105 6.38 11.55 15.90 18.40 35.90 5.62 1.23 
Common validation dataset 4 51 8.92 11.60 15.71 18.40 31.90 5.21 1.00  

Table 11 
Cross-validation performances of per-pixel-based mosaics and their spatial coverages (For Bare_soil, the most represented rotations are described by a succession of 
0 (vegetated soil, not used in the mosaic) and 1 (bare soil) for each of the 9 dates starting from 12 March 2016 on the left). Nd, number of dates included; N, number of 
samples; NLV, number of latent variables.  

Mosaic Nd N NLV RMSEcv (g.kg− 1) R2
cv RPDcv RPIQcv Area covered (km2) 

Bare_soil, NDVI ≤ 0.27 9 239 3 4.90 0.11 1.06 1.41 50.96 
Bare_soil, NDVI ≤ 0.27, 000,111,111 6 167 6 5.00 0.09 1.05 1.21 25.85 
Bare_soil, NDVI ≤ 0.27, 000,011,111 5 134 4 4.60 0.05 1.03 1.60 15.2 
Bare_soil, NDVI ≤ 0.27, 111,100,000 4 131 4 4.17 0.22 1.13 1.67 20.2 
Bare_soil, NDVI ≤ 0.27, 110,100,000 3 118 5 4.18 0.25 1.16 1.72 16.3 
Bare_soil, NDVI ≤ 0.35 9 272 3 5.15 0.05 1.03 1.37 67.13 
Bare_soil, NDVI ≤ 0.35, 000,111,111 6 193 6 5.20 0.07 1.04 1.29 38.4 
Bare_soil, NDVI ≤ 0.35, 111,110,000 5 164 6 5.00 − 0.02 0.99 1.57 26.6 
Bare_soil, NDVI ≤ 0.35, 110,110,000 4 157 5 4.34 0.24 1.15 1.80 51.49 
Bare_soil, NDVI ≤ 0.35, 110,100,000 3 144 5 4.36 0.27 1.17 1.86 15.07 
Bare_soilBSI 9 329 5 4.85 0.14 1.08 1.49 106.06 
Bare_soilBSI, >0.02699 8 245 4 4.75 0.17 1.10 1.45 53.81 
Bare_soilBSI, >0.13359 7 164 6 4.23 0.17 1.10 1.50 28.05 
Bare_soilBSI, >0.18767 5 83 5 3.43 0.35 1.24 1.90 10.96 
Bare_soilNBR2 8 299 4 4.72 0.20 1.12 1.57 99.17 
Bare_soilNBR2, ≤0.159 8 245 4 4.56 0.22 1.13 1.51 55.94 
Bare_soilNBR2, ≤0.087 7 163 4 3.51 0.44 1.34 1.92 28.12 
Bare_soilNBR2, ≤0.053 4 81 4 2.67 0.50 1.42 2.13 9.31 
DriestS2WI_bare_soil 8 261 6 5.10 0.08 1.04 1.39 66.45 
DriestS2WI_bare_soil, ≤-0.36 6 198 3 5.11 0.10 1.05 1.35 38.00 
DriestS2WI_bare_soil, ≤-0.41 6 138 3 5.02 0.12 1.07 1.63 20.76 
DriestS2WI_bare_soil, ≤-0.44 5 81 3 3.97 0.32 1.21 1.81 10.26 
DriestS2WI_bare_soilNBR2 6 143 5 5.22 0.14 1.08 1.36 66.45 
DriestS2WI_bare_soilNBR2, minS2WI, ≤-0.36, minNBR2 ≤ 0.159 5 83 3 5.45 0.11 1.06 0.82 37.14 
DriestS2WI_bare_soilNBR2, minS2WI, ≤-0.41, minNBR2 ≤ 0.087 4 40 4 2.53 0.56 1.53 1.94 16.69 
Driest_bare_soil 8 84 4 5.01 0.25 1.16 1.41 28.91 
Driest bare soil, θ < 25%vol. 7 42 8 3.74 0.55 1.51 1.19 15.97  
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a sufficient percentage of the agricultural area. This study shows that a 
limited period of two years enables to construct multidate mosaics to 
widen the bare soil coverage within a cropland area characterized by 3 
or 4 years-rotations, while maintaining acceptable SOC prediction per-
formance, but this highly depends on the choice of the mosaicking 
approach as well as the selection of dates included. 

4.1. Per-pixel approaches for mosaicking 

Whatever approach used for creating a per-pixel mosaic, the pre-
dicted SOC maps obtained from these mosaics remain less accurate than 
the one produced using the single-date S2 data acquired on 19 April 
2017 (RPDcv = 1,54 and 16.24 km2, Table 4, Vaudour et al., 2019a,b). 
Some of them are even less extended following one or several thresh-
olding steps, which limit the number of composing pixels fulfilling the 
pertaining conditions. 

Composites created by per-pixel approaches focused on bare soil 

extraction (e.g. Diek et al., 2017; Rogge et al., 2018; Gallo et al., 2018; 
Demattê et al., 2018, Loiseau et al., 2019) were based on available bare 
soil pixels from different images acquired at different dates. Pixels in this 
kind of composite are collected at different dates, resulting in between 
pixels-variations in soil surface conditions such as soil moisture and soil 
surface roughness. For instance, over the Versailles Plain, soil surface 
roughness expressed through the root mean square surface height Hrms 
varied between 0.7 and 3.5 cm (Vaudour et al., 2014b, 2019b; Baghdadi 
et al., 2018), the spatial variations of which were due to tillage opera-
tions, and the between-dates variations marked by narrower histogram 
of values in Spring with lower Hrms values than in Autumn and Winter 
(Vaudour et al., 2019b). None of the mosaics obtained from a per-pixel 
approach driven only by the NDVI vegetation index allowed an 
acceptable SOC prediction performance, whatever the number of 
included dates and the chosen threshold for NDVI value (Table 11). 
Thus, even though the soil remote sensing community widely uses NDVI 
to extract bare soil in single-date images prior to modelling soil surface 

Fig. 6. Composition of per-pixel mosaics starting from the maximum possible dates (the x-axis is the number of soil samples selected from a given method).  

Fig. 7. Composition of per-pixel mosaics obtained from 4 or 5 dates (the x-axis is the number of soil samples selected from a given method).  
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Table 12 
Cross-validation performances of per-date mosaics and their spatial coverages. Nd, number of dates included; N, number of samples; NLV, number of latent variables.  

Mosaic, NDVI ≤ 0.35 Nd N NLV RMSEcv (g.kg− 1) R2
cv RPDcv RPIQcv Area covered (km2) 

BGP 9 268 4 4.36 0.32 1.22 1.63 67.13 
BGP 8 241 4 4.28 0.34 1.23 1.66 52.37 
BGP 7 237 4 4.31 0.33 1.23 1.60 51.85 
BGP 6 235 4 4.28 0.34 1.24 1.61 50.93 
BGP 5 198 6 3.87 0.48 1.38 1.80 39.73 
BGP 4 187 6 3.85 0.50 1.41 1.84 36.47 
BGP 3 173 6 3.30 0.51 1.43 2.00 34.34 
Bare_dateNBR2 7 268 5 4.64 0.23 1.14 1.53 66.66 
Bare_dateNBR2 6 203 3 4.23 0.37 1.26 1.75 41.34 
Bare_dateNBR2 5 201 3 4.13 0.40 1.29 1.72 40.29 
Bare_dateNBR2 4 197 3 4.16 0.40 1.29 1.68 39.68 
Bare_dateNBR2 3 173 6 3.24 0.53 1.46 2.04 34.28 
Driest_dateS2WI 6 268 4 4.77 0.19 1.11 1.49 66.76 
Driest_dateS2WI 5 266 6 4.73 0.20 1.12 1.48 66.41 
Driest_dateS2WI 4 199 4 4.77 0.21 1.12 1.48 40.61 
Driest_dateS2WI 3 198 4 4.76 0.21 1.13 1.48 38.49 
Driest_date 9 268 4 4.63 0.24 1.15 1.53 67.13 
Driest_date 8 267 4 4.63 0.24 1.15 1.52 66.43 
Driest_date 7 239 5 4.52 0.27 1.17 1.57 51.49 
Driest_date 6 202 5 3.98 0.44 1.34 1.78 40.32 
Driest_date 5 201 5 3.98 0.44 1.34 1.78 40.18 
Driest_date 4 197 5 4.02 0.44 1.34 1.79 39.59 
Driest_date 3 154 5 3.62 0.55 1.50 1.88 25.86 
Areal_driest_date compromise, θ ≤ 25%, NBR2 ≤ 0.09 4 157 6 3.26 0.54 1.47 2.15 22.47 
Best areal_driest_date compromise, θ < 25% 4 180 6 3.74 0.51 1.43 1.86 39.67  

Table 13 
Validation performances of four-date mosaics for a common dataset. Nbcal - Nbval refers to the number of calibration and validation samples, respectively. NLV, number 
of latent variables.  

Mosaic, NDVI ≤ 0.35 Nbcal - 
Nbval 

NLV RMSEcal (g. 
kg− 1) 

R2
cal RPDcal RPIQcal RMSEval (g. 

kg− 1) 
R2

val RPDval RPIQval 

BGP 103–51 5 4.14 0.45 1.36 1.65 3.56 0.52 1.46 1.91 
Bare_dateNBR2 103–51 5 4.35 0.40 1.29 1.57 3.94 0.42 1.32 1.73 
Driest_dateS2WI 103–51 6 5.47 0.04 1.03 1.25 4.36 0.28 1.19 1.56 
Driest_date 103–51 4 4.08 0.47 1.38 1.68 4.22 0.33 1.23 1.61 
Best areal_driest_date compromise, θ ≤ 25%, NBR2 ≤

0.09 
89–43 5 3.42 0.42 1.43 2.02 3.30 0.54 1.37 2.09 

Best areal_driest_date compromise, θ ≤ 25% 103–51 6 3.90 0.51 1.38 1.76 3.72 0.48 1.40 1.83  

Fig. 8. Composition of per-date mosaics from the maximum number of available dates (the x-axis is the number of soil samples selected from a given method).  
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properties (e.g., Stevens et al., 2010; Gomez et al., 2012; Vaudour et al., 
2016), such index might not be the most adequate for creating a tem-
poral mosaic of bare soil for the purpose of soil surface properties 
prediction. 

As the use of NDVI may generate confusion with tree shadow, cloud 
shadow and low hanging clouds, Diek et al. (2017) proposed to use the 
BSI index rather than NDVI. Nevertheless, while slightly better than the 
NDVI-based, none of the mosaics obtained from a per-pixel approach 
driven by the BSI vegetation index allowed an acceptable SOC predic-
tion performance, whatever the number of included dates and the BSI 
threshold (Table 11). 

In contrast, the mosaic obtained from a per-pixel approach driven by 

both the NDVI and NBR2 indices allowed acceptable SOC prediction 
performances, when using 4 dates, a NDVI-threshold of 0.35 and a 
NBR2-threshold of 0.053 (RPDcv = 1.42 and bare soil coverage of 9.31 
km2 ; Table 11), corroborating the results obtained by Castaldi et al. 
(2019b) using NBR2 values lower than 0.05. The NBR2 index, also 
defined by Van Deventer et al. (1997) as the “Normalized Difference 
Tillage index” (NDTI) for the Landsat TM, is likely to exclude the spectra 
of soil covered by straw or crop residues (Demattê et al., 2018) and, 
because of the proximity between mid-infrared bands and soil moisture 
absorptions, may also exclude spectra affected by high soil moisture 
(Castaldi et al., 2019b). 

None of the mosaics obtained from a per-pixel approach driven by 

Fig. 9. Spatial distribution and composition of the best per-date mosaics obtained from 4 dates (left, BGP; right, Best areal_driest_date trade-off; grey areas are non- 
agricultural areas, white areas are unpredicted vegetated fields). 

Fig. 10. Maps of SOC contents derived from the 4-date mosaics obtained from the Best areal/driest date compromise (right) and from the BGP (left) (grey areas are 
non-agricultural areas, white areas are unpredicted vegetated fields). 
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Fig. 11. Histograms of residuals and plots of predicted against observed SOC contents derived from the Best areal_driest_date compromise (up) and from the 
BGP4dates (down). 

Fig. 12. Boxplots of residuals of predicted SOC contents (in absolute value) according to composing dates and methods.  
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both the NDVI and the S2WI moisture index yielded acceptable perfor-
mances, whatever the number of included dates and the threshold of 
S2WI (Table 11). This lack of performance might be explained by the 
fact that, while this index proved capable of discriminating between 
very dry and very moist soils (Vaudour et al., 2019b), it might not well 
characterize intermediate situations. 

The mosaic obtained from a per-pixel approach driven by both the 
NDVI index and the S1-derived soil moisture content θ yielded accept-
able performances, for θ lower than 25% vol. and these lowest soil 
moisture values were derived from seven dates (RPDcv = 1,51 and 
15.97 km2; Table 11). Nevertheless, this mosaic allowed using only 42 
soil samples for calibrating the SOC prediction model, so the results have 
to be considered with caution. 

Finally, the mosaic obtained from a per-pixel approach driven by the 
NDVI, and thresholded NBR2 and S2WI indices allowed the best SOC 
prediction performances (RPDcv = 1.53; Table 11) but SOC was mapped 
over 16.6 km2 only (Table 11). This performance suggests that models 
are sensitive to green vegetation, dry vegetation and moisture. Conse-
quently, the construction of a temporal mosaic requires accounting for 
these 3 drivers. 

4.2. Per-date approaches for mosaicking 

As initiated by Diek et al (2016), it is important to consider the 
number of bare soil pixels to be included into the temporal mosaic. 
Similar to the per-pixel approaches, and whatever the approach used for 
creating a per-date mosaic, the predicted SOC maps obtained from these 
mosaics remained less accurate than the one produced using the single- 
date S2 data acquired on 19 April 2017 (RPDcv = 1.54, Table 4, Vaudour 
et al., 2019b). But in spite of this lower accuracy, the predicted SOC 
maps extended over more than twice the amount of bare soil pixels of 
the single-date S2 data acquired on 19 April 2017 (16.24 km2, Table 4, 
Vaudour et al., 2019b). Consistently with a higher number of bare soil 
pixels included through a global indicator ranking, per-date approaches 
selected a much larger sample size for calibration (>154) than per-pixel 
(>40), and had a better representativeness of the study area. 

When incorporating up to 4 dates, per-date approaches relying on 
ranking RPD resulted in acceptable performances, and close to accept-
able with 5 dates (RPDcv = 1.38 and 39.73 km 2 of bare soil; Table 12). 
For BGP, validation figures provided in Table 13 shall be considered 
with caution as the same dataset (or a portion of it) was used to derive 
single and multidate performances. 

Per-date approaches relying on ranking mean NDVI were unreliable, 
and this can be explained by no relationship between RPD and mean 
NDVI (Vaudour et al., 2019b). More refined approaches driven by both 
NDVI and NBR2 indices resulted in acceptable performances but for no 
>3 dates (RPDcv = 1.46 and 34.28 km 2 of bare soil; Table 12). 

Per-date approaches relying on ranking the mean S2WI soil moisture 
index were unreliable, and this can be explained by the lack of sensi-
tivity of S2WI. In contrast, per-date approaches relying on ranking the 
average S1-derived soil moisture resulted in acceptable performances, 
either for 3 dates only (RPDcv = 1.50 and 25.86 km 2 of bare soil; 
Table 12) or when considering the predicted area while ranking and 
discarding images having an average soil moisture higher than 25% vol.. 
The best results were obtained from 4 dates, all selected in Spring, 
including 1 date from the previous Spring, contributing to significant 
area increase (RPDcv = 1.43, RPDval = 1.40 and 39.67 km 2 of bare soil, 
Tables 12&13). 

4.3. Further researches 

Whatever approach, incorporating the whole series into the model 
allowed to increase the calibration database and the mapped surface but 
did not always enable to obtain acceptable prediction performance. 
Because some dates are prone to spectral disturbances, namely presence 
of clouds and cloud shadows, presence of crop residues on surface, 

emerging green vegetation, soil moisture, soil surface roughness (Vau-
dour et al., 2019b), mosaicking should not be carried out with any whole 
series. Incorporating dates affected by some disturbances, such as soil 
surface roughness due to tillage operations, actually results into 
degraded mosaic performances. A further improvement of mosaicking 
approaches would therefore consist of considering both soil moisture 
and soil surface roughness information. Accounting for dry vegetation 
also matters, but the threshold above which NBR2 values need to be 
discarded is low and does not fulfill the need for extended mapping. 
Overall, it is advisable to perform a selection of the best suited dates, 
prior to temporal mosaicking. This study suggests to target the dates 
within reduced seasonal series marked by driest soils over several years. 

5. Conclusion 

Single date acquisitions hardly enable to derive SOC prediction over 
a sufficient percentage of the agricultural area. Bare soil areas can be 
maximized by aggregating multiple acquisition dates and this study 
confims that Sentinel-2 is particularly well suited to produce a com-
posite multi-date bare soil image for predicting SOC content over 
cropland topsoils. For a cropland area monitored over two years and 
characterized by 3 or 4 years rotations, a limited number of dates could 
be incorporated within temporal mosaics yielding acceptable perfor-
mances. At each date, only the bare soils were retained, but as crop 
vegetation coverage changes between dates, we finally obtained a sub-
stantial proportion of bare soil in the mosaics. The further incorporation 
of other Spring dates of further years covering the whole rotation would 
enable to answer the need for more extended bare soil area while 
maintaining an acceptable performance. 

Because some dates are prone to spectral disturbances, mosaicking 
should not be carried out with any whole series, and only those dates in 
favour of best soil surface conditions shall be included. Two main sets of 
approaches seeking such conditions were conducted for Sentinel–2 im-
ages temporal mosaicking: the one, based on a per-pixel selection, was 
driven by soil surface characteristics, being bare soil, or bare dry soil, 
both deprived of green and/or dry vegetation; the other, based on a per- 
date selection, was driven either by the models performance with single- 
date, or by averaging soil surface indicators of bare soil, dry soil or a 
combination both. 

Whatever approach used for creating a per-pixel mosaic, the pre-
dicted SOC maps obtained from such mosaics remained less accurate 
than the one produced using the best single-date S2 image, and some of 
them were even less extended following one or several thresholding 
steps, which limited the number of composing pixels fulfilling the per-
taining conditions. 

On the contrary, per-dates approaches were more likely to increase 
the mapped extent. Of the per-date approaches, the best trade-off be-
tween predicted area and model performance was achieved from the 
temporal mosaic driven by the S1-derived moisture content which 
enabled to more than double the predicted area. 

This study suggests that a number of bare soil mosaics based on 
several indicators (moisture, bare soil, roughness…), preferably in 
combination, might maintain acceptable accuracies for SOC prediction 
whilst extending over larger areas than single-date images. 
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Gallo, B., Demattê, J., Rizzo, R., Safanelli, J., Mendes, W., Lepsch, I., Sato, M., 
Romero, D., Lacerda, M., 2018. Multi-Temporal Satellite Images on Topsoil Attribute 
Quantification and the Relationship with Soil Classes and Geology. Remote Sensing 
10, 1571. https://doi.org/10.3390/rs10101571. 

Geladi, P., Kowalski, B.R., 1986. Partial least squares regression: a tutorial. Analytica 
Chimica Acta 185, 1–17. 

Loiseau, T., Chen, S., Mulder, V.L., Román Dobarco, M., Richer-de-Forges, A.C., 
Lehmann, S., Bourennane, H., Saby, N.P.A., Martin, M.P., Vaudour, E., Gomez, C., 
Lagacherie, P., Arrouays, D., 2019. Satellite data integration for soil clay content 
modelling at a national scale. International Journal of Applied Earth Observation 
and Geoinformation 82, 101905. https://doi.org/10.1016/j.jag.2019.101905. 

Loubet, B., Laville, P., Lehuger, S., Larmanou, E., Fléchard, C., Mascher, N., 
Genermont, S., Roche, R., Ferrara, R.M., Stella, P., Personne, E., Durand, B., 
Decuq, C., Flura, D., Masson, S., Fanucci, O., Rampon, J.-N., Siemens, J., Kindler, R., 
Gabrielle, B., Schrumpf, M., Cellier, P., 2011. Carbon, nitrogen and Greenhouse 
gases budgets over a four years crop rotation in northern France. Plant and Soil 343, 
109–137. https://doi.org/10.1007/s11104-011-0751-9. 

Gholizadeh, A., Žižala, D., Saberioon, M., Borůvka, L., 2018. Soil organic carbon and 
texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral 
imaging. Remote Sensing of Environment 218, 89–103. https://doi.org/10.1016/j. 
rse.2018.09.015. 

Gomez, C., Lagacherie, P., Coulouma, G., 2012. Regional predictions of eight common 
soil properties and their spatial structures from hyperspectral Vis–NIR data. 
Geoderma 189–190, 176–185. https://doi.org/10.1016/j.geoderma.2012.05.023. 

Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., Rodes, I., 2017. Operational High 
Resolution Land Cover Map Production at the Country Scale Using Satellite Image 
Time Series. Remote Sensing 9, 95. https://doi.org/10.3390/rs9010095. 

Joanes, D.N., Gill, C.A., 1998. Comparing measures of sample skewness and kurtosis. 
Journal of the Royal Statistical Society: Series D (The Statistician) 47, 183–189. 
https://doi.org/10.1111/1467-9884.00122. 

Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., 
Chaplot, V., Chen, Z.-S., Cheng, K., Das, B.S., Field, D.J., Gimona, A., Hedley, C.B., 
Hong, S.Y., Mandal, B., Marchant, B.P., Martin, M., McConkey, B.G., Mulder, V.L., 
O’Rourke, S., Richer-de-Forges, A.C., Odeh, I., Padarian, J., Paustian, K., Pan, G., 
Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., 
Vågen, T.-G., van Wesemael, B., Winowiecki, L., 2017. Soil carbon 4 per mille. 
Geoderma 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002. 

Minasny, B., McBratney, A.B., Bellon-Maurel, V., Roger, J.-M., Gobrecht, A., Ferrand, L., 
Joalland, S., 2011. Removing the effect of soil moisture from NIR diffuse reflectance 
spectra for the prediction of soil organic carbon. Geoderma 167-168, 118–124. 
https://doi.org/10.1016/j.geoderma.2011.09.008. 

Noirot-Cosson, P.E., Vaudour, E., Gilliot, J.M., Gabrielle, B., Houot, S., 2016. Modelling 
the long-term effect of urban waste compost applications on carbon and nitrogen 
dynamics in temperate cropland. Soil Biology and Biochemistry 94, 138–153. 
https://doi.org/10.1016/j.soilbio.2015.11.014. 

R Development Core Team, 2015. The Comprehensive R Archive Network. The R 
Foundation for Statistical Computing, Wirtschaft Universitat, Vienna, Austria. 
http://www.r-project.org/. (Accessed 10 December 2020).  

Rienzi, E.A., Mijatovic, B., Mueller, T.G., Matocha, C.J., Sikora, F.J., Castrignanò, A., 
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