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Efficacy of information transmission in cellular communication
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Cell signaling is essential for individual cells to execute various tasks and respond to changes in their
environment. It is carried out via diffusing molecules, whose transport is often aided by directional advection.
How diffusion and advection together impact the accuracy of information transmission during signaling remains
poorly understood. Here, we study this problem using a simplified model of signal transport in the presence and
absence of crowding. Mutual information, our measure of accuracy, shows three distinct regimes characterized
by power-law decay. Surprisingly, crowding has no measurable effect on information transmission. Our results
provide several important insights into the role of transport in cell signaling.
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I. INTRODUCTION

The ability of individual cells to communicate and cor-
rectly respond to any alteration in their environmental cues
forms the basis of development, immunity, and tissue repair.
During cellular communication, an individual cell receives
signals from nearby cells or the surrounding environment.
Upon receiving the external signal, the cell transmits the
decoded information about the extracellular environment to
downstream effectors, which enables the cell to regulate its
physiological state in response to changing environments [see
Fig. 1(a)]. Similarly, within a cell, various organelles commu-
nicate by transporting materials via molecular motors along
cytoskeletal filaments. Examples of such cellular communi-
cation systems include pheromone diffusion, quorum sensing,
ion channel (e.g., calcium) diffusion, molecular motors carry-
ing cargo along microtubules, etc. [Fig. 1(a)] [1–4].

Cellular communication is carried out by diffusible sig-
naling molecules [1]. Often the motion of such signaling
molecules is aided by active processes that provide directional
advection [1]. Motor proteins (such as kinesins, myosins, etc.)
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carrying cargo are one such example. Hence cellular commu-
nication is essentially carried out via an interplay between
passive and active transport of signaling molecules, which
can impact their ability to reliably communicate. While the
efficacy of cellular communication has been studied exten-
sively using ideas from information theory [5–16], most of
these studies focused on biochemical networks involved in
the various signaling pathways [9,17–21]. Currently, there is a
burgeoning interest in understanding how transport properties
of signaling molecules impact the accuracy of information
transmission [22–24]. To achieve this goal, the complex
details of the biochemical pathways are abstracted out as
featureless molecules that move between a transmitter and
a receptor through drift and diffusion. In this paradigm of
molecular communication [23], the key goal is to understand
the accuracy of information transmission, such as through mu-
tual information (MI), and engineer communication channels
to improve the efficacy of information transmission. In this
paper, our goal is to develop a theory for molecular commu-
nication that can help design better molecular communication
channels. Hence, while the accuracy of information transmis-
sion involves both biochemical reactions and signal transport,
here we focus on the latter. The goal of this paper is to develop
a framework that allows us to study the efficacy of temporal
information transmission during cellular communication.

II. MODEL

We consider a simple stochastic model of cellular com-
munication (Fig. 1): Signaling molecules moving in a
one-dimensional (1D) channel of length L. The transmitter
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FIG. 1. Model of cellular communication: (a) Examples of cel-
lular communication systems. (b) A simple 1D model of cellular
communication channels. See text for details.

and receiver of the signal are located at x = 0 and x = L
[Fig. 1(b)], respectively. Once transmitted, each signaling
molecule moves on a 1D lattice of lattice spacing a [Fig. 1(b)].
This translates to N = L/a number of lattice sites in the chan-
nel. The transport of a molecule is characterized by two rates:
The rate of hopping toward the receiver kR and the rate of
hopping toward the transmitter kL. Each lattice site can be
occupied by only one molecule. Consequently, owing to the
excluded volume interaction, a signaling molecule can only
hop toward an unoccupied neighboring site. After traversing
the channel, a molecule is captured by the receiver at x =
L. In addition, we assume that the transmitter is a perfect
reflector and the receiver is a perfect absorber. Hence we
impose reflecting boundary conditions at x = 0 and absorbing
boundary conditions at x = L. Signaling molecules are fired at
different time points from the transmitter. The time between
two consecutive firing events is denoted as τF = t (i+1)

F − t (i)
F .

The time between consecutive detection events is given by
τD = t ( j+1)

D − t ( j)
D . Here, t i

F and t j
D denote the ith firing event

and jth detection event. We assume that the receiver gathers
information about τF from τD. Therefore the information pro-
cessing by the communication channel is intertwined with the
underlying transport process.

To characterize the impact of transport on the efficacy of
information transmission, we compute the mutual information
(a well-established metric to characterize information trans-
mission [7]) between the firing time interval and the detection
time interval:

I (τF ; τD) =
∑
τF

∑
τD

P(τF , τD) log2
P(τF , τD)

P(τF )P(τD)
(1)

=
∑
τF

∑
τD

P(τF )P(τD|τF ) log2
P(τD|τF )

P(τD)
. (2)

Here, P(τF ), P(τD), and P(τF , τD) are the probability distri-
bution of the firing time interval, the probability distribution
of the detection time interval, and the joint probability of
firing and detection time, respectively. Furthermore, with-
out any loss of generality, we define the normalized mutual

information,

I = I (τF ; τD)

H (τF )
, (3)

where H (τF ) is the entropy of the firing time distribution.
Using this characterization of information transmission, we
explore two scenarios of our model: (1) in the absence of
crowding, when the excluded volume interaction is not con-
sidered and (2) in the presence of crowding. In the first
scenario, we obtain an analytical solution for the mutual
information using Eqs. (2) and (3). The second scenario
is biologically more realistic since it explicitly incorporates
the effect of the excluded volume interaction; this is in line
with various cellular communication processes as depicted in
Fig. 1(a) [1]. In the ensuing section, we study the outcome of
the two scenarios in detail. Surprisingly, we find that crowding
has no measurable effect on information transmission.

III. INFORMATION TRANSMISSION IN THE ABSENCE
OF CROWDING

To delineate the impact of the transport properties of sig-
naling molecules on I (τF ; τD), first, we consider the scenario
when the firing events are separated enough such that the
influence of the excluded volume interaction is negligible. Un-
der these conditions, we employ a continuum version of our
model, whereby the transport process of signaling molecules
is described by drift and diffusion. The rates of hopping (kL

and kR) and lattice spacing can be used to determine the cor-
responding diffusion coefficient D = a2(kR + kL )/2 and the
drift velocity v = a(kR − kL ), respectively, in the limit a � L
[1] (see Appendix B for details).

We assume that in 1D, even in the absence of crowding, the
ordering of firing events coincides with the ordering of detec-
tion events (see Appendix D). However, in dimensions higher
than one dimension, the ith firing event may not lead to the ith
detection event, as the ith signaling molecule may take a more
circuitous path than the (i + 1)th signaling molecule, ending
up reaching the receiver later. We can write the detection times
of two molecules, molecules 1 and 2, as

t (1)
D = t (1)

F + t (1)
T , (4)

t (2)
D = t (2)

F + t (2)
T , (5)

where t (2)
F > t (1)

F and where t (1,2)
T are the transport times of the

molecules. Because the receiver in our problem is a perfect
absorber, the distribution of transport times is given by the first
passage times of signaling molecules from the transmitter to
the receiver, which we denote as F (t ). By combining Eqs. (4)
and (5), we obtain

τD = t (2)
D − t (1)

D = τF + t (2)
T − t (1)

T . (6)

To estimate the mutual information between τD and τF , we
compute P(τD) and P(τD, τF ) in 1D using the following equa-
tions (Appendix A):

P(τD) =
∫ ∞

0
dτF

∫ ∞

0
dtP(τF )F (t )F (τF + t − τD), (7)
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FIG. 2. Mutual information in the absence of crowding. (a) Nor-
malized mutual information I as a function of channel length L
for different diffusion coefficients [values shown in the legend of
(b)]. (b) Normalized mutual information as a function of the ratio
of transport time (T = L2/2D) and firing time τF . (c) Normalized
mutual information as a function of channel length in the presence
of advection (v = 2 µm/s) for different D values, as shown in the
legend of (b). (d) Normalized mutual information vs Péclet number
(Pe = vL/D) for different D values at v = 2 µm/s showing distinct
power-law behavior. τF = 0.01 s was used to generate the figure.

P(τD|τF ) =
∫ ∞

0
dtF (t )F (τF + t − τD) (8)

=
∫ ∞

0
dtF (t )F (t − �). (9)

To the best of our knowledge, the first passage time dis-
tribution F (t ) is not known for the general system that we
consider here. In the absence of crowding, we can obtain an
analytical expression for F (t ) by solving the 1D diffusion
equation, subject to appropriate boundary conditions. The so-
lution yields an infinite series [25] that can be approximated
by the closed-form expression given by

F (t ) = CL√
4πDt3

exp

[
− (vt − L)2

4Dt

]
× exp

[
−D2t2

2L4

]
, (10)

where C is a normalization constant. The functional form of
F (t ) used here works well for all values of the drift velocity v

(Appendix B).
Below, we use this expression of F (t ) to investigate how,

in the absence of crowding, the interplay between advection
and diffusion of signaling molecules affects mutual informa-
tion between τF and τD. We assume τF to be exponentially
distributed since it is the most natural choice for independent
stochastic reactions.
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universal scaling. (a) Normalized mutual information I vs Péclet
number (Pe) for different values of the drift velocities and diffusion
coefficients (see legend). (b) Rescaled mutual information (I/Pe4

0)
vs Péclet number Pe collapse onto a single master curve that scales
as Pe−4 for Pe < 1 and as Pe−1 for Pe > 1. τF = 0.01 s is used to
generate the figure.

A. Diffusive channels

In the absence of advection (when v = 0), transport hap-
pens purely through diffusion. For this setting, I depends
on the channel length L and the diffusion coefficient D
[Fig. 2(a)]. In general, we find that for a given value of D,
I does not show any variation with the channel length L up
to a D-dependent length scale, L0, beyond which I decays in
a universal fashion across different diffusion coefficients. We
find that L0 corresponds to the channel length when the trans-
port time T is comparable to the average time interval between
consecutive firing events, 〈τF 〉, such that L0 ∼ √

2D〈τF 〉. We
note that the transport time T is the average time to traverse
a 1D channel of length L through diffusion and is given by
L2/2D. For L > L0, we find that I is inversely proportional
to the transport time T [Fig. 2(b)]. These observations sug-
gest that the efficacy of information transmission undergoes a
transition at the threshold L0: Below L0, mutual information
is solely dictated by the firing time distribution P(τF ) and re-
mains unaffected by the transport process, whereas, above L0,
diffusive transport determines the information transmission.

B. Advective channels

To explore the impact of nonzero driving, we compute the
variation of I with L when v > 0. We observe that the transi-
tion at L0 persists even in the presence of nonzero v [Fig. 2(c)].
Furthermore, the introduction of drift leads to another tran-
sition at another D-dependent characteristic length scale, L1.
For L > L1, I decays as L−1, which is slower than the L−4

decay observed when L0 < L < L1. Since the L−4 dependence
stems from the variation of the diffusive transport times with
L, we suspect that the transition at L1 originates from the
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introduction of the advection. Indeed, when we compute I as
a function of the Péclet number, Pe = vL/2D, we find that
the transition to the L−1 (equivalently, Pe−1) decay regime
occurs precisely at Pe = 1, where the advection rate vL/2 is
equal to the diffusion coefficient [Fig. 2(d)]. This observation
also implies that L1 = 2D/v. Interestingly, the variation of I
with L (equivalently, with Pe) changes dramatically as v is
changed over different values [Fig. 3(a)]. For smaller values
of v, Pemax = maxL(Lv/2D) always stays below 1, whereas
the opposite effect is seen for larger values of v. Furthermore,
when I is scaled by Pe4

0 = (L0v/2D)4, I versus Pe curves
collapse onto a single master curve that scales as Pe−4 below
Pe < 1 and as Pe−1 for Pe > 1 [Fig. 3(b)]. Such scaling is
observed because, beyond L0, variation in MI is dictated by
the transport process (Appendix E). In particular, we find that
beyond this length scale, MI is inversely proportional to the
variance of �, which shows exactly the same scaling behavior
with Pe (Appendix E).

IV. MUTUAL INFORMATION IN THE PRESENCE
OF CROWDING

In cellular systems and realistic molecular communica-
tion channels, the excluded volume interaction induced by
crowding of the signaling molecules plays a central role in
modulating their transport to the receiver [26]. To this end, we
study the second scenario of our model, where the effect of
crowding is considered. We employ stochastic simulations for
the 1D model described in Fig. 1 using the Gillespie algorithm
[27]. For the details of the simulation methodology, please
see Ref. [28]. From the simulations, we obtain distributions
of detection and firing time intervals. In general, computing
the MI from samples of two random variables distributed
according to some joint probability density is challenging
[29]. To overcome this challenge, we use a state-of-the-art
method given in Ref. [30] to compute the MI between arrival
and detection time intervals, as obtained from simulations. In
Fig. 4, we compare the results from simulations with analyti-
cal expressions obtained for the no-crowding scenario. MI in

the presence of crowding (see kymographs in Appendix C)
overlaps with the no-crowding scenario and follows the same
scaling behavior (see Fig. 4) for a wide range of parameter
values. However, when the normalized MI falls below a cer-
tain threshold, of the order of ∼10−3–10−4 [see Figs. 4(a) and
4(b)], the method in Ref. [30] fails to compute MI reliably;
the computed values of MI increasingly become noisier, often
leading to negative values. It must be noted that the minimum
sample size for the arrival and detection time intervals was
chosen to be 105, and an order-of-magnitude increase in the
sample size did not significantly improve the accuracy of
results. In addition, the findings do not depend on the choice
of the lattice size (see Appendix C). Overall, for the observed
range of parameter values, the presence or absence of crowd-
ing does not alter our findings.
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V. DISCUSSION

In this paper, we study the effect of molecular transport on
the efficacy of information transmission during cellular com-
munication. Here, we study this problem using a simplified
model of signal transport that involves an interplay between
drift and diffusion in the presence and absence of crowding.
For both scenarios, in a pure diffusive channel, MI exhibits
a nonlinear decrease as a function of the channel length. Be-
yond a diffusion coefficient-dependent channel length L0, MI
decreases sharply, exhibiting a power-law behavior. Notably,
through a change in a variable, all the curves for mutual
information as a function of transport time for a wide range
of parameter values collapse onto a single master curve. The
presence of crowding does not alter these findings within the
observed range of parameter values. Note that we suspect that
for a highly crowded channel, information transmission might
be significantly impacted, leading to a sharper drop in MI
compared with the no-crowding scenario. However, owing to
the limitations of the existing methods [30] that compute MI
from data, we cannot reliably probe this regime. When advec-
tion is added to the model, the MI initially remains constant
for small values of the drift velocity; only at higher values
does the MI increase substantially (see Appendix E) [23]. We
discover that this effect can be characterized better when MI
is plotted against the Péclet number: Only when Pe > 1 does
drift improve the efficacy of information transmission. Inter-
estingly, MI as a function of the Péclet number shows three
distinct regimes with three different scaling factors. Our re-
sults demonstrate nontrivial dependence of information trans-
mission on the transport properties of signaling molecules.

Here we must note that cellular communication systems
often exhibit complex transport processes. For instance, motor
protein transport might involve bidirectional motion, pausing
along microtubule tracks, etc. [1]. Signaling can also involve
carriers of different sizes and properties (ions, molecule-
packed vesicles, etc.) [37], Moreover, the cellular environment
is crowded, and actively driven [38], leading to anomalous
diffusion of signaling molecules [39]. While such complex-
ities will impact the efficacy of information transmission, our
results provide the necessary foundation to interpret more
complicated models that consider these aforementioned facets
of signal transport.

A renewed look into biological systems in light of these
results provides interesting insights. For information trans-
mission through molecular motors such as dynein [32,33], the
Péclet number is above 1, signifying the importance of drift in
improving the efficacy of information transmission (Fig. 5).

In contrast, for a couple of members of the kinesin family of
motor proteins such as monomeric kinesin [31] and kinesin-1
[36], the reported drift velocities are inadequate in improving
the efficacy of communication. Note that Fig. 5 serves as a
proof of concept and does not capture cargo transport in cells.
Cargo transport is a more complicated process and involves
the assembly of multiple motor proteins. Studying the efficacy
of cargo transport would entail a more detailed model that
incorporates this assembly of motor proteins.

Since information transmission is a fundamental function
of cellular communication networks, an exciting plausibility
is that evolutionary pressures would shape the cellular ma-
chinery to maximize the reliable decoding of temporal signals.
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APPENDIX A: DERIVATION OF THE PROBABILITY
DISTRIBUTION OF τD

As shown in Eq. (6) in the main text, we have

τD = τF + t (2)
T − t (1)

T . (A1)

Here, t (1)
T and t (2)

T are the first passage times of two consecutive
detection events, respectively, and τF is the interval between
the corresponding firing events. Because τD is a function of
these independent variables, its probability distribution can be
estimated from the probability distribution of the independent
variables. Namely,

P(τD) =
∫ ∞

0
dτF P(τF )

∫ ∞

0
dt (2)

T F
(
t (2)
T

) ∫ ∞

0
dt (1)

T F
(
t (1)
T

)

× δ(τD − τF − t (2)
T + t (1)

T ) (A2)

=
∫ ∞

0
dτF P(τF )

∫ ∞

0
dt (2)

T F
(
t (2)
T

)
F

(
τF − τD + t (2)

T

)
(A3)

TABLE I. Diffusion and advection values for molecular motors.

Molecular motor v (µm/s) D (µm2/s) L (µm) Ref.

Monomeric kinesin 0.14 0.044 0.84 [31]
Dimeric kinesin 0.71 0.0022 2 [31]
Dynein+dynactin 0.7 0.0041 1.5 [32]
Cytoplasmic dynein 0.422 0.0041 2.6 [32–34]
Cytoplasmic dynein 0.7 0.0041 0.7 [32–34]
Myosin V 0.36 0.0058 1.6 [35]
Kinesin-1 0.8 1.4 1.07 [36]
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=
∫ ∞

0
dτF P(τF )

×
∫ ∞

0
dtF (t )F (τF − τD + t ) (write t (2)

T → t)

(A4)

≡
∫ ∞

0
dτF P(τF )P(τD|τF ). (A5)

APPENDIX B: FIRST PASSAGE TIME DISTRIBUTION

We model a cellular communication channel as a 1D finite
region of length L with reflecting boundary condition at x = 0
and absorbing boundary condition at x = L. This setup is
referred to as the transmission mode in Ref. [25]. The first
passage time distribution for this problem is given by the
first passage time distribution for free diffusion in infinite
space added to the contribution from infinite image charges
originating from the reflecting and the absorbing boundary
conditions, resulting in an infinite sum of terms [25].

To avoid convergence issues of the infinite series during
numerical evaluation, we use an approximate formula for the
first passage time distribution. To construct this formula, we
note that in the presence of a large enough drift in the +x
direction, the presence of the reflecting boundary is rarely felt
by the transported molecule. Therefore the first passage time
distribution is chosen to be of the following form:

F (t ) = Fabs(t ) ∗ g(t ), (B1)

Fabs(t ) = L√
4πDt3

exp

[
− (vt − L)2

4Dt

]
, (B2)

where Fabs is the first passage distribution of a molecule trans-
ported in a semi-infinite line with the absorbing boundary
condition at x = L [23,25] and g(t ) is a function that captures
the contribution of the reflecting boundary condition at x = L.

To determine g(t ), we simulate a 1D lattice model of length
L with the same boundary condition. In the lattice model, the
particle hops with a constant rate p in the +x direction and
with a rate q in the −x direction. When p = q, the particle
motion is purely diffusive, and when p and q are unequal, the

particle moves using both advection and diffusion. When p >

q, the particle has an effective drift velocity of a(p − q), where
a is the length of each lattice site. The corresponding diffusion
coefficient is D = a2(p + q)/2 [1]. From the simulations, the
measured first passage time distribution has a Gaussian tail
(Fig. 6), and we find that the following ansatz approximates
the true distribution well:

F (t ) = CL√
4πDt3

exp

[
− (vt − L)2

4Dt

]
× exp

[
−D2t2

2L4

]
,

(B3)

where C is a normalization constant. We use this approximate
formula because the first two moments of the distribution
are nearly identical to the true distribution [25]. In fact, this
ansatz was motivated by the analytical expressions of the first
two moments derived in Ref. [25]. This result implies that
g(t ) = exp[−D2t2

2L4 ]. To measure the first passage distribution
using the lattice model, we generated 10 000 trajectories at
each p value (q = 1 − p). As Fig. 6 shows, this approxima-
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FIG. 7. Effect of lattice size on normalized MI. Data points ob-
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FIG. 8. Kymographs from stochastic simulations. Kymographs
showing the clustering of signaling molecules for pure diffusion
(a) and diffusion with advection (b). Different colors indicate
molecules fired at different time points. The following parameters
were used to generate the figure: D = 0.1 µm2/s, v = 0 µm/s, τF =
0.01 s, and L = 0.05 µm for (a); D = 0.1 µm2/s, v = 2 µm/s, τF =
0.01 s, and L = 0.05 µm for (b).

tion works quite well (the Péclet number varies from 0 to
4 × 102).

APPENDIX C: SIMULATION METHODOLOGY

We implement the Gillespie algorithm for stochastic reac-
tion systems to compute the mutual information in a simple
stochastic model of cellular communication. For this, we
assume that the signaling molecules are moving in a one-
dimensional channel of length L of lattice spacing a. This
translates to N = L/a number of lattice sites in the channel.

The transmitter and receiver of the signal are located at the
first site (x = 0) and the last site (x = L), respectively. Sig-
naling molecules are loaded at the first site at a rate kfiring

only when unoccupied. Once loaded, each signaling molecule
moves on a 1D lattice of lattice spacing a [Fig. 1(b) and
Sec. II]. The transport of a molecule is characterized by two
rates; the rate of hopping toward the receiver kR and the rate
of hopping toward the transmitter kL. Each lattice site can
be occupied by only one molecule. Consequently, owing to
the excluded volume interaction, a signaling molecule can
only hop toward an unoccupied neighboring site (the hopping
rates are zero if there is a molecule in the vicinity). After
traversing the channel, a molecule is captured by the receiver
at x = L and removed from the lattice. We also impose the
condition that at the first lattice site, the signaling molecules
can only move forward and cannot escape by traversing in
a reverse direction. Both the firing time, i.e., the time of
loading of signaling molecules at the first site, and the time
of detection are recorded for at least 5 × 104 firing events (we
skip the first 5000 events to get rid of the transient behavior);
these data are then used to compute the mutual informa-
tion between the firing time interval and the detection time
interval. Note that variation in lattice spacing doesn’t affect
our findings, as shown in Fig. 7. Although the kymographs in
Fig. 8 demonstrate that crowding dominates the dynamics of
transport in the channel, the scaling behavior remains unal-
tered.

APPENDIX D: LIMITATIONS OF THE MODEL

We consider a simplified model of cellular communication
using a one-dimensional channel. While our model provides
key insights into the impact of signal transport on informa-
tion transmission, there are important limitations that need
to be mentioned. First, many realistic channels of communi-
cation in biology would involve two- and three-dimensional
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FIG. 9. (a)–(c) Stochastic simulation to tackle the ordering of signaling molecules during detection. Assuming that the signaling molecules
are indistinguishable from each other, we order the signaling molecules based on their detection times. Hence for the ith firing event, multiple
molecules corresponding to the (i + n)th firing event (n is a positive integer) can be detected earlier. The blue and red curves represent
MI computed using ordered and nonordered detection of signaling molecules. We observe how the scaling behavior of MI changes as the
alteration in the order of detection events (fraction of switching) increases. Fraction of switching is defined as the fraction of events where
order of detection between two consecutive firing events is switched (in cerulean blue). While we observe a small deviation for values of MI of
less than ∼10−3, the overall nature and the scaling behavior do not change much. Moreover, deviations can be seen when the fraction of order
switching between signaling molecules is more than 0.8.
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no-crowding scenario.

transport. While the insights gained from our model will
definitely allow for a better understanding of the results cor-
responding to higher-dimensional communication channels,
we suspect that our model cannot fully capture the behavior
of higher-dimensional models. Second, our model assumes a
fully reflecting boundary condition at the channel entrance
and a fully absorbing boundary condition at the exit. For
some channels, it is possible that the entrance is only partially
reflecting. This might affect our findings. However, to the
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FIG. 11. Normalized MI as a function of drift velocity for differ-
ent channel lengths. The diffusion coefficient is D = 1 µm2/s. The
plots are generated using analytical expressions for the no-crowding
scenario.

best of our knowledge, for most of the channels in molec-
ular or cellular communication, signaling molecules do not
move back into the transmitter [1]. For a concrete example,
consider cargo transport on a microtubule; most cargoes do
not exit via the channel entrance. Our model assumptions are
motivated by such systems. Third, we assume that in 1D,
the ordering of firing events is preserved during detection,
even in the absence of crowding. It is important to that a
relaxation of this assumption does not alter the key findings
(see Fig. 9).

APPENDIX E: RELATION BETWEEN TRANSPORT
TIME AND MUTUAL INFORMATION

As shown in Sec. III, the time interval between two con-
secutive detection events is given by

τD = t (2)
D − t (1)

D = τF + t (2)
T − t (1)

T , (E1)

τD = τF + �, (E2)

where � is the difference between the transport time of two
consecutive molecules detected at the receiver. As Fig. 10(a)
shows, the mean squared transport time difference 〈�2〉 scales
as Pe4 when Pe < 1 and as Pe1 for Pe > 1. This scaling is
exactly the inverse of how I varies with Pe in Fig. 3, which
implies that I is inversely proportional to 〈�2〉. Indeed, as
Eq. (E2) suggests, when τF � �, τD is determined by the
firing time interval distribution τF (the input distribution).
On the other hand, when � � τF , τD is determined by the
transport process [Fig. 10(b)]. It must be noted that advection
has a nonlinear effect on MI, as shown in Fig. 11.
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