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We report phase separation in a mixture of “hot” and “cold” three-dimensional dumbbells which interact by
Lennard-Jones potential. We also have studied the effect of asymmetry of dumbbells and the variation of ratio of
“hot” and “cold” dumbbells on their phase separation. The ratio of the temperature difference between hot and
cold dumbbells to the temperature of cold dumbbells is a measure of the activity χ of the system. From constant
density simulations of symmetric dumbbells, we observe that the “hot” and “cold” dumbbells phase separate
at higher activity ratio (χ > 5.80) compared to that of a mixture of hot and cold Lennard-Jones monomers
(χ > 3.44). We find that, in the phase-separated system, the hot dumbbells have high effective volume and
hence high entropy which is calculated by two-phase thermodynamic method. The high kinetic pressure of hot
dumbbells forces the cold dumbbells to form dense clusters such that at the interface the high kinetic pressure
of hot dumbbells is balanced by the virial pressure of cold dumbbells. We find that phase separation pushes
the cluster of cold dumbbells to have solidlike ordering. Bond orientation order parameters reveal that the cold
dumbbells form solidlike ordering consisting of predominantly face-centered cubic and hexagonal-close packing
packing, but the individual dumbbells have random orientations. The simulation of the nonequilibrium system
of symmetric dumbbells at different ratios of number of hot dumbbells to cold dumbbells reveals that the critical
activity of phase separation decreases with increase in fraction of hot dumbbells. The simulation of equal mixture
of hot and cold asymmetric dumbbells revealed that the critical activity of phase separation was independent of
the asymmetry of dumbbells. We also observed that the clusters of cold asymmetric dumbbells showed both
crystalline and noncrystalline order depending on the asymmetry of dumbbells.
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I. INTRODUCTION

Active matter consists of individual units which are driven
out of equilibrium as they consume energy from the surround-
ing medium or through internal mechanisms. Examples of
active matter are present in all length scales from the sub-
cellular cytoskeleton [1–6], bacterial colonies, and collection
of cells in a tissue [7–10] to collection of organisms like
swarms of fish, flocks of birds [11–19], etc. Active matter like
Janus particles [20,21] can also be artificially synthesized and
has wide application in medicine like drug delivery [22] and
nanomachines [23]. They exhibit fascinating properties like
phase separation and self-organization [24–50] and play very
important role in biological systems.

In many studies on active particles, the activity of the con-
stituents is represented by a vector model. In vector models
like active Brownian particles [51,52] and run and tumble par-
ticles [53,54], the constituent particle (e.g., bacteria) absorbs
energy to generate a force which propels it in a particular
direction (usually along the body axis). The activity is a mea-
sure of how much energy the constituent particle can take and
convert into work (live bacteria have high activity but dead
bacteria have zero activity). Recent studies have shown that
for a system of mixture of passive and active particles (run
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and tumble particles), in the limit when persistence length
(length traveled with constant swim speed by the particle
before changing direction) of active particles is comparable
to the radius of the particle, the system of active and pas-
sive particle reduces to that of a system of “hot” and “cold”
particles [55]. Also many active matter systems have been
characterized with an effective temperature [56–58] replac-
ing the temperature of medium in the fluctuation-dissipation
theorem. The effective temperature of the active particles is
much greater than the medium temperature and is proportional
to the magnitude of active forces. Such representation of
vectorial activity by different temperatures reduces a vector
model into scalar model. Theoretical works have explored
the rich phase behavior shown by mixture of particles con-
nected to thermostats at different temperatures [59,60]. In a
scalar model, the activity differences between two species in
a system (e.g., live and dead) is represented by assigning two
different temperatures or two different diffusivities [61,62] to
two species. For example, Ganai et al. [63] have proposed
the use of a scalar model to explain the radial distribution
of chromatin inside nucleus. Phase separation in a system of
equal mixture of hot and cold Lennard-Jones (LJ) particles at
different densities has been studied [64]. Recently, we have
done simulation in a two-temperature model of soft repulsive
spherocylinders and have shown emergence of various liquid
crystalline order at packing fractions for which only isotropic
phase is possible in equilibrium [65–67].
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In this paper, we study phase separation in system of
hot and cold dumbbells [68] which interact by LJ potential.
Dumbbells are not only a simplest way to model anisotropic
particles but they also show interesting crystal structures in
equilibrium. In equilibrium, the dumbbells with low aspect
ratio form plastic crystals with no orientational ordering [69]
while the dumbbells with high aspect ratio form crystals with
both translational and orientational order. Also, asymmetric
dumbbells [70,71] show rich phase behavior by forming rota-
tor, NaCl, αIrV, CrB, and γ CuTi equivalent crystal structures.
In some recent works, colloidal dumbbells have been used to
build periodic crystal structures which have partial photonic
bandgap and are birefringent [72]. Also, there are experimen-
tal works that have built chiral colloidal structures [73] with
asymmetric dumbbells [71,74] using magnetic fields. So the
dumbbells have garnered much interest in nanotechnology
of colloids. Also, there has been increased interest in ac-
tive dumbbells, as some computational studies [56,75,76] on
two-dimensional active dumbbells described by vector model
showed phase separation of active dumbbells into a dilute
phase and dense phase with hexatic order and interesting po-
larization and velocity field. Recently, experiments on active
dumbbells which propel on exposure to light have again con-
firmed that the active dumbbells phase separate into a dilute
phase and dense swimmer phase [77]. They also observed that
when active dumbbells were mixed with passive particles, the
active dumbbells corral the passive particles.

We have used scalar model of activity to study the phase
behavior of active and passive dumbbells where active dumb-
bells are connected to a thermostat at high temperature and
passive dumbbells are connected to a thermostat at low tem-
perature. The ratio of the temperature difference between hot
and cold dumbbells to the temperature of cold dumbbells is
defined as the activity χ of the nonequilibrium system. The
system shows phase separation at sufficiently high activity.

The paper is organized as follows: In the next section,
we give details of the simulation methodology. In Sec. III,
we present results for both the passive and active system. We
discuss the equilibrium properties of the symmetric dumbbells
including the entropy calculation using both thermodynamic
perturbation and two-phase thermodynamic (2PT) method.
This is followed by the discussion of the results for nonequi-
librium system of equal mixture of hot and cold symmetric
dumbbells in Sec. III B. Our simulations demonstrate that
the mixture of hot and cold dumbbells phase separate at all
densities for sufficiently high activity, although the extent of
phase separation decreases with density. We also find that the
critical activity (activity at which phase separation becomes
macroscopic) of dumbbells (χ > 5.80) is greater than the
critical activity of LJ monomers (χ > 3.44). In our system,
activity is introduced by raising the temperature of hot dumb-
bells relative to cold dumbbells. So to determine the effect
of activity on hot dumbbells in the nonequilibrium system
with respect to their corresponding equilibrium counterparts,
we calculate entropy difference �S between hot dumbbells of
nonequilibrium system (Sneq ) and entropy of corresponding
equilibrium system (Seq ). We find that the entropy difference
�S jumps from negative to positive value with the onset of
phase separation. Further, on performing cluster analysis of
cold dumbbells, we find that with increasing activity χ the

FIG. 1. The plot of Lennard-Jones potential with which the
dumbbells interact. In the inset, schematic diagram of a dumbbell
is shown. Two atoms of different diameters σ1 and σ2 are bonded to
form a dumbbell. ro is the distance between centers of two atoms in
a dumbbell.

number of cluster of cold dumbbells decrease, while the size
of largest cluster increases. The packing fraction, temperature,
and pressure variation along the length of the simulation vol-
ume reveal that high kinetic pressure of the hot dumbbells
force the cold dumbbells to form dense clusters whose viral
pressure balances the kinetic pressure of hot dumbbells. Bond
orientation order parameters are calculated which reveal that
the cold cluster develops solidlike order with predominantly
face-centered cubic (fcc) and hexagonal-close packing (hcp)
arrangement. In Sec. III C, we discuss the results of simulation
of the nonequilibrium system at different mixing ratios of hot
and cold dumbbells. We find that critical activity decreases
with the increase in fraction of hot dumbbells. Finally, in
Sec. III D, we report the results of simulation of equal mixture
of hot and cold dumbbells with different asymmetry. We find
that their critical activity for phase separation is independent
of asymmetry. We observe both crystalline and noncrystalline
structures in cold clusters depending on the asymmetry.

II. METHODOLOGY AND COMPUTATIONAL DETAILS

We start with a system of 8000 atoms where two atoms
are bonded to form 4000 dumbbells. Each dumbbell has two
atoms with diameter σ1 and σ2. We define the asymmetry
parameter α = σ1

σ2
as the ratio of the diameter of smaller atom

to the diameter of the larger atom in a dumbbell. Interaction
between atoms of the dumbbells of type i and type j is de-
scribed by Lennard-Jones potential,

Vint (r) = 4ε

[(σi j

r

)12
−

(
σi j

r

)6]
, (1)

where r denotes the distance of separation between any two
atoms and ε correspond to the strength of the interaction
potential of the atoms. A plot of LJ potential and schematic
diagram of the dumbbell is shown in Fig. 1. Here we choose
σi j = 1

2 (σi + σ j ) to be the arithmetic mean of the diameters
of the two interacting atoms. In our simulation we have used
σ11 = ασ , σ22 = σ , and σ12 = 1

2 (σ1 + σ2). We have used the
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parameters of argon (σ = 3.405 Å, ε = 0.238 kcal mol−1,
and mass m = 39.948 g mol−1) to convert the LJ units to real
units. Two atoms within a dumbbell are held by a harmonic
bond potential of the following form:

Vbond(r) = k(r − r0)2, (2)

where r0 is the equilibrium bond length and k is bond strength.
In our simulations, we have taken r0 = 1

2 (σ1 + σ2) to be arith-
metic mean of the diameters of two atoms in dumbbell and k
equal to 3000ε/σ 2 as per the original LJ chain paper [78].
For symmetric dumbbell, asymmetry parameter α = 1 and
σ11 = σ22 = σ12 = σ .

The Nosé-Hoover thermostat with damping parameter 50δt
is used to maintain the temperature of the dumbbells in the
NVT ensemble. The time step of integration was chosen to
be δt = 1 fs for all the simulations reported in this work.
All the simulations are performed using the LAMMPS [79]
molecular dynamics package.

III. RESULTS AND DISCUSSION

A. Equilibrium properties of symmetric dumbbells

In order to validate our system of symmetric dumbbells
(α = 1), we first calculate the equation of state and entropy
of symmetric dumbbells. The temperature T ∗(kbT /ε) and
pressure P∗(Pσ 3/ε) are in reduced units. We run the MD
simulation of dumbbells in the NVT ensemble at T ∗ = 3, 4, 5
(LJ units) at different packing fractions η (η = Nv0

V , where N
is the number of dumbbells in simulation box with volume
V and v0 is the volume of individual dumbbell) to obtain
the pressure of the system. The pressure obtained from sim-
ulation is compared with pressure obtained from Wertheim’s
thermodynamic perturbation theory [78,80]. According to the
thermodynamic perturbation theory, the excess Helmholtz
free energy of Lennard-Jones chain can be obtained from ex-
cess Helmholtz free energy of Lennard-Jones monomer fluid
as follows:

An
e (ρn)

N
= Ae(ρ)

N
+ T

1 − n

n
lny(σ ), (3)

Here An
e is the excess free energy of LJ chain composed of n

monomers (for dumbbells n = 2), Ae is the excess free energy
of Lennard-Jones monomer fluid, N is the total number of
monomers, ρ is the monomer number density, and y(σ ) is the
pair correlation function of LJ monomer fluid at distance equal
to bond length σ (since we are interested about dumbbells
whose bond length is σ , we consider the value of pair correla-
tion function of LJ monomers at distance σ ). Differentiating
Eq. (3) with respect to density we obtain the expression for
pressure,

Pn(ρn) = P(ρ) + ρT
1 − n

n

[
1 + ρ

δlny(σ )

δρ

]
. (4)

Here Pn is pressure of LJ chain fluid and P is the pressure of
LJ monomer fluid. The pair correlation function y(σ ) of LJ
monomers is obtained as an empirical fitting function where
it is expressed in powers of density and temperature. The
empirical form of the pair correlation y(σ ) is obtained from
the work of Gubbin’s et al. [78]. Pressure of the fluid of
LJ monomers P is obtained from MD simulations. Pressure

FIG. 2. Pressure of dumbbells P* as a function of packing frac-
tion η at temperature T ∗ = 3, 4, and 5. Dashed lines represent
pressure obtained from perturbation theory. The solid lines represent
the pressure obtained from MD simulations.

obtained using Eq. (4) (dashed lines) is plotted as a function
of density in Fig. 2. We can see that the pressure of dumbbells
calculated from MD simulation (solid lines) matches closely
with the values predicted by perturbation theory (dashed
lines).

Next, we compute the entropy of symmetric dumbbells.
Differentiating Eq. (3) with respect to temperature gives the
expression for entropy as follows:

Sn
e (ρn)

N
= Se(ρ)

N
+ n − 1

n

[
lny(σ ) + T

δlny(σ )

δT

]
, (5)

where Sn
e is the excess entropy of LJ chain and Se is excess

free energy of LJ monomer fluid. The excess entropy of LJ
monomer fluid Se is obtained from the modified Benedict-
Webb-Rubin equation of state [82]. To calculate the total
entropy (excess entropy+ideal gas entropy) S of symmetric
dumbbells from excess entropy of Lennard-Jones chain Sn

e , we
consider two references. The excess entropy of Lennard-Jones
chain Sn

e is calculated with respect to ideal monoatomic gas
(TP1) which is plotted in green dashed lines and with respect
to ideal diatomic gas (rigid rotor) (TP2) which is plotted in
black dotted lines in Fig. 3.

The entropy S of dumbbells is also calculated using the
2PT method [83–85]. In the 2PT method, the first vibrational
density of states of fluid is obtained from Fourier transform of
velocity autocorrelation function. Then the vibrational density
of states of the fluid is partitioned into a gas- and solidlike
component. The gaslike component is treated as a hard sphere
gas while the solidlike component is treated as harmonic os-
cillator. This decomposition into solid- and gaslike fractions
is performed from the value of vibrational density of states
of the liquid at zero frequency. Once the decomposition is
done, by using the weighting functions of harmonic oscillator
and hard sphere gas, various thermodynamic properties like
entropy and free energy can be calculated. The entropy of
dumbbell obtained from the 2PT method as a function of
packing fraction is plotted in Fig. 3 (red dashed line).
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FIG. 3. Entropy of dumbbell (S) as a function of packing fraction
η at temperature T ∗ = 1.8. Here 2PT denotes entropy by use of the
two-phase thermodynamic method, TP1 denotes entropy by use of
thermodynamic perturbation with ideal monomer gas as reference
and TP2 denotes entropy by use of the thermodynamic perturbation
with ideal diatomic gas (rigid rotor) as reference.

The dumbbell is approximated as a rigid rotor and the
entropy of the rigid rotor as a function of packing fraction
is also plotted in Fig. 3. From Fig. 3 we can see that entropy
from 2PT falls between entropy calculated by thermodynamic
perturbation using ideal monoatomic gas (TP1) and ideal di-
atomic gas (TP2) as reference. Entropy from 2PT matches
very closely with the entropy of rigid rotor at very low packing
fraction. This small deviation is present because of the vibra-
tional contribution of dumbbells to the entropy. The entropy
from 2PT follows the entropy of rigid rotor at low pack-
ing fraction because the intermolecular interaction between
dumbbells is negligible at low packing fractions but deviates
from the entropy of rigid rotor as packing fraction increases.
The entropy from 2PT is also close to the entropy calculated

from thermodynamic perturbation (TP2) at very low (dilute
gas) and very high densities (solid). So we believe that the 2PT
method can give the entropy of dumbbells very accurately.

B. Nonequilibrium properties of equal mixture
of active and passive symmetric dumbbells

Here we discuss results from simulation of equal mixture
of hot and cold symmetric dumbbells. In the system of 4000
dumbbells, to bring in “activity” we introduce temperature
difference between the dumbbells. Let T h∗ and T c∗ denote the
temperatures of the “hot” and “cold” dumbbells, respectively,
in reduced units. Initially, to equilibrate the system, both hot
and cold dumbbells are maintained at the same temperature at
T h∗ = T c∗ = 2 and at packing fraction η = 0.42 (equivalent
to monomer number density of 0.8). The simulation in NVT
ensemble is run for 4 ns so that hot and cold dumbbells mix
well [Fig. 4(a)].

Initially, the temperature of the “hot” dumbbells is in-
creased from T h∗ = 2 to T h∗ = 5 and the simulation is run
for 1 ns until the system reaches a steady state. Next, the
temperature of hot dumbbells is increased from T h∗ = 5 to
T h∗ = 10 and eventually to T h∗ = 80 in steps of five (5, 10,
15,. . . , 80). The system is allowed to attain the steady state
at each of the increased values of T h∗ and the simulation is
run for 1 ns at each temperature. After the steady state is
reached, we perform a production run for 5 × 105 time steps.
The statistical averages of physical quantities were obtained
by averaging over 500 configurations, sampled at a frequency
of 1000 time steps in the production run. As the T h∗ of the hot
dumbbells is increased, cold dumbbells phase separate from
the hot dumbbells. In Fig. 4(b), for packing fraction η = 0.42
and T h∗ = 80, we observe that hot and cold dumbbells are
completely phase separated. As described above, simulations
were also carried out at packing fraction η of 0.26, 0.10, and
0.05.

It is observed that even though the value of the thermostat
temperature T c∗ that is connected to the “cold” dumbbells

FIG. 4. (a) Instantaneous configuration of the system at the end of 4-ns-long simulation when T h∗ = T c∗ = 2 and packing fraction η is
0.42. We can see that hot (red) and cold (blue) particles are well mixed. (b) Instantaneous configuration of the system at the end of 1-ns-long
simulation when T h∗ = 80 and T c∗ = 2 and packing fraction η is 0.42. We can see that hot and cold dumbbells are clearly phase separated.
(c) Instantaneous configuration of the system at the end of 1-ns-long simulation when T h∗ = 80 and T c∗ = 2 and packing fraction η is 0.05.
Here again, hot and cold dumbbells are phase separated. The snapshots were generated using VMD [81] software.
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FIG. 5. Plot of effective temperature of cold dumbbells T c∗
eff ver-

sus temperature of hot dumbbells T h∗ at different packing fractions.
It is clearly seen that T c∗

eff increases with T h∗ due to increased heat
transfer from hot to cold dumbbells. Also T c∗

eff increases with packing
fraction because of the increase in frequency of collisions between
hot and cold dumbbells.

is left unchanged, there is an increase in the temperature
of the cold dumbbells due to heat exchange from the “hot”
dumbbells through interactions. Hence, they reach an “effec-
tive” temperature T c∗

eff > T c∗. Here the effective temperature
is defined by the average kinetic energy of the dumbbells. In
general, T h∗ > T h∗

eff > T c∗
eff > T c∗.

The activity χ of the system is defined as the ratio of the
difference between the effective temperature of hot and cold
dumbbells to the effective temperature of cold dumbbells,

χ =
(
T h∗

eff − T c∗
eff

)
T c∗

eff

. (6)

It is the activity parameter χ which is the measure of activity
difference between hot and cold dumbbells. When both hot
and cold dumbbells are at same temperature, the activity χ is
0. As the temperature of hot dumbbells is increased, the value
of χ also increases.

The plot of effective temperature of cold dumbbells T c∗
eff

versus temperature of hot dumbbells T h∗ is shown in Fig. 5
and plot of activity χ versus temperature of hot particles T h∗
is given in Fig. 6.

In Fig. 5, we can see that as T h∗ increases T c∗
eff also in-

creases because of increased energy transfer from hot to cold
dumbbells. Also, as packing fractions increase, T c∗

eff increases
because with increased packing fraction, the frequency of
collision between hot and cold dumbbells increases. So, the
effective temperature of cold dumbbells T c∗

eff increases with
the temperature of the hot subsystem and the packing fraction
of the system. In Fig. 6 we can see that activity χ increases
with the temperature of hot dumbbells T h∗ in accordance with
Eq. (6). The activity χ also decreases with packing fraction
because T c∗

eff increases with the packing fraction of the system
as explained before.

1. Order parameter

To determine the extent of phase separation, we calculate
an order parameter φ. First, divide the total volume of the

FIG. 6. Plot of activity χ versus temperature of hot dumbbells
T h∗ at different packing fractions. In accordance with Eq. (6) activity
χ increases with increase in T h∗. Also χ increases with decrease in
packing fractions because T c∗

eff increases as packing fraction increases
(Fig. 5).

simulation box into smaller subcells each having equal vol-
ume. Then, in each subcell, we calculate the ratio of number
difference between hot and cold dumbbells to the total number
of dumbbells in the subcell and average is taken over all
subcells and steady configurations. The order parameter φ is
defined as follows:

φ(T h∗) = 1

Ncell

〈
Ncell∑
i=1

|[nh(i) − nc(i)]|
[nh(i) + nc(i)]

〉
SS

, (7)

where nh(i) and nc(i) denote the number of hot and cold
dumbbells, respectively, in the ith subcell. Ncell is the total
number of subcells and <>SS denotes that average is taken
over all steady-state configurations. In our case, Ncell = 125,
the number is chosen such that there are enough dumbbells in
each subcell.

When the value of activity χ is low, the cold dumbbells
form small clusters. As the activity is increased these small
clusters join to form bigger clusters and, finally, at sufficiently
high activity the phase separation becomes macroscopic
where hot and cold dumbbells are clearly phase separated as
shown in Fig. 4(b) and Fig. 4(c).

In Fig. 7, a plot of order parameter φ versus activity χ at
various packing fractions is given. It can be seen that, for very
small initial activity χ the order parameter φ remains small
and constant. As χ increases, the value of φ also increases
and finally saturates to a large value. We also find that value
of φ increases with packing fraction, indicating higher extent
of phase separation at high packing fraction. Also, as pack-
ing fraction decreases, the point where φ starts increasing is
pushed to high activity. So as packing fraction decreases, the
initiation of phase separation requires high activity and the
extent of phase separation is also reduced.

To find out the critical activity at which macroscopic phase
separation of hot and cold dumbbells take place, we plot the
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FIG. 7. Plot of order parameter φ versus activity χ at different
packing fractions. Initially for low activity χ order parameter φ

is small but as χ increases φ rises and saturates to a high value,
indicating phase separation. Also the value of φ is greater for higher
packing fractions, indicating greater extent of phase separation at
high packing fractions.

probability distribution of the parameter ψ . The parameter ψ

in the ith subcell is defined as

ψ (i) = [nh(i) − nc(i)]

[nh(i) + nc(i)]
. (8)

The ψ takes negative values in the subcells where cold
dumbbells dominate and positive values where hot dumbbells
dominate. The value of ψ is close to zero when there is
no phase separation and number of hot and cold dumbbells
in a subcell are nearly equal. So we plot the distribution
of ψ at different values of T h∗ for each packing fraction.
Figure 8 gives the distribution P(ψ ) for packing fraction 0.42
and 0.05. As we increase the activity, the distribution of ψ

becomes bimodal in shape when phase separation becomes
macroscopic. The activity at which the distribution of ψ be-
comes bimodal is taken as critical activity. The bimodality
in distribution of ψ occurs at T h∗ = 15, 20, 20, and 25 for
packing fraction η = 0.42, 0.26, 0.1, and 0.05, respectively.

These temperatures of hot dumbbells T h∗ correspond to the
critical activity of 5.80, 8.41, 8.74, and 11.28. In Fig. 8(c) we
have included the phase diagram for mixture of hot and cold
dumbbells in the activity χ–packing fraction η state space.
We can identify three regions in the phase diagram: the phase-
separated region (violet), the mixed state region (white), and
critical activity region (gray). The upper bound of the critical
activity region corresponds to the critical activities at different
packing fractions, where P(ψ ) shows bimodal distribution.
We also see that for activity that precedes the critical activity,
the P(ψ ) starts deviating from single peak distribution. We
use the activity preceding critical activity at different packing
fractions as lower bound for the critical activity region. Since
we have simulated our system at discrete state points, we
cannot precisely identify the critical activity line. The critical
activity line lies inside the critical activity region we have
identified in the phase diagram.

For a system of Lennard-Jones monomer [64] at packing
fraction η = 0.42, the critical activity is 3.44 but at the same
packing fraction for a system of dumbbells, the critical activity
is 5.80. So the dumbbells phase separate at a higher activity
than the system of LJ monomers. These observations are in
contrast to the results in Ref. [62], where authors have studied
phase separation in a mixture of active and passive polymers.
They have concluded that as the length of the polymer chain
is increased, less activity is required for phase separation.
However, they have simulated mixtures of active and passive
polymers with chain-length greater than 10 and a very low
value of spring constant for bond potential. Further study is re-
quired to know the effect of chain length and strength of bond
potential on critical activity for polymers with chain length
less than 10. It is worth mentioning here that in a system of
active and passive spherocylinders [65], as the aspect ratio
of spherocylinders is increased, the critical activity of phase
separation decreases.

2. Cluster analysis

Initially for low activity, small clusters of cold dumbbells
are formed. As activity is increased, these small clusters join
to form larger clusters ultimately leading to phase separation.
To study the number and size of clusters, we perform cluster

FIG. 8. [(a) and (b)] Distribution P(ψ ) of parameter ψ at packing fraction 0.42 and 0.05. The bimodality in distribution P(ψ ) of ψ occurs
at T h∗ = 15 and 25 for packing fractions η = 0.42 and 0.05, respectively. These temperatures of hot dumbbells T h∗ correspond to the critical
activity of 5.80 and 11.285. (c) Phase diagram for mixture of hot and cold dumbbells in the activity χ–packing fraction η state space. The
violet and white regions represent the phase-separated and mixed states of the system, respectively. The critical line of phase separation lies
within the gray area.
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FIG. 9. (a) Number of clusters of cold dumbbells Ncl versus activity χ at different packing fraction. Number of clusters of cold dumbbells
Ncl decreases with activity χ as small clusters join to form large clusters. (b) Plot of number of cold dumbbells in the largest cluster N0 versus
activity χ (right) at different packing fractions. Complementary to Ncl the number of cold dumbbells in the largest cluster N0 increases with
activity χ .

analysis. We define a cluster using the following criteria: If the
distance between two atoms of different dumbbells is within
a specified cut-off distance rc, then the dumbbells are consid-
ered to be part of the same cluster. The value of the cut-off
distance rc is 1.069σ as determined from the position of the
first peak in the radial distribution function calculated between
the passive-passive dumbbells as shown in Fig. 14. We plot
the number of clusters of cold dumbbells Ncl versus activity
χ at different packing fractions in Fig. 9(a). We find that
initially for small activity, when there is no phase separation,
number of clusters of cold dumbbells Ncl is large and constant.
As activity χ is increased, phase separation sets in and the
number of clusters of cold dumbbells decreases and saturates
to a low value. Complementary to the number of clusters of
cold dumbbells Ncl, the size of the largest cluster increase
with activity χ as phase separation sets in. The number of cold
dumbbells N0 in the largest cluster is a measure of the size of
the cluster. Plot of number of cold dumbbells in the largest
cluster N0 versus activity χ at different packing fraction is
given in Fig. 9(b). Initially for low activity, when there is no
phase separation, the size of largest cluster given by N0 is
small and constant. As the activity χ increases, the the size
of largest cluster grows and reaches a constant value. We can
see that as packing fraction increases, number of dumbbells
in the largest cluster N0 also increases and hence the size
of the cluster also increases, indicating higher extent phase
separation.

3. Entropy calculation

To determine the effect of activity on hot dumbbells in
nonequilibrium system with respect to their equilibrium coun-
terparts, we calculate the entropy difference between hot
dumbbells in nonequilibrium and equilibrium system. As
mentioned before, in the nonequilibrium system, there is a
transfer of energy from hot dumbbells to cold dumbbells due
to collisions between them. Also, once the phase separation
sets in, since the cold dumbbells form closely packed clus-
ters as discussed in Section III B2, the hot dumbbells have
larger effective volume. These factors affect the entropy of
hot dumbbells in the nonequilibrium system. Here we have
calculated the entropy per dumbbell for the hot dumbbells in

the nonequilibrium system of hot and cold dumbbells which
we call Sneq. We compare this with the entropy per dumbbell
of an equilibrium system of dumbbells (denoted as Seq ) where
all the dumbbells have the same temperature as that of hot
dumbbells T h∗ of the nonequilibrium system and the packing
fraction of equilibrium system is taken to be equal to the
average packing fraction of nonequilibrium system. We use
the 2PT [83] method to calculate the entropy of hot dumbbells
Sneq in nonequilibrium system and entropy of dumbbells in
corresponding equilibrium system Seq. We calculate the dif-
ference �S defined as

�S = Sneq − Seq. (9)

Plot of �S versus χ at various packing fractions is shown in
Fig. 10. We find that initially for small activity �S is negative,
but as activity increases �S jumps to a positive value. There
are two factors which determine value of �S.

1. In nonequilibrium system, there is energy transfer from
hot dumbbells to cold dumbbells. It decreases the entropy of
hot dumbbells Sneq compared to that of equilibrium system

FIG. 10. Plot of entropy difference �S = Sneq − Seq versus ac-
tivity χ at different packing fractions. We can see that �S is negative
before the system phase separates but jumps to a positive value once
the phase separation sets in. Also, we can see that the higher the
packing fraction, the higher the value of �S, indicating increased
phase separation.
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FIG. 11. Plot of packing fraction variation η(x) across the length
of simulation box when total packing fraction η = 0.42 at T h∗ = 2
and 80. We can see that packing fraction of cold dumbbells for T h∗ =
80 exceeds the average packing fraction 0.42 and the packing fraction
of hot dumbbells decreases below average packing fraction. We can
see that the interface is positioned near x/L ∼ 0.3.

Seq. So we can see that initially for small activity where phase
separation has not yet started, �S is negative.

2. When there is phase separation, cold dumbbells form
dense clusters and hence effective volume for hot dumbbells
increases. This increase in effective volume increases Sneq

compared to Seq. As the activity is increased, phase separation
takes place and �S is positive.

In Fig. 10, we can also observe that the value of �S in-
creases with packing fraction hence proving that higher the
packing fraction, larger is the extent of phase separation.

4. Packing fraction, temperature, and pressure variation

In order to study how packing fraction and temperature
varies along the length of the simulation box, the simulation
box is divided in 20 subvolumes along the direction where
phase separation takes place (say, the x axis). Then packing
fraction in ith subvolume is given by

η(i) = n(i)v0

V (i)
, (10)

where n(i) is number of dumbbells, V (i) is the volume of ith
subcell and v0 is volume of individual dumbbell. Figure 11
gives the plot of packing fraction η(x) versus x/L for η = 0.42
at T h∗ = 2 and T h∗ = 80, where L is the length of simulation
box along x axis. The packing fraction variation of hot and
cold dumbbells has been plotted separately to find the position
of interface. From the plot, the interface seems to appear
somewhere near x/L = 0.3. We can see that packing fraction
η(x) of cold dumbbells before the interface (x/L = 0.3) is
much higher than that of average packing fraction 0.42, which
indicates that cold dumbbells form densely packed clusters.
Also the packing fraction of hot dumbbells (0.4 < x/L < 0.8)
is much lower than that of average packing fraction 0.42.

Each atom in a dumbbell has three translational degrees
of freedom. By equipartition theorem each degree of free-
dom contributes 1

2 kbT of energy. Hence temperature in ith

FIG. 12. Plot of temperature variation T ∗(x) across the length of
simulation box for η = 0.42 at different T h∗. The temperature of the
hot dumbbells (x/L > 0.4) varies and decreases as we move toward
the interface due to transfer of energy from hot to cold dumbbells.

subvolume is given by

3

2
kbT (i) = 1

n(i)

n(i)∑
j=1

1

2
mv2

j . (11)

Figure 12 gives plot of temperature variation of dumbbells
across the interface for different values of T h∗. We see that
temperature of hot dumbbells is not uniform but decreases
as they move toward the interface, indicating energy transfer
from hot to cold dumbbells. Pressure profile along the inter-
face is calculated from diagonal components of stress tensor,

P(i) = 1

3 ∗ V (i)

⎡
⎣ n(i)∑

j=1

1

2
mv2

j +
n(i)∑
j=1

�r j . �f j

⎤
⎦, (12)

P(i) = Pkin(i) + Pvir (i). (13)

Here �r j is the position vector of jth atom and �f j is force on
jth atom due to all other atoms (includes force due to interac-
tion with other dumbbells and the force due to bonding). The
first term is the kinetic part of pressure Pkin and second term is
the virial part of pressure Pvir. Figure 13 gives the pressure
variation across the interface when η = 0.42 at T h∗ = 80.
We have also plotted the kinetic and virial contribution to
the pressure separately. We find that the pressure is almost
constant along the length of simulation box. In the regions,
where the cold dumbbells dominate (x/L < 0.3) the virial
pressure Pvir is very high and kinetic pressure Pkin is low be-
cause of the low temperature of cold dumbbells. In the region
where the hot dumbbells dominate (x/L > 0.3) the kinetic
pressure Pkin is very high because of the high temperature of
hot dumbbells. So in the phase-separated system the kinetic
pressure of hot dumbbells is balanced by the virial pressure of
cold dumbbells.

5. Bond orientation order parameter

In the previous section, from the packing fraction variation
(Fig. 11), we have shown that as we increase the temperature
of hot dumbbells, an initial mixed equilibrium system with
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FIG. 13. Plot of pressure variation P∗(x) across the length of
simulation box at density η = 0.42 at T h∗ = 80. The kinetic Pkin and
virial Pvir contribution to the total pressure is plotted separately. The
kinetic pressure of hot dumbbells is balanced by virial pressure of
cold dumbbells.

uniform density, phase separates into a dense cold zone and
less denser hot zone. Now to investigate the phases of hot and
cold dumbbells in phase-separated system, we have calculated
their radial distribution function. In Fig. 14 we have shown the
radial distribution functions (RDF) of all dumbbells (blue) at
η = 0.42 and T c∗ = T h∗ = 2 which shows liquidlike structure
with damping oscillations. In Fig. 14, we have also shown
RDF between cold dumbbells (black) and hot dumbbells (red)
for η = 0.42 and T h∗ = 80. The RDF [g(r)] of cold dumbbells
show crystalline order but RDF of hot dumbbells indicate a
gaseous phase. So in the system of hot and cold dumbbells
which is in liquid state when T c∗ = T h∗ = 2, as the tem-
perature of hot dumbbells is increased, the cold dumbbells
form dense clusters having crystalline order while the hot
dumbbells are in gaseous phase.

In order to identify the local crystalline order, we calculate
Steinhardt [86] bond order parameters. Two atoms of different

FIG. 14. The RDF [g(r)] of all dumbbells when T c∗ = T h∗ = 2
(blue) at η = 0.42 shows a liquidlike structure with damping os-
cillations. The RDF of the cold dumbbells (black) at η = 0.42 and
T h∗ = 80 indicate solidlike order but RDF of hot dumbbells (red) at
η = 0.42 and T h∗ = 80 indicate gaseous phase.

TABLE I. Value of q4 and q6 for fcc and hcp crystals.

q4 q6

fcc 0.19 0.57
hcp 0.097 0.48

dumbbells are considered to be neighbors if their distance is
below 1.2σ . The bond order parameters are defined as

ql (i) =
√√√√ 4π

2l + 1

l∑
m=−l

qlmq∗
lm, (14)

where

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(θi j, φi j ). (15)

Nb(i) corresponds to the number of bonds for particle i, and
Ylm is the respective spherical harmonic function. The ideal
values of these parameters for various crystalline systems are
given in Table I.

In Fig. 15 distribution of bond order parameters q4 and q6

when T h∗ = 80 at η = 0.42 is given. We see that the cold
dumbbells form crystalline order where the atoms of dumb-
bells are arranged such that they have predominantly fcc and
hcp structures. Furthermore, each dumbbell points in different
directions and does not posses orientational order. In an equi-
librium system of dumbbells, at temperature T ∗ = 2, above
packing fraction η = 0.567 the dumbbells form a crystalline
solid [87] where atoms of dumbbells are in fcc arrangement
but the dumbbells have no orientational order and dumbbells
point in different directions. In our nonequilibrium system
of hot and cold dumbbells, we see that the cold dumbbells
form clusters of packing fraction much greater than η = 0.567
(Fig. 11) but the atoms of dumbbells show both hcp and
fcc arrangements as evident from the calculated bond order
parameters. But the cold dumbbells of the solid cluster in the
nonequilibrium system also do not posses orientational order
like dumbbell crystal in the equilibrium system.

FIG. 15. Distribution of bond orientation order parameters q4

and q6 of atoms of cold dumbbells when T h∗ = 80 at η = 0.42.
From the distribution, we can see that the cold dumbbells have
predominantly fcc and hcp arrangement.
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FIG. 16. Instantaneous configurations of the nonequilibrium system of hot and cold dumbbells at different fractions of hot dumbbells fh

when η = 0.42 and T h∗ = 80. We can see that hot and cold dumbbells phase separate at all given fractions of hot dumbbells fh.

C. Effect of the ratio of the number of hot and cold dumbbells
on phase separation

All the results we have discussed so far correspond to 50:50
mixture of hot and cold symmetric dumbbells. We have also
simulated the nonequilibrium system at different ratios of hot
and cold symmetric dumbbells. The fraction of hot dumbbells
fh in the system is given by

fh = Number of hot dumbbells

Total number of dumbbells
. (16)

Following the same procedure mentioned in Sec. III B, we
have also simulated the mixture of hot and cold dumbbells for
different fraction of hot dumbbells fh 0.1, 0.3, 0.7. and 0.9 at
packing fraction η = 0.42. Figure 16 shows the instantaneous
snapshots of the system at T h∗ = 80 at fh 0.1, 0.3, and 0.9.
We observe that for all given fraction of hot dumbbells fh the
hot dumbbells and cold dumbbells phase separate. We plot
the probability distribution P(ψ ) of the parameter ψ defined
in Eq. (8) for different fraction of hot dumbbells fh to identify
the critical activity at which the phase separation of hot and
cold dumbbells becomes macroscopic. In Table II we give the
values of critical activity for systems having different fractions
of hot dumbbells fh. From Table II we can see that as the
fraction of hot dumbbells fh increases, the value of critical
activity decreases. So we can conclude that as the fraction
of hot dumbbells is increased in the system, the hot and cold
dumbbells start phase separating at smaller values of activity.

TABLE II. The critical activity of system of hot and cold dumb-
bells having different fractions of hot dumbbells fh. We find that as
the fraction of hot dumbbells fh increases the value of critical activity
decreases

fh Critical activity

0.1 15.28
0.3 8.14
0.5 5.80
0.7 3.56
0.9 3.30

D. Effect of asymmetry of dumbbells on phase separation
of hot and cold dumbbells

So far, we have discussed about nonequilibrium phase
behavior of symmetric dumbbells. Here, following the same
procedure described in Sec. III B, we simulated equal mixture
of hot and cold asymmetric dumbbells at packing fraction
η = 0.42 with asymmetry parameter α( σ1

σ2
) = 0.2, 0.4, 0.6,

0.8, and 1. Figure 17 shows the snapshots of the system of
asymmetric dumbbells at T h∗ = 80 with α = 0.2, 0.4, and
0.8. We observe phase separation in hot and cold asymmetric
dumbbells with all asymmetry parameters at high temperature
of hot dumbbells.

To quantify the phase separation we have also calculated
order parameter φ defined in Eq. (7). Figure 18(a) gives the
plot of order parameter φ versus activity χ at η = 0.42 for
asymmetric dumbbells with different asymmetry parameter
α. Again similar to the symmetric dumbbells, for very small
initial activity χ the order parameter φ remains small and
constant. As χ increases, the value of φ also increases and
finally saturates to a large value, indicating phase separation.
We also observe that the order parameter φ increases with
asymmetry parameter α to 0.6 and does not increase further
with increase in α. The results for the effective temperature
of cold asymmetric dumbbells and entropy of hot asymmetric
dumbbells are given in Fig. 19 in the Appendix. We plot the
probability distribution P(ψ ) of the parameter ψ defined in
Eq. (8) for dumbbells with different asymmetry parameter α

to identify the critical activity at which the phase separation
of hot and cold dumbbells becomes macroscopic. We find
that for all values of asymmetry parameter α, the bimodality
in distribution first occurs at T h∗ = 15 which corresponds to
critical activity χ ≈ 5.80. So, the critical activity of phase
separation of hot and cold asymmetric dumbbells is equal to
critical activity of symmetric dumbbells irrespective of the
asymmetry parameter α.

The asymmetric dumbbells of asymmetry parameter α =
0.2, 0.4, 0.6, and 0.8 in equilibrium [70] exist in rotator,
NaCl, CrB, and γ CuTi crystal structures, respectively. Here
we examine the arrangement of asymmetrical dumbbells in
the phase-separated cold cluster. Figure 18(b) and 18(c) gives
the radial distribution function g(r) of both small and large
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FIG. 17. Instantaneous configurations of the nonequilibrium system of hot and cold asymmetric dumbbells with different asymmetry
parameters α when η = 0.42 and T h∗ = 80. We can see that hot (pink for small atoms and red for large atoms of dumbbells) and cold (purple
for small atoms and blue for large atoms of dumbbells) dumbbells phase separate for all values of asymmetry parameter α.

atoms of cold dumbbells when T h∗ = 80 and η = 0.42 for
cold dumbbells with asymmetry parameter α = 0.2 and 0.8,
respectively. For asymmetric dumbbells with α = 0.2, we see
that the large atoms of dumbbells show crystalline order but
the small atoms do not possess any crystalline order. By using
bond order orientation parameters defined in Eq. (14) and
(15), we find that the large atoms of dumbbells are arranged
so that they have predominantly fcc and hcp structure. The
small atoms of dumbbells are arranged randomly in the inter-
stitial spaces of the large atoms of dumbbells. This structure
is equivalent to the rotator crystal structure these dumbbells
form under equilibrium conditions where the large atoms are
in fcc arrangement and small atoms are randomly arranged in
the interstitial space of large atoms. However, for dumbbells
with asymmetry parameter α = 0.4, 0.6, and 0.8, we find that
both large and small atoms of asymmetric dumbbells do not
show crystalline order. This can possibly be explained from
the fact that even in equilibrium [70], for α > 0.3 the crystal
structures are not spontaneously formed upon compression of
isotropic fluid because of the crystal structure being kineti-
cally inaccessible. Since in our simulation, the cold clusters
of dumbbells are formed by compression due to high kinetic

pressure of hot dumbbells, we do not observe spontaneous
formation of crystal structures for α = 0.4, 0.6, and 0.8.

IV. CONCLUSION

In this work, we have extensively studied phase separation
of active and passive dumbbells using two temperature scalar
model of activity. In a mixture of hot and cold symmetric
dumbbells, we have shown that phase separation occurs at suf-
ficiently high temperature of hot dumbbells and the extent of
phase separation increases with increase in packing fraction.
We also determine the critical activity from the distribution
of parameter ψ defined as the number difference between
hot and cold dumbbells and find that the critical activity of
dumbbells is higher than that of Lennard-Jones monomer.
The critical activity also increases with decrease in packing
fraction. The entropy of hot dumbbells in the nonequilibrium
system increases with the activity due to increase in effective
volume on phase separation. We have shown that the mechan-
ical stability of the interface of hot and cold dumbbells is
because the high kinetic pressure of hot dumbbells is balanced
by the high virial pressure of cold dumbbells. We also find that

FIG. 18. (a) Plot of order parameter φ versus activity χ at η = 0.42 for asymmetric dumbbells with different asymmetry parameter α.
Here order parameter φ initially increases with asymmetry parameter to α = 0.6 but does not further increase with increase in asymmetry
parameter. [(b) and (c)] The radial distribution function g(r) for both small (green) and large (black) atoms of cold dumbbells at T h∗ = 80
and η = 0.42 for dumbbells with asymmetry parameter α = 0.2 and 0.8, respectively. For α = 0.2, the large atoms of cold dumbbells posses
crystalline order but small atoms do not have crystalline ordering. For α = 0.8 both small and large atoms of cold dumbbells do not posses
crystalline order.
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critical activity decreases as we increase the fraction of hot
dumbbells. We extended our simulations to study asymmetric
dumbbells and find that the critical activity does not change
with the asymmetry of dumbbells. The dense clusters of cold
dumbbells form both crystalline and noncrystalline order de-
pending on asymmetry parameter.

In our work without using the vectorial active force, we
have shown phase separation in active and passive three-
dimensional dumbbells with varied asymmetry by using
two-temperature model. With the advent of artificial active
systems whose persistence length can be tuned, we believe
our results can be experimentally realized in mixtures of pas-
sive and driven colloidal dumbbell [77] suspensions whose
persistence length is less than their size. The representation

of vectorial activity by temperature will help in develop-
ing a generalised thermodynamic approach for describing
nonequilibrium active matter systems. Since dumbbells are
the simplest model for anisotropic particles which are ubiq-
uitous in nature, our simulation may help in developing
theoretical frame work for scalar model of mixture of active
and passive anisotropic particles.
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APPENDIX: ADDITIONAL FIGURES

FIG. 19. (a) Plot of the effective temperature of cold dumbbells T c∗
eff versus temperature of hot dumbbells T h∗ at η = 0.42 for asymmetric

dumbbells with different asymmetry parameter α. We observe that T c∗
eff increases with decreasing asymmetry parameter α. So the dumbbells

with greatest asymmetry reach highest value for effective temperature of cold dumbbells T c∗
eff at a fixed packing fraction. (b) Plot of entropy

difference �S = Sneq − Seq versus activity χ at η = 0.42 for asymmetric dumbbells with different asymmetry parameter α. Here similar to the
symmetric dumbbells, we observe that before phase separation entropy difference �S is negative but jumps to positive value with the onset of
phase separation for all values of α. Also we see that entropy difference �S after phase separation (positive region) increases with asymmetry
parameter α till 0.6 and does not increase further with increase in α, following the same trend as order parameter φ [Fig. 18(a)].
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