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1. Introduction

One of the main motivations to study closed subsets of a given finite crystallographic 
root system is that they are closely related to the regular subalgebras of the corresponding 
semi-simple Lie algebra (see [14,11]). They also appear in various other contexts. For 
example, they appear in
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• the classification of maximal closed connected subgroups of maximal rank of a con-
nected compact Lie group [2]

• the theory of abelian/ad-nilpotent ideals of Borel subalgebras [22,8]
• the theory Chevalley groups [17]
• the classification of reflection subgroups of finite and affine Weyl groups [12].

Various special classes of closed subsets of a finite root system were classified by many 
authors. For example,

• A. Borel and J. De Siebenthal classified maximal closed subroot systems of finite 
root systems in [2]

• E. B. Dynkin came up with an algorithm to classify all subroot systems (upto the 
Weyl group conjugacy) of a finite root system in [14]

• Z. I. Borevič used topological methods in [3] to determine all closed subsets of root 
systems of type An, 1 ≤ n ≤ 8, and this work was subsequently taken forward by 
others, see for e.g. [5]

• the invertible closed subsets were classified in [10]
• recently, A. Douglas and W.A. de Graaf have given an algorithm for classifying all 

closed subsets of a finite root system, up to conjugation by the associated Weyl 
group, in [11].

But the problem of classifying closed subsets of (real) affine root systems is wide 
open. Again some very particular classes were studied in this setting. The invertible 
closed subsets of affine root systems were classified in [9] and the parabolic subsets were 
classified in [16]. Anna Felikson et al. started the classification of regular subalgebras 
of affine Kac-Moody algebras (which are related to the closed subroot systems of real 
affine root systems) in [15] and it was completed in [21], see also [20]. The classification 
of the reflection subgroups of finite and affine Weyl groups has been achieved in [12] by 
classifying subroot systems of finite and real affine root systems. It is well-known that 
the classification of all subroot systems may be deduced from that of the closed subroot 
systems in the finite setting, see [6]. A combinatorial description of biclosed sets of real 
affine root systems has been given very recently in [1].

In this paper, we are mainly interested in the closed subsets of real affine root systems, 
as they are closely related to the Cartan invariant subalgebras of the corresponding affine 
Kac-Moody algebras and this will be discussed elsewhere. Suppose Ψ is a closed subset 
of a real affine root system Φ, i.e., α, β ∈ Ψ and α+ β ∈ Φ implies that α+ β ∈ Ψ, then 
it is easy to see that Ψ can be written as a union of its symmetric part Ψr = Ψ ∩ −Ψ
and special part Ψs = Ψ\Ψr. Both symmetric and special parts of Ψ are closed in Φ. 
So the classification of closed subsets of Φ reduces to the classification of symmetric and 
special closed subsets of Φ. In general the problem of classifying special closed subsets 
is very hard, even in the finite case, and it will be discussed elsewhere. We only focus on 
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symmetric closed subsets of real affine root systems here. The main motivation for this 
work comes from the following two assertions about the finite root system:

• each symmetric closed subset of a finite root system must be a closed subroot system 
and

• there is a one to one correspondence between closed subsets of a finite root system 
and the Cartan invariant subalgebras of corresponding semi-simple Lie algebra (see 
[11, Proposition 4.1] for the precise statement).

Both of these statements are not true in general for real affine root systems and this 
naturally motivates us to ask the following questions:

(1) When a given symmetric closed subset of a real affine root system is a closed subroot 
system?

(2) Is it possible to classify all symmetric closed subsets of a real affine root system?
(3) Consider the map Ψ �→ g(Ψ) where Ψ is a symmetric closed subset of a real affine root 

system and g(Ψ) is the subalgebra generated by gα, α ∈ Ψ. This map is not injective 
for any affine Kac-Moody algebras (see Section 6). Is it possible to determine the 
preimage of g(Ψ)?

We will address all these questions in this paper. The paper is organized as follows: 
we recall the definitions and set up all the notations in Section 2. The symmetric closed 
subsets of real affine root systems whose gradient is closed are studied in Section 3, and 
the symmetric closed subsets of real affine root systems whose gradient is semi-closed are 
studied in Section 4. The correspondence between symmetric closed subsets of real affine 
root systems and regular subalgebras of corresponding affine Lie algebras is discussed in 
Section 6. We summarize all our results at the end, in Section 7.

2. Preliminaries

Throughout this paper, we denote by C (resp. R), the field of complex numbers (resp. 
real numbers) and by Z (resp. Z+), the set of integers (resp. non-negative integers).

2.1. Let E be an Euclidean space over R endowed with a positive definite symmetric 
bilinear form (·, ·). A finite (crystallographic) root system Φ̊ is a finite subset of E
satisfying the following properties (see [4, Chapter VI] or [18, Section 9.2]):

0 /∈ Φ̊, SpanRΦ̊ = E, sα(Φ̊) = Φ̊, ∀α ∈ Φ̊, (β, α∨) ∈ Z, ∀α, β ∈ Φ̊,

where α∨ := 2α/(α, α) and sα is the reflection acting on E defined by sα(x) = x −
(x, α∨)α, x ∈ E. For the rest of this paper, let Φ̊ be a finite root system in E. In 
addition, if Φ̊ satisfies Rα ∩ Φ̊ = {±α} for α ∈ Φ̊, then we call Φ̊ reduced. Moreover, 
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we call any subset Ψ ⊆ Φ̊ irreducible whenever Ψ = Ψ′ ∪ Ψ′′ with (Ψ′, Ψ′′) = 0 implies 
Ψ′ = ∅ or Ψ′′ = ∅. A subset Ψ ⊆ Φ̊ is said to be a subroot system of Φ̊ if sα(β) ∈
Ψ for all α, β ∈ Ψ. Any root system can be written as a direct sum of irreducible 
subroot systems (see [4, Chapter VI]) and the reduced irreducible root systems were 
classified in terms of their Dynkin diagrams (see [18, Theorem 11.4]). They are the 
classical types An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4) and the exceptional 
types E6,7,8, F4 and G2. For a direct construction of these root systems we refer to [18, 
Section 12.1]. Moreover, there is only one non–reduced irreducible root system of rank 
n, namely

BCn = Bn ∪ Cn = {±εi : 1 ≤ i ≤ n} ∪ {±εi ± εj : 1 ≤ i �= j ≤ n} ∪ {±2εi : 1 ≤ i ≤ n},

where ε1, . . . , εn denotes an orthonormal basis of E with respect to (·, ·). Recall that a 
subset Ψ̊ of Φ̊ is said to be symmetric if Ψ̊ = −Ψ̊, and it is called closed in Φ̊ if α, β ∈ Ψ̊
and α + β ∈ Φ̊ implies α + β ∈ Ψ̊. We record the following simple and important fact 
on finite root systems, and we include a proof for the reader’s convenience.

Lemma 1. Let Ψ̊ be a symmetric closed subset of Φ̊, then Ψ̊ is a closed subroot system 
of Φ̊.

Proof. Let α, β ∈ Ψ̊. Suppose (β, α∨) = 0, then sα(β) = β ∈ Ψ̊. So assume that 
(β, α∨) �= 0. If (β, α∨) < 0, then β, β + α, . . . , β + (−(β, α∨))α are elements of Φ̊ by [18, 
Proposition 8.4, Page 89]. Since Ψ̊ is closed, we have β, β + α, . . . , β + (−(β, α∨))α ∈ Ψ̊
which implies sα(β) = β− (β, α∨)α ∈ Ψ̊. Since Ψ̊ is symmetric, the case (β, α∨) > 0 can 
be done similarly. �

2.2. The Weyl group W of a finite root system Φ̊ is defined to be the subgroup 
of GL(E) generated by sα, α ∈ Φ̊. At most two root lengths occur in any reduced 
irreducible finite root system Φ̊ and all roots of a given length are conjugate under the 
Weyl group W of Φ̊ (see for example [18, Section 10.4]). We denote the set of short roots 
(resp. long roots) by Φ̊s (resp. Φ̊�) and if there is only one root length then we say that 
every root is short by convention. If Φ̊ is non–reduced irreducible finite root system, we 
define:

Φ̊s = {±εi, 1 ≤ i ≤ n}, Φ̊� = {±εi ± εj : 1 ≤ i �= j ≤ n}, Φ̊d = {±2εi, 1 ≤ i ≤ n}.

Note that Φ̊d = {α ∈ Φ̊ : α/2 ∈ Φ̊} is the set of divisible roots in BCn and define the 
non–divisible roots of BCn by Φ̊nd = Φ̊\Φ̊d. Further, set by Π̊ a base of Φ̊ and set

mΦ̊ =

⎧⎪⎪⎨⎪⎪⎩
1, Φ̊ is of type An, Dn or En

2, Φ̊ is of type Bn, Cn or F4

3, Φ̊ is of type G
2
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We often use m instead of mΦ̊ if the underlying Φ̊ is understood. We end with the 
following fact (see [7, Proposition 8.17]).

Lemma 2. Let Φ̊ be a finite irreducible root system. Let β ∈ Φ̊ and write β =
∑

α∈Π̊ kαα. 
Then β is a long root if and only if m divides kα for each short root α ∈ Π̊. �

2.3. Let Φ̊ be an irreducible reduced finite root system. Let ̊g be a finite–dimensional 
semi-simple Lie algebra over C and ̊h a Cartan subalgebra of ̊g such that the root system 
corresponding to the pair (̊g, ̊h) is Φ̊. Let σ be a Dynkin diagram automorphism of h̊
with respect to Φ̊ and denote m by the order of σ. We know that m ∈ {1, 2, 3}. Let ξ be 
a primitive m–th root of unity. We have

g̊ =
⊕

j∈Z/mZ

gj , gj = {x ∈ g : σ(x) = ξjx}.

It is known that g0 is again a finite-dimensional simple Lie algebra over C with a Cartan 
subalgebra h0 = h̊ ∩ g0. Moreover, gj is a g0–module and we denote the set of non–zero 
weights of gj with respect to h0 by Φ̊j . Then we have

Φ̊ := Φ̊0 ∪ · · · ∪ Φ̊m−1.

The types of Φ̊, ̊Φ0, . . . , ̊Φm−1 can be extracted from [19, Section 7.8, 7.9, 8.3]. The 
corresponding affine Kac–Moody algebra g = L̂(̊g, σ) is defined by

g = L(̊g, σ) ⊕Cc⊕Cd, L(̊g, σ) =
⊕

j∈Z/mZ

gj ⊗C[t±m]tj ,

where L(̊g, σ) is called the loop algebra, L(̊g, σ) ⊕ Cc is the universal central extension 
of the loop algebra and d = t d

dt is the degree derivation. For more details we refer the 
reader to [19, Section 7,8]. The set of roots of g with respect to the Cartan subalgebra 
h = h0 ⊕Cc ⊕Cd is exactly Δ\{0}, where

Δ := {α + rδ : α ∈ Φ̊j ∪ {0}, r ∈ j + mZ, 0 ≤ j < m}.

Denote Φ (resp. Φim) by the set of real (resp. imaginary) roots of g. Then we have

Φ =
⋃
α∈Φ̊

(
α + Λα

)
, Φim = Zδ,

where Λα = Λβ if α and β have same length and common Λs, Λ�, Λd can be found in the 
following table for each case.
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(g,m) Φ̊0 Φ̊1 Φ̊2 Φ̊ Λs Λ� Λd

(g(Φ̊), 1) Φ̊ / / Φ̊ Z Z /

(A2n, 2) Bn Φ̊0 ∪ {±2εi : 1 ≤ i ≤ n} / BCn
1
2 + Z Z 2Z

(A2n−1, 2) Cn (Cn)s / Cn Z 2Z /

(Dn+1, 2) Bn (Bn)s / Bn Z 2Z /

(E6, 2) F4 (F4)s / F4 Z 2Z /

(D4, 3) G2 (G2)s (G2)s G2 Z 3Z /

We end this section with the following definitions.

Definition 1. Let Ψ be a subset of Δ (resp. Φ). Set Ψre := Ψ ∩ Φ and Ψim := {r ∈ Z :
rδ ∈ Ψ} ∪ {0}.

(1) We say Ψ is symmetric if Ψ = −Ψ, where −Ψ = {−α : α ∈ Ψ}.
(2) We say Ψ is real closed or closed in Φ if

(a) Ψ is a non-empty subset of Φ
(b) if α, β ∈ Ψ such that α + β ∈ Φ, then we have α + β ∈ Ψ.

(3) We say Ψ is a subroot system if for any α ∈ Ψre, β ∈ Ψ we have sα(β) ∈ Ψ.

2.4. Let Φ be a real irreducible affine root system as in Section 2.3 and let Ψ be a 
closed subset of Φ. The symmetric part of Ψ defined to be Ψr := {α ∈ Ψ | −α ∈ Ψ}
and the special part of Ψ defined to be Ψs := {α ∈ Ψ | −α /∈ Ψ}. It is clear that Ψr is a 
symmetric closed subset of Φ and Ψs is a closed subset of Φ, and we have

Ψ = Ψr � Ψs.

The gradient of Ψ is Gr(Ψ) := {α ∈ Φ̊ | α + kδ ∈ Ψ for some k ∈ Z}. For given 
α ∈ Gr(Ψ), we define Zα(Ψ) := {k ∈ Z | α+ kδ ∈ Ψ}. We will simply use Zα for Zα(Ψ)
if the dependence of the underlying Ψ is understood. Clearly we have

Ψ =
⋃

α∈Gr(Ψ)

{α + kδ | k ∈ Zα}.

For a given (pα)α∈Gr(Ψ), where pα ∈ Zα, define Z ′
α := Zα − pα for α ∈ Gr(Ψ). We often 

make specific choices of (pα)α∈Gr(Ψ) and make sure that the map α �→ pα gives us a 
Z-linear function from p : Gr(Ψ) → Z. For example, we have (see [13, Lemma 13] and 
[21, Lemma 2.1.1]):

Lemma 3. Let Ψ be a symmetric closed subset of Φ. Suppose Gr(Ψ) is a closed, reduced 
subroot system with a base B and assume that we have
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Zα + Zβ ⊆ Zα+β for all (α, β, α + β) ∈ Gr(Ψ)×3. (2.1)

Choose pα ∈ Zα arbitrarily for α ∈ B and extend the map α �→ pα, α ∈ B to Gr(Ψ)
Z-linearly. Then we have pα ∈ Zα, for all α ∈ Gr(Ψ).

Proof. Define a Z-linear function p : Gr(Ψ) → Z extending α �→ pα, α ∈ B. We claim 
that pα ∈ Zα for all α ∈ Gr(Ψ). Since p−α = −pα and Z−α = −Zα, it is enough to 
prove that pα ∈ Zα for all positive roots α ∈ Gr(Ψ). Let α ∈ Gr(Ψ) be a positive 
root, then we can write α = α1 + · · · + αr with each partial sum α1 + · · · + αi is again 
a root in Gr(Ψ) for 1 ≤ i ≤ r. Since Ψ is closed and using the condition (2.1), we 
have α1 + · · · + αi + (pα1 + · · · + pαi

)δ ∈ Ψ for 1 ≤ i ≤ r. In particular, we have 
pα = pα1 + · · · + pαr

∈ Zα. This completes the proof. �
2.5. We collect here some basic facts in this subsection. Let Ψ be a subset of Φ and 

let

Ψ = Ψ1 � · · · � Ψr (2.2)

be the decomposition of Ψ into irreducible subsets. Then we have

Gr(Ψ) = Gr(Ψ1) � · · · �Gr(Ψr) (2.3)

is the decomposition of Gr(Ψ) into irreducible subsets.

Proposition 1. Let Ψ be a subset of Φ.

(1) Suppose Ψ is symmetric, then each Ψi in (2.2) and each Gr(Ψi) in (2.3) are sym-
metric.

(2) Suppose Ψ is closed in Φ, then each Ψi in (2.2) is closed in Φ. In addition if Gr(Ψ)
is closed in Φ̊, then each Gr(Ψi) in (2.3) is closed in Φ̊.

(3) Suppose Ψ is symmetric closed in Φ. Then α + β /∈ Φ if α ∈ Ψi and β ∈ Ψj for 
i �= j.

(4) Assume that Gr(Ψ) is closed in Φ̊. Then

(a) Ψ is symmetric closed in Φ if and only if each Ψi is symmetric closed in Φ.
(b) Ψ is a closed subroot system of Φ if and only if each Ψi is a closed subroot 

system of Φ.

Proof. We only prove the statement 4(a) as all other statements are easy to check. 
The forward direction follows from (3). For the converse part, we assume that each Ψi

is symmetric closed in Φ. Since Gr(Ψ) is symmetric closed in Φ̊, it must be a closed 
subroot system. Hence each Gr(Ψi) is a closed subroot system of Φ̊ and it has a base say 
Bi. Then B := ∪iBi is a base for Gr(Ψ). Let α+ rδ ∈ Ψi and β + sδ ∈ Ψj with i �= j. If 
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α + β + (r + s)δ ∈ Φ, then α + β ∈ Φ̊. This implies α + β ∈ Gr(Ψ) as Gr(Ψ) is closed, 
which is impossible because α ∈ Gr(Ψi) and β ∈ Gr(Ψj), and a sum of the roots from 
different orthogonal components is not a root, see [7, Proposition 16.21]. This completes 
the proof. �
Remark 1. The fourth statement in Proposition 1 is false in general if we drop the 
condition Gr(Ψ) is closed. For example, let us consider Φ be of type D(2)

n+1, n ≥ 2. Set 
In = {1, 2, . . . , n}. For I ⊆ In, let

ΨI := {±εk + (2Z + 1)δ : k ∈ I} ∪ {±(εk ± ε�) + 2Zδ : k �= � ∈ I}.

It is clear that ΨI is a symmetric closed subset of Φ for each I. Now take Ψ = ΨI ∪ ΨJ

where I, J form a partition of In, then Ψ is not a closed subset of Φ.

2.6. Given S ⊆ Φ, we define g(S) by the subalgebra of g generated by gα, α ∈ S. 
Let Δ(S) be the set of roots of g(S). We end this section with the following proposition.

Proposition 2. Let Ψ be a symmetric subset of Φ. Then Δ(Ψ) ∩ Φ is a minimal closed 
subroot system of Φ containing Ψ.

Proof. By [21, Lemma 11.1.2, Page 1301], it is enough to prove that Δ(Ψ) = −Δ(Ψ). 
Suppose β ∈ Δ(Ψ), then there exists β1, . . . , βr ∈ Ψ such that β = β1 + · · · + βr. Since 
the Chevalley involution [19, Chapter 1, Page 7] of g takes gα to g−α for all α ∈ Δ, we 
have

[gα1 , · · · [gαr−1 , gαr
]] �= 0 ⇐⇒ [g−α1 , · · · [g−αr−1 , g−αr

]] �= 0.

Since Ψ is symmetric, we have −β1, . . . , −βr ∈ Ψ and 0 �= [g−β1 , · · · [g−βr−1 , g−βr
]] ⊆

g(Ψ). This implies −β ∈ Δ(Ψ). Hence we have Δ(Ψ) = −Δ(Ψ).
Suppose Ψ ⊆ S is a closed subroot system of Φ. Then we have g(Ψ) ⊆ g(S) and the 

real root of g(S) is equal to S by [21, Corollary 11.1.5, Page 1304]. Since the real roots 
of g(Ψ) are also real roots of g(S), we must have Δ(Ψ) ∩ Φ ⊆ S. �
Corollary 1. Let Ψ be a symmetric closed subset of Φ. Then Δ(Ψ) ∩ Φ = Ψ if and only 
if Ψ is a closed subroot system of Φ.

3. Symmetric closed subsets of affine root systems

In this section, we fix a real affine root system Φ which is not of type A(2)
2n . We 

need the following notation: for k ∈ Z+, denote by πk : Z → Z/kZ the quotient map 
x → x (mod k). Recall that m is the lacing number associated with Φ̊.
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3.1. We define a semi-closed subset of finite root systems as in [21, Definition 4.4.1].

Definition 2. A symmetric subset Ψ̊ of Φ̊ is called a semi-closed subset of Φ̊ if

(1) Ψ̊ is not closed in Φ̊.
(2) If α, β ∈ Ψ̊ such that α + β ∈ Φ̊ \ Ψ̊, then (α, β, α + β) is of type (s, s, �).

We need the following simple lemma, see [21, Proposition 4.1.2].

Lemma 4. Let Φ be a real twisted affine root system not of type A(2)
2n . Let Ψ ≤ Φ be a 

closed subset. Then Gr(Ψ) is either closed or semi-closed subset of Φ̊. �
3.2. We now consider the case when Gr(Ψ) is a closed subroot system of Φ̊. The 

following proposition will be used as a primary tool to prove our main theorem in most 
of the cases.

Proposition 3. Let Φ be a real affine root system not of type A(2)
2n . Let Ψ be a symmetric 

closed subset of Φ such that Gr(Ψ) is closed in Φ̊ and no irreducible component of Gr(Ψ)
is of type A1. Suppose that there is a Z-linear function p : Gr(Ψ) → Z, α �→ pα, such 
that pα ∈ Zα, and |πm(Zα)| = 1, for all α ∈ Gr(Ψ) Then we have

(1) Z ′
α = Z ′

β = Z ′
α+β := A for (α, β, α + β) ∈ Gr(Ψ)×3 and A is a subgroup of mZ.

(2) For any α, β ∈ Ψ, we have sα(β) ∈ Ψ. In particular, Ψ is a closed subroot system of 
Φ.

Proof. Recall that Z ′
α = Zα − pα for α ∈ Gr(Ψ). Let (α, β, α+β) ∈ Gr(Ψ)×3. We claim 

that

Zα + Zβ ⊆ Zα+β .

Let r ∈ Zα and s ∈ Zβ . If α + β is short or Φ is untwisted then the result is 
immediate. So assume that α + β is long. Then we have pα+β ≡ 0 (modm). Since 
r ≡ pα (modm) and s ≡ pβ (modm) and the map p is Z-linear we have r+s ≡ 0 (modm). 
This implies α+ β + (r + s)δ ∈ Φ. Since Ψ is closed, it follows that α+ β + (r + s)δ ∈ Ψ
and so r + s ∈ Zα+β . Hence Zα + Zβ ⊆ Zα+β . Now using the linearity of p, we get

Z ′
α + Z ′

β ⊆ Z ′
α+β (3.1)

for all (α, β, α + β) ∈ Gr(Ψ)×3. Since (3.1) is true for all tuples (α, β, α + β) such that 
α, β, α + β ∈ Gr(Ψ). We have

Z ′
α + Z ′

β ⊆ Z ′
α+β , Z ′

α+β + Z ′
−α ⊆ Z ′

β , and Z ′
α+β + Z ′

−β ⊆ Z ′
α.
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This implies A = Z ′
α = Z ′

β = Z ′
α+β . It is easy to see that Z ′

−μ = −Z ′
μ for all μ ∈ Gr(Ψ). 

Thus A ⊆ mZ satisfies A = −A and A + A ⊆ A, so it must be a subgroup of mZ.

To prove (2), let α, β ∈ Ψ. Write α = α′ + sδ, β = β′ + rδ. We claim that sα(β) =
β − (β, α∨)α ∈ Ψ. Suppose β′ �= ±α′, then using “unbroken string property” of Δ we 
get sα(β) ∈ Ψ as Ψ is closed and any root of the form β + pα, p ∈ Z, must be real. 
Now assume that β′ = ±α′. Since no irreducible component of Gr(Ψ) is of type A1, 
there is a γ′ ∈ Gr(Ψ) such that α′ + γ′ ∈ Gr(Ψ). Applying the Part (1) for the triple 
(α′, γ′, α′ + γ′), we get that Z ′

α′ is a subgroup of mZ. We have

sα′+sδ(±α′ + rδ) = ∓α′ + (r ∓ 2s)δ

Since s ∈ Zα′ , r ∈ Z±α′ , there are z1, z2 ∈ Z ′
α′ such that s = z1 + pα′ and r = z2 + p±α′ . 

Now we have r∓ 2s = z2 ± pα′ ∓ 2(z1 + pα′) = (z2 ∓ 2z1) ∓ pα′ ∈ Z ′
α′ + p∓α′ as Z ′

α′ is a 
group. Hence sα(β) ∈ Ψ and this completes the proof. �

3.3. When Gr(Ψ) is closed in Φ̊, using Proposition 1 4(a), we see that to classify 
a symmetric closed subsets of Φ we only need to classify irreducible symmetric closed 
subsets of Φ. So without loss of any generality we assume that Ψ is irreducible symmetric 
and closed in Φ in what follows.

Proposition 4. Let Φ be a real affine root system not of type A(2)
2n . Let Ψ be an irreducible 

symmetric closed subset of Φ such that Gr(Ψ) is closed in Φ̊ and it is not of type A1. 
If there exists a short root β such that |πm(Zβ)| = 1, then there exists n ∈ Z+ and a 
Z-linear function p : Gr(Ψ) → Z, α �→ pα, with pα ∈ Zα, for all α ∈ Gr(Ψ) such that

Ψ = {α + (pα + nZ)δ : α ∈ Gr(Ψ)}

In particular Ψ is a closed subroot system of Φ.

Proof. Note that Gr(Ψ) must be a closed subroot system of Φ̊. Fix a short simple root 
β ∈ Gr(Ψ) such that |πm(Zβ)| = 1. We first show that |πm(Zα)| = 1 for all simple roots 
α. We prove this by induction on k where β = α0, · · · , αk = α is the unique path from 
β to α. Set γj =

∑j
i=0 αi for 0 ≤ j ≤ k, and note that γj ∈ Gr(Ψ), for all 0 ≤ j ≤ k. 

We claim that |πm(Zαj
)| = 1 and |πm(Zγj

)| = 1, for all 0 ≤ j ≤ k. For k = 1, we have 
α is adjacent to β and α + β ∈ Gr(Ψ). Consider Zα+β + Z−α ⊆ Zβ which is always 
true as β is short. This gives Zα+β and Z−α must contain only one congruence class 
modulo m. Since Z−α = −Zα, we have |πm(Zγ)| = 1 for γ = α, α + β. For general k, 
we must have γk−1 is short by Lemma 2 since β is short. Since γk = γk−1 + α, we have 
Zγk

+Z−α ⊆ Zγk−1 . By induction hypothesis, we have |πm(Zγk−1)| = 1, and this implies 
the desired claim.

We shall now show that |πm(Zα)| = 1 for every positive root α. We proceed by 
induction on ht(α). If α is long or ht(α) = 1, then there is nothing to prove. Assume 
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that ht(α) > 1, then we can write α = γ + αk where γ ∈ Φ̊+ and αk is a simple 
root. If αk is short, we have Zγ + Z−α ⊆ Z−αk

and this immediately implies that 
|πm(Zα)| = 1. If αk is long, then γ is short and we have Zα + Z−αk

⊆ Zγ . By induction 
hypothesis, we have |πm(Zγ)| = 1, hence we get |πm(Zα)| = 1. We now check the 
condition (2.1) is satisfied. Since Ψ is closed, the only non-trivial case is when Φ is 
twisted and (α1, α2, α1 + α2) ∈ Gr(Ψ)×3 is of type (s, s, �). Since Zα1+α2 + Z−α1 ⊆ Zα2

holds, we must have r + s ≡ 0 (mod m) for all r ∈ Zα1 and s ∈ Zα2 . This implies 
Zα1 + Zα2 ⊆ Zα1+α2 . Now Proposition 3 completes the proof. �
Remark 2. The assumptions on the Gr(Ψ) in Proposition 3 and 4 are very sharp, i.e., the 
conclusions of Proposition 3 and 4 are not valid when one of the components of Gr(Ψ)
is of type A1. For example, we can take

Ψ = {α + δ,−α + δ,−α− δ, α− δ}

in A(1)
1 , it is symmetric closed but not subroot system. Take α1 = α + δ, β1 = −α + δ, 

then sα1(β1) = α + 3δ /∈ Ψ. Note that Zα(Ψ) = {±1} which is far from being a coset.

3.3.1. Now we assume that there is a short root β ∈ Gr(Ψ) such that |πm(Zβ)| > 1. 
In this case, we have to deal with the case Gr(Ψ) is of type B2 separately. First we 
assume that Gr(Ψ) is not of type B2, then we have:

Proposition 5. Let Φ, Ψ, Gr(Ψ) be as before in Proposition 4. Further assume that Gr(Ψ)
is not of type B2. Suppose that there exists a short root β ∈ Gr(Ψ) such that |πm(Zβ)| >
1, then we have,

Ψ = {α + (pα + nsZ)δ : α ∈ Gr(Ψ)s} ∪ {γ + (pγ + mnsZ)δ : γ ∈ Gr(Ψ)�} (3.2)

for some ns ∈ Z+. In particular Ψ is a closed subroot system.

Proof. Clearly Φ is twisted and we have |πm(Zα)| > 1 for all short roots α ∈ Π by the 
proof of Proposition 4. Let Zγ,0 = Zγ ∩mZ, for γ ∈ Gr(Ψ) and note that Zγ,0 = Zγ for 
long roots γ ∈ Gr(Ψ). Define Ψ0 as follows

Ψ0 := {γ + Zγ,0δ : γ ∈ Gr(Ψ)s} ∪ {γ + Zγ,0δ : γ ∈ Gr(Ψ)�}

If m = 2, clearly Zγ,0 �= ∅ for all γ ∈ Gr(Ψ). If m = 3, then Φ = D
(3)
4 . Since Gr(Ψ) is 

not of type A1 and it is irreducible, we must have Gr(Ψ) = Φ̊ (which is of type G2). If 
{α1, α2} is a basis of Φ̊ with α1 is short, then the short roots of Φ̊ are α1, α2 + α1 and 
α2 + 2α1. Since Zα2 ⊆ mZ and Zα2 + Zα1 ⊆ Zα2+α1 , we have

πm(Zα1) ⊆ πm(Zα2+α1).
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Let x, y ∈ πm(Zα1) such that x �= y. Since Zα2+α1 + Zα1 ⊆ Zα2+2α1 , we have 2x, x +
y, 2y ∈ πm(Zα2+2α1). Since x �= y, we have |πm(Zα2+2α1)| = 3. Now since Zα2+2α1 +
Z−α1 ⊆ Zα2+α1 , we have |πm(Zα2+α1)| = 3. Again since Zα2+α1 + Z−α2 ⊆ Zα1 , we 
must have |πm(Zα1)| = 3. This proves that Zα,0 �= ∅ for α ∈ Φ̊s. Hence Zγ,0 �= ∅ for all 
γ ∈ Gr(Ψ).

Clearly the condition (2.1) is satisfied for Ψ0. Hence we have a Z-linear function 
p : Gr(Ψ0) → Z with pγ ∈ Zγ,0 for all γ ∈ Gr(Ψ0) = Gr(Ψ). All the necessary conditions 
of Proposition 3 are satisfied for Ψ0. Since Gr(Ψ) is irreducible, there exists n� ∈ mZ

such that Z ′
γ,0 = n�Z for all γ ∈ Gr(Ψ). In particular, we have Z ′

γ = n�Z for all long 
roots γ ∈ Gr(Ψ).

Now let Gr(Ψ) be of type Bn with n ≥ 2, in particular m = 2. We claim that Z ′
α

is a union on cosets modulo n�Z for all α ∈ Gr(Ψ)s. Let α ∈ Gr(Ψ) be a short root. 
Since Gr(Ψ) is irreducible, there exists a long root γ such that (α, γ) �= 0. Without loss 
of generality let (α, γ) < 0. Since Ψ is closed, we have the following relations

Zγ + Zα ⊆ Zα+γ , Zα+γ + Z−γ ⊆ Zα.

Since p is Z-linear, we have

Z ′
γ + Z ′

α ⊆ Z ′
α+γ , Z ′

α+γ + Z ′
−γ ⊆ Z ′

α.

Since Z ′
γ = n�Z, the above relations show that Z ′

α = Z ′
α+γ and Z ′

α + n�Z ⊆ Z ′
α. Thus 

we have Z ′
α is a union of cosets modulo n�Z for all short roots α ∈ Gr(Ψ). Now if α and 

γ are short roots such that α + γ is long, then we have

(Z ′
α + Z ′

γ) ∩mZ ⊆ Z ′
α+γ , Z ′

α+γ + Z ′
−γ ⊆ Z ′

α (3.3)

Fix a short root α and write Z ′
α = ∪i(aiα + n�Z) with 0 ≤ aiα �= ajα < n�, i �= j. 

Since Gr(Ψ) is of type Bn (n ≥ 2), there is a short root γ such that α + γ is long. 
Equations in (3.3) imply that n�Z ⊆ Z ′

α and hence akα = 0 for some k and 2 � ajα for 
all j �= k. Since |πm(Zα)| > 1, there exists i such that aiα is odd. Let arγ be one such 
odd coset for γ. If aiα, ajα are both odd, then by equation (3.3), we get that aiα + arγ ≡
0 (mod n�) and ajα + arγ ≡ 0 (mod n�). Hence it follows that aiα = ajα and Z ′

α is a union 
of exactly two cosets n�Z ∪ (aα + n�Z) with aα odd. Similarly Z ′

γ = n�Z ∪ (aγ + n�Z). 
Furthermore aα + aγ ≡ 0(mod n�). Till this point the argument is valid for B2 as well. 
Now assume that n ≥ 3. Let β1, β2 be short roots. Then there is a short root β3 such 
that βi + βj is a long root for 1 ≤ i �= j ≤ 3. Applying equation (3.3) for the triples 
(β1, β2, β1 + β2), (β2, β3, β2 + β3), (β1, β3, β1 + β3) successively we get that

aβ1 + aβ2 ≡ 0 (mod n�), aβ2 + aβ3 ≡ 0 (mod n�), aβ1 + aβ3 ≡ 0 (mod n�)

Hence we have aβ1 = aβ2 = aβ3 = n�/2. This proves that Z ′
β1

= Z ′
β2

= n�Z ∪ (n�/2 +
n�Z) = n�Z. Hence if Gr(Ψ) is of type Bn(n ≥ 3), then Ψ is of the form (3.2).
2
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Now let Gr(Ψ) be not of type Bn. Let Ψ′ =
⋃

α∈Φ̊s
{α + rδ ∈ Ψ : r ∈ Z}. Since 

Gr(Ψ)s = Gr(Ψ′), we have Ψ′ is symmetric closed subset of Φ̊(1)
s . Note that Zα(Ψ) =

Zα(Ψ′) for all α ∈ Gr(Ψ)s. Since Gr(Ψ)s is irreducible, by Proposition 3, there exists 
ns ∈ Z+ such that Z ′

α(Ψ) = Z ′
γ(Ψ) = nsZ for all α, γ ∈ Gr(Ψ)s. Note that given 

α ∈ Gr(Ψ)s, there exists a γ ∈ Gr(Ψ)s such that α + γ ∈ Gr(Ψ)�. Applying equation 
(3.3), we get that n�Z ⊆ nsZ and mnsZ = nsZ ∩ mZ ⊆ n�Z. We have ns | n� and 
n� | mns. Let n� = rns. Then r | m. Since m is prime, either r = 1 or r = m. If r = 1, 
then n� = ns, and since m | n�, we have that |πm(Zα)| = 1 for all short roots α which is 
a contradiction. Hence r = m and consequently, Ψ is of the form (3.2). This completes 
the proof. �
Proposition 6. Let Φ, Ψ, Gr(Ψ) as before in Proposition 4. Assume that there exists a 
short root β ∈ Gr(Ψ) such that |πm(Zβ)| > 1. Suppose Gr(Ψ) is of type B2, then we 
have Ψ = Ψ+ ∪ (−Ψ+) where Ψ+ is of the form

Ψ+ = {εi + (pεi + Ai)δ : i = 1, 2} ∪ {α + (pα + n�Z)δ : α ∈ Φ̊+
� } (3.4)

where

(1) p : Gr(Ψ) → Z is a Z-linear function such that pεi ∈ 2Z for i = 1, 2,
(2) Ai = n�Z ∪ (ai + n�Z), n� ∈ 2Z+, 0 ≤ a1, a2 < n� such that a1 + a2 ≡ 0 (mod n�)

and both a1, a2 are odd.

Moreover, we have Ψ is a closed subroot system if and only if a1 = a2 = n�/2. In this 
case Ψ is of the form

Ψ = {α + (pα + nsZ)δ : α ∈ Gr(Ψ)s} ∪ {β + (pβ + mnsZ)δ : β ∈ Gr(Ψ)�} (3.5)

Proof. From the proof of Proposition 5, we have that Ψ+ is of the form (3.4). If a1 ≡
a2(mod n�), then along with a1 + a2 ≡ 0(mod n�), we get that a1 = a2 = n�/2. Hence 
(n�Z) ∪ (a2 + n�Z) = (n�/2)Z and hence Ψ is of the form (3.2). In particular, Ψ is a 
closed subroot system.

Conversely, suppose that Gr(Ψ) is of type B2 and Ψ is a closed subroot system of Φ
whose positive part Ψ+ as given in (3.4). Let α = εi + (pεi + ai)δ, α′ = εi + pεiδ. Then 
sα′(α) = −εi + (p−εi + ai)δ. Since p−εi + ai is odd and p−εi + (−ai) + n�Z is the coset 
in Z−εi which contains odd integers, we must have ai ≡ −ai(mod n�). Hence ai = n�/2
for i = 1, 2. �

3.4. We end this section with the main result about untwisted real affine root sys-
tems.
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Theorem 1. Let Φ be a real untwisted irreducible affine root system. Let Ψ be a symmetric 
closed subset of Φ such that none of the irreducible components of Gr(Ψ) is of type A1. 
Then Ψ is a closed subroot system of Φ.

Proof. Since Φ is untwisted, it is easy to see that Gr(Ψ) is a symmetric closed subset of 
Φ. As m = 1 in this case, we get the result from Proposition 4. �
Remark 3. The same example in Remark 2 suggests that the assumption in Theorem 1
is necessary.

4. Semi-closed gradient case

As before, we assume that Φ is a real twisted affine root system which is not of 
type A(2)

2n . In this section, we consider the case when Ψ is a symmetric closed subset 
of Φ with Gr(Ψ) is semi-closed in Φ̊. We cannot assume that Ψ is irreducible as in 
Section 3.3, because we may miss the interaction between two roots coming from the 
different orthogonal components of (2.3) (see Remark 1). Moreover, we have to deal with 
each individual affine root system separately due to their gradient behavior.

4.1. Twisted real affine root system of type D(2)
n+1

In this case, the real affine roots are given by

Φ = {±εi + r δ | r ∈ Z, 1 ≤ i ≤ n} ∪ {±εi ± εj + 2rδ | r ∈ Z, 1 ≤ i �= j ≤ n}

and Φ̊ is of type Bn, n ≥ 2. We assume that Ψ is a symmetric closed subset of Φ such 
that Gr(Ψ) is semi-closed in Φ̊. For J ⊆ In, we define

BJ := {±εj : j ∈ J} ∪ {±εj ± εj′ : j �= j′ ∈ J}.

Recall that by definition, a semi-closed subset is symmetric. First we will determine the 
semi-closed subsets of Φ̊ which occur as the gradient of some symmetric closed subset of 
D

(2)
n+1. Maximal semi-closed subroot systems of Φ̊ were determined in [20]. The following 

result generalizes [20, Theorem 2(2)] for Bn type.

Lemma 5. Let Φ be of type D(2)
n+1 and Ψ a symmetric closed subset of Φ. Suppose that 

Ψ̊ is a semi-closed subset of Φ̊ such that Ψ̊ = Gr(Ψ), then there exist non-empty subsets 
Jo and Je of In such that Je ∩ Jo = ∅ and Ψ̊\(BJe

∪ BJo
) is a closed subroot system of 

long roots of Bn.

Proof. Assume that Ψ̊ = Gr(Ψ) for some symmetric closed subset Ψ of D(2)
n+1. Set 

Zp = Zεp for each p ∈ I where
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I := {p ∈ In | εp ∈ Ψ̊}.

Note that εp+εq ∈ Ψ̊ for p, q ∈ I if and only if (Zp+Zq) ∩2Z �= ∅. Since Z−εp = −Zp, we 
have εp + εq ∈ Ψ̊ for p, q ∈ I if and only if εp− εq ∈ Ψ̊ for p, q ∈ I. Since Ψ̊ is semi-closed, 
there exist εi, εj ∈ Ψ̊ such that εi + εj /∈ Ψ̊, this implies I �= ∅ and (Zi + Zj) ∩ 2Z = ∅. 
Without loss of generality, assume that Zi ⊆ 2Z and Zj ⊆ 2Z +1. We claim that for any 
k ∈ I, we have either Zk ⊆ 2Z or Zk ⊆ 2Z +1. Suppose that for some k ∈ I, Zk contains 
both even and odd elements. Then ∃ r, s ∈ Z such that εk + 2rδ, εk + (2s + 1)δ ∈ Ψ. Let 
2q ∈ Zi and 2p +1 ∈ Zj be arbitrary. Then we have εk+εi+2(r+q)δ, εk−εj+2(s −p)δ ∈ Ψ
and

εk + εi + 2(r + q)δ − (εk − εj + 2(s− p)δ) = εi + εj + 2(r + q + p− s)δ ∈ Ψ

as Ψ is closed in Φ. This implies εi + εj ∈ Ψ̊, a contradiction. Hence the claim follows.
Now define Je := {p ∈ I | Zp ⊆ 2Z} and Jo := I\Je. We claim that (s, t), (t, s) ∈

Je ×Jo implies that ±εs± εt /∈ Ψ̊. Suppose that ±εs± εt +2kδ ∈ Ψ with (s, t) ∈ Je×Jo. 
Then we have

±εt + 2(k + r∓)δ = (±εs ± εt + 2kδ) + (∓εs + 2r∓δ) ∈ Ψ,

where r∓ ∈ Z such that ∓εs + 2r∓δ ∈ Ψ. This is a contradiction since t ∈ Jo. By 
symmetry we get (t, s) ∈ Je × Jo implies that ±εs ± εt /∈ Ψ̊. Note that ±εi ± εj ∈ Ψ̊ for 
all i, j ∈ Je (or Jo). Hence {±εi : i ∈ I} generates a root system of type BJe

�BJo
in Ψ̊. 

If Ψ̊ = BJe
� BJo

, then there is nothing to prove. So assume that Ψ̊ �= BJe
� BJo

. It is 
clear that Ψ̊\(BJe

�BJo
) is a symmetric closed subset of (Bn)� since Ψ̊ is semi-closed in 

Φ̊. Hence it is a closed subroot system of (Bn)� by Lemma 1. �
Remark 4.

(1) Since the long root of Bn forms a root system of type Dn, it follows that Ψ̊\(BJe
�

BJo
) is a union of root systems of type A and D ([2]).

(2) The converse of Lemma 5 is also true.

Proposition 7. Let Ψ be a symmetric closed subset of Φ such that Gr(Ψ) is semi-closed. 
If (2.2) and (2.3) are the decomposition of Ψ and Gr(Ψ) respectively into irreducible 
components, then for each i, there exists a Z-linear function pi : Gr(Ψi) → Z, α �→
pi(α) ∈ Zα, and ni ∈ 2Z+ such that

Ψi = {α + (pi(α) + niZ)δ : α ∈ Gr(Ψi)}.

In particular, Ψ is a closed subroot system of Φ. Moreover, we have r ≥ 2, and Gr(Ψ1), 
Gr(Ψ2) are of type B, and the rest of Gr(Ψi)’s are of either type A or D, and p1(α) ∈
2Z + 1 (resp. p2(α) ∈ 2Z) for a short root α ∈ Gr(Ψ1) (resp. Gr(Ψ2)).
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Proof. Since Gr(Ψ) is semi-closed, by Lemma 5, we have Gr(Ψ) = Ψ̊1 � Ψ̊2 � · · · � Ψ̊r

where Ψ̊1 and Ψ̊2 are of type B. For 1 ≤ i ≤ r, let Ψi := {α + rδ ∈ Ψ | α ∈ Ψ̊i}. Then 
Ψ = Ψ1 � · · · � Ψr is the decomposition of Ψ into irreducible components. It is easy to 
see that each Ψi is a symmetric closed subset of Φ with Gr(Ψi) is closed in Φ̊. From the 
proof of Lemma 5, we have |πm(Zα)| = 1 for all α ∈ Gr(Ψ). Now Proposition 4 gives 
the desired result for the first part of the proof. Again the second part is clear from 
Lemma 5. �
4.2. Twisted real affine root system of type A(2)

2n−1

In this case, the real affine roots are given by

Φ = {±2εi + 2rδ | r ∈ Z, 1 ≤ i ≤ n} ∪ {±εi ± εj + rδ, | r ∈ Z, 1 ≤ i �= j ≤ n}.

The next proposition is the main result of this subsection.

Proposition 8. Let Ψ be a symmetric closed subset of Φ such that Gr(Ψ) is semi-closed 
in Φ̊. Let Ψ = Ψ1 � · · · � Ψr be the decomposition of Ψ into irreducible components. 
Assume that Gr(Ψi) is not of type A1 or B2 for each 1 ≤ i ≤ r. Then we have Ψ is a 
closed subroot system.

Proof. Define I := {i ∈ In | 2εi ∈ Gr(Ψ)}. Since Gr(Ψ) is semi-closed, there exist 
εs − εt, εs + εt ∈ Gr(Ψ) but 2εs /∈ Gr(Ψ). Hence I �= In. Let

Ψ′ :=

⎛⎝⋃
i∈I

(±2εi + 2Zδ) ∪
⋃

i�=j∈I

(±εi ± εj + Zδ)

⎞⎠ ∩ Ψ, Ψ′′ := Ψ\Ψ′.

If εk± ε� ∈ Gr(Ψ) for some k ∈ I, but � ∈ In\I. Then we have 2εk +2pδ, εk± ε� + rδ ∈ Ψ
for some p, r ∈ Z. This implies that

εk ∓ ε� + (2p− r)δ = (2εk + 2pδ) − (εk ± ε� + rδ) ∈ Ψ,

and hence ∓2ε� + 2(p − r)δ = (εk ∓ ε� + (2p − r)) − (εk ± ε� + rδ) ∈ Ψ, which is a 
contradiction as � /∈ I. So if εi ± εj ∈ Gr(Ψ), then either both i, j ∈ I or both i, j /∈ I. 
In particular, we have

Ψ′′ =

⎛⎝ ⋃
i�=j∈In\I

(±εi ± εj + Zδ)

⎞⎠ ∩ Ψ

is a closed subroot system of Φ, and Ψ = Ψ′ � Ψ′′ is an orthogonal decomposition.

It is easy to see that Ψ′ is a symmetric closed subset of Φ with Gr(Ψ′) is a symmetric 
closed subset of Φ̊. Then by Proposition 5, Ψ′ is also a closed subroot systems of Φ, and 
hence Ψ is a closed subroot system of Φ. �
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Remark 5. Let Ψ+ = (2ε1 + 4Zδ) ∪ (2ε2 + 4Zδ) ∪ (ε1 ± ε2 + (4Z ∪ ±1 + 4Z)δ) ∪ {εi +
εj + (1 + 4Z)δ, εi − εj + 4Zδ : 3 ≤ i �= j ≤ 5} and set Ψ = Ψ+ ∪ −Ψ+. Then Ψ is not a 
closed subroot system. So the condition that any irreducible component of Gr(Ψ) is not 
of type A1 or B2 cannot be dropped from Proposition 8.

4.3. Twisted real affine root system of type D(3)
4

In this case, the real roots are given by

Φ = {± (εi − εj) + rδ, ± (2εi − εj − εk) + 3rδ | i, j, k ∈ I3, i �= j, r ∈ Z}

Note that Φ̊ is of type G2 and both Φ̊s and Φ̊� are of type A2. The next lemma is a 
generalization of [20, Theorem 2] and [21, Lemma 7.1.1].

Lemma 6. Let Ψ be a symmetric closed subset of Φ with Gr(Ψ) semi-closed. Then Gr(Ψ)
is Φ̊s.

Proof. Since Gr(Ψ) is semi-closed, there exist short roots α, β ∈ Gr(Ψ) such that α+β ∈
Φ̊� and α+β /∈ Gr(Ψ). Now since α+β is long in type G2, α−β must be short and hence 
α− β ∈ Gr(Ψ). Since α− β �= α, β and Gr(Ψ) is symmetric, we have Φ̊s ⊆ Gr(Ψ). Note 
that Gr(Ψ) can not contain two long positive roots as Gr(Ψ) � Φ̊. We claim that Gr(Ψ)
can not contain any long root. On the contrary assume that Gr(Ψ) contains a long root, 
say 2εi − εj − εk ∈ Gr(Ψ). Let S = πm(Zεj−εk). It is clear that |S| �= 3. Suppose that 
|S| = 2. Let εi−εj+p1δ, εj−εk+p2δ, εi−εk+p3δ ∈ Ψ. Since Gr(Ψ) = Φ̊s∪{±(2εi−εj−εk)}
we have

p1 �≡ p2 (mod 3), p3 �≡ −p2 (mod 3) (4.1)

Let � be the element which is not in S. Then p1 ≡ �(mod 3) and p3 ≡ −�(mod 3) which 
gives |πm(Zεi−εk)| = 1, but this is impossible since we have Zεi−εj + Zεj−εk ⊆ Zεi−εk .

Now assume that |S| = 1 and let S = {�′}. In this case, we have one more relation 
along with (4.1) namely

p3 − p1 ≡ �′ (mod 3) (4.2)

which implies that |πm(Zεi−εj )| = 1 and |πm(Zεi−εk)| = 1. Suppose that πm(Zεi−εj ) =
{r}. Then we have πm(Zεi−εk) = {r+�′}. Since Ψ is closed, for any 2εi−εj−εk+3aδ ∈ Ψ, 
we have

εi − εk + (3a− p1)δ = (2εi − εj − εk + 3aδ) + (εj − εi − p1δ) ∈ Ψ.

This implies 3a − p1 ≡ r + �′ (mod 3), which in turn implies that �′ ≡ −2r ≡ r (mod 3). 
This contradicts Equation (4.1). So |S| �= 1 and hence the result. �
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Proposition 9. Let Ψ be a closed symmetric subset of Φ with Gr(Ψ) semi-closed in Φ̊. 
Then Ψ is of the form

Ψ = ±(εi − εj + rZδ) ∪ ±(εj − εk + (rZ + �)δ) ∪ ±(εi − εk + (rZ + �)δ)

where r ∈ 3Z+ and {i, j, k} is a permutation of {1, 2, 3}. In particular, Ψ is a closed 
subroot system of Φ.

Proof. By Lemma 6, it follows that Gr(Ψ) = Φ̊s. Note that we can consider Ψ as 
an irreducible symmetric closed subset of the untwisted root system of type A(1)

2 . By 
Theorem 1, there is a Z-linear function p : Gr(Ψ) → Z, α �→ pα ∈ Zα and r ∈ Z+ such 
that

Ψ = {α + (pα + rZ)δ : α ∈ Gr(Ψ)}

In particular, Ψ is a closed subroot system of Φ. Next we determine r and pα explicitly. 
At first, we claim that 0 ∈ πm(Zα) for some α ∈ Gr(Ψ) ∩ Φ̊+. Suppose that ε1 − ε2 +
r1δ, ε2 − ε3 + r2δ, ε1 − ε3 + r3δ ∈ Ψ. We then have the following relations:

r1 �≡ r2 (mod 3), −r3 �≡ r2 (mod 3), −r3 �≡ r1 (mod 3). (4.3)

This implies that the integers r1, r2, −r3 (mod 3) are all distinct, so one of them must 
be 0 (mod 3). With out loss of generality we assume that r1 ≡ 0 (mod 3). By similar 
argument we get r′1, r2, −r3 (mod 3) are all distinct for any r′ ∈ Zε1−ε2 and using (4.3)
we get r′1 ≡ 0 (mod 3) and r2 ≡ r3 (mod 3). This implies Ψ is of the form

Ψ = ±(εi − εj + rZδ) ∪ ±(εj − εk + (rZ + �)δ) ∪ ±(εi − εk + (rZ + �)δ)

where r ∈ 3Z+ and {i, j, k} is a permutation of {1, 2, 3}. �
4.4. Twisted real affine root system of type E(2)

6

In this case, the real roots are given by

Φ =
{
± εi + rδ,±εi ± εj + 2sδ : 1 ≤ i �= j ≤ 4, r, s ∈ Z

}
∪ {

4∑
i=1

±εi/2 + rδ : r ∈ Z}.

The gradient root system is of type F4, and the short roots Φ̊s form a root system of 
type D4. For convenience, we call a short root of the form 1

2

(∑4
i=1 ±εi

)
as a special 

short root. For I �= ∅ and a special short root μ = 1
2 (

∑4
i=1 νiεi) define D+

μ (Ψ, I) := {εi |
i ∈ I} ∪ {

∑4
i=1 λiεi/2 | λi ∈ {±1}, i ∈ I, λj = νj for j /∈ I} and set

Dμ(Ψ, I) = D+
μ (Ψ, I) ∪ −D+

μ (Ψ, I).
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Let Ψ be a symmetric closed subset of Φ such that Gr(Ψ) is semi-closed. If Gr(Ψ)
does not contain any special short root, then Ψ can be realized as a symmetric, closed 
subset of the real affine root system of type D(2)

5 and hence it is a closed subroot system 
(see Proposition 7). So without loss of generality, we can assume that there is a special 
short root in Gr(Ψ), say α = 1

2 (
∑4

i=1 νiεi) ∈ Gr(Ψ). Let I = {i ∈ I4 | εi ∈ Gr(Ψ)}. 
Since Gr(Ψ) is semi-closed, there exist short roots β, γ ∈ Gr(Ψ) such that β + γ is a 
long root and β + γ /∈ Gr(Ψ). We claim that we can always choose β, γ to be special 
short roots. For |I| ≤ 1, it is obvious. Suppose |I| ≥ 2, and there are μkεk, μrεr ∈
Gr(Ψ) with k �= r, but μkεk + μrεr /∈ Gr(Ψ). Then since α = 1

2 (
∑4

i=1 νiεi) ∈ Gr(Ψ)

and Gr(Ψ) is semi-closed, we have that β = 1
2

(
μkεk + μrεr +

∑
i/∈{k,r}

νiεi

)
and γ =

1
2

(
μkεk + μrεr +

∑
i/∈{k,r}

−νiεi

)
are in Gr(Ψ). Clearly β + γ = μkεk + μrεr.

Proposition 10. Let Ψ be a symmetric, closed subset of Φ such that no irreducible com-
ponent of Gr(Ψ) is of type A1 and Gr(Ψ) is semi-closed. Set I = {i ∈ I4 : εi ∈ Gr(Ψ)}, 
then we have |I| ≡ 0 (mod 2) and exactly one of the following holds.

(1) If |I| = 2, then Φ̊s ⊇ Gr(Ψ) = Dβ(Ψ, I) where β is a special short root in Gr(Ψ). 
There exists a Z-linear function p : Dβ(Ψ, I) → Z, pα ∈ Zα, α ∈ Dβ(Ψ, I) and 
n ∈ 2Z+ such that

Ψ = {α + (pα + nZ)δ | α ∈ Dβ(Ψ, I)}.

(2) If |I| = 4, then there exists a partition J1, J2 of I4 such that |J1| = |J2| = 2 and a 
Z–linear function p : Gr(Ψ) → Z with pεi ∈ 2Z (resp. pεi ∈ 2Z + 1) if i ∈ J1 (resp. 
i ∈ J2) such that

Ψ :=
⋃

α∈Φ̊s

{α + (pα + nZ)δ} ∪
⋃

J∈{J1,J2}
{±(εi ± εj) + (p±(εi±εj) + nZ)δ : i �= j ∈ J}.

(3) If I = ∅, there exists a Z-linear function p : Gr(Ψ) → Z and m0, m1 ∈ 2Z+ such 
that Ψ = Ψ0 ∪Ψ1 where Ψi = {α+ (pα +miZ)δ | α ∈ Gr(Ψi)}. Moreover, Gr(Ψ) is 
a root system of type B2 × B2 and we have pα ∈ 2Z (resp. 2Z + 1) if α ∈ Gr(Ψ0)
(resp. Gr(Ψ1) and α is short).

Proof. From the above discussion in Section 4.4, we can always choose special short roots 
β, γ ∈ Gr(Ψ) such that the β+γ is a long root and β+γ /∈ Gr(Ψ) as Gr(Ψ) is semi-closed. 
Let β = 1

2 (λs1εs1 +λs2εs2 +λs3εs3 +λs4εs4) and γ = 1
2 (λs1εs1 +λs2εs2 −λs3εs3 −λs4εs4). 

Note that we have (Zβ + Zγ) ∩ 2Z = ∅, so we have β − γ /∈ Gr(Ψ) and |πm(Zβ)| = 1. 
First we assume that I �= ∅. We claim that εs1 (resp. εs3) ∈ Gr(Ψ) if and only if εs2 (resp. 
εs4) ∈ Gr(Ψ). Suppose s1 ∈ I, then we have γ′ = γ − λs1εs1 ∈ Gr(Ψ). This implies that 
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λs2εs2 = γ′ +β ∈ Gr(Ψ) and the case s3 ∈ I is done similarly. This argument also shows 
that for any i ∈ I and a special short root γ ∈ Gr(Ψ), we can always change the sign of 
the co-efficient of εi in γ and that resulted element is again in Gr(Ψ).

It is easy to see that we always have Dβ(Ψ, I) ⊆ Gr(Ψ) ∩ Φ̊s. We claim that Gr(Ψ) ∩
Φ̊s = Dβ(Ψ, I). Suppose |I| = 4, then it is clear as Dβ(Ψ, I) = Φ̊s. So assume that |I| = 2. 
If possible let Gr(Ψ) ∩ Φ̊s\Dβ(Ψ, I) �= ∅, then there exists μ ∈ Gr(Ψ) ∩ Φ̊s\Dβ(Ψ, I) and 
unique j /∈ I such that the co-efficient of εj in both μ and β is different. But this implies 
β − μ = ±εj ∈ Gr(Ψ) ∩ Φ̊s, which is a contradiction. Thus we get

Gr(Ψ) ∩ Φ̊s = Dβ(Ψ, I).

Also since sum of a long root and a short root is short, it follows that εs ± εt ∈ Gr(Ψ)
only if {s, t} ⊆ I or {s, t} ⊆ I4\I. Note that every special short root μ ∈ Dβ(Ψ, I) can 
be written as μ = β+

∑
±εi with εi ∈ Gr(Ψ) such that each partial sum is a root. Since 

all the roots appearing are short and |πm(Zβ)| = 1, it follows that |πm(Zμ)| = 1 for each 
μ ∈ Dβ(Ψ, I). So we have |πm(Zα)| = 1 for all α ∈ Gr(Ψ).

For |I| = 2, we show that no long root can occur in Gr(Ψ). We shall show the case 
for I = {s1, s2} and the remaining cases are similar. Since λs1εs1 + λs2εs2 /∈ Gr(Ψ), it 
follows that (Zεs1

+ Zεs2
) ∩ 2Z = ∅. Hence λs1εs1 − λs2εs2 /∈ Gr(Ψ) as well. Recall that 

εs ± εt ∈ Gr(Ψ) only if {s, t} ⊆ I or {s, t} ⊆ I4\I. So we only can have λs3εs3 ±λs4εs4 ∈
Gr(Ψ). Since Gr(Ψ) has no component of type A1 and λs3εs3 − λs4εs4 is orthogonal to 
Dβ(Ψ, I) and λs3εs3 + λs4εs4 , we have

λs3εs3 − λs4εs4 /∈ Gr(Ψ).

Suppose λs3εs3 + λs4εs4 ∈ Gr(Ψ). We have (Zβ + Zγ) ∩ 2Z �= ∅ since β = γ + λs3εs3 +
λs4εs4 ∈ Gr(Ψ), which in turn implies that β + γ ∈ Gr(Ψ), a contradiction. Hence 
no long root can occur in Gr(Ψ) if |I| = 2. In this case we have Gr(Ψ) = Dβ(Ψ, I)
which is irreducible. When |I| = 4 we have Dβ(Ψ, I) = Φ̊s ⊆ Ψ. So we must have 
Gr(Ψ) irreducible in this case. Now using Proposition 3, we get a Z-linear function p
and n ∈ 2Z+ such that Ψ = {α + (pα + nZ)δ : α ∈ Gr(Ψ)}. This completes the proof 
for I �= ∅. Moreover when I = I4 we have the following restrictions:

|πm(Zεsi
)| = 1, ∀i ∈ I4, (Zεs1

+ Zεs2
) ∩ 2Z = ∅, (Zεs3

+ Zεs4
) ∩ 2Z = ∅.

Set J1 := {si ∈ I4 : Zεsi
⊆ 2Z} and J2 := {si ∈ I4 : Zεsi

⊆ 2Z + 1}. From the relations 
above, we have |J1| = |J2| = 2. Then there exists a Z–linear function p : Gr(Ψ) → Z

such that pεsi ∈ 2Z (resp. in 2Z + 1) if si ∈ J1 (resp. in J2) and Ψ is of the form

Ψ :=
⋃

˚
{α + (pα + nZ)δ} ∪

⋃
{±(εi ± εj) + (p±(εi±εj) + nZ)δ : i �= j ∈ J}.
α∈Φs J∈{J1,J2}
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Assume that I = ∅. It is clear that the only short roots can appear in Gr(Ψ) are 
α1 := β, α2 := γ, α3 = 1

2 (λs1εs1 − λs2εs2 + λs3εs3 − λs4εs4), α4 = 1
2 (−λs1εs1 + λs2εs2 +

λs3εs3 − λs4εs4) and their negatives (see [21, Proposition 8.1.3]). We claim that all of 
these roots occur in Gr(Ψ). As (αi, αj) = 0, 1 ≤ i �= j ≤ 4, Gr(Ψ) �= {±αi | i = 1, 2}. 
Hence there is a long root in Gr(Ψ). Since α1±α2 /∈ Gr(Ψ), there is a long root in Gr(Ψ)
of the form λsiεsi ±λsj εsj with i ∈ {1, 2} and j ∈ {3, 4}. We shall prove the claim for one 
case, other cases are similar. Let λs1εs1 + λs3εs3 ∈ Gr(Ψ). Then −α3 = α1 − (λs1εs1 +
λs3εs3) ∈ Gr(Ψ). Furthermore since Zα1 contains elements of same parity, it follows that 
(Zα1 +Zα3) ∩(2Z +1) = ∅. Hence α1+α3 = λs2εs2 +λs4εs4 ∈ Gr(Ψ). Since Gr(Ψ) has no 
irreducible component of type A1 and α2 is orthogonal to α1, α3, λs1εs1 +λs3εs3 , it follows 
that λs2εs2 − λs4εs4 ∈ Gr(Ψ). Consequently −α4 = α2 − (λs2εs2 − λs4εs4) ∈ Gr(Ψ). By 
a similar argument we get that λs1εs1 − λs3εs3 ∈ Gr(Ψ). Hence |πm(Zγ)| = 1 for all 
γ ∈ Gr(Ψ). Moreover there exists a partition J0 � J1 of I4 with |Ji| = 2, i = 0, 1 such 
that Gr(Ψ) = Ψ̊0 ∪ Ψ̊1 where Ψ̊i = {±αk, ±α�, ±(αk ± α�) : Ji = {k, �}}. We also have 
αk ± α� /∈ Gr(Ψ) if k ∈ Ji but � /∈ Ji. We can choose Ψ̊0 to be the component so that 
Zγ ⊆ 2Z for all γ ∈ Ψ̊0. In each component, the hypothesis of Proposition 3 is satisfied. 
Hence Ψ is of the required form with exactly two of pαi

’s being even. �
5. Twisted real affine root system with non-reduced gradient

In this section, we shall consider the twisted affine root system of type A(2)
2n . The real 

affine roots are

Φ = {±εi + (r + 1/2)δ, ±2εi + 2rδ, ±εi ± εj + rδ | 1 ≤ i �= j ≤ n, r ∈ Z} .

The gradient root system is an irreducible reduced root system of type BCn. We set

Φ̊d := {±2εi | 1 ≤ i ≤ n}, Φ̊s := {±εi | 1 ≤ i ≤ n}, Φ̊� := {±εi ± εj | 1 ≤ i �= j ≤ n}

and

Ĉn = {±2εi + 2rδ, ±εi ± εj + rδ | 1 ≤ i �= j ≤ n, r ∈ Z} ⊆ Φ.

Note that Ĉn is a closed subroot system of type A(2)
2n−1. Let Ψ ⊆ Ĉn, then we have Ψ is 

a symmetric closed in Ĉn if and only if Ψ is a symmetric closed in Φ. We will fix some 
notations before proceeding further. For any I ⊆ In, set

BI = {±εi,±εi ± εj | i �= j ∈ I}, CI = {±2εi,±εi ± εj | i �= j ∈ I}

and BCI = {±εi, ±2εi, ±εi ± εj | i �= j ∈ I}.
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5.1. Let Ψ be a symmetric closed subset of Φ. The next lemma shows that it is 
enough to classify irreducible symmetric, closed subsets of Φ which contains at least one 
short root.

Lemma 7. Let Ψ be a symmetric closed subset of Φ and Equation (2.2) be the decomposi-
tion of Ψ into irreducible components. Then there exists at most one Ψi, 1 ≤ i ≤ r such 
that Gr(Ψi) ∩ Φ̊s �= ∅. Conversely, suppose that Ψ′ is an irreducible symmetric, closed 
subset of Φ such that Gr(Ψ′) ∩ Φ̊s �= ∅ and Ψ′′ is a symmetric, closed subset of Ĉn such 
that (Ψ′, Ψ′′) = 0. Then Ψ′ ∪ Ψ′′ is a symmetric, closed subset of Φ.

Proof. If possible, assume that there exists i, j with 1 ≤ i �= j ≤ r such that εk ∈
Gr(Ψi), ε� ∈ Gr(Ψj). Then we have εk + qδ ∈ Ψ, ε� + sδ ∈ Ψ for some q, s ∈ Z + 1/2. 
Since Ψ is closed, we have εk + ε� + (q + s)δ ∈ Ψ. But the root εk + ε� + (q + s)δ is 
non-orthogonal to both Ψi and Ψj , which is impossible. For the converse part, it is easy 
to see that Ψ′ ∪Ψ′′ is a symmetric subset of Φ. Now we claim if α ∈ Ψ′ and β ∈ Ψ′′ then 
α + β /∈ Φ. This clearly implies Ψ′ ∪ Ψ′′ is closed in Φ as both Ψ′, Ψ′′ are closed in Φ. 
Set

I ′ = {i ∈ In | εi ∈ Gr(Ψ′)}.

Since Ψ is closed, we have εi ± εj ∈ Gr(Ψ′) for all i �= j ∈ I ′ and εi ± εj /∈ Gr(Ψ′) for 
all i ∈ I ′, j ∈ In\I ′. Moreover, since Ψ′ is irreducible, we have BI′ ⊆ Gr(Ψ′) ⊆ BCI′ . 
Also we have that Gr(Ψ′′) ⊆ Φ̊� ∪ Φ̊d and it is orthogonal to Gr(Ψ′). So it follows that 
Gr(Ψ′′) ⊆ CIn\I′ . Hence if α ∈ Gr(Ψ′), β ∈ Gr(Ψ′′), then α + β /∈ Φ̊. This gives our 
claim and completes the proof. �

5.2. Now onwards, we assume that Ψ is an irreducible symmetric, closed subset of 
Φ such that Gr(Ψ) ∩ Φ̊s �= ∅. Let I := {i ∈ In | εi ∈ Gr(Ψ)}, and we have I �= ∅. Let 
qi ∈ Zεi for each i ∈ I and set Z̃εi := Zεi − qi. Then we have Z̃εi ⊆ Z for i ∈ I. The next 
two lemmas are important and we give proof for the first one and skip the details of the 
second one as it is similar to the first one. Recall that m = 2.

Lemma 8. Let Ψ be an irreducible symmetric closed subset of Φ and I be defined as above. 
Suppose that |πm(Z̃εi)| = 1 for some i ∈ I. Then

(1) |πm(Z̃εj )| = 1 for all j ∈ I.
(2) Gr(Ψ) = BI and |πm(Zεi±εj )| = 1.

Proof. Let j ∈ I such that j �= i. Since Ψ is closed, we have ±(εi ± εj) ∈ Gr(Ψ) and 
Zεi±εj + Z∓εj = Zεi . Hence we have Z̃εi±εj + Z̃∓εj = Z̃εi , Z̃εi±εj ⊆ Z̃εi and Z̃∓εj ⊆ Z̃εi . 
This implies (1) and second part of (2). Since Ψ is closed, we also get εr ± εs /∈ Gr(Ψ) if 
r ∈ I and s /∈ I. As Gr(Ψ) is irreducible, we must have BI ⊆ Gr(Ψ′) ⊆ BCI . If possible 
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assume that 2εi ∈ Gr(Ψ) for some i ∈ I. Since Ψ is closed, we have Z2εi + Z−εi ⊆ Zεi . 
For s ∈ Z̃i and 2k ∈ Z2εi , we have 2k − s − qi = 2k − 2qi − s + qi ∈ Zεi . This implies 
both s and 2k − 2qi − s ∈ Z̃εj which is a contradiction as they have different parities as 
qi ∈ Z + 1/2. Thus we must have Gr(Ψ) = {±εi, ±(εi ± εj) : i �= j ∈ I}. �
Lemma 9. Let Ψ be an irreducible symmetric closed subset of Φ and I be defined as above. 
Suppose that |πm(Z̃εi)| = 2 for some i ∈ I. Then

(1) |πm(Z̃εj )| = 2 for all j ∈ I.
(2) Gr(Ψ) = BCI and |πm(Zεi±εj )| = 2. �

5.3. Generalizing [21, Section 9.1], we now define certain symmetric, closed subsets 
of Φ. For I ⊆ In, J ⊆ I, τ ∈ 2Z+, and a Z-linear function p : BI → Z + 1/2 such that 
pεi ∈ 2Z + 1

2 (resp. pεi ∈ 2Z + 3
2 ) for i ∈ J (resp. i ∈ I\J), define

Ψ+
τ (p, I, J) :=

⋃
α∈BI

(α + (pα + τZ)δ),

and Ψτ (p, I, J) := Ψ+
τ (p, I, J) ∪ (−Ψ+

τ (p, I, J)). We first consider the situation that 
appears in Lemma 8. In this case, we have

Proposition 11. Let Ψ be an irreducible symmetric closed subset of Φ such that Gr(Ψ) ∩
Φ̊s �= ∅. Let I = {i ∈ In : εi ∈ Gr(Ψ)} and assume that |πm(Z̃εi)| = 1 for some i ∈ I. 
Then there exist J ⊆ I ⊆ In, τ ∈ 2Z+, and a Z-linear function p : BI → Z + 1/2
satisfying pεi ∈ 2Z + 1

2 (resp. pεi ∈ 2Z + 3
2 ) for i ∈ J (resp. i ∈ I\J), such that

Ψ = Ψτ (p, I, J).

In particular, Ψ is a closed subroot system of Φ.

Proof. We have that Gr(Ψ) = BI by Lemma 8(2). It is easy to check that Zα + Zβ ⊆
Zα+β holds for all α, β, α + β ∈ Gr(Ψ). Define J := {j ∈ I | Zεj ⊆ 2Z + 1

2}. Define a Z-
linear function p : Gr(Ψ) → Z +1/2 by choosing pi ∈ Zεi , i ∈ I and extending Z-linearly. 
Then we have that pεi ∈ 2Z + 1

2 (resp. pεi ∈ 2Z + 3
2 ) for i ∈ J (resp. i ∈ I\J). As before, 

set Z ′
α := Zα − pα, α ∈ Gr(Ψ). Note that the argument of Proposition 3 goes through 

in this case, so we get that A = Z ′
α = Z ′

β ∀ α, β ∈ Gr(Ψ) and A is a subgroup of Z, say 
A = τZ. Since |πm(Zεi±εj )| = 1, we must have τ ∈ 2Z+. Thus Ψ = Ψτ (p, I, J). �

5.4. For k ∈ Z+, I ⊆ In and a Z-linear function p : BCI → Z + 1/2, define 
Ψk(p, I) := Ψ+

k (p, I) ∪ (−Ψ+
k (p, I)) where Ψ+

k (p, I) is given by

Ψ+
k (p, I) :=

⋃
(α + (pα + kZ)δ) ∪

⋃
(2εi + (2pεi + k(2Z + 1))δ).
α∈BI i∈I
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We now consider the case that appears in Lemma 9, i.e., when some Zεi contains elements 
of different parities. In this case, we have

Proposition 12. Let Ψ be an irreducible symmetric closed subset of Φ. Let I = {i ∈ In :
εi ∈ Gr(Ψ)} and assume that |πm(Z̃i)| = 2 for some i ∈ I. Then there is an odd integer 
k ∈ Z+ and a Z-linear function p : Gr(Ψ) → Z + 1/2 such that Ψ = Ψk(p, I). In 
particular, Ψ is a closed subroot system of Φ.

Proof. By Lemma 8, we have Gr(Ψ) = BCI . It is easy to check that Zα + Zβ ⊆ Zα+β

whenever α �= β ∈ {±εi : i ∈ I}. We define p : BI → Z + 1/2 by choosing pi ∈ Zεi , i ∈ I

and extending Z-linearly. As before, Z ′
α = Zα − pα are equal and subgroups of Z for all 

α ∈ BI . Since |πm(Zεi±εj )| = 2 holds by Lemma 8, so we must have that k is an odd 
integer. Write Zεi = A ∪B where A = pεi +2kZ, B = pεi +k(1 +2Z). Since A +B ⊆ 2Z
and Ψ is closed, we have A +B = k+2pεi +2kZ ⊆ Z2εi . We see that Z2εi = k+2pi+2kZ, 
since Ψ is closed and we have Z2εi + Z−εi ⊆ Zεi . This gives us that Ψ = Ψk(p, I). �
Remark 6. As in the reduced case, we define Gr(Ψ) is semi-closed if α, β ∈ Gr(Ψ) such 
that α+β ∈ Φ̊ but α+β /∈ Gr(Ψ) implies that (α, β, α+β) is of type (s, s, d) or (�, �, d). 
Note that the gradient of Ψτ (p, I, J) is semi-closed subset of Φ̊, while the gradient of 
Ψk(p, I) is closed in Φ̊.

Remark 7. Maximal closed subroot systems in this case are classified in [21, Section 9]. 
Note that

(1) ΨI(A(2)
2n ) = Ψn(p, I, J) with I = In, J = I, pεi = 1

2 , i ∈ I.
(2) Ψ(p, ns) = Ψn(p, I).
(3) ÂJ is a union of a symmetric closed subset of A(2)

2n−1 and Ψn(p, I).

6. Real closed subsets and regular subalgebras

In this section, we will study the correspondence between the symmetric closed subsets 
of Φ and the regular subalgebras of the affine Lie algebra g generated by them. Let us 
denote by Csym(g) the set of symmetric closed subsets of Φ and recall that g(Ψ) denotes 
the subalgebra of g generated by 

⋃
α∈Ψ gα, for Ψ ∈ Csym(g). Denote by R(g) = {g(Ψ) :

Ψ ∈ Csym(g)} the set of all regular subalgebras of g generated by the symmetric closed 
subsets of Φ, and define a map

ιg : Csym(g) → R(g)

by ιg(Ψ) = g(Ψ). The following result is well-known in the finite setting (see, for example 
[11, Proposition 4.1]):
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Proposition 13. Let (̊g, ̊h) be the pair of finite-dimensional simple Lie algebra and its 
Cartan subalgebra corresponding to the root system Φ̊. Then the map Ψ̊ �→ g(Ψ̊) from 
the set of closed subsets of Φ̊ to the set of h̊-invariant subalgebras of ̊g is bijective. �

It is easy to see that unlike in the finite case, the map ιg is not injective for any g, 
even if we restrict it to symmetric closed subsets of Φ.

Example 1. Let g be any affine Lie algebra not of type A(2)
2n and α be a short root (a short 

simple root if g is twisted) in Φ̊. Consider two symmetric, real closed subsets Ψ1, Ψ2 of 
Φ defined by

Ψ1 := {α + δ,−α + δ,−α− δ, α− δ}, Ψ2 := {α + 3δ, α + δ,−α− 3δ,−α− δ}.

We have the following relations:

[[g±α±rδ, g∓α±sδ], gα±pδ] �= 0 for all p, r, s ∈ Z and

[[g±α±rδ, g∓α±sδ], g−α±pδ] �= 0 for all p, r, s ∈ Z.
(6.1)

Using the commutation relations in Equation (6.1) we get that ±α + (1 + 2Z)δ ⊆
Δ(Ψi), i = 1, 2, and these are the only real roots appearing in Δ(Ψi), i = 1, 2. Moreover 
the parts of g(Ψi), i = 1, 2 containing the imaginary roots are given by

g(Ψi)im =
{⊕

r∈ZCα∨ ⊗ t2r if g is untwisted.⊕
r∈ZChα ⊗ t2r if g is twisted

where hα =
∑m−1

k=0 σk(α∨) is the orbit sum of coroots representing α. Hence we have

g(Ψ1) =
⊕
r∈Z

g±α+(2r+1)δ ⊕ g(Ψ1)im, g(Ψ2) =
⊕
r∈Z

g±α+(2r+3)δ ⊕ g(Ψ2)im

So Ψ1 �= Ψ2 but ιg(Ψ1) = ιg(Ψ2).

Remark 8. It is possible to get similar examples using Equation (3.4) when Gr(Ψ) is 
of type B2, e.g. let Ψ1 be given by Equation (3.4) and Ψ2 be defined by switching the 
role of a1 and a2. We leave the details to the reader, one can prove that Ψ1 �= Ψ2, but 
ιg(Ψ1) = ιg(Ψ2).

6.1. Recall a result from [21, Corollary 11.1.5], the map Ψ �→ g(Ψ) is injective if we 
restrict to the set of closed subroot systems of Φ. That means the map ιg restricted to 
all closed subroot systems of Φ is injective, say ι′g is the restriction map. The previous 
discussion motivates us to look for the best possible extension of the map ι′g where the 
extension is injective i.e. we want to find the largest subset S of Csym(g) and a map 
f : S → R(g) such that f is an extension of ι′g and ιg|S = f . We indeed prove that if we 
have such an extension f , then f = ι′g i.e. we can’t extend ι′g further.
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Proposition 14. Suppose S is a subset of the set of symmetric closed subsets of Φ which 
contains all the closed subroot systems. Assume that the restriction of ιg to S is injective. 
Then S must be the set of all closed subroot systems of Φ.

Proof. Let Ψ be a symmetric closed subset of Φ, which is not a subroot system of Φ. Then 
by Proposition 2, we know that Ψ′ = Δ(Ψ) ∩Φ is the minimal closed subroot system of 
Φ that contains Ψ. It is clear that Ψ �= Ψ′, but g(Ψ) = g(Ψ′), i.e., ιg(Ψ) = ιg(Ψ′). So 
the largest subclass S of symmetric closed subsets of Φ for which the restriction ι|S is 
injective is the set of all closed subroot systems of Φ. �

6.2. Fix Ψ ∈ Csym(g), now we will determine the preimage ι−1
g (g(Ψ)) using our 

results, i.e., we will determine all possible Ψ′ ∈ Csym(g) such that g(Ψ′) = g(Ψ). Note 
that Δ(Ψ) ∩ Φ is the unique real closed subroot system in ι−1

g (g(Ψ)), so it is enough to 
determine ι−1

g (g(Ψ)) when Ψ is a real closed subroot system. If Ψ′ ∈ ι−1
g (g(Ψ)), then 

from the definition it is clear that Gr(Ψ) = Gr(Ψ′) and by Proposition 2 we have

ι−1
g (g(Ψ)) = {Ψ′ ∈ Csym(g) : Δ(Ψ′) ∩ Φ = Ψ}.

To determine the preimage we need the following example.

Example 2. Let Ψ be a symmetric closed subset of Φ such that Gr(Ψ) is of type B2. 
Then by Proposition 6 there is a Z-linear function p : Gr(Ψ) → Z, n� ∈ 2Z+ and odd 
integers 1 ≤ a1, a2 ≤ n� with a1 + a2 ≡ 0(mod n�) such that

Ψ+ = {αi + (pi + Ai)δ : i = 1, 2} ∪ {±(α1 ± α2) + (±p1 ± p2 + n�Z)δ : α ∈ Φ̊+
� }

where Ai = n�Z ∪ (ai +n�Z), i = 1, 2. We shall determine Δ(Ψ) in this case and we shall 
show that Δ(Ψ) ∩ Φ is of the form Equation (3.5) with ns = gcd(a1, n) = gcd(a2, n). 
Since a1 is odd, we have 2 � ns. Since a1 + a2 ≡ 0 (mod n�) we have

Zα1(Ψ) = n�Z ∪ (a1 + n�Z), Z−α1(Ψ) = n�Z ∪ (a2 + n�Z) and

Zα2(Ψ) = n�Z ∪ (a2 + n�Z), Z−α2(Ψ) = n�Z ∪ (a1 + n�Z)

Hence Zαi
(Ψ) +Z−αi

(Ψ) = n�Z ∪(a1 +n�Z) ∪(a2 +n�Z) for i = 1, 2. We shall show that 
Z±αi

(Δ(Ψ)) ⊇ ±pi + gcd(ai, n�)Z. Since for any r ∈ Z, [α∨
1 , g±α1+rδ] �= 0 holds, for any 

s ∈ Z+ we have p1 + sa1 +n�Z ⊆ Zα1(Δ(Ψ)). Also since a1 +a2 ≡ 0 (mod n�), a2 +n�Z

lies in the set 
∑

k∈Z ka1 +n�Z. Exchanging the role of a1 and a2 in the argument we get

Zαi
(Δ(Ψ)) ⊇ pi +

∑
k∈Z

(kai + n�Z) = pi + gcd(a1, n�)Z, i = 1, 2.

Although [α∨
i , gα1±α2+rδ] �= 0, i = 1, 2, we have p1 ± p2 + sa1 + n�Z ⊆ Zα1±α2(Δ(Ψ)) if 

and only if s is even. Hence it follows that Zα1±α2(Δ(Ψ)) ⊇ p1±p2 +2gcd(a1, n�)Z. But
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Ψ′ := {±αi + �±pi + gcd(a1, n�)Z�δ} ∪ {±(α1 ± α2) + �±p1 ± p2 + 2gcd(a1, n�)Z�δ}

is a real closed subroot system of Φ containing Ψ and contained in Δ(Ψ) ∩Φ. By Propo-
sition 2 we have Ψ′ = Δ(Ψ) ∩ Φ and hence the result.

6.3. We first determine the preimage for Ψ, which is irreducible and of the form 
Equation (3.5).

Lemma 10. Let Ψ be an irreducible closed subroot system of Φ of the form Equation (3.5)
and ns as given in Equation (3.5). For any given positive integer r, there are exactly ϕ(2r)
symmetric, real closed subsets Ψ′ in ι−1

g (g(Ψ)) such that n�(Ψ′) = 2rns, where ϕ is the 
Euler’s totient function. In particular, ι−1

g (g(Ψ)) is infinite in this case. For a fixed ns

and r, all Ψ′ ∈ ι−1
g (g(Ψ)) with n�(Ψ′) = 2rns are given by Equation (3.4) where a1 is a 

cyclic generator of the group 〈ns〉 in Z/(2rns)Z.

Proof. If Ψ′ ∈ ι−1
g (g(Ψ)), then Ψ′ must be of the form Equation (3.4). For a fixed r, 

Ψ′ ∈ ι−1
g (g(Ψ)) such that n�(Ψ′) = 2rns are in one to one correspondence with all a1

such that 1 ≤ a1 ≤ 2rns and gcd(a1, 2rns) = ns by Example 2. It is elementary to 
check that gcd(a1, 2rns) = ns if and only if a1 is a generator of the cyclic group 〈ns〉 in 
Z/(2rns)Z. Hence the number of such a1 is equal to ϕ(2rns/ns) = ϕ(2r). �

We are now ready to prove our main result of this section.

Proposition 15. For any irreducible real closed subroot system Ψ of Φ, we have

ι−1
g (g(Ψ)) = {Ψ}

if either Gr(Ψ) is not of type A1, B2 or if Gr(Ψ) = B2 and Ψ is as in Proposition 4. 
And ι−1

g (g(Ψ)) is infinite for all other cases.

Proof. Suppose that no irreducible component of Gr(Ψ) is of type A1 or B2, then any 
Ψ′ ∈ ι−1

g (g(Ψ)) is a closed subroot system by our previous results and in this case we 
have ι−1

g (g(Ψ)) = {Ψ}. Now suppose that Gr(Ψ) is of type B2. From Example 2, a 
symmetric, real closed subset Ψ′ of the form Equation (3.4) generates a closed subroot 
system only of the form Equation (3.5). Hence if Gr(Ψ) is of type B2 and Ψ is of the 
form of Proposition 4, then any Ψ′ ∈ ι−1

g (g(Ψ)) is a closed subroot system of Φ and 
hence in this case ι−1

g (g(Ψ)) = {Ψ}.
Now let Ψ be of the form Equation (3.5) and let ns as in Equation (3.5). If Ψ′ ∈

ι−1
g (g(Ψ)), then Ψ′ is of the form Equation (3.4) where n�(Ψ′) is an even multiple of ns. 

Remaining follows from Lemma 10.

Remark 9. One of the drastic differences between the finite and affine root system theory 
is that even maximal symmetric closed subsets are not necessarily closed subroot systems. 
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For example, let n� be any even integer ≥ 4 and a1 be any integer which is ≤ n�, a1 �= n�/2
and gcd(a, n�) = 1. Then define Ψ with this n� and a1 as in Proposition 6. Then Ψ is a 
proper symmetric closed subset which is not a closed subroot system and by Example 2, 
Δ(Ψ) ∩ Φ = Φ. Suppose Ψ′ ⊇ Ψ is a symmetric closed subset that is not a subroot 
system, then we have that Zεi(Ψ′) is a union of two cosets of n�Z. This implies that 
Ψ′ = Ψ. Hence Ψ is a maximal symmetric closed subset of Φ, but not a closed subroot 
system. �
7. Summary

Let Φ be a real affine root system and Ψ be a symmetric closed subset of Φ. In 
this section we shall summarize all the results in the following table. We assume that 
Equation (2.2) and Equation (2.3) are the decomposition of Ψ and Gr(Ψ) into irreducible 
components respectively. We assume that p : Gr(Ψ) → Z is a Z-linear function such that 
pα ∈ Zα, ∀α ∈ Gr(Ψ). We have three different types of forms for Ψ.

Ψi = {α + (pα + nZ)δ : α ∈ Gr(Ψi)} (7.1)

Ψ = {α + (pα + nsZ)δ : α ∈ Gr(Ψ)s} ∪ {γ + (pγ + mnsZ)δ : γ ∈ Gr(Ψ)�} (7.2)

Ψ+
i = {εi + (pεi + Ai)δ : i = 1, 2} ∪ {α + (pα + n�Z)δ : α ∈ Φ̊+

� } as in Proposition 6
(7.3)

✓ and ✗ in remark imply that Ψi is a closed subroot system and is not a closed subroot 
system respectively.

Gr(Ψi) Case Form of Ψi Remark
Closed |πm(Zα)| = 1, ∀α ∈ Gr(Ψ) Equation (7.1) ✓

∃α ∈ Gr(Ψ)s
such that |πm(Zα)| > 1

Equation (7.2) ✓

Equation (7.3) ✗

Semi-closed
D

(2)
n+1

Equation (7.2) ✓

Equation (7.2) ✓

A
(2)
2n−1

Equation (7.3) ✗

Proposition 8 ✓

D
(3)
4 Equation (7.1) ✓

E
(2)
6 Equation (7.1) ✓

A
(2)
2n

Proposition 11 ✓

Proposition 12 ✓

Data availability

No data was used for the research described in the article.
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