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Abstract

In earlier work the evolution operator for the exact RG equation was mapped to a
field theory in Euclidean AdS. This gives a simple way of understanding AdS/CFT. We
explore aspects of this map by studying a simple example of a Schroedinger equation for
a free particle with time dependent mass. This is an analytic continuation of an ERG
like equation. We show for instance that it can be mapped to a harmonic oscillator. We
show that the same techniques can lead to an understanding of dS/CFT too.
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1 Introduction

It has been recognized from the early days of the AdS/CFT correspondence [1, 2, 3, 4] that
the radial coordinate of the AdS space behaves like a scale for the boundary field theory. This
observation follows directly from the form of the AdS metric in Poincare coordinates:

ds2 = R2dz
2 + dxµdxµ

z2
(1.1)

This leads naturally to the idea of the “Holographic” renormalization group: If the AdS/CFT
conjecture is correct then radial evolution in the bulk must correspond to RG evolution in the
boundary theory [[9]-[25]].

In [5, 6, 7] a mathematically precise connection was made between the exact RG (ERG)
equation of a boundary theory and holographic RG equations of a bulk theory in Euclidean
AdS (EAdS) space. It was shown that the ERG evolution operator of the boundary theory
can be mapped by a field redefinition to a functional integral of a field theory in the bulk
AdS space. This guarantees the existence of an EAdS bulk dual of a boundary CFT without
invoking the AdS/CFT conjecture 1

Given that the crucial ingredient in this connection with ERG is the form of the metric
(1.1) with the factor z2 in the denominator, one is naturally led to ask if similar mappings can
be done for the dS metric

ds2 = L2−dη2 + dxµdxµ
η2

(1.2)

It too has a scaling form. The difference is that the scale is a time like coordinate - so RG
evolution seems to be related to a real time evolution. In fact this metric is related to the
EAdS metric by an analytic continuation: iη = z, iL = R. Thus real time evolution should be
related to RG evolution by analytic continuation. These points have been discussed in many
of the early papers on de Sitter holography [[30]-[43]], (see also [44] for more recent work and
further references.)

This paper is an attempt to address the question of whether the mapping of [5] can be
generalised to include for instance dS-CFT. One is also led to explore other kinds of mapping
in an effort to understand the nature of this map better. In [5] the map was first introduced in
the case of 0-dimensional field theory in the boundary, which gave a one dimensional bulk field
theory or equivalently a point particle quantum mechanical system. In this paper therefore we
start by exploring maps for point particle quantum mechanical systems. In Section 2 we show
that the dynamics of a free particle with a time dependent mass can be mapped to a harmonic
oscillator. The Euclidean version of this is relevant for the ERG equation. In Section 3 the case
of mapping a field theory ERG equation to de Sitter space is considered by starting with the
analytically continued form. This complements the discussion of earlier papers where dS-CFT
is described as an analytic continuation of EAdS-CFT. In Section 4 we give some examples
of two point functions obtained using the techniques of [5] being analytically continued to dS
space. Section 5 contains a summary and conclusions.

2 Mapping Free Particle with Time Dependent Mass to

a Harmonic Oscillator

In this section we reconsider the construction of [5] where the action for a free field theory
in D + 1 dimension with a non standard kinetic term was mapped to a free field in AdSD+1.

1There is still the open question of the locality properties of interaction terms in this bulk field theory. For
the case of the O(N) model some aspects of this issue were discussed in [7].
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When D = 0 this is just a particle: we will map a free particle with time dependent mass to a
harmonic oscillator.

2.1 Mapping Actions

2.1.1 Lorentzian Case

Consider the following action. It defines an evolution operator for free particle (with time
dependent mass) wave function.

S =
1

2

∫ tf

ti

dt M(t)ẋ2 (2.3)

Ψ(x,t) =

∫
dxi

∫
x(ti) = xi
x(t) = x

Dx ei
1
2

∫ t
ti
M(t′)ẋ2dt′

Ψ(xi, ti) (2.4)

Let x(t) = f(t)y(t) with f 2(t) = 1
M(t)

. Substitute this in (2.3).

S =
1

2

∫
dt (ẏ2 + (

ḟ

f
)2y2 + 2

ḟ

f
ẏy)

=
1

2

∫
dt [ẏ2 + (

d ln f

dt
)2y2 − (

d2

dt2
ln f)y2] +

1

2

∫
dt

d

dt
(
d ln f

dt
y2)

Thus, upto the boundary term, the action is

S =
1

2

∫
dt [ẏ2 + eln f (

d2

dt2
e− ln f )y2] (2.5)

Now choose

eln f (
d2

dt2
e− ln f ) = −ω2

0 (2.6)

and we get

S̄ =
1

2

∫
dt [ẏ2 − ω2

0y
2] (2.7)

which is the action for a harmonic oscillator. And we define Ψ̄ by absorbing the contribution
from the boundary term:

e−
1
2
i
d ln f(t)
dt

y2(t)Ψ(f(t)y, t)︸ ︷︷ ︸
Ψ̄(y,t)

=

∫
dyi

∫
y(ti) = yi
y(t) = y

Dy ei
1
2

∫ t
ti

[ẏ2−ω2
0y

2]dt′
e−

1
2
i
d ln f(ti)

dt
y2(ti)Ψ(f(ti)yi, ti)︸ ︷︷ ︸
Ψ̄(yi,ti)

(2.8)
S̄ thus defines an evolution operator for the harmonic oscillator wave function Ψ̄. f satisfies

d2

dt2
1

f
= −ω2

0

1

f
(2.9)

y obeys the same equation.
Thus we can take

1

f
= a cos ω0(t− t0) (2.10)
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which requires
M(t) = a2cos2ω0(t− t0)

Note that one can do more general cases if one is willing to reparametrize time [26, 27].
Thus let

dτ =
dt

Mf 2
(2.11)

Then one gets (2.7), (2.9) and (2.10) with τ replacing t. In terms of t, (2.9) becomes

d

dt
(Mḟ) =

ω2
0

Mf 3
(2.12)

Very interestingly, as pointed out in [26], it is clear from (2.7) that the energy of the
harmonic oscillator given by

E =
1

2
(ẏ2 + ω2

0y
2)

is a conerved quantity. In terms of the original variables this is

E =
1

2
((
ẋf − xḟ
f 2

)2 + ω2
0(
x

f
)2)

These are known as Ermakov-Lewis invariants - see [26] for references to the literature on these
invariants - and we see a nice interpretation for them.

2.1.2 Euclidean Case

In the Euclidean case the functional integral is

Ψ(x,τ) =

∫
dxi

∫
x(τi) = xi
x(τ) = x

Dx e−
1
2

∫ τ
τi
M(τ ′)ẋ2dτ ′

Ψ(xi, τi) (2.13)

Ψ in this case is not a wave function. It was shown in [5] that the evolution operator for
a D-dimensional Euclidean field theory is of this form if we take ME(τ) = − 1

Ġ(τ)
and D = 0.

In this case Ψ can be taken to be e−H[xi,τi] where H is a Hamiltonian or Euclideanized action.
Alternatively (depending on what ME(τ) is) it can also be eW [J ] - a generating functional or
partition function.

Setting x = fy with f 2 = 1
ME(τ)

, one goes through the same manipulations but replacing

(2.6) by

eln f (
d2

dτ 2
e− ln f ) = +ω2

0 (2.14)

and (2.7),(2.8) and (2.9) are replaced by

S̄ =
1

2

∫
dτ [ẏ2 + ω2

0y
2] (2.15)

Ψ̄(y, τ) =

∫
dyi

∫
y(τi) = yi
y(τ) = y

Dy e−
1
2

∫ τ
τi

[ẏ2+ω2
0y

2]dτ ′
Ψ̄(yi, τi) (2.16)

and
d2

dτ 2

1

f
= ω2

0

1

f
(2.17)
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The solutions are of the form

f = A sech ω0(τ − τ0) (2.18)

which means ME(τ) = 1
A2 cosh

2ω0(τ − τ0).
(2.16) has a τ independent action. In this case there are well known physical interpretations

for the Euclidean theory. The evolution operator, K(y, τ ; yi, 0), where

K(y, τ ; yi, 0) =

∫
y(0) = yi
y(τ) = y

Dy e−
1
2

∫ τ
0 [ẏ2+ω2

0y
2]dτ ′ (2.19)

is the density operator of a QM harmonic oscillator in equilibrium at temperature specified by
β = τ .

Less well known is that the evolution operator of the Fokker-Planck equation in stochastic
quantization can be written in the form given in (2.16). Ψ̄ is then related to the probability
function (see, for instance, [29] for a nice discussion).

In the next section we discuss the mappings directly for the Schroedinger equation, rather
than its evolution operator.

2.2 Mapping Schrodinger Equations

2.2.1 Lorentzian

Let us consider the same mapping from the point of view of the Schroedinger equation for the
free particle wave function.

Schrodinger’s equation for the free particle is

i
∂Ψ(x, t)

∂t
= − 1

2M(t)

∂2Ψ(x, t)

∂x2
(2.20)

Ψ given by (2.4) obeys this equation.
We make a coordinate transformation and a wave function redefinition. Both can be un-

derstood as canonical transformations [28].
Let x = f(t)y with f 2 = 1

M(t)
. We take f,M to be dimensionless. We treat this as a 0 + 1

dimensional field theory where x has the canonical dimension of −1
2
. So x = L

1
2X would define

a dimensionless X. L is some length scale.

∂Ψ(x, t)

∂t
=
∂Ψ(f(t)y, t)

∂t
− ḟy

f

∂Ψ(f(t)y, t)

∂y

Let
Ψ(f(t)y, t) = e−

1
2
αy2

Ψ̄(y, t)

∂Ψ

∂t
= e−

1
2
αy2

(−1

2
α̇y2 +

∂

∂t
)Ψ̄(y, t)

−i ḟy
f

∂Ψ(f(t)y, t)

∂y
= ie−

1
2
αy2

(α
ḟ

f
y2 − ḟ

f
y
∂

∂y
)Ψ̄(y, t)

1

M

1

2

∂2

∂x2
Ψ =

1

2

∂2

∂y2
e−

1
2
αy2

Ψ̄ = (
1

2
e−

1
2
αy2

(α2y2 − 2αy
∂

∂y
− α +

∂2

∂y2
)Ψ̄)

Collecting all the terms one finds that (2.20) becomes:

i
∂Ψ̄

∂t
= (

1

2
iα̇− iαḟ

f
− 1

2
α2)y2Ψ̄ + (i

ḟ

f
y
∂

∂y
+ αy

∂

∂y
)Ψ̄ +

1

2
αΨ− 1

2

∂2

∂y2
Ψ̄ (2.21)
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We choose α = −i ḟ
f

to get rid of the second term on the RHS. We get

i
∂Ψ̄

∂t
= [(

1

2

d2 ln f

dt2
− 1

2
(
d ln f

dt
)2)y2 +

1

2
α− 1

2

∂2

∂y2
]Ψ̄

As before it can be rewritten as

i
∂Ψ̄

∂t
=

1

2
[−eln f (

d2

dt2
e− ln f )y2 − ∂2

∂y2
+ α]Ψ̄ (2.22)

Set
d2

dt2
1

f
= −ω2

0

1

f

again as before to get

i
∂Ψ̄

∂t
=

1

2
[− ∂2

∂y2
+ ω2

0y
2 + α]Ψ̄ (2.23)

The term 1
2
α generates a scale transformation e

− 1
2

ln
f(t)
f(ti) for Ψ̄.

2.2.2 Euclidean

The Euclidean version is
∂Ψ(x, τ)

∂τ
=

1

2ME(τ)

∂2Ψ(x, τ)

∂x2
(2.24)

As mentioned above, this is of the form of a Polchinski ERG equation (with 1
2ME(τ)

= −Ġ(τ))

for H defined by Ψ ≡ e−H. Going through the same steps one finds, with f 2 = 1
ME(τ)

,

∂Ψ̄

∂τ
= (

1

2
α̇− αḟ

f
+

1

2
α2)y2Ψ̄ + (

ḟ

f
y
∂

∂y
− αy ∂

∂y
)Ψ̄− 1

2
αΨ +

1

2

∂2

∂y2
Ψ̄ (2.25)

the condition α = ḟ
f

and the equation becomes

∂Ψ̄

∂t
=

1

2
[− eln f (

d2

dt2
e− ln f )︸ ︷︷ ︸

= ω2
0

y2 +
∂2

∂y2
− α]Ψ̄ (2.26)

Thus
∂Ψ̄

∂τ
=

1

2
[
∂2

∂y2
− ω2

0y
2 − α]Ψ̄ (2.27)

And f obeys
d2

dt2
1

f
= ω2

0

1

f
(2.28)

This is a Euclidean harmonic oscillator equation. Various physical interpretations of this
equation were given in the last section. The term α in (2.27) provides a multiplicative scaling

e
− 1

2

∫ t
ti
dt′ ∂t′ ln f

= (f(ti)
f(t)

)
1
2 of Ψ̄.

2.2.3 Analytic Continuation

If we set it = τ , (2.20) becomes (2.24) provided M(−iτ) = ME(τ). Similarly (2.23) becomes

(2.27). Note that in (2.23) α = −i ḟ
f
. This analytically continues to ḟ

f
as required.
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2.3 Semiclassical Treatment

Most of the AdS/CFT calculations invoke large N to do a semiclassical treatment of the bulk
theory- one can evaluate boundary Green’s function. The analysis in [5, 7] did this for the
ERG treatment - the evolution of the Wilson action/Generating functional were calculated. In
[32] a semiclassical treatment was used to obtain the ground state wave function in dS space.

For completeness we do the same for the simple systems discussed in this paper. This
illustrates the connection between ERG and dS.

2.3.1 Using Harmonic Oscillator Formulation

Since

Ψ(x, t) =

∫
dxi

∫
x(ti) = xi
x(t) = x

Dx ei
∫ t
ti
L(x(t′),ẋ(t′),t′)dt′

Ψ(xi, ti) (2.29)

solves Schroedinger’s equation. For the Harmonic Oscillator

L =
1

2
(ẋ2 − ω0x

2) (2.30)

for the Lorentzian version.
One can evaluate the path integral semiclassically by plugging in a classical solution with

some regular boundary condition. We choose x = 0 at t = −∞. The initial state wave function
is thus a delta function. Classical solution of the EOM is of the form

x(t) = ae−iω0t + a∗eiω0t

Since a should annihilate the vacuum state in the far past we would like the solution to look
like

x(t)→ eiω0t

in order to ensure that we are in the ground state.

x(t) = xfe
−iω0(tf−t) (2.31)

At t = −∞ we assume that the solution vanishes. This is justified by an infinitesimal rotation
t→ t+ iεt. Evaluated on this solution, the action becomes

Sclassical =
1

2
x(t)ẋ(t)|tf−∞

We get

Sclassical =
1

2
iω0x

2
f (2.32)

Plugging (2.31) into (2.29) we obtain

Ψ(xf ) ≈ e−
1
2
ω0x2

f (2.33)

If we repeat this for the free field in dS space we get the ground state wave functional [32].
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2.3.2 Using ERG formulation

For the Euclidean version, we set it = τ and we write

Ψ(x, τ) =

∫
dxi

∫
x(τi) = xi
x(τ) = x

Dx e−
∫ τ
τi
LE(x(τ ′),ẋ(τ ′),τ ′)dτ ′

Ψ(xi, τi) (2.34)

It is well known that if one does the semiclassical analysis for the Euclidean case with general
boundary condition one recovers the thermal density matrix. This is for the time independent
Hamiltonian - such as the harmonic oscillator. We will not do this here. Instead we proceed
directly to the ERG interpretation of the calculation. Here the Hamiltonian is time dependent.
In [5] the analysis given below was applied to W [J ]. We repeat it here for the Wilson action.

Our starting action in this case is (Note Ġ < 0):

S = −1

2

∫ τf

τi

ẋ2

Ġ
(2.35)

EOM is given by,

∂τ (
ẋ

Ġ
) = 0

ẋ

Ġ
= b =⇒ x = bG+ c

We choose G so that it vanishes at τ =∞ .

For the Euclidean Harmonic oscillator case G has then to be

G = − 1

ω0

(tanh ω(τ − τi)− 1)

Also x→ 0 as τ →∞. So c = 0.

x = bG (2.36)

x(τ) = − b

ω0

(tanh ω(τ − τi)− 1)

On shell

S = −1

2

∫ τf

τi

dτ
d

dτ
(
xẋ

G
)

=
1

2
(x(τf )− x(τi))b =

1

2
[
x(τf )x(τf )

G(τf )
− x(τi)x(τi)

G(τi)
]

If we add this change to the initial Wilson action 1
2
x(τi)x(τi)
G(τi)

we get the final Wilson action

Hf =
1

2

x(τf )x(τf )

G(τf )

If, for instance, we are interested in evaluating H semiclassically at τ = τi.

x(τi) =
b

ω0

=⇒ b = x(τi)ω0

x(τ) = −x(0)(tanh ω(τ − τi)− 1)

ẋ(τ) = −x(0)ω0sech
2ω0(τ − τi)

9



The classical action is

Sclassical =
1

2
ω0x(τi)

2

Thus since G(τi) = 1
ω0

, H evaluated semiclassically is:

H[x, τi] ≈
1

2
ω0x(τi)

2 (2.37)

Then
Ψ = e−H[x,τi] = e−ω0x(τi)

2

which coincides with the ground state wave function of the harmonic oscillator. This is essen-
tially the Hartle Hawking prescription [45]. This also motivates the dS-CFT correspondence
statement [30, 31, 32] that ΨdS = ZCFT

This concludes the discussion of the mapping of ERG equation to a Euclidean harmonic
oscillator. In higher dimensions this gives free field theory in flat space. We now return to the
case of interest, namely dS space.

3 ERG to field theory in dS

We first map the system to Euclidean AdS. Then analytically continue and obtain dS results.
Alternatively, one can analytically continue the ERG equation to the Schroedinger equation
(when D = 0 this is a free particle with a time dependent mass) and then map to de Sitter
space. This is all exactly as was done for the harmonic oscillator.

3.1 Analytic Continuation

The EAdS metric in Poincare coordinates is

ds2 = R2[
dxidx

i + dz2

z2
] (3.38)

The dS metric in Poincare coordinates is:

ds2 = L2[
dxidx

i − dη2

η2
] (3.39)

The metrics are related by analytic continuation:

iη = z, iL = R

3.1.1 Analytic Continuation of the Action

The action generically is

S = −1

2

∫
dD+1x

√
g[gµν∂µφ∂νφ+m2φ2] (3.40)

10



de Sitter In this case we write
√
−g since g is negative: g = −(L

2

η2 )D+1. Also g00 = − η2

L2

and gij = δij η
2

L2 .
Thus

SdS =

∫
dDx

∫ ∞
0

dη (
L

η
)D+1[

η2

L2
∂ηφ∂ηφ−

η2

L2
∂iφ∂iφ−m2φ2] (3.41)

In momentum space:

SdS =

∫
dDp

(2π)D

∫ ∞
0

dη (
L

η
)D+1[

η2

L2
∂ηφ(p)∂ηφ(−p)− (

η2

L2
p2 +m2)φ(p)φ(−p)] (3.42)

The functional integral description of the quantum mechanical evolution operator for the
wave functional of the fields in dS space-time is

Ψ̄[φ(p), t] =

∫
dφi(p)

∫
φ(p, ti) = φi(p)
φ(p, t) = φ(p)

Dφ(p, t) e
i 1
2

∫ t
ti

[φ̇(p,t′)2−ω2
0φ(p,t′)2]dt′

Ψ̄[φi(p), ti] (3.43)

Euclidean Anti de Sitter g = (R
2

z2 )D+1. Also g00 = z2

R2 and gij = δij z
2

R2 .

SEAdS =

∫
dDx

∫ ∞
0

dz (
R

z
)D+1[

z2

R2
∂zφ∂zφ+

z2

R2
∂iφ∂iφ+m2φ2] (3.44)

In momentum space

SEAdS =

∫
dDp

(2π)D

∫ ∞
0

dz (
R

z
)D+1[

z2

R2
∂zφ(p)∂zφ(−p) + (

z2

R2
p2 +m2)φ(p)φ(−p)] (3.45)

If we set iη = z and iL = R we see that the functional integral (3.43) becomes

Ψ̄[φ(p), t] =

∫
dφi(p)

∫
φ(p, ti) = φi(p)
φ(p, t) = φ(p)

Dφ(p, t) e
− 1

2

∫ t
ti

[φ̇(p,t′)2+ω2
0φ(p,t′)2]dt′

Ψ̄[φi(p), ti] (3.46)

In holograhic RG this is interpreted as a Euclidean functional integral giving the evolution in
the radial direction. Ψ̄ is to be interpreted as e−SI [φ(p),t] where SI is the Wilson action. It was
shown in [5] (see below) that this can be obtained by mapping an ERG evolution operator.

The dS functional integral (3.43) above is thus an analytically continued version of this.

3.2 Mapping

3.2.1 Mapping from Quantum Mechanics

Let us go back to Section (2.1) and consider the mapping from the Quantum Mechanics of a
free particle with time dependent mass. We think of it as a 0 + 1 dimensional field theory.
M(t) is taken to be dimensionless and x has canonical dimensions of −1

2
.

S =
1

2

∫
dt M(t)ẋ2 (3.47)

(In the ERG version M(t) = 1
Ġ

)
The path integral is ∫

Dx eiS (3.48)
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As before x(t) = f(t)y(t) with f 2(t) = 1
M(t)

. Substitute this in (3.47) and go through the
same steps to obtain:

S =
1

2

∫
dt [ẏ2 + eln f (

d2

dt2
e− ln f )y2] (3.49)

Now choose

eln f (
d2

dt2
e− ln f ) = −(

η2

L2
p2 +m2) (3.50)

where η = Le
t
L . to obtain SdS

SdS =
1

2

∫
dt [ẏ2 − (

η2

L2
p2 +m2)y2]

=
1

2

∫
dη (

L

η
)[
η2

L2
∂ηy∂ηy − (

η2

L2
p2 +m2)y2] (3.51)

p,m here are just some parameters. When D > 0 they will stand for momentum and mass
of the field respectively. So starting from a free particle with time dependent mass we obtain
the free field action in de Sitter space dSD+1 with D = 0.

Schroedinger Equation:

i
∂Ψ(x, t)

∂t
= − 1

2M(t)

∂2Ψ(x, t)

∂x2
(3.52)

Using the same mapping as in Section (2.2.1), x = fy

Ψ(f(t)y, t) = e−
1
2
αy2

Ψ̄(y, t)

with α = −i ḟ
f

one obtains

i
∂Ψ̄

∂t
= [(

1

2

d2 ln f

dt2
− 1

2
(
d ln f

dt
)2)y2 +

1

2
α− 1

2

∂2

∂y2
]Ψ̄

Using (3.50) this becomes

i
η

L

∂Ψ̄

∂η
= [−1

2

∂2

∂y2
+

1

2
(
η2

L2
p2 +m2)y2 +

1

2
α]Ψ̄ (3.53)

If we construct the Schroedinger equation corresponding to the action (3.51) one obtains

i
η

L

∂Ψ̄

∂η
= [−1

2

∂2

∂y2
+

1

2
(
η2

L2
p2 +m2)y2]Ψ̄ (3.54)

which barring the field independent term α is exactly the same as (3.53). This term as we
have seen provides an overall field independent scaling for all wave functions. It is a consequence
of the ordering ambiguity in going from classical to quantum treatment. (3.54) (or its extension
to D > 0) describes the quantum mechanical time evolution of the matter field wave functional
in de Sitter space.
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3.2.2 Mapping from ERG

Action We now consider the Euclidean version of (3.47), which is the Polchinski ERG
equation. This is what was done in [5]. Thus we replace M(t) by − 1

Ġ
.

S = −1

2

∫
dτ

ẋ2

Ġ
(3.55)

The path integral is (Ġ < 0) ∫
Dx e

1
2

∫
dτ ẋ2

Ġ (3.56)

which can be obtained from (3.52) by setting it = τ . We take z = Re
τ
R If we let iη = z, iL =

R, it = τ then this can be obtained from the corresponding Minkowski case.
As before x(τ) = f(τ)y(τ) with f 2(τ) = Ġ. Substitute this in (3.55) and go through the

same steps to obtain:

S =
1

2

∫
dτ [ẏ2 + eln f (

d2

dτ 2
e− ln f )y2] (3.57)

Now choose

eln f (
d2

dτ 2
e− ln f ) = (

z2

R2
p2 +m2) (3.58)

where z = Re
τ
R . to obtain SEAdS

SEAdS =

∫
dz (

R

z
)[
z2

R2
∂zy∂zy + (

z2

R2
p2 +m2)y2] (3.59)

ERG Equation By analogy with the Schroedinger equation we can see that (3.56) is the
evolution operator corresponding to the ERG equation

∂Ψ(x, τ)

∂τ
= −1

2
Ġ
∂2Ψ(x, τ)

∂x2
(3.60)

By the same series of transformations as in the de Sitter case, but using (3.58), one obtains

z

R

∂Ψ̄

∂z
= [

1

2

∂2

∂y2
− (

z2

R2
p2 +m2)y2 − 1

2
α]Ψ̄ (3.61)

with α = ḟ
f

generating an overall scale transformation for Ψ̄. In the ERG context Ψ̄

represents eW [J ] upto a quadratic term. This equation is the holographic RG equation in the
AdS/CFT correspondence for an elementary scalar field [5].

3.3 Connections

Let us summarize the various connections obtained above.

• We start with the quantum mechanics of a free particle having a time dependent mass.
The Schroedinger equation (SE) for this is (2.20). Analytical continuation of this equation
(generalized to higher dimensions) gives the Polchinski ERG equation (2.24).

• The free particle SE (2.20) can be mapped to a SE for a harmonic oscillator (2.23). The
ERG equation (2.24) can similarly be mapped to a Euclidean harmonic oscillator (2.27)-
analytically continued version of (2.23).
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• The evolution operators for the above equations are defined in terms of path integrals
over some actions. The same mapping function f maps the corresponding actions to each
other. Thus the evolution operator for the free particle Schroedinger equation is given by
the action in (2.3) which is mapped to a harmonic oscillator action (2.7). The analytical
continuation of these are the Euclidean ERG evolution operator (2.13) mapped to a
harmonic oscillator Hamiltonian (2.16). These steps are summarized in the flow diagram
in Figure 1.

• The mapping function f was originally chosen in [5] to map the free particle ERG action
(3.55) to an action for free fields in EAdS0+1 given in (3.60). The analytical continuation
of this problem to real time gives us an action in dS0+1 (3.51).

• One can also repeat these steps for the corresponding “wave” equations. The Polchinski
ERG equation for eW [J ] gets mapped to an equation in EAdS for eW [J ] which is nothing but
the holographic RG equations. Analytically continuing this, the Schroedinger equation
for a wave functional is mapped to a Schroedinger equation for wave functionals of fields
in dS.

These are summarized in the figure below (Fig.2). The analytic continuation can be done
before the map with f is applied or after as shown in the figure. It can be done both for the
actions as well as for the equations.

ERG
Equation

Holographic RG:
Radial evolution

in EAdS

Schroedinger 
Equation

Real time QM
evolution

In dS

Map “f”

Map “f”

Analytic
Continuation

Analytic 
Continuation

ERG
Equation

Evolution equation
For Euclidean

Harmonic Oscillator

QM Schroedinger 
Equation

Real time QM
Schroedinger 
Equation for

 Harmonic Oscillator

Map “f”

Map “f”

Analytic
Continuation

Analytic 
Continuation

ERG
Equation

Holographic RG:
Radial evolution

in EAdS

Schroedinger 
Equation

Real time QM
evolution

In dS

Map “f”

Map “f”

Analytic
Continuation

Analytic 
Continuation

Euclidean Action
For ERG evolution

By Feynman 
Path Integral

Euclidean action for 
Harmonic Oscillator

Path Integral

Lorentzian
Action for QM 
Evolution by
Path Integral 

QM evolution:
 Action for 

Harmonic Oscillator
Path Integral

Map “f”

Map “f”

Analytic
Continuation

Analytic 
Continuation

Flow of equations-Harmonic Oscillator

Flow of actions – Harmonic Oscillator

Figure 1: Mapping ERG to Harmonic Oscillator

3.4 dS-CFT correspondence

The connections with ERG mentioned above should, if pursued, provide some insights into
dS-CFT correspondence. We restrict ourselves to some preliminary observations in this paper.
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ERG
Equation

Holographic RG:
Radial evolution

in EAdS

Schroedinger 
Equation

Real time QM
evolution

In dS

Map “f”

Map “f”

Analytic
Continuation

Analytic 
Continuation

ERG
Equation

Holographic RG:
Radial evolution

equation in EAdS

QM Schroedinger 
Equation

Real time QM
Schroedinger 

equation
in dS

Map “f”

Map “f”

Analytic
Continuation

Analytic 
Continuation

ERG
Equation

Holographic RG:
Radial evolution

in EAdS

Schroedinger 
Equation

Real time QM
evolution

In dS

Map “f”

Map “f”

Analytic
Continuation

Analytic 
Continuation

Euclidean Action
For ERG evolution

by functional integral

Holographic RG:
 Action  in EadS

for functional 
integral

Lorentzian
Action for QM 

evolution

QM evolution by
Functional integral:

 Action in dS

Map “f”

Map “f”

Analytic
Continuation

Analytic 
Continuation

Flow of equations

Flow of actions

Figure 2: Mapping ERG to Holographic RG

The idea of dS-CFT correspondence was suggested in [30, 31, 32]. This has been investigated
further by many authors, e.g. [33, 34, 38, 39, 35, 37, 36].

What we see from the above analysis is that considering the relation between the evolution
equations, one can say that

Ψ[φ, J ]wave−functional in dS = {Z[φ, J ]CFT}analytically continued (3.62)

Thus we see that the dS-CFT correspondence suggested by this analysis is one between an
ERG equation for a CFT generating functional and a real time quantum mechanical evolution
of a wave functional in dS space time.

The LHS of (3.62) is a QM wave functional of fields on a D-dimensional spatial slice of
a D + 1 dimensional dS spacetime. The RHS is the analytically continued partition function
of a D-dimensional Euclidean CFT - more precisely, either eWΛ[J ] or e−SI,Λ[φ]. The precise
statement has to involve some statement of the boundary conditions. In the next section we
give a concrete example with boundary conditions specified.

Note that the LHS is a complex probability amplitude. Expectation values will involve Ψ∗Ψ
and were calculated first in [30, 31, 32].

One can proceed to ask whether the expectations on the spatial slice calculated using Ψ∗Ψ
also correspond to some other Euclidean CFT on the spatial slice. This was explored further
in [38]. We do not address this question here.

In the next section we give some examples that explicitly illustrate the connection made by
(3.62).
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4 Obtaining Bulk field from ERG

The ERG formulation stated in this paper starts with the boundary fields. The evolution
operator for this involves bulk fields but with a non standard action. When this action is
mapped to EAdS action one can interpret the newly mapped field as the EAdS bulk field. This
analysis for Euclidean AdS is well defined and has been done in [5, 7]. However, this treatment
does not have a natural interpretation in the context in dS space. We have elaborated that in
this section.

Bulk scalar field in Euclidean AdS and dS

There are conceptual barriers if one tries to do similar analysis to map the ERG evolution
operator directly to Lorentzian dS. First of all, it is not clear as in EAdS whether the function
G(t) a.k.a f 2(t) = Ġ(t) is the Green’s function of the dual field theory of dS. It has an oscillatory
cutoff function. Therefore we analytically continue the ERG action to a Lorentzian action first,
and then do the mapping.

The result thus obtained (4.74) matches with the value found in [39] where the authors have
found the bulk field in semicalssical approximation from dS bulk action. For the Lorentzian dS
analysis presented here the RG interpretation is not clearly understood - except as an anlytic
continuation. We have presented it here for sake of completeness.

Euclidean AdS The Euclidean action of the ERG evolution operator in momentum space,

S = −1

2

∫
dτ

∫
p

φ̇2

Ġ
(4.63)

is mapped to

SEAdS =

∫
dDp

(2π)D

∫ ∞
εEAdS

dz (
R

z
)d+1[

z2

R2
∂zy

EAdS(p)∂zy
EAdS(−p)+(

z2

R2
p2+m2)yEAdS(p)yEAdS(−p)]

(4.64)
with z = Re

τ
R as described in [5]. We have rescaled the field as φ = fyEAdS where f is

related to the boundary Green’s function G as f 2 = −
(
z
R

)−d
Ġ.

The constraint on 1
f

is given by,

∂

∂z
{
( z
R

)−d+1 ∂

∂z

1

f
} =

( z
R

)−d+1
(
p2 +

m2R2

z2

)
1

f
(4.65)

The solutions are zd/2Kα(pz) and zd/2Iα(pz) where α2 = m2R2 + d2

4
.

So 1
f

can be taken as,

1

f(p, z)
= (z)d/2 (AKα(pz) +BIα(pz)) (4.66)

The Green’s function is

G(p, z) =
CKα(pz) +DIα(pz)

AKα(pz) +BIα(pz)
(4.67)

The large argument asymptotic form of the Modified Bessel function Iα(z) and Kα(z) are
given by,

Iα(z) ∼ ez√
2πz

(
1 +O(

1

z
)

)
for |arg z| < π

2
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Kα(z) ∼
√

π

2z
e−z
(

1 +O(
1

z
)

)
for |arg z| < 3π

2

Putting two constraints on G- i)G(pz →∞) = 0 ii)G(pz → 0) = γEAdS p
−2α, we get,

D = 0; C(p) = γEAdS p
−α; B(p) = − 1

γEAdS
pα

In semiclassical approximation the bulk field yEAdS = bEAdS
G
f

. If yEAdS satisfies yEAdS0 the
bulk field is given by,

yEAdS = yEAdS0

zd/2

εd/2
Kα(pz)

Kα(pε)
(4.68)

Now let’s check by analytic continuation iη = z and iL = R. First of all, α becomes ν. ε
is replaced by iε. We get,

yEAdS|z=iη, R=iL = yEAdS0 |z=iη, R=iL
(iη)d/2

(iε)d/2
Kν(ipη)

Kν(ipε)
(4.69)

As,

yEAdS0 = bEAdS ε
d/2
EAdS

γEAdS Kα(pε)

pα
(4.70)

de Sitter We would like to do the same analysis as above for the Lorentzian case.
The Lorentzian action obtained from (4.63) by analytic continuation, in momentum space,

S = −
∫
dt

∫
dDp

(2π)D
1

2Ġ(p)
φ̇(p)φ̇(−p)

and needs to be mapped to

=
1

2

∫ ∞
εdS

dη

∫
dDp

(2π)D

[(
L

η

)D−1

{(∂ηydS)2 − p2ydS
2 − m2L2

η2
ydS

2}

]
Here η = Le

t
L . We do the field redefinition of boundary field

φ = fydS

f is a scale dependent quantity which is related to Green’s function G as f 2 = −
(
η
L

)−D
Ġ.

Performing the same manipulations as in [5], one can get the constraint on f as,( η
L

)d−1
(( η

L

)−d+1 d

dη

)2

e− ln f =
( η
L

)−d+1
(
−p2 − m2L2

η2

)
e− ln f

−d+ 1

η

∂

∂η

1

f
+

∂2

∂η2

1

f
=

(
−p2 − m2L2

η2

)
1

f

The solutions are
(
η
L

)d/2
H

(1)
ν (pη) and

(
η
L

)d/2
H

(2)
ν (pη) with ν2 = d2

4
−m2L2.

The 1
f

can be written in general as( note f is dimensionless),

1

f(p, η)
=
( η
L

)d/2 (
AH(1)

ν (pη) +BH(2)
ν (pη)

)
(4.71)
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and the Green’s function is 2

G(pη) =
CH

(1)
ν (pη) +DH

(2)
ν (pη)

AH
(1)
ν (pη) +BH

(2)
ν (pη)

Physically one can expect G(pη →∞) = 0 which yields,

CH(1)
ν (pη) +DH(2)

ν (pη) = 0 (4.72)

The asymptotic forms of Hankel functions of both kind for large arguments are,

H(1)
ν (z) ∼

√
2

πz
ei(z−

νπ
2
−π

4
) − π < arg z < 2π

H(2)
ν (z) ∼

√
2

πz
e−i(z−

νπ
2
−π

4
) − 2π < arg z < π

The presence of the oscillatory functions will not let eq.4.72 to be satisfied. Hence we
analytically continue the argument of Green’s function G. The choice of direction of the analytic
continuation is based on the anticipation that the bulk field will have positive frequency. Hence
we take

η = −iz (4.73)

which prompts us to make C = 0. Also, from the constraint AD −BC = 1 we get A = 1
D

.
Hence the Green’s function now takes the form,

G(pz) =
DH

(2)
ν (ipz)

1
D
H

(1)
ν (ipz) +BH

(2)
ν (ipz)

Next another constraint will come from the fact that boundary Green’s function is γdS p
−2ν .

So in the limit of z → 0 using the formulae,

H(1)
ν (z) = iYν(z); H(2)

ν (z) = −iYν(z); Yν(z) = −Γ(ν)

π

(
2

z

)ν
One can get,

−iD
i
D
− iB

= γdS p
−2ν

On the other side, f should become a p independent constant at boundary x = 0 so that
it does not modify the boundary Green’s function, also ydS and f should become same field in
boundary field theory. This gives,

i

D
− iB = pν

Finally we get,

D = iγdS p
−ν ; B = i

(
1− 1

γdS

)
pν

The bulk field ydS is given by,

2We use the term Green function by analogy with the EAdS case, where G is the propagator of the boundary
CFT. Also see for instance [39].
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ydS = bdS
G

f
= bdS(iγp−ν)

1

Ld/2
xd/2H(2)

ν (ipx)

If we analytically continue back to η we get,

ydS = bdS(iγp−ν)
1

Ld/2
(−iη)d/2H(2)

ν (pη)

If the field ydS satisfies ydS0 at η = εdS then,

ydS = ydS0

ηd/2

ε
d/2
dS

H
(2)
ν (pη)

H
(2)
ν (pεdS)

(4.74)

ydS satisfies Bunch-Davies condition.

Relation between bulk fields in EAdS and dS The bulk field in EAdS space is given
by,

yEAdS = yEAdS0

zd/2

εd/2
Kα(pz)

Kα(pε)
(4.75)

Let’s apply the analytic continuation continuation iη = z and iL = R. First of all, α becomes
ν. ε is replaced by iε. We get,

yEAdS|z=iη, R=iL = yEAdS0 |z=iη, R=iL
(iη)d/2

(iε)d/2
Kν(ipη)

Kν(ipε)
(4.76)

As,

yEAdS0 = bEAdS ε
d/2
EAdS

γEAdS Kα(pε)

pα
(4.77)

Using the relation between Kα(x) and Hα(x),

Kα(x) =
π

2
iα+1H(1)

α (ix); − π < arg x ≤ π

2

=
π

2
(−i)α+1H(2)

α (−ix); − π

2
< arg x ≤ π

(4.78)

Here also we want to ensure the bulk field to be of positive frequency, hence choosing
H(2)(x).

yEAdS0 |z=iη, R=iL =
π

2
(i)d/2+α+1bEAdSε

d/2γEAdS
H

(2)
α (pε)

pα

=
bEAdS
bdS

γEAdS
γdS

π

2
(i)d/2+α+1ydS0

Hence,

yEAdS|z=iη, R=iL =
bEAdS
bdS

γEAdS
γdS

π

2
(i)d/2+α+1ydS0

ηd/2

εd/2
H

(2)
α (pη)

H
(2)
α (pε)

=
bEAdS
bdS

γEAdS
γdS

π

2
(i)d/2+α+1ydS (4.79)

Upto various normalization constants we see that they agree.
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5 Summary and Conclusions

In [5, 6] an evolution operator for an ERG equation of a perturbed D-dimensional free field
theory in flat space was mapped to a field theory action in AdSD+1. Similar mappings were done
subsequently for the interacting O(N) model at both the free fixed point and at the Wilson-
Fisher fixed point [7]. The main aim of this paper was to understand better the mapping used
in these papers and to see if there are other examples. A related question was that of analytic
continuation of these theories. These questions can posed, both for the ERG equation and its
evolution operator.

It was shown that a mapping of this type can map the ERG evolution operator of a (zero-
dimensional) field theory to the action of a Euclidean harmonic oscillator. Furthermore the
analytic continuation of the ERG evolution operator action gives the path integral for a free
particle with a time dependent mass. A similar mapping takes this to a harmonic oscillator.
This method also gives new way of obtaining the Ermakov-Lewis invariants for the original
theory.

The analytically continued ERG equation is a Schroedinger like equation for a free field
theory wave functional. This gets mapped to the Schroedinger equation for a wave functional
of a free field theory in de Sitter space. These are summarized in Figures 1,2. This is one
version of the dS-CFT correspondence. From this point of view, the QM evolution of dS field
theory is also an ERG evolution of a field theory, but accompanied by an analytic continuation.
An example was worked out to illustrate this correspondence.

To understand these issues further it would be useful to apply these techniques to the O(N)
model ERG equation written in [7]. This ERG equation has extra terms and thus the theory
naturally has interaction terms in the EAdS bulk action.

Similarly it would be interesting to study the connection between bulk Green functions
and the QM correlation functions on the space-like time slice of these theories, as considered
originally in [30, 31, 32].

Acknowledgements SD would like to thank IMSc,Chennai where part of the work was done.
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