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Abstract

Given a set P of points in the plane, a point burning process is a discrete time process to burn all
the points of P where fires must be initiated at the given points. Specifically, the point burning process
starts with a single burnt point from P , and at each subsequent step, burns all the points in the plane
that are within one unit distance from the currently burnt points, as well as one other unburnt point of
P (if exists). The point burning number of P is the smallest number of steps required to burn all the
points of P . If we allow the fire to be initiated anywhere, then the burning process is called an anywhere
burning process, and the corresponding burning number is called anywhere burning number. Computing
the point and anywhere burning number is known to be NP-hard. In this paper we show that both
these problems admit PTAS in one dimension. We then show that in two dimensions, point burning and
anywhere burning are (1.96296 + ε) and (1.92188 + ε) approximable, respectively, for every ε > 0, which
improves the previously known (2 + ε) factor for these problems. We also observe that a known result
on set cover problem can be leveraged to obtain a 2-approximation for burning the maximum number
of points in a given number of steps. We show how the results generalize if we allow the points to have
different fire spreading rates. Finally, we prove that even if the burning sources are given as input, finding
a point burning sequence itself is NP-hard.

1 Introduction
Graph burning was introduced by Bonato et al. [4] as a simplified model to investigate the spread of influence
in a network. Given a finite, simple, undirected graph G, the burning process on G is defined as a discrete
time process as follows. Initially, at t = 0, all vertices in the graph are unburnt. Once a node is burnt, it
remains so until the end of the process. At time t = i (i ≥ 0), the process burns all the neighbors of the
currently burnt vertices, as well as one more unburnt vertex (if exists). This process stops when all vertices
are burnt. The graph burning problem seeks to minimize the number of steps required to burn the whole
graph. We refer the reader to [3] for a survey on graph burning.

Keil et al. [9] introduced two geometric variants — point burning and anywhere burning — of this problem,
where the goal is to burn a given set of points in the plane. The point burning model allows for initiating
fires only at the given points. The burning process starts by burning one given point, and then at each
subsequent step, the fire burns all unburnt points of the plane that are within one unit of any currently burnt
point and a new unburnt given point is chosen to initiate the fire. Figure 1(a) illustrates this model. In the
anywhere burning model, the burning process is the same but the fires can be started at any point in the
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Figure 1: Illustration for (a) point burning and (b) anywhere burning. The burning sources are illustrated in
labelled dots and cross marks, respectively.

plane. Figure 1(b) illustrates this model. Note that we may not have an unburnt vertex to initiate fire at the
last step.

The geometric version of the burning process can provide a simple model of supply management where
products need to be shipped in bulk to distribution centers. Consider a business that needs to maintain a
continuous supply of perishable goods to a set of P locations. Each day it can manage to send one large
shipment to a hub location that distributes the goods further to the nearby locations over time. The point
burning considers only the points of P as potential hubs, whereas anywhere burning allows to create a hub at
any point in the plane. The burning number indicates the minimum number of days needed to distribute the
goods to all locations. For example, in Figure 1(a), the hubs are t1, t2, t3 and t4, and the business can keep
sending the shipments to the hubs after every three days in the same order.

The graph burning problem is known to be NP-hard for forest of paths [2] and APX-hard for subcubic
graphs [10]. However, the problem is approximable within a factor of 3 [5], which has recently been improved
further to (3 − 2/b) where b is the burning number of the input graph [7]. The introduction of point and
anywhere burning naturally raises the question of whether one can prove analogous results for these problems.
Keil et al. [9] showed that both problems are NP-hard, but approximable within a factor of (2 + ε), for every
ε > 0. However, a number of interesting problems are yet to be explored. For example, can we find better
approximation algorithms? Does there exist a PTAS for these problems? Can we maximize the number of
burnt points within a given time limit? What happens if the points have different rates for spreading the
fire? This is relevant in practice when the distribution capabilities vary across different distribution centers.
Can we find a burning sequence in polynomial time if the burning sources are given? This last question is
known to be NP-complete for graph burning [10].
Contribution: In this paper, we obtain the following results.

• We show that in one dimension one can find a PTAS for both point and anywhere burning. In two
dimensions, we improve the approximation ratio for point and anywhere burning to (1.96296 + ε) and
(1.92188 + ε), respectively.

• We consider a generalization where the fire spreading rates vary across the given points. We show
how to adapt the existing approximation algorithms to obtain constant-factor approximation for point
burning if the ratio of the largest and the smallest rate is a constant.

• We prove that even if the burning sources are given as input, finding a point burning sequence itself is
NP-hard. This problem was known to be NP-hard for graph burning, but the same hardness reduction
does not hold in geometric setting.

• Our NP-hardness result implies that given a set of q burning sources, it is NP-hard to find a point
burning sequence that maximizes the number of burnt points within q steps. In contrast, we show how
to adapt a set cover technique to obtain a 2-approximation for burning the maximum number of points
in a give number of steps. This result holds even when a set of burning sources are specified at the
input.
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2 Burning Number in One Dimension
In this section we consider the case when the points of P are on a line. Assume that the points are ordered in
increasing x-coordinate and let A[i] be the x-coordinate of the ith point from the left. Let δ∗ be the burning
number.

2.1 PTAS for Anywhere Burning
We now provide a polynomial time approximation scheme (PTAS), i.e., a (1 + ε)-approximation algorithm
for every ε > 0, for the anywhere burning problem. Intuitively, we can visualize this problem as a covering
problem with intervals in one dimension.

Our strategy is to make a guess δ for the burning number starting from 1. We keep increasing the guess
by 1 as long as we can prove the current δ to be a lower bound on the burning number. At some point when
we are unable to establish δ as a lower bound, we show how to find an approximate solution.

Note that for a δ, we have δ intervals of length 0, 2, 4, ... , 2 (i− 1) to burn all the points. We group these
intervals into t different groups as follows. The first group will have δ

t intervals with length at most 2
(
δ
t

)
.

Generally, the jth group will have δ
t intervals with length larger than 2(j − 1)

(
δ
t

)
and at most 2j

(
δ
t

)
. For

each group, we now relax all its intervals such that their length is equal to the largest interval in the group,
i.e., 2j

(
δ
t

)
. We use the notation S(δ) to denote this new set of intervals. We now use dynamic programming

to check if there is a placement of the intervals in S(δ) so that every point is covered. If not, then we are sure
that δ is not the burning number, as we had relaxed every interval. Otherwise, we will use these intervals to
obtain an approximate solution. Later, we will show how to choose t to obtain a PTAS.

Let V = (v1, . . . , vt+1) be a (t+ 1)-tuple of integers. Let D(V ) be the problem of covering vt+1 points of
P from the left with vj intervals of group j, where 1 ≤ j ≤ t. We use P (vt+1) to denote these points that are
to be covered. Assume that the rest of the points, i.e., P \ P (vt+1) are already covered by the rest of the
intervals of S(δ). We can then express D(V ) using the following recursion with trivial values for the base
cases: D(V ) =

∨t
j=1D(W j).

Here W j = (w1, . . . , wt+1) is similar to V except at two places: wj and wt+1. The jth element wj is set
to (vj − 1), because we have now used one more interval I of group j to cover some points of P (vt+1). Note
that the best position for this interval is when its right end coincides with the rightmost point z of P (vt+1).
It is straightforward to prove this formally with the observation that for every covering we can shift the
rightmost interval to the left unless its right end point coincides with z. Therefore, we set wt+1 to be the
number of remaining points that remains to be covered after placing I.

We store the solution to the subproblems using a multidimensional table L where L[V ] stores the solution
to D(V ). Using table lookup, the time taken to compute a cell of the table is O(t). Since each of the t groups
has δ

t intervals, and since P has n points, the size of L is O
(
n
(
δ
t

)t)
. Thus the overall running time of the

dynamic programming algorithm is O
(
nt
(
δ
t

)t)
.

Note that the question of covering P using S(δ) is obtained from L[Uδ], where Uδ = (u1, . . . , ut+1) be a
(t+ 1)-tuple with uj = δ

t for 1 ≤ j ≤ t and ut+1 = n. We now describe the process of guessing δ and arriving
at an approximate answer.

• Start guessing from δ = 1

• Use the dynamic programming to compute L[Uδ], i.e., the solution to the relaxed covering question for
S(δ) in O

(
nt
(
δ
t

)t)
time.

• If L[Uδ] does not contain an affirmative answer, then we know that δ∗ > δ. We thus iterate again by
increasing value of δ by 1.

• If L[U δ] contains an affirmative answer, stop and return the approximate burning number to be δ
(
1 + 2

t

)
.

At this point we know that δ ≤ δ∗. We construct the burning sequence as follows: First, burn the
midpoints of all intervals of length 2δ in the covering solution (i.e., the largest intervals), then burn
the midpoints of all intervals of length 2 (t− 1)

(
δ
t

)
in the solution and so on. However, since we used
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relaxed intervals in the dynamic programming, we keep burning for an extra 2δ
t steps to ensure that

each interval reaches its relaxed size (i.e., burns all points of P ).

Observe that we took δ + 2δ
t = δ

(
1 + 2

t

)
steps to burn all the points. Since δ ≤ δ∗, we have δ

(
1 + 2

t

)
≤

δ∗
(
1 + 2

t

)
. Therefore, our algorithm achieves an approximation factor of 1 + 2

t for anywhere burning. Since

δ∗ ≤ n, the total running time of our algorithm is bounded by O
(
n2
(
n
t

)t). Given an ε > 0, we choose t

such that ε = 2
t . Thus we get an approximation factor of (1 + ε) and a running time of O

(
n2+

2
ε ( ε2 )

2
ε

)
. We

thus obtain the following theorem.

Theorem 1. Given a set P of n points on a line and a positive constant ε > 0. One can approximate the
anywhere burning number of P within a factor of (1 + ε) and compute the corresponding burning sequence in
polynomial time.

2.2 PTAS for Point Burning
We can slightly modify the algorithm for anywhere burning problem to obtain a PTAS for the point burning
problem.

The strategy is the same as guessing the burning number δ from 1 to n. Similar to anywhere burning,
for each guess δ, we use a dynamic programming algorithm to check whether we can establish δ as a lower
bound. If so, then we increase δ, otherwise, we construct an approximate solution.

We define S(δ) in the same way as we did for anywhere burning. Since the point burning restricts the
burning sources to be at the given points, we modify the dynamic programming to check whether the set
S(δ) can cover P by placing the midpoints of the intervals at some of the given points. The corresponding
recurrence relation is as follows.

D(V ) =

t∨
j=1

D(W j),

Here W j = (w1, . . . , wt+1) is similar to V except at two places: wj and wt+1. The jth element wj is set to
(vj − 1), because we have now used an interval I of group j to cover some points of P (vt+1). Let z be the
rightmost point of P (vt+1). Then the best position for I is determined by a point q of P (vt+1) such that
placing the midpoint of I at any point to the left of q fails to cover z. We thus place I such that its midpoint
coincides with q and set wt+1 to be the number of remaining points that remains to be covered after placing
I.

The rest of the algorithm is the same as for anywhere burning.

Theorem 2. Given a set P of n points on a line and a positive constant ε > 0. One can approximate the
point burning number of P within a factor of (1 + ε) and compute the corresponding burning sequence in
polynomial time.

3 Burning Number in Two Dimensions
In this section we assume that the points of P are in R2. We first give a (1.92188 + ε)-approximation
algorithm for anywhere burning (Section 3.1) and then a (1.96296 + ε)-approximation algorithm for point
burning (Section 3.2). Note that this improves the previously known (2 + ε)-approximation factor for these
problems [9].

3.1 Anywhere Burning
Our algorithm for anywhere burning is inspired by the (2 + ε)-approximation algorithm of Keil et al. [9],
where we improve the approximation factor by using a geometric covering argument.

Keil et al. [9] leverage the discrete unit disk cover problem to obtain an approximation algorithm for
anywhere burning. The input to the discrete unit disk cover problem is a set of points P and a set of unit
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disks U in R2. The goal is to choose the smallest set U ⊂ U that covers all the points of P . There exists a
PTAS for the discrete unit disk cover problem [11].

Let δ∗ be the actual burning number. Keil et al. [9] iteratively guess the anywhere burning number δ
from 1 to n. For each δ, they construct a set of n disks, each of radius δ, that are centered at the points of P ,
and

((
n
3

))
+
((
n
2

))
additional disks, where each disk is of radius δ and is centered at the center of a circle

determined by either two or three points of P . The reason is that any solution to the anywhere burning can
be perturbed to obtain a subset of the discretized disks. Then they compute a (1 + ε) approximation U

′

δ for

the discrete unit disk cover Uδ. If
|U
′
δ|

(1+ε) > δ, then δ cannot be the burning number as otherwise, one could
construct a smaller discrete unit disk cover by choosing disks that are centered at the burning sources of an

optimal burning sequence. At this point, the guess is increased by one. The iteration stops when |U
′
δ|

(1+ε) ≤ δ,
where we know that δ ≤ δ∗. At this point, Keil et al. [9] show how to construct a burning sequence of length
(2 + ε).

We now describe a new technique for constructing the burning sequence. To burn all points in P , we use
1.92188δ(1 + ε) steps. We first choose the centers of a 0.92188 fraction of U

′

δ disks and burn them in arbitrary
order. This requires 0.92188|U ′δ| = 0.92188δ(1 + ε) steps. We then burn for another δ(1 + ε) steps. This will
ensure the previously chosen 0.92188|U ′δ| fires to have a radius of at least δ. Therefore, these fires will burn
all the points that are covered by the corresponding disks of the discrete unit disk cover solution. We are now
left with (1− 0.92188)|U ′δ| = 0.07812|U ′δ| disks in U

′

δ that need to be covered using the next δ(1 + ε) steps.
Observe that (1− 0.6094) = 0.3906 of these δ(1 + ε) fires have radius at least 0.6094. Since a unit disk can be
covered by 5 equal disks1 of radius at most 0.6094 [12], we can cover the remaining 0.3906

5 |U ′δ| = 0.07812|U ′δ|
disks of U

′

δ.
Since δ ≤ δ∗, We have the following theorem.

Theorem 3. Given a set P of points in R2 and an ε > 0, one can compute an anywhere burning sequence
in polynomial time where the length of the sequence is at most 1.92188(1 + ε) times the anywhere burning
number of P .

3.2 Point Burning
The algorithm for anywhere burning can be easily adapted to provide a ( 53

27 + ε) approximation ratio for
point burning. We will use the following geometric configuration.

Remark 1. Consider the annulus defined by two circles of radii r1 = 1 and r2 = 26
27 . Let C1 be the circle

with radius r1 and let Q1 be a 13 sided regular-polygon inscribed inside C1. Split the annulus into 13 equal
area regions (zones) by drawing lines from the center of the annulus to the corners of the polygon. Then
every circle with center inside a zone and with radius 13

27 covers that entire zone. Figure 2 illustrates this
configuration.

Proof. The claim is straightforward to verify by measuring the pairwise distances of the four corners of a
zone.

Similar to anywhere burning, for a guess δ, we construct an instance of a discrete unit disk cover problem.
However, here we use a set of n disks, each of radius δ, centered at the points of P . Then we follow the same

guessing strategy and stop as soon as we have U
′
δ

(1+ε) ≤ δ. We then first burn all the points corresponding to

U
′

δ, and burn for an additional 26δ(1+ε)
27 steps. We are now left with δ(1+ε)

27 annuli which we need to cover in
these additional steps. We divide each annuli into thirteen zones, as in Remark 1. We chose at most one
point of P in each zone (if exists), and burn that point during the first 13δ(1+ε)

27 extra steps. Observe that
there can be at most 13δ(1+ε)

27 such points over all annuli. Furthermore, the fire around each of these points
will reach at least a radius of 13δ(1+ε)

27 and by Remark 1, it will engulf its corresponding zone completely.
Therefore, all points will be burnt within 53(1+ε)

27 ≈ 1.96(1 + ε) steps.

1http://oeis.org/A133077
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Figure 2: Illustration for Remark 1. A zone is highlighted in red shaded region. Each of the green and orange
circles is of radius 13

27 and covers the entire zone.

Theorem 4. Given a set P of points in R2 and an ε > 0, one can compute a point burning sequence in
polynomial time where the length of the sequence is at most 53(1+ε)

27 ≈ 1.96(1 + ε) times the point burning
number of P .

4 Generalizations for Point Burning
In this section we consider two generalizations of the problem.

The first one is point burning with non-uniform rates (Section 4.1). Specifically, for each i from 1 to n,
the ith point in P is assigned a positive integer (rate) ri. If a fire starts at the ith point, the fire will spread
with a rate of ri per step. Note that point burning with uniform rates, i.e., r1 = . . . = rn reduces to point
burning. The second one is k-burning number, i.e., when k points can be burned at each step (Section 4.2).
This version has previously been considered for graph burning and graph k-burning number is known to be 3
approximable [10].

4.1 Point Burning with Non-uniform Rates
Let h be the ratio of the fastest rate to the slowest rate, i.e., h = max1≤i,j≤n

ri
rj

(intuitively, it is the maximum
ratio over all pairs of rates). In this section we show that for every fixed h, point burning number with
non-uniform rates is approximable within a constant factor. We slightly modify our point burning algorithm
described in Section 3.2 by leveraging a dominating set in a disk graph, as follows. A disk graph is a geometric
intersection graph where the vertices correspond to a set of disks in the plane and there is an edge if and only
if the corresponding pair of disks intersect. A dominating set in a disk graph is a subset S of vertices such
that every vertex is either in S or has a neighbour in S. Gibson and Parwani [8] provides a PTAS for finding
a minimum dominating set in disk graphs, where the disks can have different radii.

We are now ready to present the algorithm. For a positive integer m, let Gm be the disk graph obtained
by constructing for each point t ∈ P , a disk centered at t with radius m

2 rt. Let Dm be a minimum dominating
set of Gm.

We start guessing the burning number δ from 1 to n, and for each guess, we compute a (1+ε)-approximate
dominating set Eδ−1 of Gδ−1. We now have |Eδ−1| ≤ (1 + ε)|Dδ−1|. If δ < |Eδ−1|

(1+ε) ≤ |Dδ−1|, then we can
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claim that δ burning sources are not enough to burn all the points and can increase the guess by 1. Suppose
for a contradiction that all the points can be burned in δ steps. We can then choose the disks corresponding
to the burning sources to obtain a dominating set with less than |Dδ−1| disks, a contradiction.

Once we get δ ≥ |Eδ−1|
(1+ε) , we stop. At this point, we know that δ ≤ δ∗. We now construct a burning

sequence by first burning all the points in Eδ−1 (in an arbitrary order) and then continuing the burning for
h(δ − 1) more steps. We need to show all the points of P are burned. Take some point p ∈ P , if p ∈ Eδ−1,
then it is clearly burned. Otherwise, p is dominated by a point q ∈ Eδ−1. Here the Euclidean distance
between p and q is at most δ−1

2 (rp + rq).
If rq ≥ rp, then the radius for the fire initiated at q is rq(δ−1) which is larger than δ−1

2 (rp+rq). Therefore,
p must be burned.

Otherwise, assume that rq < rp. Here the distance between p and q is at most δ−1
2 (rp + rq) ≤ (δ − 1)rp.

Since q ∈ Eδ−1, by our burning strategy, the fire at q will continue to burn for at least h(δ − 1) steps.
Therefore, its radius is at least rqh(δ − 1) steps. Since h is the maximum ratio of the burning rates,
rqh(δ − 1) ≥ rq( rprq )(δ − 1) = (δ − 1)rp. Hence the point p must be burned.

The number of rounds taken by our algorithm is |Eδ−1|+ h(δ− 1) ≤ (1 + ε)δ∗ + h(δ∗ − 1) = (1 + h+ ε)δ∗.
We thus obtain the following theorem.

Theorem 5. Let P be a set of points in R2, where each point is assigned a burning rate. Let h be the ratio of
the fastest rate to the slowest rate. Given an ε > 0, one can compute a point burning sequence in polynomial
time where the sequence length is at most (1 + h+ ε) times the point burning number of P .

4.2 k-Burning with Non-uniform Rates
We now consider the point burning model when k points are allowed to burn at each step and the goal is to
compute the k-burning number, i.e., minimum number of rounds to burn all points of P . Our algorithm for
this model is the same as in the previous section except that we stop iterating the guess when kδ ≥ |Eδ−1|

(1+ε) .

The reason we keep iterating in the case when kδ < |Eδ−1|
(1+ε) < |Dδ−1| is that burning all points in kδ steps

would imply the existence of a dominating set of size smaller than |Dδ−1|. We thus obtain the following
theorem.

Theorem 6. Let P be a set of points in R2, where each point is assigned a burning rate, and let h be the
ratio of the fastest rate to the slowest rate. Given an ε > 0 and a positive integer k > 0, one can compute a
point k-burning sequence in polynomial time where the length of the sequence is at most (1 + h+ ε) times the
point burning number of P .

5 NP-Hardness
In this section we show that computing a point burning sequence is NP-hard even if we are given the burning
sources.

We will reduce the NP-Hard problem LSAT [1], which is a 3-SAT formula where each clause (viewed
as a set of literals) intersects at most one other clause, and, moreover, if two clauses intersect, then they
have exactly one literal in common. Given an LSAT instance, one can sort the literals such that each clause
corresponds to at most three consecutive literals, and each clause may share at most one of its literals with
another clause, in which case this literal is extreme in both clauses [1].

Let I be an instance of LSAT with m clauses and n variables. Without loss of generality we may assume
for every variable, both its positive and negative literals appear in I. Otherwise, we could set a truth value
to the variable to satisfy and eliminate some clauses to obtain an LSAT instance I ′ which is satisfiable if and
only if I is satisfiable. We will construct a point set P with 4n+m points and identify 2n points to be used
as the burning sources. We will show that I is satisfiable if and only if P has a point burning sequence that
uses only the given 2n points as the burning sources.
Construction of the Point Set: The point set includes one point per clause, which is called a clause point
and one point per literal, which is called a literal point. For each literal, we add a point, which we call a tail
point of that literal point. For example, consider a pair of clauses with k distinct literals and assume that

7
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djq = 2n− 2q

v
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dzc

djb + 1dzb

tja

dja + 1

dja

u

tjd

dje + 1

zjd

djd + 1

djd

dje

Figure 3: Illustration for the construction of the point set for a pair of intersecting clauses: (ja ∨ jb ∨ jc) and
(jc ∨ jd ∨ je).

these clauses have a literal in common. The corresponding point set consists of two clause points, k literal
points and k tail points. Figure 3 gives an illustration with k = 5.

We now describe the construction in detail. We call a clause (or a pair of clauses that share a common
literal) independent if it does not intersect any other clause. We place these independent elements (clauses or
pairs of clauses) far from each other such that points in one element are at least n2 units apart from the
points in any other element.

If a literal is shared among a pair of clauses, then we call it an intersection literal. If each of the two
clauses corresponding to an intersection literal is of size three (i.e., contains three literals), then we call
intersection literal heavy and otherwise, we call it light. Note that there can be at most 2n

5 heavy literals (as
each such literal corresponds to an independent pair of clauses with 5 distinct literals). We now relabel the
variables (with labels 1, . . . , n) such that variables that correspond to heavy literals get lower labels. For a
variable with label k, we label its literals as jk and jk. Thus for any heavy literal jk, we have k ≤ 2n

5 .
We first describe the construction of the points corresponding to a heavy literal. Let (ja ∨ jb ∨ jc) and

(jc ∨ jd ∨ je) be the corresponding clauses. For an integer q let djq to be the distance of (2n− 2q) units. In
general, when placing the literal point zjq , we ensure that it is at distance (djq + 1) from its corresponding
clause point. When placing a tail point tjq , we ensure that it is at a distance djq from its corresponding
literal point zjq . Therefore, in the following we only describe the position of the literal, clause and tail points
relative to each other.

We place a clause point u for (ja ∨ jb ∨ jc). We place the literal points zjb and zjc to the left and right of
the u (on the horizontal line through u), respectively. We place the literal point zja vertically below u. We
then place the clause point v and its literal points to the right of the intersection literal zjc symmetrically, as
shown in Figure 3. We place the tail points tjb and tje to the left and right of zjb and zje , respectively. The
tail points tja and tjd are placed vertically below zja and zjd , respectively. Finally, the tail point tjc is placed
vertically above zjc .

For the light literals, we have at most 4 distinct literal points to place. The construction is the same as
above and we intentionally put three literal points on the line passing through the clause points and the
remaining one (if exists) below its corresponding clause point.

For each independent clause, the construction is again the same as for (ja ∨ jb ∨ jc). If it contains two

8



literals, then we place both literal points on the horizontal line passing through the clause point.

Remark 2. For a literal zq, the construction ensures the following properties.

P1: The distance of tzq is strictly greater than 2n− 2q + 1 from all literal points except for its own literal
point.

P2: The distance of zjq is strictly greater than 2n− 2q + 1 from all tail points except for its own tail point.

Remark 2 is straightforward to verify from the construction except for the case when a heavy literal
correspond to two literal points below the line through the clause points. It may initially appear that if
the construction places them in close proximity, then the nearest tail point of one literal point may be the
tail point of the other literal point. However, such a scenario does not appear due to our initial relabelling
of the literals, i.e., the smallest distance between the vertical lines through these literal points is at least
d = 2(2n− 2( 2n

5 )) = 2(6n
5 ) = 12n

5 > 2n (Figure 3).
Reduction: First we show that if I is satisfiable, then P can be burnt in 2n steps using only the literal
points as sources. For every r from 1 to n, if jr is true then burn zjr at the (2r − 1)th step and burn zjr at
the 2rth step. If jr is false, then swap the steps. Any tail point tja is at a distance of (2n− 2a) from zja .
Even if ja is false, it still has (2n− 2a) steps left to burn, which will be enough to burn the tail point. It only
remains to show that all clause points are burned. Let u be any clause point, as I is satisfiable, at least one of
its variable jr must be true, which will burn for at least 2n− (2r − 1) = 2n− 2r + 1 steps and thus burn u.

We now assume that there is a burning sequence that burns all the points of P using the literal points as
sources. To construct a satisfying truth assignment for the LSAT, we use the following lemma.

Lemma 1. For a variable with label r, its literal points zjr and zjr are burnt in the (2r− 1)th and 2rth step,
respectively (or in the reverse order).

Proof. Consider the base case, i.e., the variable with label 1. The distance between zj1 (or, zj1) and tj1 is
dj1 = (2n− 2). By Remark 2, every other literal point is at least (2n− 1) distance apart from tja . Therefore,
zj1 and zj2 must be burnt within the first two steps.

Assume now that the lemma statement holds for the variables with labels 1, 2, . . . , (r − 1). Consider
now that tail point tjr . We will first show that for any k < r, the distance between zjk and tjr is at least
(2n− 2k + 1) (Remark 2), i.e., the fire at zjk cannot burn tjr . This can be verified since the distance of zjk
from its clause point is (2n− 2k + 1) and all other tail points are strictly further than this. Hence, it only
remains to be shown that for any k > r, the distance between zjk and tjr is at least (2n− 2r+ 1) (Remark 2).
This can be verified since the distance of zjr from its clause point is (2n− 2r + 1) and all other literal points
are strictly further than this. Hence, tjr must only be burnt by the fire of zjr . Consequently, zjr must be
burnt either at the (2r − 1)th or 2rth step. Similarly, we can show that zjr must be burnt either at step
(2r − 1) or 2r.

We now construct a satisfying truth assignment as follows. If zjr or zjr is burnt in odd step, we set it to
be true. Otherwise, we set it to be false. We now show that I is satisfied. Assume for a contradiction that
there is a clause c which is not satisfied, i.e., all of its associated literal points are burnt in even steps. By
Lemma 1, each literal point zja corresponding to c burns for (2n− 2a) steps, which is not enough to burn
the clause point. This contradicts our initial assumption of a valid burning sequence. This completes the
NP-hardness reduction.

Theorem 7. Given a set of points P in the plane and a subset S of P , it is NP-hard to construct a point
burning sequence using only the points of S that burns all the points of P within |S| rounds.

5.1 Burning Maximum Number of Points
Our NP-hardness result implies that given a subset S = {s1, . . . , sq} of q points from P , it is NP-hard to
burn the maximum number of points by only burning the points of S within q rounds. We now show how to
obtain a 2-approximation for this problem. For every point sj , where 1 ≤ j ≤ q, we consider q sets. The
ith set ∆j

i , where 1 ≤ i ≤ q, contains the points that are covered by the disk of radius i centered at p, i.e.,
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these points are within a distance of i from p. We thus have a collection of sets {∆1
1, . . . ,∆

1
q, . . . ,∆

q
1, . . . ,∆

q
q},

which can be partitioned into q groups based on radius, i.e., the ith group contains the sets {∆1
i , . . . ,∆

q
i }. To

burn the maximum number of points by burning S, we need to select one subset from each radius group so
that the cardinality of the union of these sets is maximized. This is exactly the maximum set cover problem
with group budget constraints, which is known to be 2-approximable [6].

Theorem 8. Given a set P of n points in the plane and a subset S of q points from P , one can compute a
point burning sequence using S within q rounds in polynomial time that burns at least half of the maximum
number of points that can be burned using S within q rounds.

If we want to burn maximum number of points within q rounds, then we can set S to be equal to P to
have a 2-approximate solution. We thus have the following corollary.

Corollary 9. Given a set of n points in the plane and a positive integer q < n, one can compute a point
burning sequence in polynomial time that burns at least half of the maximum number of points that can be
burned within q rounds.

6 Conclusion
In this paper we have shown that point burning and anywhere burning problems admit PTAS in one
dimension and improved the known approximation factors in two dimensions. To improve the previously
known approximation factor in two dimensions we used a geometric covering argument. We believe our
covering strategy can be refined further by using a tedious case analysis. However, this would not provide a
PTAS. Therefore, the most intriguing question in this context is whether these problems admit PTAS in two
dimensions.

We have also proven that the problem of burning the maximum number of points within a given number
of rounds is NP-hard, but 2-approximable by a known result on set cover with group budget constraints. It
would be interesting to design a better approximation algorithm leveraging the geometric structure.
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