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Abstract

Motivation: Read-overlap-based graph data structures play a central role in computing de novo genome assembly.
Most long-read assemblers use Myers’s string graph model to sparsify overlap graphs. Graph sparsification
improves assembly contiguity by removing spurious and redundant connections. However, a graph model must be
coverage-preserving, i.e. it must ensure that there exist walks in the graph that spell all chromosomes, given suffi-
cient sequencing coverage. This property becomes even more important for diploid genomes, polyploid genomes,
and metagenomes where there is a risk of losing haplotype-specific information.
Results: We develop a novel theoretical framework under which the coverage-preserving properties of a graph
model can be analyzed. We first prove that de Bruijn graph and overlap graph models are guaranteed to be
coverage-preserving. We next show that the standard string graph model lacks this guarantee. The latter result is
consistent with prior work suggesting that removal of contained reads, i.e. the reads that are substrings of other
reads, can lead to coverage gaps during string graph construction. Our experiments done using simulated long
reads from HG002 human diploid genome show that 50 coverage gaps are introduced on average by ignoring con-
tained reads from nanopore datasets. To remedy this, we propose practical heuristics that are well-supported by our
theoretical results and are useful to decide which contained reads should be retained to avoid coverage gaps. Our
method retains a small fraction of contained reads (1–2%) and closes majority of the coverage gaps.

Availability and implementation: Source code is available through GitHub (https://github.com/at-cg/ContainX) and
Zenodo with doi: 10.5281/zenodo.7687543.

1 Introduction

Accuracy of long reads has improved tremendously over the last
3 years (Wenger et al. 2019). For instance, PacBio HiFi sequencing
technology yields consensus sequencing reads that are both long
(averaging 10–25 kb) and highly accurate (averaging 99:8%).
Similarly, modal raw read accuracy above 99% has been reported
using reads from Oxford Nanopore Technology (ONT) sequencing
(Sereika et al. 2022). Consequently, long-read technologies have
shown the greatest promise in computing high-quality haplotype-
resolved genome assemblies (Jarvis et al. 2022).

The objective of genome assembly is to reconstruct the original
sequence from a large number of reads. Read-overlap-based assem-
bly algorithms work by constructing an overlap graph where each
vertex corresponds to a read, and edges represent suffix-prefix over-
laps between the reads. Practical algorithms account for the follow-
ing two key challenges while computing genome assembly. First,
due to the presence of repetitive sequences, it is usually possible to
reconstruct different genomes using the same input set of reads, each

of which is fully consistent with the data (Medvedev and Pop 2021).
Accordingly, problem formulations for genome assembly which seek
a single genome reconstruction, e.g. by finding a Hamiltonian cycle
in an overlap graph, or computing an Eulerian cycle in a de Bruijn
graph, are not used in practice. Instead, assemblers compute contigs
which are long, contiguous segments that, in principle, correspond
to substrings of the source genome (Tomescu and Medvedev 2017).
Second, the presence of repeats, variable-length reads and read
errors also leads to too many edges in the overlap graph. This chal-
lenge is addressed by using graph sparsification heuristics that ex-
clude vertices and edges which are likely to be redundant or false.

The commonly used string graph model by Myers (2005) (i)
removes reads that are contained as a substring of a longer read
(Fig. 1), (ii) ignores suffix-prefix overlaps that are shorter than the
longest possible between a read pair, and (iii) removes transitive
edges. More aggressive sparsification procedures also exist in the lit-
erature such as the best overlap graph approach of Miller et al.
(2008) which retains only the best overlaps to a given read, where
“best” is defined using some criterion. Despite the use of such graph
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sparsification techniques in most long-read assembly tools, theoretical
understanding of these heuristics is fairly limited. A rigorous analysis
of these sparsification techniques is important, especially in the con-
text of diploid and polyploid genomes, because these can lead to loss
of useful haplotype-specific information from an assembly graph.
Shomorony et al. (2016) and Hui et al. (2016) gave provably efficient
algorithms for overlap graph sparsification for fixed-length and
variable-length reads, respectively. However, their formulations make
a simplifying assumption that the input reads are long enough to
avoid ambiguity caused by repeats, which may not hold in general.

Assuming a genome is sequenced with sufficient coverage, then
there must exist walks in an assembly graph that can spell the true
sequences corresponding to each chromosome. Due to repeats, these
walks need not correspond to non-branching unitigs. An assembly
graph which guarantees this property is said to be coverage-
preserving (formally defined in Section 2). In this article, we make
the following contributions:

1. We formulate the coverage-preserving property of genome as-

sembly graph models, and perform a rigorous evaluation of

three commonly used models: (i) de Bruijn graphs, (ii) overlap

graphs, and (iii) string graphs. We show that de Bruijn graphs

and overlap graphs are guaranteed to be coverage preserving,

but string graphs are not.

2. Graph sparsification is a critical step during genome assembly to

prune the overlap graph because it helps to compute longer con-

tigs. We develop theoretical results to compute a sparse overlap

graph while preserving the coverage-preserving property.

3. We extend the proposed theory into practical heuristics and a

prototype software ContainX. The proposed heuristics are useful

to identify redundant contained reads which can be excluded from

overlap graph without violating the coverage-preserving property.

4. We conducted experiments by using long read datasets simu-

lated from diploid HG002 human genome assembly while

matching read length distributions to real PacBio HiFi and ONT

data. We show that 1 and 50 coverage gaps are introduced on

average by removing all contained reads in HiFi and ONT data-

sets, respectively. This is the first work to quantify the impact of

graph sparsification heuristics in Myers’s string graph model.

5. For HG002 genome assembly, ContainX algorithm excludes

98–99% contained reads from the graphs and leaves � 10%

coverage gaps. This result compares favorably to the perform-

ance of other known solutions for this problem.

2 Concepts and notations

We set the stage by defining important notations and definitions.
We will recall commonly used assembly graph models.

Subsequently, we will give a formal definition of the desired
coverage-preserving property in graphs.

2.1 Notation on strings
For a linear string x ¼ a1 . . . an over alphabet R ¼fA, C, G, Tg,
jxj ¼ n is the length of x, x½i� ¼ ai is the ith symbol of X, and x½i :
j� ¼ ai . . . aj is the substring from position i to position j. Let xi de-
note string x concatenated with itself i times. String x is said to have
a suffix-prefix overlap of length l with string y when a proper suffix
of length l in x equals a proper prefix of y. Recall that a proper pre-
fix or a proper suffix of a string cannot be equal to the string itself.

We will use a circular genome model to avoid edge-effects associ-
ated with sequencing coverage. A circular string can be viewed as a
traditional linear string which has the left- and the right-most sym-
bols wrapped around and glued together. Circular string z ¼
ha1 . . . ani has length jzj ¼ n. Substring z½i : j�; where i 2 ½1;n�; j � i,
equals the finite substring of the linear infinite string ða1 . . . anÞ1
from position i to position j. Note that offset j in z½i : j� can
be greater than jzj because z is a circular string. Further, substring
z½i : j� is said to be a repetitive string in z iff there exists
z½i0 : j0� ¼ z½i : j�; i0 6¼ i. Suppose the true unknown genome is a set of
circular strings, each representing a chromosome sequence. Let / be
a known upper bound on the maximum length of a chromosome in
the genome.

A sequence read sampled from the genome is a substring of one
of the circular strings in the genome. An indexed multiset of the
reads is represented using symbol R. Read x 2 R is labeled as a con-
tained read if there exists a read y 2 R n fxg such that x is a sub-
string of y. If y is also contained in x, then x and y are identical. In
this case, break the tie by assuming that the read with lower index in
R is contained within the read with higher index. The reads which
contain read x are referred to as parent reads of x. We assume that
either there are no sequencing errors or reads have been error-
corrected. In our theoretical results, we will also assume that DNA
is a single-stranded molecule.

2.2 Graph models for genome assembly
De Bruijn graphs, overlap graphs and string graphs are popular
graph-based frameworks used for de novo genome assembly. Let
GðV;E; r;wÞ denote a directed assembly graph where vertices are
labeled with strings, and edges indicate suffix-prefix overlap rela-
tions between the labels of connected vertices. Function r : V ! Rþ

assigns a string label to each vertex. Function w : E! N assigns a
weight to each edge. Weight of an edge v1 ! v2 signifies the length
of the prefix of rðv1Þ that is not in the suffix-prefix match. In a de
Bruijn graph BkðRÞ, vertex set V corresponds to the set of all k-mer
substrings in read set R, and an edge of weight one exists from ver-
tex v1 to vertex v2 if and only if rðv1Þ½2 : k� ¼ rðv2Þ½1 : k� 1� (Idury
and Waterman 1995). This data structure is also sometimes referred
to as node-centric de Bruijn graph (Chikhi and Rizk 2013).

Overlap graph OðRÞ is a directed multigraph where vertices cor-
respond to reads, and edges correspond to suffix-prefix overlaps
among the reads (Myers 1995). A directed edge v1 ! v2 with weight
jrðv1Þj � l is drawn if and only if string rðv1Þ has a suffix-prefix
overlap of length l with string rðv2Þ. A subgraph of overlap graph
OðRÞ that contains only the edges representing suffix-prefix over-
laps of length � k is denoted as OkðRÞ.

Myers (1995, 2005) introduced a sparse variant of overlap graph
structure called as string graph. Unlike overlap graphs which are
defined as directed multigraphs, string graph SðRÞ is a directed
graph. A string graph includes only the longest suffix-prefix overlap
between a read pair. Second, vertices associated with contained
reads are excluded from a string graph. Finally, if vertex v1 connects
to v2, v2 connects to v3 and v1 connects to v3 using edges e1; e2 and
e3, respectively, and wðe1Þ þwðe2Þ ¼ wðe3Þ, then edge e3 is
excluded from the string graph because it is transitively deducible.
Removal of transitive edges is referred to as transitive sparsification.
A subgraph of string graph SðRÞ which only uses suffix-prefix over-
laps of length � k is denoted as SkðRÞ. In practice, a string graph

Figure 1 Illustration of an example where removal of vertices associated with con-

tained reads leads to a coverage gap. Reads with IDs 2 and 3 are contained in 1 and

6, respectively. If the contained reads are ignored, there is no walk in the sparse

graph that spells the genome
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has significantly fewer edges compared to the overlap graph which
enables computation of longer assembly contigs.

By performing a closed walk in an assembly graph, one can spell
a circular string. This string is formed by concatenating labels of the
vertices in the walk without spelling the overlapped substrings
twice.

2.3 Coverage-preserving graph models
Unless all repeats can be unambiguously resolved, one can compute
different genome reconstructions, each of which is fully consistent
with input reads (Medvedev and Pop 2021). An assembly graph
spells the true genome if it spells all the possible genome
reconstructions.

The depth of sequencing must be sufficient enough for assem-
bling a genome (Lander and Waterman 1988). Informally, we will
assume that reads “cover” the genome, and the length of suffix-
prefix overlap between “consecutive” reads is above a certain
threshold. One way to achieve this is following. We say that there is
sufficient coverage over circular string z if there exist parameters
l1; l2 2 N such that l1 > l2 and all intervals of length l1 � l2 in z in-
clude the start of at least one substring of length � l1 that matches a
read 2 R. See Fig. 2 for an example. This definition supports
variable-length reads and allows a read to match at multiple distinct
places in a genome. We will frequently use this assumption later in
our proofs in Section 3. Let CðR; l1; l2;/Þ be the set of all candidate
circular strings of length � / which satisfy the stated coverage as-
sumption using a given read set R and coverage parameters ðl1; l2Þ.
The true genome is a subset of CðR; l1; l2;/Þ.

Definition. Given a set of reads R, coverage parameters ðl1; l2Þ and
chromosome length threshold /, graph GðV;E; r;wÞ is said to be
coverage-preserving if all candidate strings 2 CðR; l1; l2;/Þ can be
spelled in the graph.

3 Analysis of known graph models

THEOREM 1. de Bruijn graph BkðRÞ is coverage-preserving for all
k � l2 þ 1.

PROOF. If a circular string can be spelled in Bl2þ1ðRÞ, then it can cer-
tainly be spelled in BkðRÞ for all k < l2 þ 1. We will prove that
Bk¼l2þ1ðRÞ is coverage-preserving by using contradiction. Suppose
there exists a circular string z 2 CðR; l1; l2;/Þ which cannot be
spelled in BkðRÞ. Let ki ð1 � i � nÞ denote the k-mer substring
starting from position i in z. If all kis exist in the set of all k-mer sub-
strings extracted from read set R, then it is trivial to construct a
closed walk in BkðRÞ which spells z. Therefore, at least one of the
kis must be missing. Consider the minimum i for which this is true.
Next, consider the ðl1 � l2Þ-long interval ending at the position i in
the circular string z. Based on the coverage assumption, there is at
least one read 2 R which matches a substring of length � l1 of z
starting in this interval. Such a read must contain k-mer ki as its sub-
string. h

Next, we turn our attention to overlap graphs. Unlike de bruijn
graphs, overlap graphs require a more careful analysis due to
variable-length string labels on vertices and variable-length suffix-
prefix overlaps. Our aim is to prove the following.

THEOREM 2. Overlap graph OkðRÞ is coverage-preserving for all
k � l2.

If a circular string can be spelled in Ol2 ðRÞ, then it can be spelled
in OkðRÞ for all k < l2. For a circular string z 2 CðR; l1; l2;/Þ, we
propose an algorithm to identify a closed walk in Ol2 ðRÞ which
spells z. For this, we first need some definitions. Let Ai be the
ðl1 � l2Þ-long interval starting at position i in z, for all i ranging
from 1 to jzj. For each interval Ai, let z½Ai:s : Ai:e� be the substring
of length � l1 which starts in interval Ai and matches a read 2 R. If
there are multiple such substrings available, pick the ones with the
least value of Ai:s, and then with the least value of Ai:e. Let Ai:r 2
R denote a read that matches substring z½Ai:s : Ai:e�. Suppose
Aq; q 2 ½1; jzj� is the interval which ends at position A1:s� 1 if
A1:s > 1 or else at position jzj if A1:s ¼ 1. Recall that a circular
string is equivalent to any of its cyclic rotated version, therefore, as-
sume wlog that jA1:rj ¼ maxi2½1;jzj�jAi:rj. If jA1:rj � jzj þ l2, it is triv-
ial to construct a valid closed walk by using single vertex
corresponding to read A1:r. In the following, we will assume that
jAi:rj < jzj þ l2 for all i 2 ½1; jzj�. The inequalities l1 � jAi:rj and
jAi:rj < jzj þ l2 imply that l1 � l2 < jzj. Also jzj > 1 because
l1 � l2 > 0.

LEMMA 1. For any two consecutive intervals ðAi;Aiþ1Þ in
ðA1;A2; . . . ;AjzjÞ, Ai:e � Aiþ1:sþ l2 � 1.

PROOF. All intervals including Ai and Aiþ1 are of length l1 � l2.
Ai:e�Aiþ1:s equals its minimum value l2 � 1 when (a) Ai:s equals
the first position in interval Ai, (b) Aiþ1:s equals the last position in
interval Aiþ1, and (c) the substring z½Ai:s : Ai:e� has minimum pos-
sible length l1. h

We will find a subsequence ðT 1; T 2; . . . ; T pÞ of ðA1;A2; . . . ;AjzjÞ
such that vertices corresponding to reads ðT 1:r; T 2:r; . . . ; T p:r; T 1:rÞ
can be connected to form a valid closed walk which spells z (Fig. 3).
Let T 1 ¼ A1. Suppose a partial subsequence ðT 1; T 2; . . . ; T i ¼ AjÞ
has been computed so far. Continue by selecting the first interval
among ðAjþ1; . . . ;AjzjÞ as T iþ1 which satisfies the conditions
T iþ1:s > T i:s and T iþ1:e > T i:e. This selection procedure ensures
that T 1:s < T 2:s < . . . < T p:s and T 1:e < T 2:e < . . . < T p:e.

LEMMA 2. Length of the subsequence ðT 1;T 2; . . . ;T pÞ identified by
the above procedure is at least two.

PROOF. By contradiction. Assume p ¼ 1, i.e. the computed subse-
quence is T 1 ¼ A1. Based on our previous arguments, we have
jA1:rj < jzj þ l2, l1 � l2 < jzj and jzj > 1. Interval Aq cannot con-
tain position A1:s because size of each interval, i.e. l1 � l2, is < jzj.
Therefore, A1:s < Aq:s � jzj. As intervalAq was not picked among
the subsequence of intervals, A1:e must be � Aq:e. Next, we will

Figure 2 Suppose l1 ¼ 4 and l2 ¼ 1. A circular string z ¼ hCATGAi has five intervals

of length l1 � l2 ¼ 3 as shown in blue. Two reads ACATG and ATGA, which match

substrings z½5 : 9� and z½2 : 5�, respectively, are shown in green. z has sufficient

coverage because all five intervals include at least one of the starting positions of the

reads

Figure 3 A graphic illustration of the subsequence computed from the complete se-

quence of intervals A1;A2 ; . . . ;Ajzj. In the left figure, the gray-colored circle indi-

cates circular string z, and the curved line segments indicate distinct substrings of z

associated with intervals A1;A2 . . . ;Ajzj. The right figure illustrates only the sub-

strings associated with selected intervals in the subsequence T 1; T 2; T 3; T 4
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identify the minimum possible value of Aq:e to get a lower bound of
A1:e. Aq:e is lowest when the length of substring z½Aq:s : Aq:e� is l1
and Aq:s equals the first position in Aq. Using these conditions, ob-
serve that Aq:e � A1:sþ jzj þ l2 � 1, and therefore, A1:e � A1:sþ
jzj þ l2 � 1. This implies that the length of substring z½A1:s : A1:e� is
� jzj þ l2. This is not possible when jA1:rj < jzj þ l2. h

LEMMA 3. For any two consecutive intervals ðT i; T iþ1Þ in
ðT 1; T 2; . . . ; T pÞ, T i:s < T iþ1:s, T i:e < T iþ1:e and
T i:e � T iþ1:sþ l2 � 1.

PROOF. The first two inequalities T i:s < T iþ1:s and T i:e < T iþ1:e
are guaranteed by the selection procedure of Tiþ1. Suppose T i ¼ Aj

and T iþ1 ¼ Ak. From Lemma 1, we know that Ak�1:e �
Ak:sþ l2 � 1. If j ¼ k� 1, then inequality T i:e � T iþ1:sþ l2 � 1
holds. Otherwise, j < k� 1 implies that Ak�1 was not picked
among the subsequence of intervals. This would happen in either of
the following two situations (i) Aj:s ¼ Ak�1:s;Aj:e ¼ Ak�1:e, (ii)
Aj:s < Ak�1:s;Aj:e � Ak�1:e. In either case, Aj:e � Ak�1:e.
Therefore, T i:e � T iþ1:sþ l2 � 1. h

LEMMA 4. T p:s < T 1:sþ jzj , T p:e < T 1:eþ jzj and T p:e � T 1:sþ
jzj þ l2 � 1.

PROOF. The first inequality T p:s < T 1:sþ jzj holds because T i:s 2
½1; jzj� 8i 2 ½1; p�. For the second inequality, recall that jA1:rj ¼
maxi2½1;jzj�j Ai:rj. If T p:e � T 1:eþ jzj, then jA1:rj < jT p:rj which
cannot be true. The third inequality can be proved by using the argu-
ments from the proof of Lemma 2. If q < jzj, then the intervals
Aqþ1; . . . ;Ajzj will contain A1:s and won’t be selected in the subse-
quence. As a result, either p ¼ q or p < q. In either case,
T p:e � Aq:e. Aq:e � A1:sþ jzj þ l2 � 1 implies that T p:e � T 1:sþ
jzj þ l2 � 1. h

Lemmas 3 and 4 collectively prove that vertices associated with
the reads T 1:r, T 2:r, . . ., T p:r;T 1:r can be connected appropriately
to build a valid closed walk in overlap graph Ol2 ðRÞ. Along the
walk, the nonoverlapping prefix of read T i:r ð1 � i < pÞ spells
z½T i:s : T iþ1:s� 1�. The prefix of the last read T p:r spells
z½T p:s : jzj�. When T 1:s > 1, it also spells z½1 : T 1:s� 1�. This com-
pletes the proof of Theorem 2. Finally, we consider the string graph
model.

Observation. String graph SkðRÞ is not guaranteed to be coverage-
preserving for any value of k.

A counter-example suffices to support the above statement
(Fig. 4). Assume l1 ¼ 6; l2 ¼ 2 and / ¼ 10. Suppose count of reads
jRj ¼ 4;R½1� ¼ CACGTG, R½2� ¼ CACGTGG, R½3� ¼ TGTGCA
and R½4� ¼ TGGGCA. Accordingly, the two candidate circular
strings are hCACGTGTGi (covered by R½1�;R½3�) and
hCACGTGGGi (covered by R½1�;R½2�;R½4�). However, read R½1� is
contained in read R½2� and the vertex corresponding to read R½1� is
excluded from the string graph. As a result, the first candidate
hCACGTGTGi cannot be spelled.

The significance of the above result is that despite sufficient
sequencing coverage, string graphs may lose coverage over the

genome. This limitation can lead to fragmented assembly in practice
(Feng et al. 2022; Nurk et al. 2022). Accordingly, the following
questions need to be addressed: (i) To what extent does the lack of
the above guarantee affect quality of string-graph-based long-read
assemblies in practice? and (ii) Does there exist an alternate graph
model derived from an overlap graph which is as sparse as the string
graph in practice, but guaranteed to be coverage-preserving?

4 An alternative framework for sparsification of
overlap graphs

String graph is a subgraph of an overlap graph that loses the
coverage-preserving guarantee after pruning selected vertices and
edges. In this section, we propose techniques to compute a directed
multigraph structure which is also a subgraph of overlap graph, and
it is guaranteed to be coverage-preserving. Specifically, we propose
safe graph sparsification rules for vertex and edge removal from
overlap graph OkðRÞ;k � l2 which ensure that all circular strings 2
CðR; l1; l2;/Þ can be spelled in the sparse graph. Suppose O0kðRÞ
equals a subgraph of OkðRÞ after performing a sequence of safe
operations. Let W/ðGÞ denote the set of circular strings of length �
/ which can be spelled in graph G. From Theorem 2, we know that
CðR; l1; l2;/Þ �W/ðOkðRÞÞ. Therefore, the next three lemmas hold
true.

LEMMA 5. Vertex u can be safely removed from graph O0kðRÞ if
W/ðO0kðRÞÞ ¼W/ðO0kðRÞ � uÞ.

LEMMA 6. Edge uvl, i.e. the edge from vertex u to vertex v of weight
l can be safely removed from graph O0kðRÞ if W/ðO0kðRÞÞ ¼
W/ðO0kðRÞ � uvlÞ.

LEMMA 7 (Myers 2005). If vertex v1 connects to v2, v2 connects to
v3 and v1 connects to v3 using edges e1; e2 and e3 respectively such
that wðe1Þ þwðe2Þ ¼ wðe3Þ in graph O0kðRÞ, then edge e3 can be
safely removed.

One needs to be careful while removing contained reads. The
next lemma suggests a condition for when it is safe to remove a con-
tained read.

LEMMA 8. The vertex corresponding to a contained read r 2 R can
be safely removed from graph O0kðRÞ if all the following conditions
are satisfied:

1. Read r is a substring of exactly one candidate circular string
z 2 CðR; l1; l2;/Þ.

2. Read r matches a non-repetitive substring of z.

3. Graph O0kðRÞ contains a vertex corresponding to a parent read
of r.

PROOF. Let rp be a parent read of read r whose corresponding vertex
exists in graph O0kðRÞ. Denote the vertices corresponding to reads r
and rp as u and up respectively. Recall that all reads are substrings of
the genome, and the genome is a subset of CðR; l1; l2;/Þ. If r is a sub-
string of exactly one circular string z 2 CðR; l1; l2;/Þ, then rp must
be a substring of z and no other circular string in CðR; l1; l2;/Þ. We
need to show that z can still be spelled after removing vertex u from
graph O0kðRÞ. Suppose ðv1; e1; v2; e2; . . . ; vn�1; en�1; vnÞ; n > 1; vn ¼
v1 is a closed walk that includes vertex u to spell z. WLOG, assume
that v1 ¼ u. Note that neither of the vertices v2; v3; . . . ; vn�1 equal u
because read r matches a non-repetitive substring of z. Since v1 ¼ u,
the first character of z is spelled by using the first character of r, and
z½1 : j rj� matches read r. Vertex v1 ¼ u is said to span interval A1

of length jrj starting from position one in z. Similarly, vertex v2

spans interval A2 of length jrðv2Þj starting from position wðe1Þ þ 1
Figure 4 A visualization of the counter-example used to analyze the string graph

model

4 Jain

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/3/btad124/7074174 by J.R
.D

. Tata M
em

orial Library, Indian Institute of Science, Bengaluru user on 13 April 2023



in z. In general, each vertex vi in the closed walk spans a unique
interval Ai with starting position 2 ½1; jzj�. Next, we will construct a
new closed walk to spell z that uses vertex up instead of vertex u.
The interval spanned by vertex up in z, say Anew, can be uniquely
identified because substring z½1 : jrj� is non-repetitive. Anew sub-
sumes A1 ¼ An and possibly a few other adjacent intervals
A2;A3; . . . and An�1;An�2; . . .. All vertices associated with the sub-
sumed intervals can be removed and replaced with up. With add-
itional refinements, this procedure can be used to form a closed
walk that spells z without using vertex u. h

One can easily generalize Lemma 8 to a case where the contained
read and its parent read have consistent matches in more than one
candidate circular string. We will use Lemma 8 in Section 5 to motiv-
ate a practical heuristic. Finally, based on all such safe rules, it would
be ideal to construct a “minimal” sparse overlap graph. However,
implementing these rules in practice is not trivial. Suppose all
sequencing errors are corrected by using an appropriate error-
correction algorithm, we need to make an informed estimation of
l1; l2 and / parameters. Computing the set of closed walks W/ðGÞ ef-
ficiently in large overlap graphs is also challenging.

5 A Proof-of-concept implementation

We build a practical algorithm for overlap graph sparsification
that removes transitive edges by using the property in Lemma 7,
and filters out a subset of contained reads by using heuristics that
are inspired from Lemmas 5 and 8. Our implementation is current-
ly designed for error-free long-read sequencing data sampled from
both strands of DNA. Reverse complement of a string x is denoted
as x. Reverse complements are handled by adding two separate
vertices for each read: first for the read as given and second for its
reverse complement. If vertex v corresponds to a read in either its
forward or reverse-complemented orientation, then v refers to the
vertex corresponding to the read in the other orientation.
Therefore, rðvÞ ¼ rðvÞ. Graph GðV;E; r;wÞ satisfies the following
two properties: (i) 8v 2 V; v 2 V, and (ii) for each edge e 2 E, say
from v1 to v2, an edge v2 ! v1 of weight jrðv2Þj � ðjrðv1Þj �wðeÞÞ
belongs to E.

Our implementation requires the following inputs from a user
for the initial graph construction: (i) error-free long reads, (ii) min-
imum overlap length threshold, (iii) exact suffix-prefix overlaps, and
(iv) exact match coordinates of each contained read to each of its
parent read. The minimum overlap length cutoff is set to 5 kb by de-
fault. For our experiments, we used minimap2 (Li 2018) to compute
all-versus-all read alignments. Overlaps available from minimap2
were filtered to satisfy the alignment length and 100% identity con-
straints. The first step in our implementation is to build an overlap
graph from the input suffix-prefix overlaps, and separately label
reads as either contained or non-contained. For each contained read
r, a set of 4-tuples is used to save match information with the parent
reads. For instance, tuple ðp; i; j;þÞ indicates that read r matches
substring p½i : j� of read p 2 R. Similarly, tuple ðp; i; j;�Þ indicates
that read r matches substring p½i : j�, where p is the reverse comple-
ment of read p 2 R.

5.1 Transitive sparsification of a directed multigraph
The transitive sparsification property in Lemma 7 is inspired from
Myers’s string graph formulation. However, the linear OðjEjÞ
expected time algorithm from Myers (2005) to label transitive edges
is not applicable here because our graph is a multigraph, i.e. graph
can have multiple edges between a pair of source and target vertices.
Moreover, Myers’s runtime analysis uses the property that the num-
ber of irreducible edges per vertex is constant in expectation, which
does not hold in the presence of contained reads. We use a simple
OðjEjD2Þ time procedure (Algorithm 1) where D is the maximum
out-degree of a vertex in G. We did not explore faster algorithms

here because Algorithm 1 uses a small fraction of the overall assem-
bly runtime.

5.2 Remove non-repetitive haplotype-specific contained

reads
Lemma 8 suggests that a contained read can be removed if (i) it is a
substring of only a single haplotype, (ii) it is sampled from a non-
repetitive genomic region, and (iii) at least one parent read is avail-
able in the graph. The third condition is automatically satisfied
because there is at least one parent read of each read which is non-
contained, and therefore, will not be removed. We propose a heuris-
tic to check the first two conditions by computing all-versus-all read
alignments using Hifiasm (Cheng et al. 2021). For each read r, we
inspect multiple sequence alignment (MSA) of read r and other reads
overlapping with read r. We check if the count of reads in the MSA
does not greatly exceed the sequencing coverage to ensure that the
read is sampled from a non-repetitive genomic region. For a diploid
genome, we additionally check for the presence of a heterozygous
variant using the MSA (Fig. 5). Presence of a heterozygous variant
implies that read r aligns to a single haplotype. If both the conditions
are satisfied, we remove the two vertices corresponding to contained
read r and its reverse complement respectively.

5.3 k-mer-based filtering heuristic for contained reads
We process the remaining contained reads using a second filter. In
theory, we can try enumerating all possible string walks with and
without contained read. Comparing the two will inform whether the
read can be safely removed (Lemma 5). However, enumerating all
possible string walks at chromosome length scale is computationally
prohibitive. We address this by implementing a k-mer-based heuris-
tic. We first compute the set of k-mers observed in user-specified
bounded-length string walks from the vertex associated with con-
tained read (Fig. 6). By default, the length of these walks is set to
twice the length of the contained read. The set of observed k-mers is
denoted as j1. Next, we compute the union of set of k-mers
observed in bounded-length string walks from the vertices associated
with the parent reads of the contained read. This set is denoted as
j2. If j1 � j2, we mark the contained read for removal. This heuris-
tic estimates if there exists a string which cannot be spelled after re-
moval of the contained read.

Figure 5 An illustration suggesting how multiple sequence alignment is used to de-

tect non-repetitive haplotype-specific contained reads. We precompute the set of

non-repetitive haplotype-specific reads by using a modified version of Hifiasm code

(https://github.com/cjain7/hifiasm/tree/hifiasm_dev_debug)
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6 Experimental results

Our evaluation addresses two questions: (a) How many coverage
gaps are introduced if we follow the standard string graph model,
i.e. discard all contained reads during graph construction?, and (b)
How well does the proposed implementation (hereon referred to as
ContainX) perform when compared to string graph as well as other
existing methods?

6.1 Experimental setup
Read simulation from human haploid and diploid genomes

We used two human genome assemblies for read simulation. The first is
a CHM13 haploid genome assembly provided by the Telomere-to-
Telomere consortium (GenBank id GCA_009914755.4) (Nurk et al.
2022). This haploid genome assembly of size 3.1 Gbp has 25 contigs
and N50 length 150.6 Mbp. The second assembly is a long-read diploid
genome assembly (ftp://ftp.dfci.harvard.edu/pub/hli/hifiasm-phase/v2/
HG002.hifiasm.trio.0.16.1.hap1.fa.gz and ftp://ftp.dfci.harvard.edu/pub/
hli/hifiasm-phase/v2/HG002.hifiasm.trio.0.16.1.hap2.fa.gz) of HG002
human sample computed using Trio-hifiasm (Cheng et al. 2021). This
diploid genome assembly of size 6.0 Gbp has 970 contigs and N50
length 57.8 Mbp. From these genome assemblies, we simulated eight
error-free read sets whose length distributions are compatible with real
PacBio HiFi and ONT sequencing data. We used Seqrequester (https://
github.com/marbl/seqrequester) to simulate reads from random start
positions in both forward and reverse orientations. Seqrequester allows
users to specify a desired read length distribution. We used HiFi and
ONT read length distributions from publicly-available long-read data-
sets of HG02080 human sample (Liao et al. 2022). Four long-read sets
were simulated from haploid genome assembly with 20-fold coverage.
The other four long-read sets were simulated from diploid genome as-
sembly with 30-fold coverage (15-fold per haplotype). Length statistics
and coverage information of the simulated read sets are shown in
Table 1. The commands used to run the tools are listed in
Supplementary Table S1.

6.2 Assessment of coverage gaps caused by removing

contained reads
Benchmarking procedure

We used the following method to estimate the count of coverage gaps
that are introduced by removal of contained reads. We computed all-
versus-all read overlaps by using minimap2 v2.23 (Li 2018) to identify
the set of contained reads. We labeled a read as contained if it matched
a proper substring of a longer read. We can have false negatives be-
cause minimap2 uses k-mer-based heuristics. However, there cannot be
false positives here because each overlap is verified using sequence
alignment. In the second step, the set of non-contained reads was
mapped to the genome. For the diploid genome, the set of non-
contained reads was mapped to both paternal and maternal haplo-
types, one by one. Minimap2 parameters were adjusted to enable
reporting of multiple best alignments per read. Whenever a read
aligned end-to-end against a genomic interval with 100% alignment
identity, we recorded the interval. Finally, all the genomic intervals
where no alignment coverage was observed were extracted using bed-
tools v2.29.1 (Quinlan and Hall 2010). Not all of these can be consid-
ered as coverage gaps caused by removal of contained reads. The
sequencing coverage and read lengths at the two extreme ends of each
contig are expected to be lower than the whole-genome average due to

edge effect. Therefore, the intervals that overlap with either the first 25

kb or the last 25 kb bases of a contig are not considered. Similarly, the
intervals that overlap with segments of the genome with zero sequenc-
ing coverage are also not considered. The remaining intervals are the

coverage gaps introduced by removal of contained reads.

Results

The counts of coverage gaps observed in the four datasets are
shown in Table 2. We observe that there are zero coverage gaps

introduced in haploid genome for both ONT and HiFi read sets.
In theory, haploid genomes can suffer coverage gaps due to identi-
cal repeats in the genome (Fig. 1). However, removal of contained

reads does not cause any harm in practice. In diploid datasets, we
observe 1 and 46–54 coverage gaps introduced in HiFi and ONT

datasets, respectively. Compared to haploid genomes, coverage
gaps in diploid genomes are more likely to happen because a lon-
ger read sampled from one haplotype can subsume all reads

sampled from the homologous loci of the other haplotype, espe-
cially in regions with low heterozygosity. Moreover, ONT read
length distribution is highly nonuniform which leads to a higher

fraction of contained reads, and therefore, more coverage gaps.
Supplementary Fig. S1 shows long-read length distributions.

We further investigated whether the observed gaps are clustered
in a particular chromosome, but we did not observe such behavior.

The coordinates of these coverage gaps in the HG002 assembly were
mapped to the coordinates of GRCh38 human genome reference by
using paftools (Li 2018). The complete lists of these coordinates are

provided in Supplementary Tables S2–S5. We also evaluated hetero-
zygosity rate by checking the count of heterozygous variants in these

gaps. These gaps collectively span 1.26 million bases on GRCh38
genome reference when all the four diploid datasets are considered
together. However, Dipcall (Li et al. 2018) reported only 83 hetero-

zygous variants. This rate is an order of magnitude lower relative to
the whole-genome average heterozygosity rate 0.1% in HG002 gen-
ome. This observation confirms our expectation that the coverage

Table 1. Properties of the simulated long-read sequencing datasets

including their size and length statistics.

Dataset Count of reads N50 length Max. length

HAPLOID-20x-ONT-1 3.7M 40 098 572 359

HAPLOID-20x-ONT-2 3.7M 40 089 544 992

HAPLOID-20x-HiFi-1 2.9M 21 314 48 708

HAPLOID-20x-HiFi-2 2.9M 21 310 48 708

DIPLOID-30x-ONT-1 5.3M 39 715 544 992

DIPLOID-30x-ONT-2 5.3M 39 732 572 359

DIPLOID-30x-HiFi-1 4.2M 21 295 48 708

DIPLOID-30x-HiFi-2 4.2M 21 298 48 708

Table 2. Coverage gap statistics for the gaps introduced by removal

of contained reads.a

Dataset Count of contained

reads

Coverage gap statistics

Count Max. length

HAPLOID-20x-ONT-1 3.2M 0

HAPLOID-20x-ONT-2 3.2M 0

HAPLOID-20x-HiFi-1 1.9M 0

HAPLOID-20x-HiFi-2 1.9M 0

DIPLOID-30x-ONT-1 4.6M 46 53 490

DIPLOID-30x-ONT-2 4.6M 54 101 371

DIPLOID-30x-HiFi-1 2.5M 1 1808

DIPLOID-30x-HiFi-2 2.5M 1 224

aCount of contained reads is estimated from all-to-all read alignments.

Figure 6 An illustration for how k-mer sets j1 and j2 are computed using bounded-

length string walks from contained read r and its parent reads, respectively, in an

overlap graph. Colored dots indicate the k-mers extracted from the strings
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gaps in a diploid genome are more likely to happen in the regions
with low heterozygosity.

6.3 Evaluation of the proposed sparsification algorithm
Benchmarking procedure

We evaluated the performance of our proof-of-concept implementa-
tion ContainX that determines a subset of contained reads to be
retained. We tested ContainX using the diploid datasets. We checked
the performance by observing the following two parameters: (i) count
of coverage gaps, and (ii) count of “junction” reads, i.e. the reads
which correspond to vertices having either > 1 incoming or > 1 out-
going edges in the graph. Retaining more contained reads implies that
their corresponding vertices and edges are retained in the graph. This
may result in more number of junction reads which can further result
in shorter unitigs. It is important to look at the two parameters simul-
taneously because the first parameter can be optimized by retaining
all contained reads whereas the second parameter can be optimized
by removing all contained reads. An ideal solution should optimize
both by doing a careful selection of contained reads. To measure the
first parameter, we used minimap2 to compute end-to-end 100%
identical read alignments of the retained contained reads against the
two haplotypes. We checked if these alignments closed the coverage
gaps that were previously caused by discarding all contained reads.

Competing methods

We compared ContainX with four other methods. The first method,
called as Retain-all, simply retains all contained reads. The second
method, called as Remove-all, discards all contained reads. The
third method is from Hui et al. (2016). It removes a contained read r
if two of its parent reads are inconsistent. Two parent reads are said
to be inconsistent if, when aligned with respect to read r, they dis-
agree at some base. We also included Hifiasm in our benchmark.
Unlike previous methods which stop at graph construction, Hifiasm
is a full-fledged genome assembler that incorporates multiple heuris-
tics (e.g. tip removal, bubble popping etc.) for graph sparsification.
Hifiasm builds its initial overlap graph without using contained
reads. It uses a heuristic to recall a few selected contained reads

which can connect ends of two unitigs. Even though Hifiasm is spe-
cifically designed for HiFi reads, we tested it on ONT datasets as
well because of error-free read simulation.

Results

In all four datasets, Retain-all method retained the highest number
of contained reads as expected (Table 3). It resolved all coverage
gaps, but the corresponding graph has significantly higher number of
junction reads compared to Remove-all. Next, Hui-2016 filtering
method appears to be conservative, i.e. it typically ends up retaining
a majority of contained reads. In several cases, the contained read
may have parent reads which agree at all bases (e.g. when they come
from a homozygous region of the genome). There may also be cases
when there is only a single parent read available. In all such scen-
arios, Hui-2016 heuristic will choose to retain the contained reads.
This heuristic resolved all the coverage gaps. Remove-all method has
the fewest junction reads among the four methods but has the highest
number of unresolved coverage gaps as expected.

ContainX delivered favorable performance compared to the three
methods. Using both datasets, ContainX retained 1–2% contained
reads compared to Retain-all, yet it successfully resolved majority of
the coverage gaps. ContainX resulted in only 2–5% junction reads
when compared to Retain-all. This suggests that ContainX heuristics
are promising in terms of improving assembly quality by avoiding
coverage gaps. The count of false positives, i.e. the count of redun-
dant contained reads retained by ContainX, is still notable. Most of
these false positives correspond to contained reads that are sampled
from long near-identical repetitive regions (Supplementary Fig. S2).
This is a limitation of our k-mer-based filtering heuristic (Section 5.3)
because it may retain redundant contained reads if it finds neighbor-
ing vertices that correspond to paralogous sequences during graph
traversal. It is unclear whether it is possible to remove such contained
reads with a provably-good graph-theoretic strategy. In some other
cases, a redundant contained read may be retained if it has suffix-
prefix overlaps with reads from both haplotypes while its parent reads
correspond to a single haplotype. Finally, Hifiasm retained fewer con-
tained reads than ContainX but it failed to resolve a majority of
coverage gaps. This suggests that there is further scope to improve
Hifiasm algorithm. The unitig graph of Hifiasm has the least number
of junction reads because it does additional graph pruning which is
necessary for computing longer unitigs. Incorporating ContainX heu-
ristics inside Hifiasm code can be an interesting direction to explore.

The proposed graph sparsification algorithms implemented in
ContainX are easy-to-implement, fast and space-efficient. The k-
mer-based heuristic (Section 5.3) is parallelized by considering each
contained read independently. The time required for this step on a
multicore AMD processor is about ten minutes. Our other heuristic
that detects heterozygous variants by using MSA of overlapping
reads (Section 5.2) can be assumed to incur no additional time be-
cause this step is a default requirement in overlap-graph-based gen-
ome assemblers. In summary, the time needed by the proposed
heuristics is insignificant compared to the main time-consuming step
of computing all-versus-all read alignments in long-read assemblers.

7 Discussion

This work formalized the coverage-preserving property in assembly
graph models. Development of provably-good graph models will
help automate the computation of high-quality haplotype-resolved
assemblies of personal human genomes (Jarvis et al. 2022). We
showed a rigorous analysis of de Bruijn graph, overlap graph and
string graph assembly models. We concluded that de Bruijn graph
and overlap graph models offer the guarantee, but string graph
model lacks this guarantee. This limitation of the string graph model
can lead to fragmented assembly in practice (Feng et al. 2022; Nurk
et al. 2022). Several graph sparsification heuristics, such as removal
of contained reads, may be deemed safe at first due to a false intu-
ition, e.g. it may appear that contained reads lack useful information
for assembly. We have shown that contained reads should be
assessed carefully to avoid suboptimal genome assembly. It may be

Table 3. Performance comparison of ContainX with four other

methods.a

Dataset Method Retained

contained

reads

Junction

reads

Coverage

gaps

DIPLOID-30x-ONT-1 Retain-all 2.8M 2.5M 0

Hui-2016 2.5M 2.3M 0

ContainX 28.5K 53.9K 2

Hifiasm 4.0K 1.7K 33

Remove-all 0 38.9K 46

DIPLOID-30x-ONT-2 Retain-all 2.8M 2.5M 0

Hui-2016 2.5M 2.3M 0

ContainX 28.4K 53.8K 5

Hifiasm 3.7K 1.7K 39

Remove-all 0 38.5K 54

DIPLOID-30x-HiFi-1 Retain-all 2.5M 3.4M 0

Hui-2016 2.5M 3.3M 0

ContainX 39.8K 184.1K 0

Hifiasm 164 36.9K 0

Remove-all 0 158.4K 1

DIPLOID-30x-HiFi-2 Retain-all 2.5M 3.4M 0

Hui-2016 2.5M 3.3M 0

ContainX 39.9K 184.6K 0

Hifiasm 149 37.2K 1

Remove-all 0 158.5K 1

aSymbol “K” means thousand and “M” means million.
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possible that an optimally constructed sparse overlap graph is more
tangled than a string graph, however, further graph simplification
can be achieved with known techniques, e.g. aligning complemen-
tary sequencing data to the graph (Garg et al. 2018; Cheng et al.
2022; Rautiainen et al. 2023).

We quantified the count of coverage gaps in a real haploid and
diploid genome assembly, respectively, through our experiments
done using simulated long reads. Based on these observations, we
expect coverage gaps to occur even more frequently in polyploid
genomes and metagenomes. These results are expected to inspire
further research to develop alternative models and sparsification
procedures for assembly graphs. We conducted our experiments by
using error-free long reads to quantify the coverage gaps. If real data
is considered, one would need to preprocess reads to correct errors
by computing consensus among the overlapping reads (Cheng et al.
2021; Bankevich et al. 2022), but error-correction methods are not
necessarily perfect. Our analysis with error-free reads is useful to ex-
plicitly evaluate the graph sparsification algorithms. When errors
are considered, additional coverage gaps may occur due to incorrect
bases in the error-corrected reads (Fu et al. 2019; Zhang et al.
2020). Depending on the error-rate in the corrected reads, one
would also need to adjust the definition of a contained read as a sub-
string of another read while allowing a bounded number of edits
(Myers 2005). This relaxation can lead to a more aggressive sparsifi-
cation in string graphs, and therefore, more coverage gaps.

We implemented novel heuristics for assessing contained reads in
ContainX that were motivated from our safe graph sparsification
policies. We compared ContainX to heuristics from Hifiasm, Hui
et al. (2016) and two other extreme policies that remove and retain
all the contained reads respectively. None of these methods is able
to simultaneously eliminate all gaps and all the redundant contained
reads. ContainX provides favorable performance by eliminating
most of the redundant contained reads and resolving majority of the
coverage gaps. Our future work will explore integration of
ContainX heuristics in long-read assemblers. Extending the pro-
posed heuristics to erroneous reads should not be challenging. For
example, one can still detect haplotype-specific contained reads by
considering MSA of overlapping reads and ignoring variants that
are not supported by sufficient number of reads (Cheng et al. 2021).
Similarly, the proposed k-mer-based filtering heuristic would be ap-
plicable if low-frequency k-mers are ignored.

Supplementary data

Supplementary data is available at Bioinformatics online.
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