
            

PAPER • OPEN ACCESS

Characterizing and tuning exceptional points using
Newton polygons
To cite this article: Rimika Jaiswal et al 2023 New J. Phys. 25 033014

 

View the article online for updates and enhancements.

You may also like
Universal characteristics of one-
dimensional non-Hermitian
superconductors
Yang Li, Yang Cao, Yuanping Chen et al.

-

Non-Hermitian Weyl semimetals: Non-
Hermitian skin effect and non-Bloch
bulk–boundary correspondence
Xiaosen Yang,  , Yang Cao et al.

-

A new way to construct topological
invariants of non-Hermitian systems with
the non-Hermitian skin effect
J S Liu,  , Y Z Han et al.

-

This content was downloaded from IP address 14.139.128.34 on 25/04/2023 at 12:22

https://doi.org/10.1088/1367-2630/acc1fe
/article/10.1088/1361-648X/aca4b4
/article/10.1088/1361-648X/aca4b4
/article/10.1088/1361-648X/aca4b4
/article/10.1088/1674-1056/ac3738
/article/10.1088/1674-1056/ac3738
/article/10.1088/1674-1056/ac3738
/article/10.1088/1674-1056/ab5937
/article/10.1088/1674-1056/ab5937
/article/10.1088/1674-1056/ab5937


New J. Phys. 25 (2023) 033014 https://doi.org/10.1088/1367-2630/acc1fe

OPEN ACCESS

RECEIVED

5 August 2022

REVISED

23 December 2022

ACCEPTED FOR PUBLICATION

7 March 2023

PUBLISHED

17 March 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Characterizing and tuning exceptional points using Newton
polygons
Rimika Jaiswal1,3, Ayan Banerjee2 and Awadhesh Narayan2,∗

1 Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
2 Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
3 Department of Physics, University of California, Santa Barbara, CA 93106-4030, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: awadhesh@iisc.ac.in

Keywords: exceptional points, non-Hermitian systems, Newton polygons, non-Hermitian skin effect

Supplementary material for this article is available online

Abstract
The study of non-Hermitian degeneracies—called exceptional points (EPs)—has become an
exciting frontier at the crossroads of optics, photonics, acoustics, and quantum physics. Here, we
introduce the Newton polygon method as a general algebraic framework for characterizing and
tuning EPs. Newton polygons, first described by Isaac Newton, are conventionally used in algebraic
geometry, with deep roots in various topics in modern mathematics. We propose and illustrate
how the Newton polygon method can enable the prediction of higher-order EPs, using a recently
experimentally realized optical system. Using the paradigmatic Hatano-Nelson model, we
demonstrate how our method can predict the presence of the non-Hermitian skin effect. As further
application of our framework, we show the presence of tunable EPs of various orders in
PT-symmetric one-dimensional models. We further extend our method to study EPs in higher
number of variables and demonstrate that it can reveal rich anisotropic behaviour around such
degeneracies. Our work provides an analytic recipe to understand exceptional physics.

1. Introduction

Energy non-conserving and dissipative systems are described by non-Hermitian Hamiltonians [1]. Unlike
their Hermitian counterparts, they are not always diagonalizable and can become defective at some unique
points in their parameter space—called exceptional points (EPs)—where both the eigenvalues and the
eigenvectors coalesce [2, 3]. Around such an EP, the complex eigenvalues lie on self-intersecting Riemann
sheets. This means that upon encircling an EP once, the system does not return to its initial state, but to a
different state on another Riemann sheet, manifesting in Berry phases and topological charges [4–11].

While the notion of EPs was known theoretically for several decades, their controllable realization has
only been possible recently. This has led to enormous interest and, by now, EPs are ubiquitous in
acoustic [12, 13], optical [8], photonic [14–17], mechanical [18], and condensed matter systems [19–23].
They also appear in the study of atomic and molecular physics [24], electronics [25],
superconductivity [26–28], and quantum phase transitions [29]. They can lead to a variety of intriguing
phenomena such as uni-directional invisibility [30, 31], double refraction [32], laser mode selectivity [17,
33], non-reciprocal energy transfer [34], non-Hermitian skin effects [35–43] and interesting quantum
dynamics of exciton-polaritons [44, 45], to name just a few.

While early studies focused on second order EPs (where only two eigenvectors coalesce), very recently,
the focus has shifted to higher order EPs, where more than two eigenvectors coalesce [46–48]. Apart from
interesting fundamental physics, they show promise for several fascinating applications [49, 50]. Higher
order EPs and their unconventional phase transitions have been experimentally realized in various acoustic
and photonic systems [49, 51–53].
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Here, we introduce a new algebraic framework for characterizing such non-Hermitian degeneracies using
Newton polygons. These polygons were first described by Isaac Newton, in 1676, in his letters to Oldenburg
and Leibniz [54]. They are conventionally used in algebraic geometry to prove the closure of fields [55] and
are intimately connected to Puiseux series—a generalization of the usual power series to negative and
fractional exponents [56, 57]. Furthermore, Newton polygons have deep connections to various topics in
mathematics, including homotopy theory, braid groups, knot theory and algebraic number theory [54]. We
develop the Newton polygon method to study EPs and illustrate its utility in predicting higher order EPs in
experimentally realized systems, as well as predicting the non-Hermitian skin effect. We also present parity
and time reversal (PT) symmetric one-dimensional models to demonstrate how this method can provide an
elegant way of tuning different system parameters to obtain a higher order EP, or to choose from a spectrum
of EPs of various orders. The Newton polygon method can also be naturally extended to higher number of
variables. Using such an extension we show rich anisotropic behaviour around such EPs. We hope that our
results stimulate further exploration of non-Hermitian degeneracies and their applications.

2. The Newton polygonmethod

We consider a system at an EP described by the Hamiltonian H0(t1, t2, . . .), where t1, t2, . . . are
system-dependent parameters. If a perturbation of the form ϵH1(t1, t2, . . .) is now added, one can write the
eigenvalues of the perturbed Hamiltonian H(ϵ) =H0 + ϵH1 as a Puiseux series in ϵ.

ω(ϵ) = α1ϵ
1/N +α2ϵ

2/N + . . . (1)

To leading order, they have the form ω ∼ ϵ1/N where N is the order of the EP (see supplementary
information for a detailed discussion). Note that in case of multiple EPs, we can write a different expansion
for each EP, absorbing the zeroth order term in each of them. The Newton polygon method gives us an
algorithmic way of determining the order of an EP by evaluating the power of the leading order term in the
eigenvalue expansion starting from the characteristic equation. This can be done though the following steps:

1. Given a characteristic equation p(ω,ϵ) = detH−ωI= 0, write p(ω,ϵ) in the form∑
m,n amn(t1, t2, . . .)ωmϵn.

2. For each term of the form amnω
mϵn in the polynomial, plot a point (m, n) in R2. The smallest convex

shape that contains all the points plotted is called the Newton polygon.
3. Select a segment of the Newton polygon such that all plotted points are either on, above or to the right

of it. The negative of the slope of this line-segment gives us the lowest order dependence of ω on ϵ.

2.1. Predicting higher-order EP
To illustrate our method, we consider a recently realized optical system, consisting of three coupled
resonators, that exhibits a higher order EP and an unprecedented sensitivity to changes in the
environment [49]. The system can be described by a remarkably simple non-Hermitian Hamiltonian

H(ϵ) =

i g+ ϵ κ 0
κ 0 κ
0 κ −i g

 , (2)

where g accounts for gain and loss, κ is the coupling between the resonators and ϵ is the external
perturbation. The characteristic equation, p(ω,ϵ) = 0, reads

−ω3 +ω2ϵ+(2κ2 − g2) ω+ ig ωϵ−κ2ϵ= 0. (3)

Figure 1 shows the Newton polygon for p(ω,ϵ), where each point on the graph corresponds to a term in
the characteristic equation. The line-segment that contains all points on, above or to the right of it is shown
in blue. This line has a slope of−1 implying that the lowest order dependence of the eigenvalues on ϵ has the
form ω ∼ ϵ. Notice, however, that if we set g=

√
2κ, the coefficient of ω vanishes and the point (1,0) is no

longer present in the Newton polygon. The slope of the desired line-segment is now−1/3 which, in turn,
means that ω ∼ ϵ1/3, or, we have a third order EP (EP3). The Newton polygon method could thus predict the
presence of an EP3 for g=

√
2κ. This is indeed what has been found in the experiments by Hodaei et al [49].

Here, we have illustrated the use of the Newton polygon method to evaluate the degree of an EP. In
addition, it also provides an algebraic way of evaluating the expansion of the eigenvalues beyond just the
leading order, including the coefficients of the terms at various orders. We present a detailed discussion in the
Methods sections, with worked out examples in supplementary information.
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Figure 1. Newton polygon method enabled prediction of higher order EPs. Left panel shows the Newton polygon for the
characteristic polynomial of H(ϵ). The line-segment which has all points either on, above, or to the right of it (shown in blue) has
a slope of−1 implying that ω ∼ ϵ1, or, no exceptional behaviour. However, if the term corresponding to the point (1,0) can be
made to vanish (which occurs for g=

√
2κ), we can expect to observe exceptional behaviour. Right panel shows the Newton

polygon for this case. Here, a slope of−1/3 implies ω ∼ ϵ1/3, or the presence of a third order EP. Here n(ω) and n(ϵ) denote the
exponents of ω and ϵ, respectively.

2.2. Predicting non-Hermitian skin effect
We now use the paradigmatic Hatano-Nelson model to show that our Newton Polygon method can predict
the presence of skin effect, which is a remarkable characteristic of non-Hermitian systems wherein a
macroscopic number of eigenstates accumulate at the edge [35, 36]. The non-Hermitian skin effect is
indicative of the presence of higher-order EPs as per the anomalous bulk-boundary correspondence. The
Hamiltonian for the Hatano-Nelson model reads [58]

H=
N∑

m=1

JRc
†
m+1cm + JLc

†
mcm+1, (4)

where JR/L = t± γ/2 are the right and left hopping amplitudes. If we now add a perturbation, ϵ, coupling the
first and the last sites, the Hamiltonian matrix takes the form

HN(ϵ) =


0 t− γ/2 0 · · · ϵ

t+ γ/2 0 t− γ/2 · · · 0
0 t+ γ/2 0 · · · 0
...

...
...

. . .
...


N×N

. (5)

The characteristic equation, in turn, is

p(ω,ϵ) = (t+ γ/2)N−1ϵ+
∑

M=N,N−2,...

zM[t
2 − (γ/2)2]

N−M
2 ωM, (6)

where each zM is a constant, zM ∈ Z. The Newton polygon for p(ω,ϵ) is shown in the left panel of figure 2.
We note that remarkably at t= γ/2, the coefficients of all the terms in p(ω,ϵ) vanish other than the ϵ1 and
the ωN terms. The Newton polygon for this case is plotted in the right panel in figure 2. The slope of the
relevant line-segment is 1/N. This implies the presence of an Nth order EP and correspondingly the presence
of non-Hermitian skin effect at t= γ/2, which is physically the condition for unidirectional hopping
(JR = γ, JL = 0). If the perturbing term ϵ is added to the bottom left element of the Hamiltonian, the other
limit of purely unidirectional hopping with JR = 0, JL =−γ is obtained. This is also predicted from our
Newton polygon approach by constructing the corresponding characteristic equation. Thus, our Newton
polygon method can elegantly predict the occurrence of non-Hermitian skin effect. We note that our Newton
polygon approach is able to characterize the non-Hermitian skin effect in the scenario where higher order
EPs appear with an algebraic multiplicity scaling with system size while the geometric multiplicity becomes
unity. In this situation, all the bulk modes may align to one state and result in the non-Hermitian skin effect.

2.3. Application to PT-symmetric 4-site model
We next consider a 4-site PT-symmetric system as shown schematically in figure 3(a). We consider a general
form consistent with the PT-symmetry. Due to parity symmetry, two hopping parameters p and q are
sufficient to describe the couplings between the four sites. The balanced gain and loss for the outer and inner
sites are given by δ and γ respectively. We will show that when such a system is perturbed, one can get an
EP2, or an EP4 depending on the tuning of various parameters. As we shall demonstrate below, the Newton

3
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Figure 2. Newton polygon enabled prediction of non-Hermitian skin effect. Left panel shows the Newton polygon for the
characteristic polynomial ofHN(ϵ) (equation (5)). The right panel shows the Newton Polygon for the case of t= γ/2 wherein the
coefficients of all the point corresponding to ωM vanish, other than whenM= 0,N. The line-segment which has all points either
on, above, or to the right of it thus has a slope of−1/N, which indicates the presence of an Nth order EP and correspondingly the
occurrence of non-Hermitian skin effect.

polygon method elegantly predicts the required tuning. The Hamiltonian for the 4-site system can be written
as

H4 =


iδ p 0 0
p iγ q 0
0 q −iγ p
0 0 p −iδ

 . (7)

As the overall energy scale does not affect the behaviour, we shall set γ= 1 from hereon.
If the system is perturbed, say by slightly varying one of the couplings by ϵ, the perturbed Hamiltonian

reads

H4(ϵ) =


iδ p+ ϵ 0 0

p+ ϵ i q 0
0 q −i p
0 0 p −iδ

 . (8)

We present the Newton polygon of the characteristic polynomial in figure 3(b). Observe that if the point
at (0,0) is absent, we would get an EP2. The part of the three-dimensional parameter space which shows a
second order EP is thus the surface where the coefficient of ω0ϵ0 vanishes, which is shown in red in
figure 3(c). Now, if the point (2,0) was also absent, we would get an EP4. The parameter space for which this
vertex vanishes is shown in blue in figure 3(c). The locus of EP4 is then the curve formed by the intersection
of these two surface (dashed line in figure 3(c)). Note that this system cannot give us an EP3 because of the
PT-symmetry. Our Newton polygon framework, thus, enables the identification and selection of higher
order EPs in a straightforward manner.

We verify these predictions from our method in several ways. First, we show that close to the EPs, our
bands scale exactly as ω ∼ ϵ1/N, where N is the order of the EP as determined from our approach
(figures 3(d) and (f)). The Newton polygon method also allows calculating the coefficients of the Puiseux

expansions. For example, we obtain ω =
√

2p(δ+p2)
2p2+q2−δ2−1ϵ

1/2 to first order for EP2, which has an excellent

match to the numerical fit. Derivations of such analytical expressions are presented in the supplementary
information. As a second check, we numerically show that if we encircle the EPs, the bands swap among

4
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Figure 3. Tunable higher order EPs in the PT-symmetric model via Newton polygons. (a) Illustration of the 4-site PT-symmetric
model which has the Hamiltonian H4. (b) The Newton polygon for H4(ϵ). The red and blue surfaces shown in (c) correspond to
the regions in the parameter space where the red and blue points in the Newton polygon vanish. This predicts that one would get
an EP2 if the system parameters fall on the red surface, while one would get an EP4 if they fall on the black curve (which depicts
the intersection of the two surfaces). Numerical verification of these predictions are shown in middle and right panels for EP2 and
EP4, respectively. (d) The numerically obtained band structure near the EP EP2 (green) closely matches the predicted behaviour
of ϵ1/2 (red). Inset shows the plot on a logarithmic scale. (f) The numerical band structure near the EP EP4 (green) closely
matches the predicted behaviour of ϵ1/4 (red). Panels (e) and (g) show the behaviour of the four bands as one encircles the EPs
once (choosing the contour ϵ= 0.05exp(iθ)). As expected, two of the bands swap for the middle panel (e) while the four bands
undergo a cyclic permutation for the right panel (g). Parameter values for middle panel: δ = 2,p=

√
2,q= 2. Parameter values

for right panel: δ = 3,p=
√
3,q= 2.

themselves as expected. Upon encircling an EPN, N eigenvalues undergo a cyclic perturbation among
themselves (see supplementary information). For an EP2, two of the bands swap (figure 3(e)), while for the
EP4, all four bands undergo a cyclic permutation (figure 3(g)).

We remark here that Zhang et al have studied a model for supersymmetric arrays showing an EP4 [59].
Their model is a special case of ours with p=

√
3, δ= 3, and q= 2.

The 4-site model we presented here can show tunable second and fourth order EPs. Analogously, we have
devised a 5-site PT-symmetric model. Using the Newton polygon framework, we have shown that it can
exhibit tunable third and fifth order EPs (see supplementary information). Such PT-symmetric models have
been experimentally realized in magnetic multi-layers [52], waveguides [60, 61], topoelectric circuits [62],
and photonic lattices [5, 63–65]. The Newton polygon method can serve as a useful tool for tuning to EPs in
these experimental platforms.

2.4. Extension to higher number of variables
The Newton polygon approach can be naturally extended to study exceptional behaviour for higher number
of variables. Remarkably, it has been recently shown that if a system at an EP can be perturbed in two
different ways such that H(ϵ,λ) =H0 + ϵH1 +λH2, then it possible to observe different exceptional
behaviours along different directions in the ϵ-λ plane [51, 66]. The Newton polygon framework can predict
such anisotropic variations, as we show next. We consider the Hamiltonian given in equation (2) and add a
second perturbation, λ, to obtain

H(ϵ,λ) =

i g+ ϵ κ 0
κ 0 κ
0 κ −i g+λ

 . (9)

We can set g=
√
2κ to obtain exceptional behaviour, as discussed earlier. If we pick any direction in the

ϵ-λ plane making an angle ϕ with the ϵ-axis, then along that direction λ= ϵ tanϕ. We can now use the

5
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Figure 4. Determination of anisotropic behaviour around an EP using Newton polygons. For most directions in the ϵ-λ plane
making an angle ϕ with the ϵ-axis, the Newton polygon has the form in (i.a) implying ω ∼ ϵ1/3. However, the (0,1) term can
vanish for ϕ =−π/4 giving us the Newton polygon (ii.a) which gives ω ∼ ϵ1/2 instead. The Newton Polygon method thus
predicts second order behaviour along ϕ =−π/4, but third order behaviour along all other directions. Numerical verification of
these predictions are shown in (b) and (c). Note that the numerical band structures along a chosen direction (in green) closely
match the predicted behaviours (in red) along that direction. Panels (i.c) and (ii.c) show the behaviour of the phase rigidity, r. The
phase rigidity scales as ϵ2/3 for ϕ ̸=−π/4 as is characteristic for an EP3, while it scales as ϵ1 for ϕ =−π/4 confirming an EP2.
For plots in the left panel, ϕ = π/6 was chosen as a representative direction.

Newton polygon method to determine, in one go, the order of the EPs along all directions (i.e. for all values
of ϕ). The characteristic equation reads (for κ= 1)

−ω3 +(tanϕ+ 1) ω2ϵ− tanϕ ωϵ2 + i
√
2(tanϕ− 1) ωϵ− (tanϕ+ 1) ϵ= 0. (10)

The corresponding Newton polygon is shown in figure 4(a). Notice that ω ∼ ϵ1/3 along all directions
unless tanϕ+ 1= 0 for which the point (0,1) vanishes from the Newton polygon. In this case we instead
obtain ω ∼ ϵ1/2. The Newton polygon approach thus predicts the presence of an anisotropic EP, which shows
second order behaviour along ϕ =−π/4, but third order behaviour along all other directions. The
anisotropic nature of the EP manifests in the Newton polygon as coefficients which depend on ϕ. We note
that a similar model along two special directions has been studied before [67], although a complete picture
along all possible directions was lacking. Our method provides a unified way of obtaining the exceptional
properties along all directions.

We again numerically verify the predictions from the Newton polygon method in multiple ways (see
figure 4). We first verify our analytical expressions for the eigenvalues by fitting them to the numerical band
structure. Next, we study the variation of the phase rigidity, r, with the perturbation. Physically, phase
rigidity is a measure of the bi-orthogonality of the eigenfunctions, and helps identify EPs [46, 66, 68]. We
present further details in Methods. Here, we find that the phase rigidity vanishes at the location of the EP at
ϵ= 0 (figure 4(c)). Importantly, we observe that the phase rigidity scales as ϵ2/3 for ϕ ̸=−π/4, while it scales
as ϵ1 for ϕ =−π/4, thus confirming our predictions of the anisotropic nature of the EP.

6
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3. Discussions

We put forward a new algebraic framework using Newton polygons for characterizing EPs. Using several
examples, we illustrated how the Newton polygon method enables prediction and selection of higher order
EPs. Using the celebrated Hatano-Nelson model, we showed how this method allows prediction of the
non-Hermitian skin effect. We also proposed an extension to higher number of variables and used it to reveal
rich anisotropic behaviour around such non-Hermitian degeneracies.

Looking ahead, our analytical approach could be useful for tuning to EPs in different experimental
platforms, whether it be for enhanced performance of sensors or exploring unconventional phase transitions,
especially as the dimensionality and complexity of the non-Hermitian Hamiltonians in question increases.
Newton polygons play a natural role in homotopy theory, braid groups, knot theory and algebraic number
theory [54, 56]. Our work lays the foundation for exploring such connections in the context of
non-Hermitian physics. With the recent growing interest in knotted and linked exceptional nodal
systems [69–75], it would be worthwhile to find a Newton polygon based characterization of such systems. In
conclusion, we hope that our results inspire further exploration of EPs and their applications.

4. Methods

4.1. Computing the coefficients and higher-order terms
Our Newton polygon approach also provides a straightforward algorithmic method to evaluate the
expansion of the eigenvalues beyond just the leading order. We describe here the steps for finding the
coefficients and higher order terms in the Puiseux series expansion of eigenvalues.

Any solution of the characteristic equation p(ω,ϵ) = 0 has the form

ω = c1ϵ
γ1 + c2ϵ

γ1+γ2 + c3ϵ
γ1+γ2+γ3 + . . . . (11)

The steps for computing γ1 were described earlier. Once γ1 has been determined, we can write
ω = ϵγ1(c1 +ω1) where ω1 = c2ϵγ2 + c3ϵγ2+γ3 + . . ..

The steps to evaluate the other unknowns in the expansion are as follows.

1. Collect the lowest order terms in ϵ in the polynomial p(ϵγ1(c1 +ω1), ϵ). They must cancel each other as
p(ω,ϵ) = 0. The first coefficient c1 can be extracted from this requirement.

2. To get the next order term, find the polynomial p1(ω,ϵ) = ϵ−βp(ϵγ1(c1 +ω1), ϵ) where β is the
y-intercept of the line segment whose slope gave us−γ1.

3. Next, calculate the Newton polygon for p1(ω,ϵ) and repeat the steps to find γ2 and c2, and so on.

4.2. Diagnosing EPs using phase rigidity
The eigenvectors of non-Hermitian Hamiltonians and their characterization are strikingly different from
those of their Hermitian counterparts. The system’s non-Hermitian nature (H† ̸=H) suggests that the left
and right eigenvectors are generally different and satisfy the following eigenvalue equations

H|ψ ⟩= εi |ψ ⟩, ⟨ϕ|H= εi ⟨ϕ|. (12)

The eigenvectors form a bi-orthogonal basis consisting of both right |ψ ⟩ and left ⟨ϕ | eigenvectors. They
can be normalized using a bilinear product of the left and right eigenvectors, such that

ψ̃ =
|ψ ⟩√
⟨ϕ|ψ⟩

, ϕ̃=
⟨ϕ|√
⟨ϕ|ψ⟩

, ⟨ϕ̃i|ψ̃j⟩ ≡ δij, (13)

where i, j correspond to distinct states. Interestingly, both the eigenvectors and eigenvalues can split
and follow a directional parameter dependence while approaching an EP from different parametric
directions [46]. The phase rigidity, rα, can characterize these striking features due to extreme skewness EPs
[6, 76–78]. It is defined as

rα =
⟨ϕ̃α|ψ̃α⟩
⟨ψ̃α|ψ̃α⟩

, (14)

where ψ̃α and ϕ̃α are the normalized biorthogonal right and left eigenvectors of a state α. The phase rigidity
quantitatively measures the eigenfunctions’ bi-orthogonality. At an EP the states coalesce and thus phase
rigidity vanishes (|rα| → 0). This enables defining a critical exponent around an EP in the parameter space

7
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[51, 79]. For example, around an EP3, the scaling exponents for the phase rigidity are given by (N− 1)/N
and (N− 1)/2, whereN = 3 is the order of the EP. Note that different forms of the perturbation may result in
different scaling of the phase rigidity. Our Newton polygon approach will allow diagnosing these EPs. The
phase rigidity is also experimentally measurable, making it a very relevant quantity to look at.

We numerically evaluate the phase rigidity for the bivariable model with directional anisotropy, which
shows that the phase rigidity scales as ϵ2/3 and ϵ1 for ϕ ̸=−π/4 and ϕ =−π/4, respectively (see figure 4(c)).
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[7] Özdemir Şahin K, Rotter S, Nori F and Yang L 2019 Parity–time symmetry and exceptional points in photonics Nat. Mater.

18 783–98
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