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In this paper, we study two classic optimization problems: minimum geometric dominating 
set and set cover. In the dominating-set problem, for a given set of objects in the plane as 
input, the objective is to choose a minimum number of input objects such that every input 
object is dominated by the chosen set of objects. Here, we say that one object is dominated 
by another if their intersection is nonempty. For the second problem, for a given set of 
points and objects in the plane, the objective is to choose a minimum number of objects 
to cover all the points. This is a particular version of the set-cover problem.
Both problems have been well-studied, subject to various restrictions on the input objects. 
These problems are APX-hard for object sets consisting of axis-parallel rectangles, ellipses, 
α-fat objects of constant description complexity, and convex polygons. On the other hand, 
PTASs (polynomial time approximation schemes) are known for object sets consisting of 
disks or unit squares. Surprisingly, a PTAS was unknown even for arbitrary squares. For 
both problems obtaining a PTAS remains open for a large class of objects.
For the dominating-set problem, we prove that a popular local-search algorithm leads to 
a (1 + ε) approximation for a family of homothets of a convex object (which includes 
arbitrary squares, k-regular polygons, translated and scaled copies of a convex set, etc.) in 
nO (1/ε2) time. On the other hand, the same approach leads to a PTAS for the geometric 
covering problem when the objects are convex pseudodisks (which include disks, unit 
height rectangles, homothetic convex objects, etc.). Consequently, we obtain an easy-
to-implement approximation algorithm for both problems for a large class of objects, 
significantly improving the best-known approximation guarantees.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problems studied

We consider two fundamental combinatorial optimization problems in a geometric context, dominating-set and set-
cover. Let P be a subset of the plane R2, and let S be a collection of subsets of P , called objects. A subset S ′ ⊆ S is 
a dominating-set if every element of S has a nonempty intersection with at least one element of S ′ . A subset S ′′ ⊆ S
is a cover if every point of P lies within at least one element of S ′′ . The dominating-set and set-cover problems involve 
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computing a minimum cardinality dominating-set and set-cover, respectively. Both problems have a wealth of theoretical 
results and practical applications. The geometric set-cover problem has many applications in the real world, for example, 
wireless sensor networks, optimizing the number of stops in an existing transportation network, and job scheduling [2,7,17].

1.2. Local search

It is well known that both of these problems are NP-hard in the most general setting, so researchers have focused on 
approximation algorithms. In this paper, we analyze an approach based on local search. Local search is a popular heuristic 
algorithm. It is an iterative algorithm that starts with a feasible solution and improves it after each iteration until a locally 
optimal solution is reached. One big advantage of local search is its easy implementability and its parallelizability [8]. As 
mentioned by Cohen-Addad and Mathieu [8], it is interesting to analyze such algorithms even when alternative, theoretically 
optimal polynomial-time algorithms are known.

1.3. Our results

Our results on the dominating-set problem apply under the assumption that the input consists of homothets of a convex 
body in the plane, that is, the elements of S are equal to each other up to translation and positive uniform scaling. This 
includes a large class of natural object sets, such as collections of squares of arbitrary size, collections of regular k-gons 
of arbitrary size, and collections of circular disks of arbitrary radii. Given ε > 0, a (1 + ε)-approximation algorithm for the 
dominating-set (resp., set-cover) problem returns a dominating-set (resp., set-cover) whose cardinality is larger than the 
optimum by a factor of at most (1 + ε) and runs in polynomial (in the input size) time. Such algorithms are known in the 
literature as polynomial time approximation schemes (PTAS).

First, we show that the standard local search algorithm leads to a PTAS for computing a minimum dominating-set of 
homothetic convex objects. For the analysis, we use a separator-based technique, that was introduced independently by 
Chan and Har-Peled [4] and Mustafa and Ray [29]. The main part of this proof technique is to show the existence of a 
planar graph satisfying a locality condition (to be defined in Section 2.1). Gibson et al. [16] used the same approach where 
the objects were arbitrary disks. Inspired by their work, we ask the question of whether we can generalize their framework 
to more general objects. Our result on the dominating-set problem can be viewed as a non-trivial generalization of their 
result. To show the planarity, first, we decompose (or trim) a set of homothetic convex objects (which are returned by the 
optimum algorithm and the local search algorithm) into a set of interior disjoint objects so that each input object has a 
“trace” in this new set of objects. This decomposition is motivated by the idea of core decomposition introduced by Mustafa 
et al. [28], and this technique could be of independent interest. Next, we consider the nearest-site Voronoi diagram for this 
set of disjoint objects with respect to the well-known convex distance function. The decomposition ensures that each site 
has a nonempty cell in the Voronoi diagram. Finally, we show that the dual of this Voronoi diagram satisfies the locality 
condition. Note that if homothets of a centrally symmetric convex object are given, one can avoid the disjoint decomposition, 
and the analysis is much simpler.

Our result on the set-cover problem applies, assuming that the input consists of a collection of convex pseudodisks in the 
plane. A set of objects is said to be a collection of pseudodisks if the boundaries of every pair of them either do not intersect 
or cross (i.e., intersect non-tangentially) at exactly two points [30]. Note that this generalizes collections of homothets. We 
use a similar technique as the previous one. First, we show that we can decompose (or trim) a set of pseudodisks (which 
are returned by the optimum algorithm and the local search algorithm) into a set of interior disjoint objects so that each 
input point has a “trace” in this new set of objects. We consider a graph G in which each vertex corresponds to a trimmed 
object, and two vertices are joined by an edge if the corresponding objects share an edge in their boundary. Since the 
trimmed objects are interior disjoint with each other, the graph G is planar. We prove that the graph G satisfies the locality 
condition.

Our results are formally given below.

Theorem 1. Given a set S of n convex homothets in R2 and ε > 0, there exists a (1 + ε) approximation algorithm for dominated set 
based on local search that runs in time nO (1/ε2) .

Theorem 2. Given a set S of n convex pseudodisks in R2 and ε > 0, there exists a (1 + ε) approximation algorithm for set-cover 
based on local search that runs in time nO (1/ε2) .

1.4. Related work

Our work is motivated by recent progress on the approximability of various fundamental geometric optimization prob-
lems like finding maximum independent sets [1], minimum hitting set of geometric intersection graphs [29], and minimum 
geometric set covers [28].

Dominating-Set: The minimum dominating-set problem is NP-hard for general graphs [15]. From the result of Raz and 
Safra [31], it follows that it is NP-hard even to obtain a (c log �)-approximate dominating-set for general graphs, where �
is the maximum degree of a node in the graph and c (> 0) is any constant (see [24]).
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Researchers have studied the problem for different graph classes like planar graphs, intersection graphs, bounded ar-
boricity graphs, etc. Recently, Har-Peled and Quanrud [18] proved that local search produces a PTAS for graphs with 
polynomially bounded expansion. Gibson and Pirwani [16] gave a PTAS for the intersection graphs of arbitrary disks. Unless 
P = NP [9],2 it is not possible to compute a ((1 − ε) ln n)-approximate dominating-set in polynomial time for n homoth-
etic polygons [13,20,32]. Erlebach and van Leeuwen [11] proved that the problem is APX-hard for the intersection graphs 
of axis-parallel rectangles, ellipses, α-fat objects of constant description complexity, and convex polygons with r-corners 
(r ≥ 4), i.e., there is no PTAS for these unless P = NP.

The effort has been devoted to related problems involving various objects such as squares, regular polygons, etc. 
Marx [26] proved that the problem is W[1]-hard for unit squares, that implies that no efficient-polynomial-time-
approximation-scheme (EPTAS) is possible unless FPT = W[1] [27]. The best-known approximation factor for homothetic 
2k-regular polygons is O (k) due to Erlebach and van Leeuwen [11], where k > 0. They also obtained an O (k2)-approximation 
algorithm for homothetic (2k + 1)-regular polygons. Even worse, for the homothetic convex polygons where each polygon 
has k-corners, the best-known result is O (k4)-approximation. Currently, there is no PTAS known even for arbitrary squares. 
We consider the problem for a set of homothetic convex objects.

Set-Cover: The set-cover problem is known to be NP-complete [21]. The geometric variant has received a great amount 
of attention due to its wide applications (for example, the recent breakthrough of Bansal and Pruhs [2]). Unfortunately, the 
geometric version of the problem also remains NP-complete even when the objects are unit disks or unit squares [3,19].

Erlebach and van Leeuwen [12] obtained a PTAS for the geometric set-cover problem when the objects are unit squares. 
Recently, Chan and Grant [3] showed that the problem is APX-hard when the objects are axis-aligned rectangles. They 
extended the results to several other classes of objects, including axis-aligned ellipses in R2 , axis-aligned slabs, downward 
shadows of line segments, unit balls in R3, axis-aligned cubes in R3. A QPTAS was developed by Mustafa et al. [28] for 
the problem when the objects are pseudodisks. The current state of the art lacks a PTAS when the objects are pseudodisks 
which includes a large class of objects: arbitrary squares, arbitrary regular polygons, and homothetic convex objects.

In the weighted setting, Varadarajan introduced the idea of quasi-uniform sampling to obtain an O (log φ(OPT))-
approximation guarantees in the weighted setting for a large class of objects for which such guarantees were known in 
the unweighted case [33]. Here φ(OPT) is the union complexity of the objects in the optimum set OPT. Recently, Li and Jin 
proposed a PTAS for the weighted version of the problem when the objects are unit disks [25].

In [17], the authors described a PTAS for the problem of computing a minimum cover of given points by a set of 
weighted fat objects by allowing them to expand by some δ-fraction. A multi-cover variant of the problem (where each 
point is covered by at least k sets) under geometric settings was studied in [5].

1.5. Organization

In Section 1.6, we discuss notation and preliminaries. After that, in Section 2, we present a general algorithm based on 
the local search technique. Then, in Section 2.1, we present a high-level view of the analysis technique of local search, which 
was introduced by Chan & Har-Peled [4] and Mustafa & Ray [29]. As a warm-up, in Section 3, we give a simple proof of 
locality condition for the dominating-set problem for a family of homothetic copies of a centrally symmetric convex object. 
In Section 4, we prove two results for a set of pseudodisks which are common tools for analysing both dominating-set 
and geometric set-cover problems. Using these tools, thereafter, in Sections 5 and 6, we prove the locality conditions for 
the dominating-set and set-cover problems when the objects are homothets of a convex polygon and convex pseudodisks, 
respectively.

1.6. Notation and preliminaries

Throughout the paper, we use capital letters to denote objects and calligraphic font to denote sets of objects. We make 
the general-position assumption that if two objects of the input set have a nonempty intersection, then their interiors 
intersect. No three object boundaries intersect at a common point. We denote the set {1, 2, . . . , n} as [n]. By a geometric 
object (or object, in short) R , we refer to a simply connected compact region in R2 with a nonempty interior. In other 
words, the object R is a closed region bounded by a closed Jordan curve ∂ R . The int(R) is defined as all the points in R
which do not appear in the boundary ∂ R . Given two objects U and V , we say that U has an interior overlap with V if 
int(U ) ∩ int(V ) �= ∅, and given a set of objects V , we say that U has an interior overlap with V if U has an interior overlap 
with any V ∈ V .

For a set of objects R, we define the cover-free region of any object Ri ∈ R as CF(Ri, R) = ⋂
R j∈R
R j �=Ri

Ri \ R j . That is, 

C F (Ri, R) is the portion of Ri that is not contained in any other object of R . Note that CF(Ri, R) ∩ R j = ∅ for all Ri, R j
(i �= j) ∈ R. When the underlying set of objects R is obvious, we use the term CF(Ri) instead of CF(Ri, R). A collection of 
geometric objects R is said to form a family of pseudodisks if the boundaries of every pair of them either do not intersect 
or cross (i.e., intersect non-tangentially) at exactly two points [30].

2 Originally the assumption was NP � DTIME(nO (log log n)). This assumption was improved to P �= NP recently by Dinur and Steurer [9].
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Algorithm 1: Local-Search(S , b).

Input: A set of n objects S in R2 and a parameter b
1 Initialize A to an arbitrary subset of S which is a feasible solution;
2 while ∃ X ⊆ A of size at most b, and X ′ ⊆ S of size at most |X | − 1 such that (A \X ) ∪X ′ is a feasible solution do
3 set A ← (A \X ) ∪X ′;
4 Report: A;

A collection of geometric objects R is said to be cover-free if no object R ∈ R is covered by the union of the objects 
in R \ R , in other words, CF(R, R) �= ∅ for all objects in R. Two objects are homothetic to each other if one object can be 
obtained from the other by scaling and translating.

Consider the convex distance function with respect to a convex object C with a fixed interior point as center as follows.

Definition 1. Given p1, p2 ∈ R2, convex distance function induced by C , denoted by δC (p1, p2), is the smallest α ≥ 0 such 
that p1, p2 ∈ αC while the center of C is at p1.

It was first introduced by Minkowski in 1911 [22,6]. Note that this function satisfies the following properties.

Property 1.

(i) The function δC is symmetric (i.e., δC (p1, p2) = δC (p2, p1)) if and only if C is centrally symmetric.
(ii) Let p1 and p3 be any two points in R2 and let p2 be any point on the line segment p1 p3 , then δC (p1, p3) = δC (p1, p2) +

δC (p2, p3).
(iii) The distance function δC follows the triangular inequality, i.e., and δC (p1, p3) ≤ δC (p1, p2) + δC (p2, p3), where p1 , p2 and p3

are any three points in R2.

2. Local-search algorithm

We use a standard local search algorithm [29] as given in Algorithm 1.
A subset of objects A ⊆ S is said to be b-locally optimal if one cannot obtain a smaller feasible solution by removing a 

subset X ⊆ A of size at most b from A and replacing it with a subset of size at most |X | − 1 from S \A. Our algorithm 
computes a b-locally optimal set of objects for b = α

ε2 , where α > 0 is a suitably large constant. Observe that at the end of 
the while-loop, the set A is b-locally optimal, and the set A is cover-free.

Since the size of A is decreased by at least one after each update in Line 3, the number of iterations of the while-loop 
is at most n, and each iteration takes O (nb) time as it needs to check every subset of size at most b. So, this while-loop 
needs O (nb+1) time. Thus, the total time complexity of the above algorithm is O (nb+1).

2.1. Analysis of approximation

We will analyze the algorithm’s performance for both problems following the framework of [4,29]. When there is a 
difference, we will indicate the specific context within which the analysis is performed (set-cover or dominating-set). Let O
be the optimal solution, and A be the solution returned by our local search algorithm. Note that both O and A ensure the 
following.

Claim 1. For any object A ∈A (resp., O  ∈O), CF(A, A) (resp., CF(O , O)) is nonempty. In other words, A (resp., O) is cover-free.

We can assume that no object S ∈ S is properly contained in any other object of S . We can ensure this by an initial 
pass over the input objects in which we remove any object of the input that is contained within another object. Thus, we 
can assume that there is no object S ∈ S \ A that completely contains any object of A. Similarly, we can assume that no 
object in O is completely contained in any object from S \O. Let A′ =A \O, O′ =O \A.

In the context of the dominating-set problem, let S ′ ⊂ S be the set containing all objects of S that is not dominated 
by any object in A ∩O. Note that there does not exist an object O  ∈O′ which covers CF(A1, A′) ∪ CF(A2, A′), A1, A2 ∈A′ , 
otherwise local search would replace A1 and A2 by O . Similarly, there does not exist an object A ∈ A′ which covers 
CF(O 1, O′) ∪ CF(O 2, O′), O 1, O 2 ∈O′ otherwise it would contradict the optimality of O.

Now we are going to eliminate the same number of objects from both A′ and O′ to ensure that for any A ∈A′ , CF(A, A′)
is not properly contained in any object in O′ . Let O  ∈O′ be an object that properly contains CF(A, A′) for an object A ∈ A′ . 
Let S ′′ be the set containing all objects of S ′ that is not dominated by O . Note that both the sets A′ \ A and O′ \ O
dominates S ′′ . We reset S ′ ← S ′′ . We remove A and O from A′ and O′ , respectively by updating A′ ← A′ \ A and 
O′ ←O′ \ O . We repeat this until there is no object O  ∈O′ that properly contains an object A ∈A′ . Note that the removal 
of objects only makes cover-free regions larger. As a result, once for an object A ∈ A′ we ensure that CF(A, A′) is not 
properly contained in any object in O′ , we do not need to reconsider the object A later.
4
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Similarly, if there exists an object A ∈ A′ that properly contains CF(O , O′) for an object O  ∈ O′ , we update A′ ←A′ \ A
and O′ ← O′ \ O . Let S ′′ be the set containing all objects of S ′ that is not dominated by A. We reset S ′ ← S ′′ . We 
repeat this until there does not exist any object A ∈ A′ that properly contains CF(O , O′) for an object O  ∈ O′ . This ensures 
the following.

Claim 2. For any object A ∈A′ (resp., O  ∈O′), CF(A, A′) (resp., CF(O , O′)) is not properly contained in any object in O′ (resp., A′).

Observe that |O \O′| = |A \A′|. Finally, we will show that |A′| ≤ (1 + ε)|O′| which implies that |A| ≤ (1 + ε)|O|.
In the context of geometric covering, we do a similar process as discussed above to ensure Claim 2. Here, let P ′ be the 

set containing all points of P that are covered by objects in A′ ∩O′ .
Henceforth, A′, O′, P ′ and S ′ will be denoted as A, O, P and S , respectively, satisfying both Claims 1 and 2.
Now, we present locality conditions for the dominating-set and set-cover problems in Lemmas 1 and 2, respectively.

Lemma 1 (Locality condition for dominating-set). There exists a planar graph G = (A ∪O, E) such that for all S ∈ S , if S is dominated 
by at least one object of A and at least one object of O, then there exists A ∈A and O  ∈O both of which dominate S and (A, O ) ∈ E .

Lemma 2 (Locality condition for set-cover). There exists a planar graph G = (A ∪O, E) such that for all points p ∈P , if p is covered 
by at least one object of A and at least one object of O, then there exists A ∈A and O  ∈O both of which cover p and (A, O ) ∈ E .

As a warm-up, in Section 3, we first present a simple proof of the locality condition lemma (Lemma 1) when objects are 
homothets of a centrally symmetric convex object. In Section 5 (resp., Section 6), we prove the locality condition lemma for 
the dominating-set (resp., set-cover) problems when objects are homothets of a convex object (resp., convex pseudodisks).

Once we have established both of these locality condition lemmas, the analysis of the algorithm is the same as in [29]. 
For the sake of completeness, we provide the following analysis. As the graph G is planar, the following planar separator 
theorem can be used.

Theorem 3 (Frederickson [14]). For any planar graph G = (V, E) with n vertices and a parameter 1 ≤ r ≤ n, there is a set X ⊆ V of 
size at most c1n√

r
, such that V \X can be partitioned into �n/r� sets V1, V2, . . .V�n/r� satisfying (i) |Vi| ≤ c2r, (ii) N(Vi) ∩ V j = ∅ for 

i �= j, and |N(Vi) ∩X | ≤ c3
√

r, where c1, c2, c3 > 0 are constants, and N(V ′) = {U ∈ V \ V ′ | ∃V ∈ V ′ with (U , V ) ∈ E}.

We apply Theorem 3 to the graphs described in Lemmas 1 and 2, setting r = b/c2, where c2 is the constant of Theorem 3. 
Here, n = |A| + |O| and r = c4/ε

2, for some constant c4. So, |Vi| ≤ b. Let Ai = A ∩ Vi and Oi = O ∩ Vi . Note that we must 
have

|Ai | ≤ |Oi| + |N(Vi) ∩X |, (1)

otherwise our local search would continue to replace Ai by Oi ∪ N(Vi), resulting in a better solution. For a suitable constant 
c5, we now have

|A| ≤ |X | +
∑

i

|Ai | (Each element of A either belongs to Ai or X )

≤ |X | +
∑

i

|Oi| +
∑

i

|N(Vi) ∩X | (Follows from Equation (1))

≤ |O| + |X | +
∑

i

|N(Vi) ∩X | (Oi are disjoint subsets of O)

≤ |O| + c5(|A| + |O|)√
b

(As
∑

i
|N(Vi) ∩X | ≤ �n/r�(c3

√
r) and |X | ≤ c1

|A|+|O|√
r

)

|A| ≤ 1 + c5/
√

b

1 − c5/
√

b
|O| (By rearranging)

|A| ≤ (1 + ε)|O| (b is large enough constant times 1
ε2 )

3. Dominating-set for homothets of a centrally symmetric convex object

In this section, as a warm-up, we give a simple analysis of the local search algorithm for the dominating-set problem 
when the objects are homothets of a centrally symmetric convex object. Our analysis is a generalization of Gibson et al. 
[16].
5
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Let C be a centrally symmetric convex object in the plane with the center c(C). Given a set S of homothets of C , our 
objective is to show that the local-search algorithm given in Section 2 is a PTAS for the minimum dominating-set for S . 
Recall that A is the set of objects returned by the local-search algorithm, and O is the minimum dominating-set. As a 
continuation from Section 2, we assume that both Claims 1 and 2 are satisfied, and we only need to prove the locality 
condition mentioned in Lemma 1.

We consider a nearest-site Voronoi diagram for all objects in A ∪ O with respect to a distance function δ∗
C . First, we 

will extend the convex distance function to provide meaning (albeit negative) to the interior of each site. This would allow 
us to interpret the Voronoi diagram as a Voronoi diagram of additively weighted points, rather than a Voronoi diagram of 
(unweighted) regions. For each object S ∈ S , we define the weight w(S) to be α such that S = c(S) + αC . Now, we define 
the distance δ∗

C (p, S) between a point p ∈ R2 and an object S ∈ S as follows: δ∗
C (p, S) = δC (p, c(S)) − w(S). The distance 

function δ∗
C (p, S) has the following properties:

Property 2.

(i) The distance function δ∗
C (p, S) achieves its minimum value when p = c(S).

(ii) If p is contained in the object S, then δ∗
C (p, S) ≤ 0.

(iii) If δ∗
C (p, S) > 0, then p is outside the object S, and a translated copy of C centered at p with scaling factor δ∗

C (p, S) touches the 
object S.

Note that Property 2(iii) is crucial for our analysis, and it follows due to the symmetric property of δC . As a result, this 
approach cannot be applied when objects are not centrally symmetric.

Now, we define the nearest-site Voronoi diagram NVDC∗ for all the objects in A ∪O with respect to the distance function 
δ∗

C . We define Voronoi cell of Si ∈ A ∪ O as Cell(Si) = {p ∈ R2|δ∗
C (p, Si) ≤ δ∗

C (p, S j) for all j �= i}. The NVDC∗ is a partition 
on the plane imposed by the collection of cells of all the objects in A ∪ O.

Let us consider the graph G = (V, E), the dual of the Voronoi diagram NVDC∗ , whose vertices V are the elements of 
A ∪O and the edge set E consists of pairs U , V ∈ V whose Voronoi cells share an edge on their boundaries.

We will show that each object in A ∪ O has a nonempty cell in this Voronoi diagram (see Lemma 3), and each cell is 
simply connected (see Lemma 4). As a result, the graph G = (V, E) that is the dual of this Voronoi diagram is planar. Finally, 
we will show (in Lemma 5) that this graph satisfies the locality condition mentioned in Lemma 1. This completes the proof.

Lemma 3. The cell of every object S ∈A ∪O is non-empty. Moreover, the center c(S) ⊆ Cell(S).

Proof. For the sake of contradiction, assume for some object S ∈ A ∪ O, c(S) /∈ Cell(S) and c(S) ∈ Cell(S ′) where 
S ′(�= S) ∈ A ∪ O. So, δ∗

C (c(S), S) ≥ δ∗
C (c(S), S ′). Since δ∗

C (c(S), S) = −w(S), we have −w(S) ≥ δC (c(S), c(S ′)) − w(S ′). This 
implies w(S ′) ≥ δC (c(S), c(S ′)) + w(S) which means that the object S is contained in the object S ′ . This contradicts Claim 1
and 2. �
Lemma 4. Each cell Cell(S) is simply connected.

Proof. We first claim that for every point p ∈ Cell(S), the line segment pc(S) ⊆ Cell(S). To see this, suppose to the contrary 
that there exists a point q ∈ pc(S) such that q ∈ Cell(S ′) where S ′(�= S) ∈A ∪O. Then by basic properties of convex distance 
functions (Property 1), we have

δ∗
C (p, S ′) = δC (p, c(S ′)) − w(S ′) ≤ δC (p,q) + δC (q, c(S ′)) − w(S ′) ≤ δC (p,q) + δ∗

C (q, S ′)

< δC (p,q) + δ∗
C (q, S) = δC (p,q) + δC (q, c(S)) − w(S) = δC (p, c(S)) − w(S) = δ∗

C (p, S),

contradicting the fact that p ∈ Cell(S).
To see that Cell(S) is connected, observe that any two points p, p′ ∈ Cell(S) can be connected via c(S) as follows. First, 

connect p to c(S) and then connect p′ to c(S). By the above claim and Lemma 3, all of these segments lie within Cell(S).
To complete the proof that Cell(S) is simply connected, we use the well-known equivalent characterization [23] that 

for any simple closed (i.e., Jordan) curve � ⊂ Cell(S), the interior of the region bounded by this curve lies entirely within 
Cell(S). Consider any x in the interior of the region bounded by �. Either x = c(S) or (by extending the ray from c(S)

through x until it hits �) there exists p ∈ Cell(S) such that x lies on the line segment pc(S). In the former case, x ∈ Cell(S), 
follows from Lemma 3. For the latter case, by the above claim (that pc(S) ⊆ Cell(S)), we have x ∈ Cell(S). This completes 
the proof. �
Lemma 5. For any arbitrary input object S ∈ S , there is an edge between (A, O ) ∈ G such that A ∈A and O  ∈O, and both A and O
dominate S.
6
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Proof. Let us assume that A and O are the closest objects to c(S) (with respect to δ∗
C ) in A and O, respectively. Since both 

A and O are dominating sets, both A and O must dominate S . Note that c(S) belongs to at least one of the Voronoi cells: 
Cell(A) or Cell(O ). If c(S) belongs to both Cell(A) and Cell(O ), then c(S) lies on the common boundary of Cell(A) and 
Cell(O ). Therefore, the edge (A, O ) belongs to the graph G . Without loss of generality, we may assume that c(S) does not 
belong to Cell(O ). Note that c(O ) lies in Cell(O ) (due to Lemma 3). Therefore, c(S) and c(O ) lie in different Voronoi cells. 
So the line segment c(S)c(O ) must intersect an edge of Cell(O ) at some point p. Let Cell(R) denote the cell neighboring the 
Cell(O ) along this edge. We have δ∗

C (p, R) = δ∗
C (p, O ). By basic properties of the convex distance function (see Property 1) 

and the definition of the distance function δ∗
C , we obtain

δ∗
C (c(S), R) = δC (c(S), c(R)) − w(R) (Follows from the definition of δ∗

C )

≤ δC (c(S), p) + δC (p, c(R)) − w(R) (Due to Property 1(iii) of convex distance function)

= δC (c(S), p) + δ∗
C (p, R) (Follows from the definition of δ∗

C )

= δC (c(S), p) + δ∗
C (p, O ) (p is on the boundary of both Cell(R) and Cell(O ))

= δC (c(S), p) + δC (p, c(O )) − w(O ) (Follows from the definition of δ∗
C )

= δC (c(S), c(O )) − w(O ) (Due to Property 1(ii) of convex distance function)

= δ∗
C (c(S), O ). (Follows from the definition of δ∗

C )

By general position, we may assume that δC (c(S), R) < δC (c(S), O ). Since O was chosen to be the closest object in O
to c(S), it follows that R ∈ A. Clearly, the objects R and O both dominate S . Therefore, there is an edge (R, O ) in G , as 
desired. �
4. Tools for constructing disjoint objects

In this section, we present two tools (or lemmata) which are essential for analyzing our main results. An essential step 
in our analysis (particularly in constructing the planar graph of Section 2.1) involves replacing a collection of overlapping 
objects that cover a given region with a collection of non-overlapping objects that cover the same region. This leads to the 
notion of a decomposition. The decomposition, we define here, is inspired by the idea of core decomposition introduced by 
Mustafa et al. [28].

Definition 2. Given a set of convex objects R = {R1, . . . , Rn}, a set R̃ = {R̃1, . . . , ̃Rn} of convex objects is called a sub-
decomposition if for each i ∈ [n], R̃ i ⊆ Ri . Such a set R̃ is called a decomposition if the same region is covered, that is, ⋃

i∈[n] R̃ i = ⋃
i∈[n] Ri . We refer to R̃ i as the trace of Ri , i ∈ [n]. Further, if the elements of R̃ have pairwise disjoint interiors, 

the decomposition/sub-decomposition is said to be disjoint.

First, we prove the following lemma which is reminiscent of [28, Lem. 3.3]. Edelsbrunner [10] introduced a very similar 
decomposition in the context of Euclidean disks.

Lemma 6. For a cover-free set of convex pseudodisks R = {R1, . . . , Rn}, there exists a disjoint decomposition R̃= {R̃1, . . . , ̃Rn} such 
that CF(R j, R) ⊆ R̃ j , for all j ∈ [n].

Proof. The proof is constructive. The algorithm to construct a disjoint decomposition R̃ = {R̃1, . . . , ̃Rn} of R = {R1, . . . , Rn}
is as follows. This is an n-phase algorithm. After the ith phase, the following invariants are maintained for all i ∈ [n].

Invariant 1. The objects in R̃i = {R̃ i
1, . . . , ̃R

i
n} form a decomposition of R = {R1, . . . , Rn} such that (i) CF(R j) ⊆ R̃ i

j for all j ∈ [n], 
and (ii) int(R̃ i

t) ∩ int(R̃ i
q) = ∅ where t �= q and 1 ≤ t ≤ i, 1 ≤ q ≤ n.

Invariant 2. The objects in R̃i = {R̃ i
1, . . . , ̃R

i
n} form a collection of convex pseudodisks.

We initialize R̃0 = R. This satisfies both invariants. At the beginning of the ith phase, we set X = R̃ i−1
i . Let Ri

π =
{R̃ i−1

π(1), . . . , ̃R
i−1
π(
)}, 0 ≤ 
 < n be the set of objects in R̃i−1 that intersect int(R̃ i−1

i ). In other words, int(R̃ i−1
i ) ∩ int(R̃ i−1

π( j)) �= ∅
for any π( j) ∈ �, where � = {π(1), . . . , π(
)}.

Consider any object R̃ i−1
π( j) ∈Ri

π . As R̃ i−1
π( j) and X are pseudodisks, their respective boundaries intersect in two points. Let 

p1 and p2 be these two intersection points. By convexity, the line segment p1 p2 is contained in both R̃ i−1
π( j) and X . Let C1

(respectively, C2) be the part of the boundary of R̃ i−1 (respectively, X) that lie inside X (respectively, R̃ i−1 ). We replace 
π( j) π( j)

7
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Fig. 1. Illustration of Lemma 6.

both C1 and C2 by the line segment p1 p2. In this way, we obtain new convex objects R̃ i
π( j) ⊆ R̃ i−1

π( j) and X j ⊆ X that have 
interiors that are pairwise disjoint with each other, and R̃ i

π( j) ∪ X j = R̃ i−1
π( j) ∪ X . See Fig. 1 for illustration.

For all π( j) ∈ �, we construct the corresponding R̃ i
π( j) as above. At the end of this phase, we assign R̃ i

i = ⋂
j∈� X j . Note 

that R̃ i
i is also convex as it is an intersection of some convex objects. We set R̃ i

j = R̃ i−1
j for all j(�= i) ∈ [n] \ �. As a result, 

we obtain a collection of convex objects R̃i .
Observe that, for any point p, that is contained in the union of Ri

π , either there exists a j such that this point lies within 
R̃ i

π( j) , and so is covered by this set, or it lies within X j for all j. Hence, it lies within their common intersection, which is 
X . So, R̃i is a decomposition of R̃i−1.

Thus, after the ith phase, we obtain a decomposition R̃i such that int(R̃ i
i) ∩ int(R̃ i

j) = ∅ for all j(�= i) ∈ {1, . . . , n}. On 
the other hand, we have int(R̃ i−1

t ) ∩ int(R̃ i−1
q ) = ∅ where t �= q and 1 ≤ t ≤ i − 1, 1 ≤ q ≤ n. Combining these, we obtain 

int(R̃ i
t) ∩ int(R̃ i

q) = ∅ where t �= q and 1 ≤ t ≤ i, 1 ≤ q ≤ n.

Since the union of objects in R̃i is same as the union of the objects in R̃i−1, and the objects in R̃i−1 are cover-free, so 
each object ̃Ri

j has its cover-free region CF(R j) which is not covered by others, for all j ∈ [n]. Thus, Invariant 1 is maintained. 
Now, we prove that Invariant 2 is also maintained. We prove the objects in R̃i form pseudodisks by showing the following 
claim.

Claim 3. R̃i is a collection of convex pseudodisks.

Proof. It suffices to show that for any two objects R̃ i−1

1

and R̃ i−1

2

in R i−1, their boundaries ∂ R̃ i

1

and ∂ R̃ i

2

can cross each 
other at most twice.

Recall the definition of X from the above construction. For any R ∈ Ri
π , let I(R) be the interval R ∩ ∂ X on the boundary 

of X . Due to the Invariant 1, no pseudodisk in R̃i−1 is completely contained in another pseudodisk, so the intervals are well 
defined.

There are three possible cases:

• Case 1: I(R̃ i−1

1

) ∩ I(R̃ i−1

2

) = ∅,

• Case 2: I(R̃ i−1

1

) ⊆ I(R̃ i−1

2

),

• Case 3: I(R̃ i−1

1

) ∩ I(R̃ i−1

2

) �= ∅ and I(R̃ i−1

1

) � I(R̃ i−1

2

).

In both Case 1 and Case 2 (see Fig. 2(a) and (b)), ∂ R̃ i

1

and ∂ R̃ i

2

do not have any new crossing which ∂ R̃ i−1

1

and ∂ R̃ i−1

2

did 
not have. In fact, they may lose intersections lying in X . As ∂ R̃ i−1


1
and ∂ R̃ i−1


2
may cross each other at most twice, so does 

∂ R̃ i

1

and ∂ R̃ i

2

. In Case 3 (see Fig. 2(c)), ∂ R̃ i−1

1

and ∂ R̃ i−1

2

crosses each other once in X and once outside X . The outside 
crossing remains the same for ∂ R̃ i


1
and ∂ R̃ i


2
. They cross each other once along a new part of their boundaries, i.e., along 

the boundary of X
1 ∩ X
2 . Thus, the claim follows. �
After completion of the nth phase, we assign R̃ = R̃n . The proof of the lemma follows from the Invariant 1. �
Now, we prove the following important lemma, which we use as a tool for obtaining disjoint sub-decompositions. The 

previous lemma obtains disjoint decomposition when the objects are pseudodisks. When the set of objects does not satisfy 
the pseudodisk property, but they are trimmed from a set of pseudodisks, we apply the following tool to obtain a disjoint 
sub-decomposition.

Lemma 7. Given two sets U and V of distinct convex objects such that their union forms a collection of pseudodisks, let U0 and V0 be 
any disjoint sub-decompositions of U and V , respectively. Let Ui and V j be any two convex pseudodisks from U and V , respectively, and 
8
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Fig. 2. Illustration of Claim 3.

U 0
i and V 0

j be two corresponding convex objects from U0 and V0 , respectively, such that CF(U 0
i , U0 ∪V0) �= ∅, CF(V 0

j , U0 ∪V0) �= ∅
and int(U 0

i ) ∩ int(V 0
j ) �= ∅. Then we can find U 0

i j ⊆ U 0
i and V 0

ji ⊆ V 0
j such that the following properties are satisfied.

(i) U 0
i j and V 0

ji are convex, have nonempty disjoint interiors, and their intersection consists of a separating line segment, which we 
denote by E0

i j .

(ii) U 0
i \ U 0

i j is completely contained in V j .

(iii) V 0
j \ V 0

ji is completely contained in Ui .

Proof. Given two convex objects U and V , define a petal of U with respect to V to be a connected component of U \ V . 
Since U 0

i and V 0
j need not be pseudodisks, there may be multiple petals of U 0

i with respect to V 0
j . Let us assume that 

there are k such petals, that we denote by Petalt(U 0
i ), for 1 ≤ t ≤ k. Thus, U 0

i \ V 0
j = ⋃k

t=1 Petalt(U 0
i ). Similarly, we define 

Petal(V 0
j ) to be the set of petals of V 0

j with respect to U 0
i , and we let k′ denote their number. Observe that each petal is 

bounded by two boundary arcs, one from ∂U 0
i and the other from ∂V 0

j (see Fig. 3). Also, observe that consecutive petals 
are defined by consecutive intersection points between the boundaries of the two objects.

Since V 0
j ⊆ V j , we have U 0

i \ V j ⊆ U 0
i \ V 0

j . Define NCpetal(U 0
i ) to be the subset of petals of U 0

i (with respect to V 0
j ) 

that are not entirely covered by V j , that is, NCpetal(U 0
i ) = {Petalt(U 0

i ) ∈ {U 0
i \ V 0

j }| Petalt(U 0
i ) ∩ {U 0

i \ V j} �= ∅}. Similarly, 
we define NCpetal(V 0

j ). Because CF(U 0
i , U0 ∪ V0) �= ∅, NCpetal(U 0

i ) contains at least one element, and the same holds for 
NCpetal(V 0) (see Fig. 3).
j

9
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Fig. 3. Petals: tiled regions are Petals of U 0
i ; NCpetals are marked with red. (For interpretation of the colors in the figure(s), the reader is referred to the 

web version of this article.)

Fig. 4. Illustration of Lemma 7.

Consider only the uncovered petals (that is, NCpetal(U 0
i ) ∪ NCpetal(V 0

j )). Let us label the petals of NCpetal(U 0
i ) with the 

letter “u” and label the petals of NCpetal(V 0
j ) with the letter “v”. Let R0

i j = U 0
i ∩ V 0

j . If you consider the cyclic order of these 
petals around ∂ R0

i j , the alternating pattern “u. . . v. . . u. . . v” cannot occur in the cyclic sequence as shown in the following 
argument (see Fig. 4).

Suppose to the contrary that the alternating pattern “u. . . v. . . u. . . v” occurs in the cyclic sequence. Then there must exist 
points u1, u2 (from the first and third “u” petals in the sequence) that lie in U 0

i \ V 0
j . Similarly, there exist points v1, v2

(from the second and fourth “v” petals) that lie in V 0
j \ U 0

i . Because of the alternation, the line segments u1u2 and 
v1 v2 intersect in R0

i j . However, the existence of these two line segments violates the hypothesis that Ui and V j are 
pseudodisks.

Since the alternation pattern “u. . . v. . . u. . . v” cannot arise in the cyclic sequence, it follows the cyclic order of uncovered 
petals around ∂ R0

i j consists of a sequence of petals from NCpetal(U 0
i ) followed by a sequence from NCpetal(V 0

j ). As a result, 
we can find a line segment p1 p2 lying in int(R0

i j) whose two endpoints are on ∂ R0
i j such that all the uncovered petals of 

U 0 (formally NCpetal(U 0)) lie on one side of this line segment. The uncovered petals of V 0 (formally NCpetal(V 0)) lie on 
i i j j

10
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the other side. In other words, extension of this line segment p1 p2 partitions the plane into two half-spaces H0
i and H0

j

where H0
i contains all the petals of NCpetal(U 0

i ) and H0
j contains all the petals of NCpetal(V 0

j ). We define U 0
i j = H0

i ∩ U 0
i

and V 0
ji = H0

j ∩ V 0
j . The line segment p1 p2 plays the role of the separating line segment E0

i j . Claim (i) follows because p1

and p2 lie on the boundary of both U 0
i and V 0

j . Claim (ii) follows because U 0
i \ U 0

i j consists of a portion of R0
i j (which clearly 

lies in V j ) together with a subset of petals of U 0
i that are all covered by V j . Claim (iii) is symmetrical. Hence U 0

i j , V 0
i j satisfy 

the lemma. �
5. Dominating-set for homothetic convex objects

In this section, we show mainly the existence of a planar graph satisfying the locality condition mentioned in Lemma 1
when objects are homothetic copies of a convex object. Let C be a convex object in the plane. We fix an arbitrary interior 
point of C as the center c(C). We are given a set S of n homothetic (i.e., translated and uniformly scaled) copies of C , and 
our objective is to show that the local-search algorithm given in Section 2 produces a PTAS for the minimum dominating-
set for S . Recall that A is the set of objects returned by the local-search algorithm, and O is a minimum dominating-set. 
Without loss of generality, we assume that both Claims 1 and 2 are satisfied.

Here is an overview of the proof. First, we find a disjoint sub-decomposition Ã ∪ Õ of A ∪ O (in Lemma 8). Next, 
we consider a nearest-site Voronoi diagram for the sites in Ã ∪ Õ with respect to a distance function. Then we show (in 
Lemma 12) that the dual of this Voronoi diagram satisfies the locality condition mentioned in Lemma 1.

5.1. Decomposing into interior disjoint convex sites

Using Lemmas 6 and 7 as tools, we now prove the following which is one of the important observations of our work.

Lemma 8. Let A be the output of the local-search algorithm for dominating-set on a set S of homothetic convex objects, and let O
be the optimum dominating-set. Then there exists a disjoint sub-decomposition Ã∪ Õ that satisfies the following: for any input object 
S ∈ S either

(i) there exist ̃A ∈ Ã and Õ ∈ Õ such that S ∩ Ã �= ∅ and S ∩ Õ �= ∅, or
(ii) there exist A ∈A and O  ∈O such that S ∩ A ∩ O  �= ∅, and their traces ̃A and Õ share an edge on their boundary.

The remainder of this section is devoted to the proof of this lemma. As a continuation from Section 2.1, we would like 
to remind the reader that duplicate objects have been pruned from A and O.

Let A = {A1, . . . , A
} and O = {O 1, . . . , O t}. Our algorithm to obtain a disjoint sub-decomposition Ã∪ Õ = { Ã1, . . . Ã
} ∪
{Õ 1, . . . Õ t} for A ∪O satisfying the lemma statement is as follows.

Step 1: Obtaining decompositions individually: Note that the objects in A (resp., O) are cover-free (follows from 
Claim 1). So, we apply Lemma 6 on the set A (resp., O) of objects, to compute the disjoint decomposition of A (resp., O). 
Let A0 = {A0

1, . . . , A
0

} (resp., O0 = {O 0

1, . . . , O
0
t }) be the disjoint decomposition of A (resp., O). Now, the following claim is 

obvious.

Claim 4. Any point p ∈R2 is contained in the interior of at most two objects of A0 ∪O0 .

Lemma 6 ensures that CF(Ai, A) ⊆ A0
i �= ∅ and CF(O j, O) ⊆ O 0

j �= ∅ for all i ∈ [
], j ∈ [t]. By Claim 2, no object A0
i can 

be properly contained in any single object from O0, but it may be completely covered by the union of two or more objects 
from O0. We can remedy this as follows.

Replace each object of A0 and O0 with an infinitesimally trimmed version of itself. By our general position assumption, 
the resulting sets of trimmed objects still form dominating-sets. Furthermore, because the elements of O0 have pairwise 
disjoint interiors, no single object of A0 can be contained in the union of two or more of the trimmed objects in O0. 
Henceforth, A0 and O0 refer to the sets of trimmed objects. Thus we have the following.

Claim 5.

(i) CF(A0
i , A0 ∪O0) �= ∅ for all i ∈ [
],

(ii) CF(O 0
j , A0 ∪O0) �= ∅ for all j ∈ [t],

(iii) For each object S ∈ S , there exist an object A0
i ∈A0 (resp., O 0

j ∈O0) such that S ∩ A0
i �= ∅ (resp., S ∩ O 0

j �= ∅).

Step 2: Obtaining disjoint sub-decomposition: Now, consider A0
i ∈A0 for all i ∈ [
]. Lemma 6 ensures that A0

i does not 
have any interior overlap with A0

k , for any k ∈ [
] \ i. Similarly, O 0
j ( j ∈ [t]) does not have any interior overlap with O 0

k , 
for any k ∈ [t] \ j. But, A0 may have interior overlap with one or more objects of O0. Let L(i) be the subset of indices 
i

11
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Fig. 5. Illustration of different steps: objects in A and O are marked with red and blue, respectively.

j ∈ [t] such that A0
i has an interior overlap with O 0

j . For any j ∈ L(i), Claim 5 implies that both CF(A0
i , A0 ∪ O0) �= ∅ and 

CF(O 0
j , A0 ∪O0) �= ∅. By applying Lemma 7 to A0

i and O 0
j , we obtain two interior-disjoint convex objects A0

i j ⊆ A0
i and O 0

ji ⊆
O 0

j . Let A1
i = ⋂

j∈L(i) A0
i j . Similarly, let M( j) be the subset of indices i ∈ [l] such that O 0

j has an interior overlap with A0
i . 

Let O 1
j = ⋂

i∈M( j) O 0
ji that is a convex object and it contains CF(O j). Let A1 = {A1

1, . . . , A
1

} and O1 = {O 1

1, . . . , O
1
t }. Clearly, 

A1
i ⊆ A0

i and O 1
j ⊆ O 0

j , and since separating line segments E0
i j have eliminated all overlaps between the two decompositions, 

it follows that A1 ∪ O1 is a disjoint sub-decomposition of A ∪ O. If we concentrate on the arrangements of all E0
i j along 

the boundary of ∂ A0
i , then we observe the following.

Claim 6. Any two separating line segments E0
i j and E0

i j′ do not intersect each other.

Proof. If E0
i j and E0

i j′ intersect each other, then assertions (ii) and (iii) of Lemma 7 imply that the corresponding objects O 0
j

and O 0
j′ also intersect, that is not possible because O0 is a disjoint decomposition. �

The boundary ∂ A1
i is actually obtained by replacing zero or more disjoint arcs of ∂ A0

i with separating line segments. 
Since each of these separating line segments is part of different disjoint objects in O0 , here we would like to remark that 
the object A1

i is nonempty. Similarly, each object O 1
j ∈ O1 is nonempty. We denote the partial boundary �A0

i j (resp., �O 0
ji ) 

by the portion of the boundary ∂ A0
i (resp., ∂ O 0

j ) which is replaced by the edge E0
i j (see Fig. 5(b) where partial boundary is 

marked as dotted).
Note the following.

Claim 7. Let A0
i and O 0

j be any two objects from A0 and O0 , respectively, such that int(A0
i ) ∩ int(O 0

j ) �= ∅ and E0
i j is not a part of 

∂ A1
i . Then, the following properties must be satisfied:

• there exists an object O 0
j′ in O0 such that int(A0

i ) ∩ int(O 0
j′ ) �= ∅, E0

i j′ is a part of ∂ A1
i , and A0

i \ A0
i j is completely contained in 

O j′ .
• O 0

j does not intersect A1
i .

Proof. Claim 6 implies that no two separating line segments intersect each other, so the fact that E0
i j does not contribute 

to ∂ A1
i implies that there is another object O 0

j′ such that the partial-boundary �A0
i j′ contains the partial boundary �A0

i j . 
Thus, A0

i j′ ⊆ A0
i j that implies A0

i \ A0
i j ⊆ A0

i \ A0
i j′ . Since A0

i \ A0
i j′ is completely contained in O j′ (by Lemma 7), A0

i \ A0
i j is also 

completely contained in O j′ .
Since O 0

j and O 0
j′ are interior disjoint and the partial-boundary �A0

i j′ contains the partial boundary �A0
i j , O 0

j cannot 
intersect A1. Hence, the claim follows. �
i

12



M. De and A. Lahiri Computational Geometry: Theory and Applications 113 (2023) 102007
By a symmetrical argument, we have the following.

Claim 8. Let A0
i and O 0

j be any two objects from A0 and O0 , respectively, such that int(A0
i ) ∩ int(O 0

j ) �= ∅ and E0
ji is not a part of 

∂ O 1
j . Then, the following properties must be satisfied:

• there exists an object A0
i′ in A0 such that int(O 0

j ) ∩ int(A0
i′ ) �= ∅, E0

ji′ is a part of ∂ O 1
j , and O 0

j \ O 0
ji is completely contained in 

Ai′ .
• A0

i does not intersect O 1
j .

Note that after this step, there might be some point p ∈ A0
i but p /∈ A1

i and there does not exist any O 1
j such that p ∈ O 1

j

(see Fig. 5(a–b)). Hence, the objects of A1 ∪O1 fail to cover the same region as A0 ∪O0, as needed in the decomposition. 
To remedy this, we expand some of the objects in A1 and O1 in the next step.

Step 3: Expansion of objects in A1 and O1:
For each (i, j) ∈ [
] ×[t], define χ(i, j) = 1 if E0

i j is a part of ∂ A1
i and E0

ji is also a part of ∂ O 1
j , and it is 0 otherwise. Re-

calling A0
i j and O 0

ji from Lemma 7, for each i ∈ [
], define A2
i = ⋂

{ j|χ(i, j)=1}
A0

i j , and for each j ∈ [t], define O 2
j = ⋂

{i|χ(i, j)=1}
O 0

ji . 

Let A2 = {A2
1, . . . , A

2

} and O2 = {O 2

1, . . . , O
2
t }. Note that A2 ∪O2 is a disjoint sub-decomposition of A ∪O. This construction 

along with Claims 7 and 8 ensures the following.

Claim 9.

• For any point p ∈ A0
i \ A2

i , there exists some O 2
j ∈O2 such that A2

i and O 2
j share an edge on their boundary and p ∈ O j .

• For any point p ∈ O 0
j \ O 2

j , there exists some A2
i ∈A2 such that A2

i and O 2
j share an edge on their boundary and p ∈ Ai .

By renaming each set A2
i as Ãi for i ∈ [
] and each O 2

j as Õ j for j ∈ [t], we obtain the final decomposition Ã ∪ Õ =
A2 ∪O2. Finally, we claim the following that completes the proof of the lemma statement.

Claim 10. For any input object S ∈ S either (i) there exist ̃A ∈ Ã and Õ ∈ Õ such that S ∩ Ã �= ∅ and S ∩ Õ �= ∅, or (ii) there exist 
A ∈A and O  ∈O such that S ∩ A ∩ O  �= ∅, and ̃A and Õ share an edge on their boundary.

Proof. Let S be any input object in S . From Claim 5 (iii), we know that there exist A0
i ∈ A0 and O 0

j ∈ O0 such that 
S ∩ A0

i �= ∅ and S ∩ O 0
j �= ∅ for some i ∈ [
] and j ∈ [t]. If after Step 3, S ∩ A2

i �= ∅ and S ∩ O 2
j �= ∅, then the claim follows. So, 

without loss of generality, assume that S ∩ A2
i = ∅. Consider any point p ∈ S ∩ A0

i . As p ∈ A0
i \ A2

i , there exist some O 2
j ∈O2

such that A2
i and O 2

j share an edge on their boundary and p ∈ O j (follows from Claim 9). Thus the claim follows. �
5.2. Nearest-site Voronoi diagram

Recalling the definition of the convex distance function δC from Definition 1, we define the distance δC (p, P ) from a 
point p to any object P (that need not be convex and homothetic to C ) as follows.

Definition 3. Let p be a point, and P be an object in a plane. The distance δC (p, P ) from p to P is defined as δC (p, P ) =
min
q∈P

δC (p, q).

This distance function has the following properties.

Property 3.

(i) If p is contained in the object P , then δC (p, P ) = 0.
(ii) If δC (p, P ) > 0, then p is outside the object P , and a translated copy of C centered at p with scaling factor δC (p, P ) touches the 

object P .

Now, we define a nearest-site Voronoi diagram NVDC for all the objects in Ã ∪ Õ with respect to the distance function 
δC . We define Voronoi cell of Si ∈ Ã∪ Õ as Cell(Si) = {p ∈R2|δC (p, Si) ≤ δC (p, S j) for all j �= i}. The NVDC is a partition on 
the plane imposed by the collection of cells of all the objects in Ã ∪ Õ. A point p is in Cell(S) for some object S ∈ Ã ∪ Õ, 
implies that if we place a homothetic copy of C centered at p with a scaling factor δC (p, S), then C touches S and the 
interior of C is empty. Now, we have the following two lemmas.
13
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Lemma 9. The cell of every object S ∈ Ã∪ Õ is nonempty. Moreover, S ⊆ Cell(S).

Proof. This follows from Property 3(i) and the fact that Ã ∪ Õ is a set of interior disjoint objects (from Lemma 8(a)). �
Lemma 10. Each cell Cell(S) is simply connected.

Proof. For every S ∈ Ã ∪ Õ, let us define the function πS : R2 → S , that maps any point to one of its closest points in S . 
(If p ∈ S , then πS (p) = p.)

We first claim that for every point p ∈ Cell(S), the line segment pπS (p) ⊆ Cell(S). To see this, suppose to the contrary 
that there exists a point q ∈ pπS (p) such that q ∈ Cell(S ′) where S(′ �= S) ∈ Ã ∪ Õ. Then by basic properties of convex 
distance functions (Property 1), we have

δC (p, S ′) ≤ δC (p,πS ′(q)) ≤ δC (p,q) + δC (q,πS ′(q)) < δC (p,q) + δC (q,πS(p)) = δC (p,πS(p)),

contradicting the fact that p ∈ Cell(S).
To see that Cell(S) is connected, observe that any two points p, p′ ∈ Cell(S) can be connected as follows. First, connect 

p to πS (p) and p′ to πS (p′). Then connect these two points through S . By the above claim and Lemma 9, all of these 
segments lie within Cell(S).

To complete the proof that Cell(S) is simply connected, we use the well-known equivalent characterization [23] that 
for any simple closed (i.e., Jordan) curve � ⊂ Cell(S), the interior of the region bounded by this curve lies entirely within 
Cell(S). Consider any x in the interior of the region bounded by �. Either x ∈ S or (by extending the ray from πS (x) through 
x until it hits �) there exists p ∈ Cell(S) such that x lies on the line segment pπS(x). In the former case, x ∈ Cell(S), follows 
from Lemma 9. Now, we are going to argue that x ∈ Cell(S) for the latter case as well. To see this, suppose to the contrary 
that x ∈ Cell(S ′) where S(′ �= S) ∈ Ã∪ Õ. Then by basic properties of convex distance functions (Property 1), we have

δC (p, S ′) ≤ δC (p,πS ′(x)) ≤ δC (p, x) + δC (x,πS ′(q)) < δC (p, x) + δC (x,πS(p)) = δC (p,πS(p)),

contradicting the fact that p ∈ Cell(S). Therefore x ∈ Cell(S), as desired. �
5.3. Locality condition

Let us consider the graph G = (V, E), the dual of the Voronoi diagram NVDC , whose vertices V are the elements of 
A ∪O and the edge set E consists of pairs U , V ∈ V whose Voronoi cells share an edge on their boundaries. From Lemma 9
and Lemma 10, we have the following.

Lemma 11. The graph G = (A ∪O, E) is a planar graph.

Now, we prove that the graph G satisfies the property needed in the locality condition (Lemma 1).

Lemma 12. For any arbitrary input object S ∈ S , if S is dominated by at least one object of A and at least one object of O, then there 
exists A ∈A and O  ∈O both of which dominate S and (A, O ) ∈ E of G .

Proof. Let S be any object in S . According to Lemma 8, there exists a disjoint sub-decomposition Ã ∪ Õ such that either:

(i) there exist Ã ∈ Ã and Õ ∈ Õ such that S ∩ Ã and S ∩ Õ are both nonempty, or
(ii) there exist A ∈ A and O  ∈ O such that S ∩ A ∩ O  �= ∅, and their respective traces Ã and Õ share an edge in common 

on their boundaries.

For case (ii), clearly, both A and O dominate S . The fact that Ã and Õ share a common edge on their boundary implies 
(by Lemma 9) that Cell( Ã) and Cell(Õ ) also share a common edge on their boundaries. Therefore, (A, O ) is an edge of G , 
as desired.

For case (i), the proof is similar to Lemma 5. Let c = c(S) denote the center of S . Let us assume that A and O have been 
chosen so that Ã and Õ are the closest objects to c (with respect to δC ) in Ã and Õ, respectively. Without loss of generality, 
we may assume that c does not lie in Cell(Õ ). Let o ∈ Õ denote the closest point to c in Õ . Clearly, c and o lie in different 
Voronoi cells, so this segment must intersect an edge of Cell(Õ ) at some point p. Let Cell(R̃) denote the cell neighboring
the Cell(Õ ) along this edge. Letting r denote the closest point to p in R̃ , we have δC (p, r) = δC (p, ̃R) = δC (p, ̃O ) ≤ δC (p, o). 
By basic properties of the convex distance function (see Property 1), we obtain

δC (c, r) ≤ δC (c, p) + δC (p, r) ≤ δC (c, p) + δC (p,o) = δC (c,o).
14
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By general position, we may assume that δC (c, ̃R) < δC (c, ̃O ). Since Õ was chosen to be the closest object in Õ to c, 
it follows that R̃ ∈ Ã. Clearly, the associated objects R and O (that contain R̃ and Õ , respectively) both dominates S . 
Therefore, there is an edge (R, O ) in G , as desired. �
6. Geometric set-cover for convex pseudodisks

Given a set S of n convex pseudodisks and a set P of points in R2, the objective is to cover all the points in P using 
a subset of S of minimum cardinality. Here, we analyze that the local search algorithm would give a polynomial time 
approximation scheme, as given in Section 2. The analysis is similar to the previous problem. Recall from Section 2.1 that O
is an optimal covering set for P and A is the covering set returned by our local search algorithm satisfying both Claims 1
and 2. Here, we need to show that the locality condition mentioned in Lemma 2 is satisfied.

If we restrict the proof of Lemma 8 up to Claim 9, it is straightforward to obtain the following.

Lemma 13. Let A be the output of the local-search algorithm for set-cover on a set S of convex pseudodisks and a set P of points in 
R2 , and let O be the optimum. Then there exists a disjoint sub-decomposition Ã∪ Õ that satisfies the following: for any input point 
p ∈P there exists A ∈A and O  ∈O such that p ∈ A and p ∈ O , and their traces ̃A and Õ share an edge on their boundary.

Proof. Let A = {A1, . . . , A
} and O = {O 1, . . . , O t}. Our algorithm to obtain a disjoint sub-decomposition Ã ∪ Õ =
{ Ã1, . . . Ã
} ∪ {Õ 1, . . . Õ t} for A ∪ O satisfying the lemma statement is precisely same as the three steps mentioned in 
Section 5.1 for Lemma 8. The main difference is in the statement of Claim 8. For the set-cover problem, we have the 
following.

Claim 11.

(i) CF(A0
i , A0 ∪O0) �= ∅ for all i ∈ [
],

(ii) CF(O 0
j , A0 ∪O0) �= ∅ for all j ∈ [t],

(iii) Each point p ∈P is covered by exactly one object from A0 (resp., O0).

Finally, we claim the following statement instead of Claim 10.

Claim 12. For any input point p ∈ P , there exist A ∈ A and O  ∈ O such that p ∈ A and p ∈ O , and ̃A and Õ share an edge on their 
boundary.

Proof. Let p be any input point in P . By Claim 11 (iii), there exist A0
i ∈ A0 and O 0

j ∈ O0 such that p ∈ A0
i and p ∈ O 0

j for 
some i ∈ [
] and j ∈ [t]. After Step 3, since A2 ∪O2 is a disjoint decomposition of A ∪O, p cannot be both in A2

i and O 2
j . 

Therefore, either of the following happens: p /∈ A2
i , or p /∈ O 2

j . In both cases, the claim follows from Claim 9. �
Thus the lemma follows. �
Now, consider a graph G = (V, E), where each vertex V ∈ V corresponds to an object in Ã ∪ Õ, and we create an edge 

in between two vertices whenever the corresponding objects in Ã ∪ Õ share an edge in their boundary. Since the objects 
of Ã ∪ Õ are convex and have disjoint interiors, this graph is planar. From Lemma 13, it follows that the graph G satisfies 
the locality condition mentioned in Lemma 2. This completes the proof of Theorem 2.

7. Concluding remarks

In this paper, we have shown that the well-known local search algorithm gives a PTAS for finding the minimum car-
dinality dominating-set and geometric set-cover when the objects are homothetic convex objects and convex pseudodisks, 
respectively. Consequently, we obtain an algorithm that is easy to implement along with a guarantee on its approximation 
error for a broad class of objects which encompasses arbitrary squares, k-regular polygons and translates of convex polygons. 
A QPTAS is known for the weighted set-cover problem where objects are pseudodisks [28]. But, no QPTAS is known for the 
weighted dominating-set problem when objects are homothetic convex objects. Note that the separator-based analysis for 
local search to obtain PTAS has a limitation for handling the weighted version of the problems. Thus, finding a polynomial 
time approximation scheme for the weighted version of both minimum dominating-set and minimum geometric set-cover 
problems for homothetic convex objects, pseudodisks, remains open in this context. Especially for the weighted version of 
the problem, it would be interesting to analyze the approximation guarantees of the local search algorithm.
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