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ABSTRACT Background: The COVID-19 pandemic has highlighted the need to invent alternative res-
piratory health diagnosis methodologies which provide improvement with respect to time, cost, physical
distancing and detection performance. In this context, identifying acoustic bio-markers of respiratory diseases
has received renewed interest. Objective: In this paper, we aim to design COVID-19 diagnostics based on
analyzing the acoustics and symptoms data. Towards this, the data is composed of cough, breathing, and
speech signals, and health symptoms record, collected using a web-application over a period of twenty
months. Methods: We investigate the use of time-frequency features for acoustic signals and binary features
for encoding different health symptoms. We experiment with use of classifiers like logistic regression,
support vector machines and long-short term memory (LSTM) network models on the acoustic data, while
decision tree models are proposed for the symptoms data. Results: We show that a multi-modal integration
of inference from different acoustic signal categories and symptoms achieves an area-under-curve (AUC) of
96.3%, a statistically significant improvement when compared against any individual modality (p < 0.05).
Experimentation with different feature representations suggests that the mel-spectrogram acoustic features
performs relatively better across the three kinds of acoustic signals. Further, a score analysis with data
recorded from newer SARS-CoV-2 variants highlights the generalization ability of the proposed diagnostic
approach for COVID-19 detection. Conclusion: The proposed method shows a promising direction for
COVID-19 detection using a multi-modal dataset, while generalizing to new COVID variants.

INDEX TERMS COVID-19 diagnostics, acoustic bio-markers, point-of-care testing, multi-modal
classification.

I. INTRODUCTION
The highly contagious variant of the coronavirus family,
SARS-CoV-2, has resulted in a significant health crisis [1].
The outbreak was termed as the coronavirus disease 2019
(or COVID-19) and declared a pandemic in March-2020 [1].
The pathogenesis of COVID-19 suggests that the infection
triggers the SARS-CoV-2 virus to replicate and migrate down
the respiratory tract, to the epithelial cells in the lungs [2]. The
symptoms of COVID-19 include fever, common cold, cough,
chest congestion, breathing difficulties, dyspnea, and loss of
smell (and/or taste) [3]. Easy access to COVID-19 screening

methodology can help to identify and isolate infected individ-
uals, and control the spread [4].

A. CURRENT TESTS AND LIMITATIONS
The current gold-standard in COVID-19 diagnosis is the
reverse transcription polymerase chain reaction (RT-PCR)
assay [5]. However, this diagnosis methodology has four
major limitations, namely, i) the high cost, ii) need for
expert supervision, iii) longer turnaround time for results,
and iv) lack of physical distancing during sample collection.
A widely used alternative to RT-PCR testing is the rapid
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antigen testing (RAT) methodology [6]. The sensitivity, at the
predefined specificity, is lower compared to the RT-PCR
test [7]. While the CT imaging is also useful for COVID
diagnosis [8], it requires expensive machinery, and exposes
the body to harmful radiations. In summary, there is a need
to invent alternative testing methodologies which provide
improvement with respect to time, cost, physical distancing
and detection performance [9].

B. ACOUSTICS FOR RESPIRATORY DIAGNOSTICS
For the identification of respiratory disorders, listening to the
acoustic signatures using a sound amplifier placed on the
chest was formalized by Laennec [10] as early as 1819. Sev-
eral studies have shown the presence of wheezing and crack-
ling sounds to indicate severity of asthma and pulmonary
fibrosis, respectively [11]. The cough engages high velocity
airflow to clear the respiratory pathways from secretions such
as mucus, and foreign particles [12]. Analysis of cough sound
recordings has gained considerable interest [13]. Studies have
shown effectiveness in the detection of pertussis [14], tuber-
culosis [15], pneumonia [16], wet versus dry cough [17], and
asthma [18]. The pulmonary disorders can also limit vital
lung capacity, thereby inhibiting efficient speaking [19].

C. PRIOR WORK
Recently, drawn by the need to control the spread of
COVID-19, multiple respiratory acoustic datasets have been
created by different research groups. These include the
COVID-19 Sounds dataset [20] by University of Cambridge
(UK), Buenos Aires COVID-19 Cough dataset [21],
COUGHVID dataset [22] by EPFL University (Switzerland),
COVID-19 Open Cough dataset [23] by Virufy (US),
COVID-19 audio dataset by voca.ai (US) (used in [24]),
and the COVID-19 Cough dataset [25] by MIT (US). Our
group has also released an open-access COVID-19 audio and
symptoms dataset, named as the Coswara COVID-19 dataset
[26], while also organizing data challenges using the data
collected [27], [28].

Several studies have attempted a binary classification task
on these datasets to detect individuals with COVID-19 infec-
tion. These works explore acoustic feature representations
such as mel-frequency cepstral coefficients (MFCCs) [29],
mel-spectrogram [25], [30], scalograms [31], glottal flow
dynamics [32], and classifier models such as deep learn-
ing based neural networks (convolutional neural networks
(CNNs) [31], recurrent neural networks (RNNs) [33], CNN
based feature embeddings with support vector machines
(SVM) [29] and CNN based residual networks [25], [30]. The
detection performance is quantified using the area under the
receiver operating characteristics curve (AUC).

Focusing on cough sound samples, Brown et al. [29] report
an AUC of 0.82. Further, in the first Diagnosis of COVID-19
using Acoustics (DiCOVA) Challenge [34], 29 teams report
AUCbetween 0.55−0.87 on cough sound samples taken from
a subset of Coswara dataset. A few studies have also explored

using breathing [28], [29], [30] and sustained phonation of
vowel sounds [32], [35] for COVID-19 detection.

The multi-modal analysis of cough (intensity and count),
heart rate, respiratory rate, and temperature signals has
been suggested as an approach to monitor recovery [36].
Menni et. al. [37] report an AUC of 0.74 using the symptom
data while Zaobi et. al. [38] report an AUC of 0.90 with
a broader set of symptoms. Further, Han et al. [39] have
explored using symptom and voice datasets, jointly.

D. CONTRIBUTIONS
This paper makes the following contributions.

1) Multi-modal fusion: We explore COVID-19 detection
using breathing, cough, and speech sound recordings,
independently. Further, we show that a multi-modal
approach of combining symptom information with the
acoustic based classifiers results in a significant detec-
tion performance of 0.96 AUC (p < 0.0001).

2) Features and classifiers: We explore different acous-
tic feature representations namely, mel-spectrograms,
mel-frequency spectral coefficients (MFCCs), and low
level descriptors based on voicing, energy and har-
monics. On the classification front, we explore logis-
tic regression (LR), linear support vector machines
(SVMs) and long short term memory (LSTM) models.

3) Score distribution analysis:We analyze the score distri-
bution of the best classifier model using data collected
from beyond the model development stages, containing
data recorded during the surge of the Omicron variant
in India. The score analysis suggests that the proposed
approach is robust to presence of newer SARS-CoV-2
variants of concern.

E. CLINICAL IMPACT
The outbreak of COVID-19, and the resulting breakdown of
the healthcare services in several countries, has necessitated
the design of accurate, cost-effective, scalable and remote
screening methodologies. The current testing methodologies,
approved in most parts of the world, involve either a visit
to a centralized facility or require additional sophisticated
components and chemical reagents for remote testing. Fur-
ther, the cost of testing may be restrictive for wide-spread
screening. In this context, our study is placed among those,
which explore non-invasive data such as respiratory sound
samples and symptoms for respiratory health screening, with
a focus on COVID-19 detection. The study is designed in a
crowd-sourced setting, where the data is captured using the
individual’s smart phone and the diagnosis result is made
available within a minute of data collection. As the data cap-
ture is performed through the user’s own device, the testing
is remote, cost-effective and with a reduced risk of further
spread.

The paper presents the details of the data collection and
the analysis. The findings from our study demonstrate an
approach to achieve practically viable COVID-19 detection
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FIGURE 1. (a) The broad geographic distribution of subjects, (b) Percentage of subjects from India and outside, (c) age group and gender breakup.
The distribution of sub-categories within COVID and non-COVID subjects in the (d) development set, and (e) test set.

performance, by combining classifiers based on acoustic data
such as breathing, cough, and speech, along with the informa-
tion derived from the health symptom data. We also illustrate
that the results from the proposed work are superior to the
baseline systems proposed by various other research groups.
Thus, we hypothesize that the study presents a screening
solution that is deployable at population scale for quick, inex-
pensive and remote testing of COVID-19. Even though the
diagnostic performance may be inferior to the gold standard
PCR testing, the ease of using the tool encourages more
participation from the population. Further, the tool can func-
tion as a screening methodology, recommending a followup
testing with PCR for a subset of the subjects.

II. MATERIALS
A. DATASET
The dataset used in the study is a subset of the open-access
Coswara dataset1 [26]. The data collection procedure was
approved by the Institutional Human Ethics Committee, at the
Indian Institute of Science, Bangalore. The data was collected
in a crowd-sourced manner, through various collaborating
hospitals and health centers. Our team prepared a web-link2

which was shared with the volunteering subjects. The inclu-
sion criteria for participants consisted of the need to have
access to a personal smartphone, access to the internet and
ability to comprehend English or one of the 6 Indian lan-
guages in which the tool was released. Anyone below the age

1https://github.com/iiscleap/Coswara-Data
2https://coswara.iisc.ac.in

of 15 was excluded from the study, as the current study only
targeted adult population.

We focus on the analysis of three sound categories, namely,
(i) breathing-deep (or breathing), (ii) cough-heavy (or cough)
and (iii) counting-normal (or speech), and the health symp-
toms data for the task of designing COVID-19 diagnostic
solutions. An illustration of the geographic, age, and gender
distribution of subjects is shown in Figure 1(a-c). The subjects
come from several countries, with 89.3% residing in India.
A majority of the subjects fall in the 15 − 45 age group, and
are male (75.2%).We group the 1411 subjects into two pools.
The first pool is referred to as non-COVID and comprises sub-
jects which are either healthy, exposed to COVID-19 positive
patients, or have pre-existing respiratory ailments. The sec-
ond pool, referred to asCOVID, comprises subjects who have
mild, moderate, or asymptomatic COVID-19 infection. The
health status of the subject corresponds to the self-reported
health condition at the time of data collection (similar to other
studies [29]). Majority of COVID-19 positive individuals
and subjects with respiratory ailments came from hospitals
collaborating in the data collection effort. For the positive
subjects, the data was collected within 1 − 10 days from the
onset of the COVID-19 infection.

B. DATASET PARTITIONS
The subject pool of 1411 (135 COVID) subjects is divided
into 80 − 20% non-overlapping subject splits to obtain a
development set and a test set, respectively, via stratified
sampling. Both these sets contain data collected between
April-2020 and May-2021.
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1) DEVELOPMENT DATA
The development set has 1125 (105 COVID-19 positive)
subjects. The sub-category-wise distribution of the subjects
is shown in Figure 1(d). We further divide the develop-
ment set into training and validation folds using a five-
fold cross-validation setup. The cross-validation data is used
for hyper-parameter selection of the classifiers (shown in
Figure 3 and described in Section IV).

2) TEST DATA
The test set has 286 (29 COVID) subjects. The sub-category-
wise distribution of the subjects is shown in Figure 1(e).

III. METHODS
A. ACOUSTIC FEATURE REPRESENTATIONS
The Coswara data provides the sound samples as uncom-
pressed WAV format audio files. We standardize all sound
files to a sampling rate of 44.1 kHz via re-sampling, and nor-
malize the amplitude range of the audio samples (per-file) to
±1. This is followed by extraction of the following different
kinds of spectro-temporal acoustic feature representations.

1) MEL SPECTROGRAM
A spectrogram is obtained by taking the (log) magni-
tude Fourier spectrum over short-time windows. A non-
uniform frequency scale, namely the mel-scale, captures
the non-uniform spectral energy distribution in audio sig-
nals [40].We use 25msec windowswith a hop of 10msec and
64 mel-filters. This results in a 64 × Nk dimensional feature
matrix for the k th audio signal, where Nk is the number of
short-time segments.

2) MEL-FREQUENCY CEPSTRAL COEFFICIENTS (MFCCs)
The MFCCs are a reduced dimensional representation
obtained by applying the discrete cosine transform (DCT)
to each column of the mel-spectrogram matrix and retaining
only the topM coefficients [40].We chooseM as 40, resulting
in a 40 × Nk dimensional feature matrix for the k th audio
signal, where Nk is the number of short-time segments.

3) ComParE LOW-LEVEL DESCRIPTORS (LLDs)
This feature set was proposed in the INTERSPEECH 2013
Computational Paralinguistics Evaluation [41] and has been
used in speech processing, music information retrieval, and
sound analysis [42]. Here, each short-time audio segment
(25 msec) is represented by a vector comprising of energy
features (4 dimensional), voicing features (6 dimensional),
and spectral features (55 dimensional). The constituents are
described in Table 1. This feature set is a 65×Nk dimensional
feature.

4) COMPARE FUNCTIONALS
Further studies have proposed statistical quantification of
the temporal variability in the ComParE LLDs over the
total audio signal duration [41]. The resulting feature set

is referred to as the ComParE functionals. This feature set
includes the inter-quartile ranges, mean, standard deviation,
skewness, kurtosis, maximum, minimum, linear regression
coefficients, and other statistics [42]. Altogether, these cap-
ture the temporal dynamics of the LLDs and represent it as
a fixed length feature vector of 6373 dimensions. While all
previous features are frame-level features, these are file-level
features.

The same set of features are derived for the three sound cat-
egories, that is, breathing, cough and speech. Further, we also
append the successive frame-wise derivatives and double
derivatives to the spectrogram, MFCC and LLD feature sets,
respectively [40]. This allowsmodeling the temporal variabil-
ity in the features.

B. SYMPTOMS FEATURE REPRESENTATION
We represent the health symptoms of each subject using a
binary feature vector. The presence (or absence) of each of
the symptoms, namely, cough, cold, fever, loss of smell, sore
throat, diarrhea, fatigue and muscle pain, is encoded as a one
(or zero) in an 8 dimensional vector.

C. CLASSIFICATION MODELS
1) FOR ACOUSTIC FEATURES
We explore two kinds of classifiers, namely, linear and non-
linear classifiers. In the linear classifiers, we consider logistic
regression and linear support vector machines (SVM). In the
non-linear classifiers, we consider the bi-directional long
short term memory (BLSTM) neural network with inputs
being the frame-level features.

For the BLSTM, the input is fed to a stack of L BLSTM
layers with hl units followed by a pooling layer. The pooling
layer performs averaging along the time dimension to gener-
ate a sequence level embedding for the input segment. The
embedding is then fed to a linear layer with hp units followed
by a tanh non-linearity. The output is then projected to scalar
followed by a sigmoid activation that denotes the COVID
probability.

For the frame-level classifiers (LR/SVM), the classifier is
trained to predict the decision at each frame and a file-level
score is obtained by averaging the individual frame-level
scores. For the segment-level LSTM classifier, we sample
segments of size 0.5 s with 0.1 s hop size, and the classi-
fier is trained to predict segment-level scores. The average
of the scores for all the segments is used as the file-level
score.

2) FOR SYMPTOMS FEATURES
We consider a decision-tree classifier on the symptoms fea-
tures. Each node in the tree is associated with a ‘‘binary-test’’
on the value of a feature dimension and the edges drawn out
of a node correspond to the two possible outcomes of the
test. The leaf nodes are associated with a posterior probability
distribution over the classes. The Gini criterion is used [43]
to find the optimal tree structure.
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FIGURE 2. Schematic of the multi-modal approach for COVID-19
diagnostics.

TABLE 1. Description of different acoustic features used in experiments
with the LSTM model.

D. DEALING WITH CLASS IMBALANCE
The classifier models are trained using a balanced loss con-
figuration [44]. Let, Nc and Nnc be the count of COVID
and non-COVID subjects used in training, respectively. Let
r = Nc/Nnc be the class ratio. Then, the total loss is,

L =

∑
x∈c

l(x) + r
∑
x∈nc

l(x) (1)

where, x denotes the input sample, and c (nc) denotes the set
of COVID (non-COVID) samples.

FIGURE 3. The dataset modeling and analysis. The development data is
split into training and validation data, and used for five-fold validation
experiments. The test set is used for evaluating the performance metrics.
The observation set (described in Sec. IV-G) is used for score analysis.

E. PERFORMANCE METRICS
We use the area-under-the curve (AUC) measure of the
receiver operating characteristic curve (ROC) [45] as the pri-
mary performance metric. Let N̂c and N̂nc denote the count of
correctly predicted COVID and non-COVID subjects, respec-
tively. Then we have,

sensitivity =
N̂c
Nc

, specificity =
N̂nc
Nnc

(2)

We compute the ROC curve by varying the decision threshold
from 0 to 1 in steps of 10−4 and obtaining the specificity (and
sensitivity) at each of these thresholds. The AUC is computed
using the trapezoidal rule [46]. The positive predictive value
(PPV) and the negative predictive value (NPV) is,

PPV =
N̂c

Nc + (Nnc − N̂nc)
, NPV =

N̂nc
Nnc + (Nc − N̂c)

(3)

F. MULTI-MODAL FUSION
The block schematic of the multi-modal diagnostic tool pro-
posed in this work is shown in Figure 2.We explore the fusion
of predicted probability scores from the different categories
of acoustic data (cough, breathing and speech). Further,
we also explore a multi-modal approach in which the scores
from acoustic data are combined with that from symptoms
data. We use score averaging as the fusion scheme and the
final predicted score using the four modalities is computed as,

p =
(
pcough + pbreathing + pspeech + psymptoms

)
/4, (4)

where pm is the prediction score obtained for the modalitym.

G. IMPLEMENTATION
The acoustic feature extraction pipelines are implemented
using the Librosa [47], Torch-audio [48], and OpenSmile [49]
Python packages. The LR and SVM classifiers are imple-
mented using the Scikit-learn package [46] and the LSTM
is implemented3 using the Pytorch package [48].

3The code scripts used in this study is available at: https://github.
com/iiscleap/MuDiCov
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TABLE 2. Area under the ROC Curve (AUC) performance obtained with different feature and classifier combinations (along with the 95% confidence
interval in five-fold validation.).

FIGURE 4. Odds ratio of the symptoms data in the Coswara dataset.

IV. EXPERIMENTS AND RESULTS
The training, validation, and evaluation setup is illustrated
in Figure 3. A five-fold validation is used to select the
hyper-parameters, namely, λ for LR and SVM models, and
minimum number of samples in leaf nodes for the decision-
tree classifier. For LSTM, the number of hidden units hl ,
linear projection dimension hp, number of layers L and
the LSTM cell type constitute the hyper-parameter set. The
hyper-parameter setting corresponding to the best average
AUC measure over the five-folds is finally selected. These
values are provided in Table 3. Subsequently, the classifier,
with the selected hyper-parameter value, is trained on the
entire development set, and evaluated on the test set.

A. ACOUSTIC CLASSIFIERS
The performance of the three classifiers, namely, LR, Lin-
SVM, and LSTM, on different acoustic feature sets extracted
from each sound category are reported in Table 2.

FIGURE 5. Test ROCs of the individual and the fusion systems for the
LSTM classifier with mel-spectrogram features. The AUC significance was
computed using the Mann Whitney statistical test [50].

1) WITH FRAME-LEVEL FEATURES
With mel-spectrogram features, the average validation AUC
ranges from 0.54−0.75 across the different classifier models.
The LSTM model outperforms the LR and SVM models for
all three sound categories. On the test set, the LSTM model
gives an AUC in the range of 0.81 − 0.85. With MFCC
features, for all models, the average validation performance is
lower than (or similar to) that obtained with mel-spectrogram
features. With ComParE LLDs features, the average vali-
dation AUC ranges from 0.51 − 0.72. In summary, across
the three sound categories, the LSTM model gives better
performance for the majority of the features explored in this
work.
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FIGURE 6. The DeLong [51] ignificance testing between pairs of ROCs. The
significant (p < 0.05) comparisons are highlighted.

TABLE 3. Hyperparameters found from validation experiments.
ℓ2 regularizer (λ) for LR/SVM models. The LSTM model has L LSTM layers
with hl units and a linear layer with hp units.

2) WITH FILE-LEVEL FEATURES
We train and evaluate the performance of linear classifiers
with the ComParE Functionals (see Table 2). The perfor-
mance is consistently better for the breathing sound category.
The test set performance ranges from 0.73−0.79 AUC. Both
LR and SVM gave a similar performance. The validation
performance of the ComParE functionals is comparable to
the LSTM classifier trained on mel-spectrogram features,
however for the test set, the performance of LSTM classifier
trained on mel-spectrogram features (frame-level) is better
across the three sound categories.

B. SYMPTOM CLASSIFIER
Let Nc,s and Nc,ws denote the count of COVID subjects with
and without symptom s, respectively. Similarly, Nnc,s and
Nnc,ws denote the count of non-COVID subjects with and
without symptom s, respectively. Then, the odds ratio rs is

TABLE 4. Crosscorrelation coefficient between sets of test scores
obtained from sound category specific classifiers.

defined as,

rs =
Nc,s/Nnc,s
Nc,ws/Nnc,ws

(5)

Figure 4 depicts the odds ratio computed from the training set
for each of the eight symptoms. The odds ratio is higher for
fatigue, muscle pain, and loss of smell.

Figure 8 shows the decision tree classifier trained using
the symptoms features. The hyper-parameter, minimum num-
ber of leaf-nodes, is chosen using cross-validation, which is
found to be 25. The isolated symptoms of loss of smell and
fatigue are assigned probability greater than 0.9 (higher odds
ratio seen in Figure 4). The symptom of sore throat has the
smallest probability of 0.764. Overall, the model achieves a
test AUC of 0.80 (Figure 5).

C. MULTI-MODAL FUSION
We explore the possibility of fusing predictions obtained from
models associated with different acoustic categories (LSTM
classifier with mel spectrogram features) and symptoms.
Table 4 depicts the cross-correlation coefficients between
pairs of predicted test set scores, obtained from different data
modalities. The correlation coefficient is less than 0.5 for all
the pairs of modalities. The scores predicted using symptoms
have less correlation with scores from all the sound cate-
gories. The low cross-correlation suggests that score fusion
across the categories can further improve the classification
performance. Figure 5 shows the test ROCs for the individual
modalities, fusion of the acoustic categories, and the fusion
of all the four categories. The fusion of the three acous-
tic categories yields an improvement over all the individual
categories, and achieves an AUC of 0.88. The multi-modal
fusion of the four categories further improves the overall
AUC to 0.96, a significant improvement over the ROC-AUC
performance of individual modalities. We have also reported
the p-value computed using the Mann-Whitney test [50] (see
Figure 5 legend). For all the ROC curves, the AUC values are
found to be statistically significant.

We have also performed a pair-wise comparison of the
ROCs using the DeLong statistical test [51] to compute the
significance value for the observed difference in AUCs across
modalities. This is shown in Figure 6. The difference between
the pairs of single acoustic categories are not found to be
significant. The ROC obtained with a fusion of all three
sound categories (Br+Co+Sp) is found to be significantly
different (p < 0.05) from that of breathing and speech
modality. Further, the ROC obtained using a multi-modal
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FIGURE 7. Performance of the individual modalities and score fusion of multiple modalities. Here the sensitivity, Positive Predictive Value (PPV) and
Negative Predictive Value (NPV) are measured at a specificity of 95%.

FIGURE 8. Decision tree model trained on the symptoms data. The value
at the leaf node is the probability score for the COVID class.

fusion of acoustics and symptoms (Br+Co+Sp+Sy) is found
to be significantly different (p < 0.01) from all other
ROCs.

Figure 7 shows the sensitivity, positive predictive value
(PPV), and negative predictive value (NPV) measured at a
specificity of 95%, and test AUC for different modalities. The
fusion of the three acoustic categories is found to improve the
test AUC by 3% points over the best performing individual
sound category. Figure 7 also shows the performance for
fusion of symptoms and the acoustic modalities as well as
the fusion of pairs of acoustic categories. We see that fusion
with symptoms improves the performance of all the acous-
tic based classifiers. The fusion of all the four modalities
achieves the test AUC of 0.96, an absolute improvement of
8% compared to the fusion of the acoustic categories alone.
At 95% specificity, a sensitivity of 76% is achieved for the
fusion of all modalities. The corresponding PPV is 0.65, with
a NPV value of 0.97. At the operating point of 90% speci-
ficity, the sensitivity improves to 89.7% (false negative rate
of 10.3%).

Using the LSTM model, we also analyzed the variabil-
ity in the AUC performance obtained with different subsets
of acoustic features. These included the energy, spectral,

and voicing features extracted from the acoustic signals
(see Table 1). The resulting average validation and test set
performance is shown in Figure 9. For breathing modal-
ity, voicing features performed poorer than all other feature
sets. The spectral features performed similar to MFCCs and
LLDs. For cough modality, the energy features performed
poorer than all other features. Here again, the spectral fea-
tures performed similar to MFCCs and LLDs. For speech
modality, the energy features performed similar to spectral
features.

D. IMPACT OF DEMOGRAPHICS
In the dataset, a majority of subjects (89.3%) resided in
India. As India is a country with many spoken languages,
we analyzed the impact of language/dialectal variations on
the prediction scores. For this analysis, we divided the test
set from India into two groups, namely, (a) the subjects
coming from Southern India (SI) who belonged to non-Hindi
speaking region, and (b) subjects coming from the rest of
India (RI) with Hindi as their native language. For each sound
category, we compared the COVID/non-COVID population
score distribution obtained from the SI and RI partitions
using the Mann Whitney statistical test [50]. The difference
was not found to be significant (p > 0.1), suggesting that
there was no impact of language/dialectal variations within
India.

E. BIAS ANALYSIS - AGE, GENDER, AND COMORBIDITY
To understand how factors such as gender, age and comor-
bidity impact the COVID-19 score prediction, we carried
out additional analysis. We focused on comparing the dis-
tributional similarity of the predicted COVID-19 score for
different sub-populations of subjects in the test set. The
sub-populations were created by grouping together subjects
based on comorbidity (presence or absence), gender (male or
female), and age (< or≥ 40 years). Using the collected health
data, a subject with diabetes, hypertension, ischemic heart
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FIGURE 9. Performance of the acoustic fusion LSTM classifier trained with different features. A description of these features is provided in Table 1.

TABLE 5. Bias analysis by comparing the probability distributions of
population subgroups. Orig. refers to the original model (fusion), and
Bal . refers to the model trained with gender balancing. Here, s.
corresponds to statistically significant bias, while n.s. refers to
non-significant bias.

disease, or any other pre-existing ailments was considered to
have a comorbidity. The Mann-Whitney U test [50] was used
to statistically compare the COVID-19 score distributions of
sub-population with the COVID–19 scores for the full test set
subject population. The results showed no significant impact
of age and comorbidity. A significant bias based on gender
was found in this analysis. A summary of p-values obtained
from the statistical test is provided in Table 5. To overcome
the gender bias in the results, we experimented with bal-
ancing the gender ratio in the training data by oversampling
and re-trained the acoustic classifier models. This system,
referred to as balanced in Table 5, did not contain significant
bias related to the factors of gender, age, or comorbidity.
Further, the gender balancing of the training data achieved
the same overall AUC results of the original system.

F. COMPARISON WITH PRIOR WORK
We compared the performance of the proposed multi-modal
approach with (i, ii) the approaches in [29] and [30] which
use the breathing and cough modalities and (iii) the approach
in [39] using speech and symptoms. We implemented the
classification models used in [29], [30], and [39], and evalu-
ated the performance on the dataset used in our present study.
For the works by Brown et. al. [29], and Coppock et. al. [30]
we used the codes made available by the authors.4,5 Table 6
reports these results. The performance of the approaches

4https://github.com/cam-mobsys/covid19-sounds-kdd20
5https://github.com/glam-imperial/CIdeR

TABLE 6. Comparison of AUCs % obtained on Test Set using methods in
prior works and method proposed in our work.

in [29] and [30] is poor compared to the proposed approach.
However, the approach of [39], which uses a 384 dimensional
subset of the ComParE functional features, is comparable to
the current work for the speech category. The performance
of the SVM classifier for the symptom features is better
than the decision tree classifier. But the performance of the
score fusion system is found to be inferior to the proposed
approach.

G. GENERALIZABILITY ANALYSIS
To understand the generalizability of the developed model to
data collected subsequent to the model development, we ana-
lyzed additional data collected from May-2021 to Feb-2021
in the Coswara dataset. During this timeline there was a
spread of newer SARS-CoV-2 variants, such as Delta and
Omicron.

1) OBSERVATION SET-1
The Observation Set-1 is contains data collected from sub-
jects between 08-May-2021 and 30-Nov-2021 as well as the
data from recovered subjects. There are a total of 464 (243
COVID) subjects. The category-wise distribution of subjects
is shown in Figure 10(a).

2) OBSERVATION SET-2
The Observation Set-2 data, collected between 01-Dec-2021
and 28-Feb-2022, contains data from 410 (241 COVID) sub-
jects. This data was collected during the surge of the SARS-
Cov-2 Omicron variant in India [52]. The category-wise
distribution of subjects is shown in Figure 10(b). Thus, this
set provides a platform for testing the generalizability of the
models to newer variants.
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FIGURE 10. (a,b) Two different observation sets collected between 08-May-2021 and 30-Nov-2021 and between 01-Dec-2021 and 28-Feb-2022,
respectively, (c) A box plot illustration of COVID probability score distribution for the samples in the two different observation sets. The COVID probability
scores are obtained using the acoustic fusion LSTM classifier model. For each subject category, we did a Mann Whitney statistical test between scores for
participants from Obs. Set-1 and that from Obs. Set-2. None of the pairs, except the exposed category, showed statistical significance (p < 0.05) between
the score distributions from the two observation sets. The horizontal dashed line indicates the decision threshold for 95% specificity on the test set.

We use the acoustic fusion of the LSTM classifiers with
the symptom classifier for the analysis on the observation
sets. The performance results on the two observation sets
are reported in Table 7. As seen in this table, the AUC
results generalize well to these observation sets, even though
the model was trained on data prior to this data collection
period and the COVID prevalence is different. We analyze
the score distributions (Figure 10 (c)). Each (vertical) box
represents 25% (lower edge) and 75% percentile (upper edge)
cut-offs, and the notch represents the median value. The
two whiskers correspond to the minimum and maximum
scores after outlier rejection. We also depict the operating
threshold corresponding to the 95% specificity operating
point. The distributions corresponding to the non-COVID
subject category are further broken down into healthy, res-
piratory ailments (Resp. Ail), exposed, and recovered sub-
categories. The distribution corresponding to the COVID
category is broken down into asymptomatic, mild and mod-
erate subject sub-categories. The score distribution for the
healthy subjects is well below the threshold. The scores of
the subjects with pre-existing respiratory ailments shows an
upward trend, indicating the likelihood of more false-alarms
for such subjects. The score distribution of the subjects who
are exposed to COVID patients in observation set-II shows a
higher median shift indicating that many of the participants
may have been infected, although they were not diagnosed at
the time of data collection. A larger spread in range of score
is also observed for the subjects who have recovered from
COVID (at least 10 days after the onset of the infection), indi-
cating that the respiratory system may not have completely
returned to the healthy state.

TABLE 7. Performance on the Observation set-I, set-II. The senstivity, PPV
and NPV values are measured at 95% specificity.

For the asymptomatic COVID subjects, more than 50%
of the asymptomatic subjects are correctly classified by
the fusion system. Further, the score distributions obtained
for Observation Set-1 (pre-Omicron) and Observation Set-2
(Omicron) had no statistically significant difference, except
for the exposed condition. This suggests that the model may
be robust to the newer variants of the SARS-Cov-2 variants.
A recent work also explored the possibility of detecting the
variants of COVID-19 from audio data [53].

V. DISCUSSION
Comparison With Prior Studies [29], [30], [39]:Many of the
past studies were relatively small scale studies (62 COVID
positive subjects in [30], 141 positive subjects in [39] and 235
COVID positive subjects in [30]), while our study involved
625 COVID-19 positive subjects. The works reported in [29],
[30] had collected only two modalities of audio, namely
cough and breathing. In these studies, there was no validation
of the COVID positive labels as they were collected in a truly
crowd-sourced manner. The best models achieved an AUC of
0.79 [39], 0.80 [29] and 0.84 [30] in these studies.
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In our proposed study, 9 variants of audio-based data are
collected, including 2 types of cough, 2 types of breathing,
3 vowel sounds and 2 types of counting speech. The study also
collected a rich set of meta-data including pre-existing condi-
tions, comorbidity, current symptoms, vaccination status and
demographic information. The data from COVID-19 positive
subjects and a subset of the non-COVID subjects came from
hospitals and healthcare centers, where the positive status
was ascertained with an RT-PCR test. Our proposed study
details various feature and classifier choices to identify the
best set of features, models and parameters. A large held-
out observation set is used for score analysis which reflects
novel data recorded after the analysis. In these observations
sets, the proposed models are seen to generalize well and also
generate score distributions that interpretable. More efforts in
improving the interpretability of COVID-19 detection using
audio can be found in [54] and [55].

In contrast with prior works, our work is the first of its
kind to analyze the model performance on subjects who
are exposed to COVID-19 (but not tested positive), sub-
jects with pre-existing respiratory ailments, subjects who
had recovered from COVID-19 and differentiate this with
asymptomatic/symptomatic COVID-19 subjects (Figure 10).
Furthermore, all the data used and models developed have
been released as open-source, which was not the case in many
of the previous studies.

VI. CONCLUSION
We proposed, designed and evaluated a COVID-19 diag-
nostic approach based on using multi-modal data of acous-
tics and symptoms. The presented study used data from
the Coswara dataset, an open-access dataset. This dataset
contains sound samples and symptoms data collected from
human subjects, with and without COVID-19 infection.
We explored the use of different modalities, namely, breath-
ing, cough, speech, and symptoms for COVID-19 predic-
tion. This included experimentation with different kinds of
acoustic feature representations, and classifier models. It was
found that the LSTMmodel, operating at frame-level, trained
with mel-spectrogram acoustic features outperformed other
model and feature combinations. Further, we found that sim-
ple prediction score averaging to fuse information obtained
from models trained on individual modalities significantly
outperformed the rest. The fusion system achieves 76%
sensitivity at 95% specificity. We also analyzed the score
distribution obtained on recently collected data, associated
with newer SARS-CoV-2 variants causing COVID-19. The
analysis highlighted the robustness of the proposed approach.
In summary, the paper proposes a methodology for rapid,
cost-effective, and scalable screening tool for COVID-19.
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