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Fractionalized holes in one-dimensional Z, gauge theory coupled to fermion matter:
Deconfined dynamics and emergent integrability
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We investigate the interplay of quantum one-dimensional discrete Z, gauge fields and fermion matter near
full filling in terms of deconfined fractionalized hole excitations that constitute mobile domain walls between
vacua that break spontaneously translation symmetry. In the limit of strong string tension, we uncover emergent
integrable correlated hopping dynamics of holes which is complementary to the constrained XXZ description in
terms of bosonic dimers. We analyze numerically quantum dynamics of spreading of an isolated hole together
with the associated time evolution of entanglement and provide analytical understanding of its salient features.
We also study the model enriched with a short-range interaction and clarify the nature of the resulting ground
state at low filling of holes and identify deconfined hole excitations near the hole filling v" = 1/3.
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I. INTRODUCTION

Identifying the origin of a linear attractive potential
between charges mediated by gauge fields, known as confine-
ment, and studying its consequences has been a long-standing
challenge in nuclear, high-energy, and condensed-matter
physics [1-4]. Recently, consequences of confinement on real-
time quantum dynamics in spin chains and equivalent lattice
gauge theories have been studied extensively [5-23]. Generi-
cally, confinement is known to hinder quantum thermalization
and slow quantum dynamics by strongly suppressing the
spreading of quantum correlations and entanglement growth.
In the limit of strict confinement the Hilbert space can exhibit
fragmentation [22,24,25] with emergent low-energy fracton
excitations [25,26].

Here we consider one-component U (1)-symmetric quan-
tum fermion matter hopping on a one-dimensional lattice
coupled to dynamical Z, gauge fields [27-35] that mediate
attractive confining interaction between lattice fermions [36].
In this paper we draw attention to and investigate the peculiar
physics of the fractionalized holes which are domain walls
between states fully filled with fermions. Due to the presence
of the Ising gauge field, these vacua break translation sym-
metry spontaneously. Consequently, the holes are deconfined
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and interact via a long-range zigzag potential in contrast to the
confining linear interaction between the original fermions. We
study in detail the dynamics of one and two holes and provide
several independent manifestations of their deconfined nature.
In the limit of strong string tension, we find that holes become
heavy and undergo a peculiar correlated hopping of the type
studied previously in Refs. [37-42]. We uncover emergent
integrability of the slow hole dynamics in that regime and
demonstrate its equivalence to the constrained XXZ model of
Alcaraz and Bariev [43]. Moreover, following Ref. [33], we
investigate the salient consequences of additional short-range
fermion interactions in this lattice gauge theory. While for
the repulsive case these interactions can stabilize the Mott
state at the hole filling v" = 1/3, in the case of attraction
we predict the phenomenon of clustering of holes into large
conglomerates, whose hopping scales exponentially with their
length.

Our work illustrates how spontaneous breaking of transla-
tion symmetry gives rise to deconfinement of excitations in
one-dimensional systems and highlights the salient properties
of deconfined fractionalized domain walls including integra-
bility that emerges at low energies. Our predictions can be
probed in quantum simulators of Z, gauge theories coupled
to dynamical gapless matter, whose design has been recently
initiated in Refs. [28,29,44-46].

The paper is organized as follows: In Sec. II, we briefly
discuss various features of our model and show how holes
act as domain walls between vacua that spontaneously break
translational symmetry, which we argue is responsible for
deconfinement of hole excitations. We then deduce the effec-
tive Hamiltonian in the limit of strong string tension, which
we show to be integrable, in Sec. III. We perform time
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FIG. 1. Holes (fermions) in gray (red) occupy sites and interact
with the Z, gauge fields defined on links. All physical configurations
must satisfy the Gauss law.

evolution of single- and two-hole states, to support our the-
oretical argument, in Sec. IV. We then enrich the model in
Sec. V by adding a short-range interaction term to the Hamil-
tonian and investigate its main physical consequences. Finally,
we present our conclusion and highlight scope for future study
in Sec. VL.

II. DECONFINED HOLES AND THEIR INTERACTIONS

Our starting point is a one-dimensional chain with single-
component fermions ¢; living on sites and Z, Ising gauge
fields defined on links, see Fig. 1. The Hamiltonian governing
the quantum system is

H=—t Z(cj'aiil/zciﬂ +Hc)—h Zaiil/z —u anf
i i i

ey
f_

where n; = cchi. The first term couples the fermions to the Z,
gauge fields via the Ising version of the Peierls substitution
while the second term induces transitions for the gauge Ising
spins. Finally, the chemical potential term tunes the ground
state density of fermions whose total number is conserved.

The model (1) exhibits local Z, gauge invariance with gen-
erators G; = o, /2(—1)"ff 0i41/2- Choosing eigenvalues G; =
41 gives rise to independent sectors of the Hilbert space. We
shall work in the “even” sector with G; = +1 for all sites.
This choice corresponds to absence of static charges, i.e., all
Z, charges are carried by dynamical fermion matter.

On an infinite chain, we now introduce nonlocal hole cre-
ation and annihilation operators

hi=c Hafﬂ/zv hi = ] 1_[0;+1/2' @
JZi jZi

Here the semi-infinite gauge string ensures that these op-
erators are Z, gauge invariant. The holes have fermionic
statistics, satisfying the usual anticommutation relations, as
can be seen from their definition. By introducing hole number
operators nf = thh,« =1- nf we can rewrite the Z, gauge
generators in terms of holes as G; = o} | /2(—1)1"’?0&] ;2-On
a closed chain of length L, the Gauss law condition G; = 1
then ensures [ [;(—1 )”'{' = (—1)~. As aresult, on closed chains
of an even and odd length the number of holes must be even
and odd, respectively. This also implies that in a closed ge-
ometry one can add and destroy holes only in pairs, but not
individually [47]. On the other hand, on a finite open chain
which ends with links, the Gauss law does not constrain the

FIG. 2. |A), |B) represent the two hole vacua with spontaneously
broken translation symmetry. Notice how a single hole acts as a
domain wall between the two hole vacua.

total parity of holes and individual holes can be created and
removed by applying the operators (2).

On an infinite chain, our model has two degenerate hole
vacuum states which are annihilated by all /; operators. Both
of these states are completely filled with fermions, but differ
in the location of the electric strings that occur at odd and even
links, respectively [48]. The two ground states spontaneously
break translation symmetry of the Hamiltonian and holes form
domain walls between the two vacua, see Fig. 2.

Since the two ground states are degenerate in energy, do-
main walls should be deconfined. To see that explicitly, it is
possible to express the Hamiltonian (1) completely in terms of
the hole operators. On an infinite chain one finds the Hamilto-
nian to be [33]

h

H = —t Z(hih;rl +He)—h Z(—1)21‘>" = @3)

The details of the derivation can be found in Appendix A,
where we also discuss how the Hamiltonian changes on a
closed chain. The last term in the Hamiltonian mediates an
infinite-range potential between two holes. The potential has a
zigzag form which alternates between the values -2/ and O for
the odd and even distances, respectively. As a result, the two
holes are deconfined and free to spread far away from each
other in the absence of other holes. This is in stark contrast
to the original fermionic particles, which are confined due to
an attractive potential that scales linearly with distance. The
deconfined nature of holes is a consequence of spontaneous
symmetry breaking of a global symmetry, which is a generic
mechanism for fractionalization in one-dimensional systems.

One can eliminate the Z, gauge redundancy and rewrite
the model (1) in terms of gauge-invariant spin 1/2 degrees of
freedom residing on links of the lattice [31]. In this formula-
tion the Hamiltonian takes the local form

t
H= ) Z(l = Xic12Xiv3/2)Ziv12 — hZXi-H/Z, 4

where X and Z are Z, gauge-invariant Pauli operators. In
this formulation the original fermion particles are interpreted
as domain walls between X-polarized regions. The holes
thus correspond to absence of domain walls and appear on
sites surrounded by links that are in the same eigenstate of
the X operator. The hole creation operator (2) can be ex-
pressed in terms of the gauge-invariant spin operators as h:r =
_(Xifl/Z + X[+1/2)/2 l_lj;iZjJrl/z The details of the deriva-
tion can be found in Appendix B. The nonlocal character of
this mapping is a mathematical manifestation of the fraction-
alized nature of holes. Only pairs of holes can be created by
local gauge-invariant operators.
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FIG. 3. Probability distribution of ratios r of consecutive energy
differences for the Hamiltonian (5) matches well with the integrable
distribution. The average (r,,) = (min(r, 1/7)) = 0.384 is close to
the integrable value 0.386 [52]. After resolving all symmetries, ED
is implemented on a closed chain of 31 sites with 15 holes.

III. THE LIMIT OF STRONG STRING TENSION

In the limit where the string tension / is much larger than
all other energy scales in the problem, dimers of fermions
(connected with the unit length electric strings) emerge as
the relevant low-energy degrees of freedom [31]. In the hole
picture, this corresponds to the sector where consecutive holes
are always separated by odd distances.

At second order of perturbation theory in the hopping pa-
rameter ¢, the dynamics of holes in this sector is governed
by the effective Hamiltonian which becomes, as shown in
Appendix C,

Hefr = —Tlefr Z

1 —11 h,+1 +HC +Ueffzn an,

&)

with U = 12/ h = 2t.¢. We observe that in this regime holes
always hop by two sites. The factor (1 — n'*) inhibits hopping
between next-nearest sites if the intermediate site is already
occupied with a hole. This type of correlated hopping was first
investigated by Bariev [37], who demonstrated its integrable
nature; for related recent studies see Refs. [39,40,42]. In addi-
tion to the Bariev hopping, a nearest-neighbor repulsion U
is induced between the holes by the second-order perturbation
theory.

As argued above, in the strongly coupled regime holes
always hop between next-nearest-neighbor sites. Thus, on
an open chain holes hop independently on even- and odd-
numbered sublattices. This at first sight suggests that we
have two U(1) conservation laws instead of just one, namely,
Ne = icoven ' and N, = Y, ,q 1" are separately conserved
[49]. Note, however, that N, and N, are not independent. Since
in the investigated sector consecutive holes are always an
odd distance apart, the occupation of two sublattices must
be essentially the same. As a result, the two U(1) global
symmetries are intertwined and not independent.

Our numerical exact diagonalization (ED) investigation
[50,51] of energy level statistics [52,53], presented in Fig. 3,
reveals integrability of the effective Hamiltonian (5). We now
demonstrate that the Hamiltonian (5) is equivalent to the inte-
grable constrained XXZ model introduced in Ref. [43].

9:...'9 S

.

O

FIG. 4. Towards the mapping between the hole and dimer inter-
actions. On a closed chain, whenever a new nearest-neighbor pair of
holes emerges (marked in red on right), a new corresponding pair of
next-nearest-neighbor dimers appears. The dimers are highlighted in
black.

To demonstrate the mapping, we first define the dimer
creation and annihilation operators that act on links of the lat-
tice: bj+1/2 = hihipr and biy .y = —h; thH The dimers do not
behave strictly like point-like bosons because on neighboring
links they satisfy the following commutation relation:

[bi-1/2: blyy ] = —h]_ his. (6)
This commutator indicates that the Hilbert space where dimer
operators act has constraints. Indeed, since the dimers are
made of single-component fermions, no nearest-neighbor
links can be simultaneously occupied with dimers. Consider
now the correlated hopping term of holes in Eq. (5). Whenever
a hole hops by two sites, a dimer hops in the opposite direction
between neighboring links. By using the definitions above and
the commutation relation (6), it is straightforward to show that
the hopping term can be rewritten in terms of dimer opera-
tors as Hpop = —lefr y_; Py (bz+1 ,bi—ip + H.c. )P;, where P
denotes a projector that 1nh1b1ts (i) multiple dimer occupation
of any link of the lattice and (ii) simultaneous occupation of
dimers on neighboring links.

Now we turn to the nearest-neighbor interaction term be-
tween holes in the Hamiltonian (5). Can we rewrite it in terms
of the dimer operators? At first sight, it appears to be impossi-
ble because the interaction energy density that is proportional
to nh h | cannot be expressed in terms of the dimer degrees
of freedom only. Note, however, that on a closed chain the
number of the nearest-neighbor holes is complementary to
the number of the next-to-nearest dimers, see Fig. 4. Given
that, the nearest neighbor repulsion between the holes can be
rewritten as the next-nearest neighbor repulsion between the
dimers.

All together, (up to an unimportant energy shift) the corre-
lated hopping model (5) is equivalent to the constrained model
of bosonic dimers H = —f ) ; Pi [(b:fH/zbi_l/z +H.c.) —
2nP | onfys,1P1. After employing the standard relation be-
tween spin 1/2 operators and hard-core bosons, we recognize
the constrained XXZ model of [43]. As further evidence of
this equivalence, we found that the energy spectra of (5) and
the constrained XXZ chain, m; = E; — E,, where Ej is the
lowest energy eigenvalue, agreed very well numerically.

The strong string tension effective theory can also be
investigated in sectors containing dimers of nonminimal
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FIG. 5. (a) Dynamics of holes. The solid lines denote the standard deviation obtained from the ED while the dotted lines were computed
by solving numerically Eq. (7). For & = 0, we obtain an excellent agreement with (8). As 4 is increased, we observe an oscillatory behavior on
top of the overall linear growth. In the inset, the time period of the oscillations is plotted (blue dots), which decays as 4! for large h. (b) The
hole entanglement entropy under a bipartition from time-evolution block decimation (TEBD): The solid black line is the analytical result at
h = 0. The dotted line represents S = In 2. The inset shows that under rescaling time T by 7/(2h) the curves for 4 > ¢ collapse onto the one for
h = 0 as expected from arguments in the main text. (c) The density-density correlator x/' of a state with two holes localized nearby at T = 0.
When h > ¢, the holes prefer to remain an odd distance apart. In the inset we plot x//(T') for fixed ¢. The likelihood of £ = 1 progressively
decreases while that of other odd ¢’s correspondingly increase, until they saturate. ED was performed on chain with 19 sites.

length. In such sectors holes are not necessarily an
odd distance apart and the effective Hamiltonian (5)
is not valid. In the spin formulation (4), the effective
Hamiltonian applicable in all sectors has been computed
in Ref. [24]. In the rotated basis X <> Z it reads
Hett = —tefr Z,’[Zi—l/zpi—l/z,i+5/2(S,'-:_]/QS;,_3/2+ Hc)—Zi1p
Ziy12Zi+32/2], where Sil/g = (Xit12 £ i¥i412)/2 and
Pup = (1 +Z,Zg)/2 projects out states with opposite Z
eigenvalues on links « and B. In the shortest dimer sector,
this Hamiltonian reduces to the constrained XXZ model,
which as we demonstrated above is equivalent to the local
correlated-hopping hole Hamiltonian (5). Note, however,
that since the full effective spin Hamiltonian is made of
products of an odd number of spin operators, it appears that
beyond the shortest dimer sector it is impossible to rewrite
this Hamiltonian in terms of fractionalized holes in a local
form.

IV. HOLE DYNAMICS

We now turn our attention to the time evolution of a quan-
tum state in which a single hole is fully localized at site m = 0
at time 7 = 0. A general single-hole state may be written
as W) =3 ¥,h! 10) =" ¥, |m), where |0) denotes a
vacuum of holes, i.e., a state fully filled with fermions [54].
In order to follow the time evolution of this state, one needs to
solve the time-dependent Schrodinger equation, which (as we
show in Appendix D) for this case reads

laTwm = _t(wm-‘rl + wm—l) + h(l + (_1)m+l)wm9 (7)

revealing an effective zigzag potential. Consider first the case
with i = 0, where the hole is free with the dispersion relation
E (k) = —2t cos k. As aresult, the time-evolved state is simply
given by ¥, (T) = [Tk e*mdk/(2m) = J,, (%), where
Jn(x) denotes the Bessel function of the first kind and Ty =
(2t)7'. To quantify the spreading of the hole in time, we

compute the standard deviation (SD) of the hole from its

original site,
T
V2T

and the hole spreads linearly in time with the rate controlled
by the hopping parameter . Now we investigate how the
spreading of a hole is affected by a finite string tension #.
Figure 5(a) reveals that the dynamics slows down as & is
increased. Moreover, on top of the linear growth we observe
damped oscillations whose frequency increases as h grows.
Here we attempt to understand analytically the salient
features in the limit & >>¢. First, the spectrum of the
Schrodinger equation (7) forms two bands in the halved

Brillouin zone with energies E4 (k) = h & /(2t cos k) + h2.

The wave function at site n can be expressed as WV, (T) =
STk @)leg ok, m)e BT + cf g (k. n)e E+T], where
¢+ (k) are the eigenfunctions and the coefficients c,f are cho-
sen to ensure that the hole is localized at n =0 at T = 0.
In the limit of large 4, we have E_ ~ —27;’1 cos’k, EL ~
2h + 2TS_1 cos? k, where we introduced a slow time scale 7, =
h/t*. Thus, the wave function becomes W, (T) = f,(T/T;) +
e*" g (T /T,). This form makes it manifest that the rapidly
oscillating factor ¢*"7 is responsible for the oscillations ob-
served in Fig. 5(a). As a result, in the large-h regime, the time
scale of these oscillations scales as 4~!. The inset of Fig. 5(a)
confirms this prediction.

We now study the time evolution of the entanglement en-
tropy (EE) of the single-hole state investigated above under a
bipartition cut at the site, where the hole is initially localized;
refer to Appendix E for details. At time 7 = 0 we start from
a product state, so the EE is vanishing. Since the hole is a
single particle excitation, the corresponding EE is bounded by
In2 [55]. In Fig. 3(b), we present numerical results obtained
using time-evolution block decimation (TEBD) together with
the analytical prediction at & = 0, presented in Appendix E.
As expected, we find that the hole entanglement growth slows
down as h/t increases. Under rescaling time T by a factor of
t/2h the EE growth at & >t collapses to the & = 0 curve,
see inset of Fig. 5(b). This is because in the 4 > ¢ limit, the

o(T) = v{x?) — (x)?

®)
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effective model (5) describes pure hopping of a single hole
with a time scale T, = h/t?, while (3) describes a similar kind
of model with time scale Ty = (2¢)~! when & = 0. Thus, one
would expect the spread of entanglement to evolve similarly
if one rescales the time by the appropriate factor.

We next perform the ED time evolution of a pair of holes
to shed more light on their deconfined nature. We begin with
a state in which the two holes (on top of a hole vacuum)
are localized at neighboring sites initially at 7 = 0. We com-
pute the density-density correlator x) = Y, (nin} +¢)» Which
measures the likelihood of the separation between the two
holes, see Fig. 5(c). As expected, holes spread away from
each other and in the large 4 limit prefer to be an odd dis-
tance apart. In contrast, the corresponding computations of the
fermionic density-density correlator X{ = ka{ n{ 4¢) fora
pair of fermions (on top of the fermionic vacuum) reveals that
they remain closely confined together.

The above arguments illustrate the deconfined nature of the
lattice hole as a domain wall between the two vacua fully
filled with fermions. At finite density of holes, however, the
translation symmetry of the ground state is restored and lattice
holes become confined. Indeed, at & # O one observes that
the hole-hole correlation function decays exponentially. As a
result, at any finite hole filling the lattice operator creating
a hole does not coincide with the annihilation operator of
the emergent deconfined fermionic excitation of the Luttinger
liquid field theory discussed in Ref. [31].

V. SHORT-RANGE INTERACTIONS

To illustrate how new patterns of translation symmetry
breaking and deconfinement of holes can emerge at lower
fillings, we now go beyond the pure Z, gauge interactions
and enrich the model by adding a short-range density-density
nearest-neighbor interaction term [33],

How=H+V Y nlnl, 9)

where H is defined in (1). In terms of the hole operators, this
just corresponds to adding the term V' ) (1 — n?)(l — nf'H)
to the Hamiltonian (3).

In order to gain some qualitative understanding of the in-
terplay between the gauge and short-range forces, we consider
first the static regime, where the hopping ¢ is set to zero. In
this case, a bare repulsion V > 0 inhibits nearest-neighbor
occupation of holes. In the ground state, for a low filling
V" < 1/3, the holes will arrange themselves an odd [ > 2
distance apart such that unit-length electric strings connect the
complementary fermions. On the other hand, a bare attraction
V < 0 will favor a ground state in which the holes are clus-
tered together into a large conglomerate.

In order to understand the case with nonzero hopping ¢ an-
alytically, we look here at the strong tension limit 2 > |V, z.
The short-range interaction term gives rise to a simple mod-
ification of the effective interaction U.g = t2 /h— Usg+V
in the effective Hamiltonian (5). Since in the strong tension
limit |V| > tegr, Uegs, effectively the short-range interaction
imposes a constraint on the low-energy Hilbert space. In the
case of bare repulsion (V > 0) and low filling (v < 1/3),
the low-energy constraint imposed is n/n/, | = 0, so that the

effective model reduces to

Hesr = —terr y_ Palhi_jhivy +He)Po,  (10)

where P, is a projector that excludes holes from occupying
1

a distance of less than or equal to two. Precisely at v = 3
holes occupy every third lattice site, forming a Mott state
with a gap of order V. This gap was calculated with ED
as Ag(V,) = %(E,E,(:)Jrz + E,E,(:)_z - 2EZ§2)), where Ejf,(z) refers to
the ground state energy of a chain with N, holes. At fillings
away from v = % we detected no sizable energy gap above
the ground state, which is consistent with a Luttinger liquid
behavior, Fig. 6(a). On the other hand, in this regime a bare at-
traction (V < 0) that overweights the induced repulsion Ueg =
t?/h between the holes makes a ground state in which all
the holes are clustered in a single conglomerate energetically
preferable. A simple perturbative estimate suggests that the
double-site hopping of the hole cluster of size N}, is suppressed
exponentially and scales as 7.y, ~ £ /V¥~!. As a result,
clusters have the cosine dispersion E (k) = —2t, y, cos 4k,
which is indeed supported by ED, see Fig. 6(b).

To shed some light on properties of the ground state under
lattice translations, we measured the hole structure factor

L-1

S(k)y=1/L Z eMinln!,) an

JI=0

at filling v" = 1/3 with the help of ED. Our results are sum-
marized in Fig. 6(c). In the repulsive case, in addition to a
peak at vanishing momentum we observe two additional sharp
peaks at k = 27 /3 and 47 /3, consistent with translation sym-
metry breaking pattern of the Mott state described above. One
also observes that upon decreasing the repulsion, the peaks
become less sharp. For a sufficiently large attractive poten-
tial, these peaks eventually completely disappear, indicating
restoration of the translation symmetry of the ground state.

Given that the v = 1/3 Mott state breaks translational
symmetry spontaneously, additional isolated holes on top of
such a state constitute domain walls between (three) different
symmetry broken ground states. As a result, they are decon-
fined excitions with properties similar to the deconfined holes
on top of fully filled vacua discussed above.

VI. CONCLUSION AND OUTLOOK

In this paper we investigated deconfined dynamics of
one-dimensional fermionic domain walls on top of a trans-
lationally spontaneously broken ground state. While we
concentrated our discussion on the full fermionic filling here,
similar physics should emerge at the hole fillings v = 1/3
[33]and v = 1 /2 [56], where translation symmetry breaking
Mott ground states in the Ising gauge theory can be stabilized
by additional short-range repulsive interactions. Beyond the
model studied here, salient features of our findings should be
applicable to other one-dimensional (spin) chains and quasi-
one-dimensional (spin) ladders with translationally broken
ground states. For example, the soliton-induced deconfine-
ment discovered in the Z, gauge theory coupled to fermions
on the Creutz-Ising ladder [57] is rooted in translation sym-
metry breaking. Another closely related system, where this
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FIG. 6. (a) Charge gap for the model with = 1.027, h = 9.09. At the hole filling v" = 1/3 the Mott gap scales linearly with the interaction
strength V. Away from the filling v = 1/3 the gap is negligible. (b) Low-energy states of four holes for = 1, h = 10.021, and V = —1.04.

The lowest band exhibits a cosine dispersion relation E (k) = —2t, y,—4 cos 4k, with the width set by #.; y,—4

~ t4:./V3. AE refers to the width

of the lowest band, while A, refers to the energy difference between the top of the lowest band and the bottom of the next band. It is apparent
that these bands are well separated. (c) Hole structure factor at v" = 1/3. Sharp peaks around k = 2 /3 and 47 /3 indicate the formation of
a Mott solid in the repulsive regime, which disappear for V < 0, implying restoration of translational symmetry of the ground state. These
calculations were implemented on a closed chain with 24 sites, with = 1.037 and & = 10.021 using ED.

mechanism might be applicable at some special fillings, is the
theory on a triangular ladder investigated in Ref. [58]. Maybe,
in some form, ideas presented here can be extended to higher
dimensions, where deconfinement of excitations and associ-
ated topological order originate from spontaneous breaking of
higher-form symmetries [59,60].
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APPENDIX A: HAMILTONIAN IN TERMS
OF HOLE OPERATORS

Here we rewrite the Hamiltonian (1) in terms of the non-
local gauge-invariant hole creation and annihilation operators
introduced in Eq. (2).

_ First, we consider an infinite chain. Substituting ¢; =
hi 11 i a; +1,2 in the first term of the Hamiltonian (1), we get

—! Z |:hi<1_[0;+1/2>0i11/2< l_[ 0;+1/2)h§+1 + ch|

Jjzi Jj=i+1
(A1)

Since all o° operators square to one, the hopping term simpli-
fies to

M=ty (bl + hisah)). (A2)

In order to rewrite the electric term in terms of the hole
operators, we will make use of the Gauss law constraint. In
particular, we consider an infinite product of the Z, generators
on sites j > i. Given that we work in the even gauge theory,
]_[j>l. G, = 1. Except for the link i + 1/2, it is clear that there
are always two factors of o* operators acting on every link,
which just square to one. This leaves us with the identity

ol = (—1 )25 1= As a result, the electric term becomes

Hy=—hy (—D)Zm' (A3)

Then, collecting all the terms together, we end up with the
Hamiltonian presented in the main text,

H=—1Y (hhl, +He)—hY (D=7 (A4)

On a closed chain, inserting a string of Z, generators on
all the sites leads to the parity constraint P = (—1 )i |
and cannot be used to fix the electric field in terms of holes.
To circumvent this issue, we choose an arbitrary lattice site
b and assign it to be the last one in the product of the Z,
generators. We now can express the electric field on a link
as 0y = ag+l/2(—1)2b>f>f 1=, Using this identity, we end
up with the Hamiltionian

h

H=—t)Y (hhi, +Hc)—hoy , Y (—1)Zem'",

(AS)
On a closed chain individual gauge-invariant hole operators #;
and h:L are ill defined. Notwithstanding, the bilinear h,I hi,1 and
the hole occupation number 1" that appear in the Hamiltonian
are well defined and gauge invariant.

APPENDIX B: HOLE OPERATORS IN TERMS OF GAUGE
INVARIANT SPIN—-1/2 OPERATORS

We start from the definitions of the gauge-invariant Pauli
matrix operators introduced in Ref. [31],
(B1)

. X _ .~ Z
Xivi2 =031, Zit12 = —1Vi05 Vit
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where we introduced the Majorana operators y; = clT + ic;
and y; = i(ciT — ¢;). Equivalently, ¢; = (y; + i7;)/2 and ciT =
(y; — i7:)/2. In terms of the Majorana operators, (—1)”{ =
i7;v;. Then the Gauss law condition becomes iy;y; =
Xic12Xiv1,2-

Consider now the hole creation operator defined on an
infinite chain as

h = c,-]_[a;+1/2. (B2)
Jjzi
Using the definitions above, we rewrite this operator as
i+ i) 17,
W === 1wZiprien. (B3)
jZi
Rearranging the terms properly, we get

HZ_/+1/2

jzi

1 o .
B = 5 (=14 i) e Vi) (Fiayia) -
= 5(—1 — Xi—12Xi1172) Xiv1/2Xi13/2)

'sz+1/2

jzi

X (Xiy3/2Xigs2) - -

= —%(Xiq/z +Xi+1/2)1_[Zj+1/2- (B4)
J2i

Note that in going from the first line to the second line, we
used the Gauss law condition and the anticommutation of the
Majorana operators. It is straightforward to demonstrate that
the hole creation operator that we found above has the correct
commutation relation [N/, /] = —h! with the fermion par-
ticle number N = Zi(l — Xi_1/2Xi+1/2)/2. It then trivially
follows that the hole-hole correlator is

1
h,Thj = Z(Xi—l/z + Xit1/2) 1_[ Ziv12Xj—12 + Xjq12).
ki

(B5)
APPENDIX C: EFFECTIVE HAMILTONIAN
AT SECOND ORDER

We set up the perturbation theory as follows. The degener-
ate space is defined by the Hamiltonian

Hy = =i}y (= DXemi), (@)

while the perturbing Hamiltonian is

V=—tY hfhi1+Hec (C2)

We use the Schrieffer-Wolff transformation [61,62] to ob-
tain the second-order effective Hamiltonian

H) = ([S“),V]+%{S(”,[S(”,Ho]}>73, (C3)

where P is the projector into the degenerate manifold and SV
satisfies [S(V, Hy] = —V, from which it follows that
(o] V]o')

S g"y = . C4
WIS = G — @ H oy P

(a) () & o—eo—e ‘e 50— -0
(i) O O—@— & ® 50 O0—e
L ey )()
(b) @----- ro TTTIT @——@ - @ (oTITE o——@

FIG. 7. Second-order processes. (a)(i) demonstrates the induced
hopping, while (a)(ii) displays the processes that lower the energy of
the hole by ¢2/h. (b) The crossed out lines indicate blocked virtual
processes. As a result, the hole on the right of the pair cannot hop to
the left over the left hole (and vice versa). This blockade also implies
that two out of four processes of type (a)(ii) for two consecutive holes
are forbidden. This is the origin of the second-order nearest-neighbor
repulsion term in the effective Hamiltonian.

Substituting these into the above equation, we get (with D
denoting the degenerate subspace)

(@|V]e") (" VIc")

Hgf)_ Z Z " (G/l
22 T Gy lo) — (o THy Io7)
(C5a)
= —i (hT (1 —n;-l)hi+1 +HC Z”lh h .
2h i i—1 i H~1
(C5b)

The second-order processes contributing to the effective
Hamiltonian are shown in Fig. 7.

APPENDIX D: SINGLE HOLE DYNAMICS

Consider a general single hole state
= Ul 0) =Y Y Im), (D1)

where |0) denotes the hole vacuum. First, it is straightforward
to act with the kinetic term H, = —t¢ Zj(hjl»hj+1 + H.c.) on
this state:

Hi W) = —t Zlﬁm(lm — D+ im+1))

=—1) W1+ Vn1) Im). (D2)

m

Now we turn to the electric term of the Hamiltonian H;, =
—h Y (—=1)X 1= Firstly, using the identity (—1)” = (1 —
2P), where P is any idempotent operator (i.e., P2 =P), we
have the following equality:

—TT(1—20-n)) =[] - 1),

i>j i>j
(D3)
where the product follows from the fact that the number oper-
ators at different sites commute with each other. We can now
check the action of H,, |V) of the single hole state (D1). For

(_1 )Zb/-(l—nf?)
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this, first note that nflni’ |m) = 0 if i # j. Thus, in the single
hole sector we can drop all nonlinear terms, i.e.,

[J@nl=1) = (D7 +2(=D" ") nl.

i>j i>J

(D4)

—h
_Mj

Without loss of generality, from here on we take L to be even.
The first term is independent of the position m of the hole
and alternates its sign as one changes the index j. Thus on
an even-length chain, the contribution of this term can be
ignored. Moreover, note now that

Jj=m,
j<m.

0
Mjlm) = {<—1>Lf1 m) (3)

Thus, we end up with the following equality:

) 1 -1 m—mp+1
Sty = Y gy =~ ),
J

, 2
j<m
(Do)
where my is the label of the first site.
Hence, the complete action of the electric term is
Hp |W) = h(1+ (=1 Y, |m) . (D7)

Putting everything together, we find that the time-dependent
single-particle Schrodinger equation that governs the dynam-
ics of the single hole sector is

07 Ym = —t(Ys1 + Y1) + AL+ (1" ]y, (DY)

APPENDIX E: SINGLE HOLE
ENTANGLEMENT ENTROPY

We work in the gauge-invariant formulation developed in
Ref. [31], where the physical spin 1/2 degrees of freedom live
on links of the lattice. We consider an infinite chain which is
partitioned in the middle, at the site labeled i = 0. We will
denote the left and right parts by “L” and “R,” respectively. At
T = 0, the hole is initially completely localized at the site i =
0. The corresponding initial quantum product state, denoted
by |0) = |0).|0)g, is formed by two antiferromagnetic semi-
infinite domains, see Fig. 8. We assume that |0) is normalized,
Le., 1 (0[0), =& (0|0} = 1.

The time-evolved state can be written as

IW(T)) = Yo(T)[0), [0)g + 1) 0)g +10), [1)g ., (ED)

where |1); g, denotes the quantum state where the hole is
entirely localized on the left (right) side, respectively. In
terms of |m) = hL|O) defined in the previous subsection,

|O> . Partition |O> "

FIG. 8. Bipartition of the chain. We make a cut at the site i = 0
where the hole is initially fully localized. In the gauge-invariant spin
formulation, the |0),, refers to the left (right) antiferromagnetic
semi-infinite domain. Up and down arrows denote the two eigen-
vectors of the gauge-invariant X operators that act on the links of the
lattice.

we have
Dy =Y M) i), (E2a)
i<0
g =Y WD) i) (E2b)

i>0
Now, by construction, 7 (1|0); = g (1]/0)z = 0. Introduc-
ing

LU =Y Wil =pr. r(De= Y [Wil* = pr.

i<0 i>0
(E3)
we define the following normalized states:
1 1
Iy =—=Iy, INhg= Dk - (E4)
L N L R N R

We can now compute the reduced density matrix
pr = trg [W(T)) (W(T)|
= (pr+ %0l 10), (O, + pr 1)y, (1, +/PL(o [0), (I,
+ Y5 ) O01L). (ES)

Using pg = pr = p (from symmetry), po = |¥|*, and 2p +
po = 1, we can write down the reduced density matrix in the
matrix form

pL= ( R ) (E6)
Vo S
We can then easily see that
S(T)=—Xx_logh_ —AlogAy, ET

where Ay = [1 & /po(2 — po)]/2 are the eigenvalues of the
density matrix (E6). For & = 0, the hole wave function ;(T)

was computed in the main text. The resulting probability at
site i =0 is pp = Jg(T /Tp). Substituting this into the entan-
glement entropy (E7), one gets an analytic expression, which
is compared with the data obtained from the TEBD evolution,
as shown in Fig. 5 in the main text. Note that as T < T, one
finds S(T') ~ (T /Ty)* log(T /Ty) at h = 0.
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