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Abstract: Orchids, with their astonishingly stunning flowers, dominate the international floricultural
market. They are considered prized assets for commercial applications in pharmaceutical and flori-
cultural industries as they possess high therapeutic properties and superior ornamental values. The
alarming depletion of orchid resources due to excessive unregulated commercial collection and mass
habitat destruction makes orchid conservation measures an extreme priority. Conventional propaga-
tion methods cannot produce adequate number of orchids, which would meet the requirement of
these ornamental plants for commercial and conservational purposes. In vitro orchid propagation
using semi-solid media offers an outstanding prospect of rapidly producing quality plants on a large
scale. However, the semi-solid (SS) system has shortcomings with low multiplication rates and high
production costs. Orchid micropropagation using a temporary immersion system (TIS) overcomes the
limitations of the SS system by reducing production costs and making scaleup and full automation
possible for mass plant production. The current review highlights different aspects of in vitro orchid
propagation using SS and TIS and their benefits and drawbacks on rapid plant generation.

Keywords: orchids; micropropagation; explants; semi-solid media; temporary immersion system;
conservation

1. Introduction

Orchids are amazingly stunning ornamental plants belonging to the Orchidaceae
family, comprising 30,000–35,000 species, numerous hybrids, and varieties [1–3]. Most
orchids carry a high price in the international floriculture market as they have great flori-
cultural appeal with their diversely colored attractive flowers having varied fragrances,
shapes, and sizes [4–6]. Orchids also possess good therapeutic properties despite their
outstanding ornamental values due to the rich contents of beneficial phytochemicals [7,8].
The therapeutic applications of orchids are found in various traditional medicinal systems,
including Ayurveda [9,10]. The high ornamental and therapeutical values of orchids make
them a prized asset for commercial application in the floriculture and pharmaceutical
industries [11]. However, the orchid population witnessed a profound reduction in their
natural habitats primarily due to unregulated commercial collection, deforestation, and
massive habitat destruction [12]. The alarming orchid population decline warranted the
whole family to be covered under Appendix-II of the Convention on International Trade in
Endangered Species of Wild Fauna and Flora (CITES) [13,14]. They are also among the most
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threatened taxonomic groups [15], with more than 600 orchid species enlisted as threatened
in the Red List of the International Union for the Conservation of Nature [16]. Commercial
orchid production through conventional propagation is not always effective as it is slow,
time-consuming, and labor-intensive [2]. Furthermore, propagation through the seed cul-
ture method has serious drawbacks as the numerous light tiny exalbuminous seeds have a
very low germination rate (0.2 to 0.3%) in nature due to the lack of functional endosperms
and the necessity of suitable mycorrhizal fungal association [17–19]. The shortcomings of
conventional orchid propagation methods can be prevailed by using plant tissue culture
techniques to produce plants rapidly on a commercial scale. Several orchids have been
micropropagated successfully on the semi-solid (SS) media supplemented with various
plant growth regulator combinations and concentrations using different explants [20–25].
However, the traditional SS culture system for orchid propagation is filled with limitations
of low multiplication rate, high production cost, and the associated problem of stem and
root hyperhydricity [26,27]. Application of a temporary immersion system (TIS) can signif-
icantly reduce production costs, making it economically viable by allowing scaleup and
full automation and eliminating inherent plant physiological problems associated with SS
and continuous liquid culture systems [28,29]. TIS has been employed to propagate orchid
species using different media, growth regulators, and explants [30–33]. The present review
paper emphasizes different aspects of in vitro orchid propagation, conventional SS and TIS,
benefits and weaknesses, and their applications for efficient large-scale plant production.

2. Orchid Micropropagation Using Semi-Solid Media

The semi-solid culture (SS) system, which uses agar-gelled media, has been employed
for the successful micropropagation of several orchids [34–38]. Micropropagation using
a SS medium has several advantages over conventional orchid propagation methods,
which are plagued with several limitations of being slow, labor-intensive, and highly time-
consuming [39]. The techniques offer the prospect of multiplying genetically identical
plants on a large scale quickly using small plant parts as explants without sacrificing the
mother plants. Moreover, mass multiplication of disease-free plants can be performed in
a small space independent of the seasonal cycle [21]. Transportation and export of small
micropropagated plants are also convenient as they can be easily packed and have no quar-
antine problems as they are clean, healthy, and pathogen-free [39]. The success of orchid
micropropagation depends mainly on the choice of appropriate culture media, as they
provide essential nutrients for the in vitro growth of the plants [40]. Murashige and Skoog
(MS) [41], Mitra (M) [42], Knudson C (KC) [43], and Vacin and Went (VC) [44] are widely
used culture media for in vitro orchid propagation. The media contain macro and micronu-
trients, which are critical factors determining the success of in vitro orchid culture [45].
They differ in their composition of macro and micronutrients. Ammonium is present in
higher amounts as ammonium nitrate in MS compared to KC and VW medium, where
it exists as ammonium sulfate. VW and KC have more potassium phosphate monobasic
content though the composition of potassium nitrate is lower than in MS medium [46].
MS and KC media have been extensively used for efficient seed germination and in vitro
propagation of several orchids [47–50]. VC medium, on the other hand, has been mainly
utilized for the proliferation of protocorm-like bodies, which helped in the orchid clonal
multiplication on a large scale [51]. Modification of culture media is made by variation in
the concentration of nutrient components and integrating organic additives like coconut
water (CW) and potato extract to suit the requirement of a particular species. The addition
of organic supplements in the culture media had a promotory effect on in vitro seed germi-
nation and culture growth in some orchids [52–54]. Incorporating plant growth regulators
is vital for the success of orchid micropropagation as they enhance culture growth with
cytokinins promoting shoot initiation, proliferation, and plant regeneration and auxins ac-
celerating root induction and multiplication [55,56]. Plant growth regulators may improve
tissue development but show adverse effects at particular elevated concentration. The
embryo formation from leaf explants was delayed at high auxin concentration (3 mg L−1)
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in Oncidium ‘Gower Ramsey’ [57]. Tikendra et al. [58] also detected somaclonal variation in
micropropagated Dendrobium fimbriatum propagated under high cytokinin concentration
(4.8 mg L−1).

2.1. Micropropagation Employing Different Explants

Different explants, such as seeds, shoot, root and leaf apex, nodal segments, rhizome,
pseudobulb, and inflorescences, have been used commonly to micropropagate different
orchids [2,18,20,26,39,40]. The selection of the right explant type is critical as its response
to cultural conditions is crucial for successful orchid micropropagation [59]. The juvenile
state [60], size, position, orientation [61], and collection season [62] of the explants are
vital for their responsive nature. Kaur and Bhutani [60] also stated the favorability of
young tissues of explants over mature ones as they possess high regeneration capability.
Explants established from in vitro-raised plants are preferred over those derived from
in vivo plants as they are not contaminated and have more significant differentiation
potential [56].

Orchid seeds germinate very poorly in nature due to their small, light, and exalbu-
minous seeds, which require symbiotic association with mycorrhizal fungi [63]. Ever since
successful in vitro asymbiotic seed germination was performed on KC medium [64], there
have been several reports on orchid micropropagation using seed explants [54,65–70]. The
germinated seeds swell, forming round-shaped protocorms that differentiate into shoots
and roots, subsequently developing into seedlings with leaves and roots (Figure 1). Srivas-
tava et al. [71] reported the best germination (89.28 ± 3.42%) of Aerides ringens seeds on KC
medium augmented with 4.44 µM 6-benzylaminopurine (BAP) and 500 mg L−1 peptone,
while Rodrigues et al. [67] observed 100% seed germination of Cyrtopodium saintlegerianum
on KC medium incorporated with 3 g L−1 activated charcoal (AC). Whereas Wu et al. [72]
demonstrated high seed germination (93%) of Renanthera imschootiana on 1

4 MS medium
supplemented with 0.5 mg L−1 1-naphthalene acetic acid (NAA), 20% CW, 1.0 g L−1 pep-
tone, 10 g mL−1 sucrose, and 1.0 g mL−1 AC, the maximum seed germination response of
Caladenia latifolia was witnessed on 1

2 MS with 5% CW. Nongdam and Chongtham [47] also
noticed the highest seed germination of Cymbidium dayanum on M medium fortified with
0.7 mg L−1 NAA.

Wimber [73] was the first to use leaf segments successfully for in vitro orchid propaga-
tion. The leaf culture in monopodial orchids is beneficial as no mother plant is sacrificed,
and the explants are available throughout the season [74]. Chookoh et al. [75] showed
only the inner expanding leaves of Tolumnia Snow Fairy producing protocorm-like bodies
(PLBs) on MS medium augmented with 4 mg L−1 BA and 0.5 mg L−1 NAA, while outer
leaves showed no in vitro growth response. Pathak et al. [76] observed the maximum
regeneration potential of the whole leaf segments (0.5–1 cm long) when inoculated on
Mitra (M) medium fortified with 5 mg L−1 kinetin (KN) producing maximum plantlets (25).
Decruse and Gangaprasad [77] found the in vitro seedling-derived leaves of Smithsonia
maculate producing shoots prominently in Woody Plant Medium (WPM) augmented with
10 mg L−1 BAP and 1 mg L−1 indole-3-acetic acid (IAA). Manokari et al. [25] observed
leaf explants of Vanilla planifolia inducing direct somatic embryogenesis (92.0%) on MS
supplemented with 1.0 mg L−1 BAP, 1.0 mg L−1 KN, and 2.5 mg L−1 silver nitrate (SN)
generating maximum somatic embryos (30.0 per explant).

Morel [78] employed apical meristem for the first time to propagate Cymbidium success-
fully. Since then, many orchids have been micropropagated using shoot tip explants [79–82].
Priyakumari et al. [83] found 1

2 MS medium enriched with 4 mg L−1 BA favorable for early
bud break of shoot tip explants of Dendrobium Sonia “Earsakul” producing maximum
shoots (4.66) on medium incorporated with 2.0 mg L−1 KN and 0.1 mg L−1 NAA. The bi-
sected shoot tips of the Phalaenopsis hybrid were most suited for producing PLBs and tissue
multiplication on MS medium supplemented with varying concentrations of thidiazuron
(TDZ) [84]. Winarto and Samijan [85] witnessed maximum axillary shoot proliferation
(7.0 shoots per explant, 1.0 cm shoot height, and 9.8 leaves per explant) on MS appended
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with 1.5 mg L−1 BAP and 0.25 mg L−1 NAA, while root production was higher on medium
containing 150 mL L−1 CW. Pant and Thapa [86], while using the shoot tips of Dendrobium
primulinum, obtained the highest rootless healthy shoots (4.5 shoots per culture) on MS
medium augmented with 1.5 mg L−1 BAP, while the best root formation was achieved on
medium with 5 mg L−1 IAA.
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Figure 1. Micropropagation of Cymbidium bicolor on semi-solid (SS) medium using seeds. (a) Cap-
sule as seed explant source. (b) Germinated seeds developing into spherical protocorms. (c) Shoot 
initiation from protocorms. (d) In vitro shoot growth and proliferation. (e,f) Root development and 
multiplication. (g) Well grown plantlets appropriate for hardening. (h) Acclimatization and hard-
ening of in vitro propagated orchids. 
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Figure 1. Micropropagation of Cymbidium bicolor on semi-solid (SS) medium using seeds. (a) Capsule
as seed explant source. (b) Germinated seeds developing into spherical protocorms. (c) Shoot
initiation from protocorms. (d) In vitro shoot growth and proliferation. (e,f) Root development
and multiplication. (g) Well grown plantlets appropriate for hardening. (h) Acclimatization and
hardening of in vitro propagated orchids.

Kerbauy [87] used root tips of Catasetum to generate PLBs directly without forming
calli on MS medium. Organic additives such as bacto-peptone and AC enhanced PLBs
formation though larger explant dimension reduced PLBs regeneration. Sharma [88]
found the proximal region of the root segment of Rhynchostylis retusa involved in the
highest plant regeneration (31%) on M medium fortified with 3 mg L−1 KN and 1 mg L−1

NAA, forming 28 plantlets in 15 weeks. Verma and Pathak [89] showed that 100% of the
root explants of Cymbidium aloifolium responded to M medium with 3 mg L−1 NAA form-
ing healthy plantlets via shoot bud formation in 55 days of culture. Picolotto et al. [90]
found root explants of Cyrtopodium paludicolum differentiating proficiently into shoots
and roots through intervening PLBs formation on KC medium supplemented with
1.34 µM NAA and 2.27 µM TDZ. However, the absence of NAA caused PLBs formation
to fail, demonstrating the synergistic effect of both NAA and TDZ. A brief account of the
recent works on orchid micropropagation using different explants in the last four years
is presented in Table 1.

2.2. Limitations of SS and Liquid Culture

The SS system has been employed for the successful micropropagation of several
orchids [12,18–20,25,34,48,61,69]. However, there are many limitations to using the SS
system for traditional in vitro plant propagation. The production cost using this method is
high with the necessity of buying a massive number of small to medium size culture vessels
apart from more than 40–60% of the cost attributed to labor charges and loss of plants
during the acclimatization due to stem and root hyperhydricity [26,91–93]. The method
is highly labor-intensive, requiring cleaning and filling of many containers during media
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preparation for frequent plant subcultures to avoid nutrient exhaustion from continuous
culture growth in small containers [94–96]. SS medium with a gelling agent also makes the
scaleup and full automation of the culture system difficult. Other alternatives for plant
propagation have been attempted using liquid culture. The liquid culture system offers
several advantages of reducing labor and production costs by significantly lowering the
subculture time using bigger containers and avoiding frequent culture vessel changes
during media recharging. It also provides uniform controllable culture conditions with the
possibility of scaleup and complete automation of the culture system [95].

Using liquid culture in the bioreactor system is one of the most cost-effective and
efficient ways of in vitro plant propagation on a large scale by lowering production costs
by more than 40% [97]. The liquid medium allows the plant tissues to have better contact
for nutrient absorption enabling better culture growth and development [98]. However, the
continuous submersion of plants under the liquid medium in a complete immersion biore-
actor system produces unwanted hyperhydricity and asphyxia, undermining normal plant
development [99]. Asphyxia is an unwanted physiological condition caused to plants due
to low oxygen supply producing malformation in plants by affecting normal growth [100].
Hyperhydricity refers to the phenomenon of surplus accumulation of water in plants re-
sulting in a glassy appearance due to the development of translucent, wrinkled, and brittle
leaves with reduced chlorophyll content and abnormal chloroplast development [101,102].
Due to the aberrant leaf anatomy of hyperhydricity-affected plants, the success rate for
their proper acclimatization in the greenhouse is usually low, leading to high losses in
commercial plant propagation [95].
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Table 1. Orchid micropropagation on semi-solid (SS) medium using different explants in the last four years.

Name of the Species Different Explants Used Culture Conditions and Growth Hormone Combinations and Concentrations Generating
Optimum Culture Response References

Anacamptis pyramidalis (L.) Rich. and
Gymnadenia
conopsea (L.) R. Br.

Seeds

Malmgren (MM) medium in complete darkness accelerated in vitro seed germination in both the
orchids. MM + CW produced the highest germination (69–88%) in A. pyramidalis, but the maximum
morphometric values of height (1.10 mm), width (1.00 mm), and bud height (0.57 mm) were obtained
on MM + PE (peptone). MM + 0.3 mg L−1 2iP gave the best plant development response in
G. conopsea (plant height—5.33 mm; root number—1.13; root length—12.26 mm).

[54]

Aerides multiflora
Roxb.

Nodal and leaf segments from
in vitro developed seedlings

Shoot bud number from nodal explant was maximum (8.83 ± 0.45/segment) in MS + 1.0 mg L−1

NAA + 2.0 mg L−1 BAP. Longest shoot bud was obtained in MS + 1.0 mg L−1 NAA + 1.0 mg L−1 BAP.
Root proliferation and development were superior in MS + 1.0 mg L−1 IBA. PLBs formation from the
leaf explant was best in MS + 1.0 mg L−1 IAA + 2.0 mg L−1 BAP. The longest length (4.17 ± 0.13 cm)
of individual shoot buds/PLBs after 30 days of culture was recorded in
PM + 2% (w/v) sucrose + 0.5 mg L−1 NAA + 1.0 mg L−1 BAP.

[103]

Brassavola nodosa (L.)
Lindl. In vitro shoot tips (0.3 to 0.5 cm)

Out of the 6 hormonal treatments used for shoot multiplication, the third treatment (T3: 2.0 mg L−1

BA and 30.0 mg adenine sulphate) generated the highest shoot number per explant, while the survival
rate witnessed for 6 treatments was almost similar. After transferring to the rooting medium, the
plantlets showed maximum root formation on 0.5 mg L−1 NAA supplemented medium.

[104]

Catasetum integerrimum Hook Seeds

MS + 2.5 mg L−1 BAP + 5.0 mg L−1 IAA produced the highest shoots per explant (5.73 ± 0.45) and
leaves per shoot (5.84 ± 0.48). MS + 2.5 mg L−1 IAA generated the best rooting response
(11.20 ± 0.28 roots; 13.20 ± 0.28 cm root length). When plant parts (leaves, roots, and pseudobulbs)
from in vitro seedlings were employed as explants, best leaf (5.50 ± 0.18) and root formation
(4.37 ± 0.37) were achieved with pseudobulb explants.

[105]

Cattleya gaskelliana
and C. warscewiczii Seeds

Seeds after sterilization (chlorine 0.5%, chlorine 1%, distilled water, and sucrose) were checked for
viability with 2 concentrations of tetrazolium (0.25% and 0.5%) and duration exposure of 24 h and
48 h. Seed viability was 90.6% for C. gaskelliana in 0.5% tetrazolium, while it was 90% for
C. warscewiczii in 0.25% tetrazolium with exposure of 48 h in both treatments. The best seedling
growth for C. gaskelliana and C. warscewiczii was witnessed in MS + CW and MS + P (pineapple juice),
respectively, after 18 weeks of culture.

[106]

Cattleya warneri T. Moore Seeds

Seeds germinated successfully on 1
2 MS + microalgal biomass or its aqueous extract (0.25, 0.5, 1.0, and

2.0 g L−1). Seed germination enhanced with the development of chlorophyllous protocorms at
4 weeks after the supplementation of biomass or extract (0.25 g L−1). The seedling development was
high (greater than 95%) in all treatments with biomass and microalgal extracts (0.25 or 0.5 g L−1) after
24 weeks of culture. MS + 2.0 g L−1 AC produced elongated shoots and roots.

[107]

Coelogyne ovalis Lindl. Nodal bud PLB formation was maximum (80%) in KC + 10 µM meta-Topolin + 0.5 µM NAA. Medium
augmented with 10 µM IAA was the most suitable for rooting. [24]
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Table 1. Cont.

Name of the Species Different Explants Used Culture Conditions and Growth Hormone Combinations and Concentrations Generating
Optimum Culture Response References

Crepidium acuminatum
(D.Don) Szlach. Floral buds M + 1 mg L−1 IAA + 1 mg L−1 KN + 2% Sucrose + 2 g L−1 AC produced the highest shoot bud

regeneration with 8 to 10 pseudobulbous shoots per floral bud.
[108]

Cypripedium subtropicum Seeds

Seed germination accelerated on medium with 2iP or BA though the higher concentration of BA
(4 and 8 µM) reduced seed germination. Medium with 2ip produced the highest surviving rate for
protocorms compared with those with KN or BA. The highest seedlings developed after 4 months on
Norstog medium fortified with 1 mg L−1 malic acid, 20 g L−1 sucrose, and 20 g L−1 potato
homogenate and solidified with 7 g L−1 agar.

[38]

Cymbidium eburneum Lindley. Leaf segments of in vitro grown
plants

M + 0.5 mg L−1 BAP + 2.0 mg L−1 NAA produced a plant regeneration rate (83.3%) in 5.25 weeks
generating 15.7 plantlets/explant after 30 WOC. M + 2 mg L−1 BAP + 2 mg L−1 NAA promoted
PLB-mediated regeneration in 66.6% of the explants within 6.32 weeks.

[109]

Dendrobium anosmum Lindl. Seeds

High protocorm formation (100%) was observed in all the concentrations of BAP or KN, alone or in
combination with NAA, after 10 WOC. MS + 1.0 mg L−1 KN + 0.5 mg L−1 NAA + 30 g sucrose +
8.0 g L−1 agar was suitable for shoot length growth. The best rooting response (100%) was recorded
in MS + 1 mg L−1 KN + 0.2, 0.3, or 0.5 mg L−1 NAA.

[110]

Dendrobium chryseum Rolfe. Seed derived protocorms

1
2 MS + 2.0 mg L−1 KN + 10% CW produced highest shoot multiplication
(18.75 ± 0.48 shoots/culture). MS + 1.0 mg L−1 GA3 + 10% CW yielded the longest shoots
(2.0 ± 0.20 cm) and greatest shoot number (4.5 ± 0.65) per culture. Root growth and multiplication
were best noticed on 1

2 MS +1.5 mg L−1 IAA.

[111]

Dendrobium crepidatum Lindley
& Paxton Seeds

The highest protocorm formation (41 ± 0.76% for the late capsule; 36.33 ± 0.96% for the early capsule)
was witnessed in 1

2 MS medium. Maximum plant growth and development were demonstrated when
the germinated seeds were transferred to 1

2 MS + 2 µg mL−1 BAP + 1 µg mL−1 NAA.
[112]

Dendrobium densiflorum Lindl. Seeds
1
2 MS +10% CW produced the highest seed germination. Root production from protocorms was
maximum in MS +15% CW, while the greatest number of roots was noticed in MS +1.5 mg L−1 IBA.

[113]

Dendrobium heterocarpum Wall.
ex Lindl. Immature embryos

95% germination of embryos was observed on MS + sucrose (3%, w/v) + 3 mM L−1 kinetin. Shoot,
root, pseudobulb length, and leaf and root number were found maximum on
MS + 3 mM L−1 KN + 12 mM L−1 NAA + sucrose (3%).

[49]

Dendrobium ovatum (Willd.) Kraenzl Seeds

Seeds cultured on 1
2 MS +1 mg L−1 zeatin + 2% sucrose produced protocorms and PLBs after

successful germination. 1
2 MS + 2 mg L−1 BAP was employed to grow the protocorms into plantlets.

1
2 MS +1 mg L−1 2,4-D + 0.5 mg L−1 6-BAP + 0.5 mg L−1 zeatin generated callus. Plantlets developed
proper roots and shoots when transferred to 1

2 MS +1 mg L−1 zeatin + 2% sucrose.

[114]

Dendrobium ovatum (Willd.) Kraenzl PLBs from in vitro germinated
seeds

MS + 1.0 mg L−1 TDZ + 0.5 mg L−1 NAA produced maximum induction of embryogenic callus (EC)
(58.6%) and somatic embryos (SEs) (39.8/explant). The explants in the upright orientation gave a
greater percentage of EC and higher SEs/explants (EC—58.6% and SEs—39.8/explants) compared to
explants with inverted orientation, irrespective of growth hormone combinations.

[115]
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Table 1. Cont.

Name of the Species Different Explants Used Culture Conditions and Growth Hormone Combinations and Concentrations Generating
Optimum Culture Response References

Dendrobium palpebrae Rchb. f In vitro derived pseudobulbs

Through organogenesis, multiple shoot buds were developed from both the upper and lower parts of
the pseudobulb. MS + 1.0 mg L−1 NAA + 2.0 mg L−1 BAP yielded the maximum shoot buds
(8.21 ± 0.44) per segment in the lower part and the highest shoot buds (6.43 ± 0.40) per segment in
the upper part of the pseudobulb. The longest root (4.82 ± 0.22 cm) and the greatest root number
(2.75 ± 0.17) per shoot bud were recorded on MS + 0.5 mg L−1 NAA.

[116]

Dendrobium Yuki White Apical shoot segment

MS + 0.5 mg L−1 BA + 0.1 mg L−1 NAA + 40 mg L−1 adenine sulphate produced maximum shoots
(12) and root number (17) per explant within 8 weeks of culture. The in vitro generated plants were
acclimatized with 97% survival rate in charcoal blocks for 6 weeks, followed by plant transfer in
potting mixture with coconut fiber and charcoal (1:1).

[117]

Doritis pulcherrima Lindl. In vitro derived protocorms

New Dogashima Media (NDM) was better than VW and MS media giving improved protocorm
survival rate (46.70 ± 0.51%), number (11.00 ± 2.94 PLBs per protocorm), and size (6.35 ± 4.31 mm).
NDM + 0.1 mg L−1 NAA + 0.1 mg L−1 BA produced maximum shoot, leaf, and root number
and length.

[118]

Dryadella zebrina (Porsch) Luer Seeds

The cultures with different BAP treatments showed a mean survival rate greater than 97%. However,
BAP concentration higher than 9 µM significantly reduced plant survival. MS fortified with 6 µM BAP
generated the highest shoot formation, while MS with 12 or 15 µM BAP yielded less shoots indicating
its deleterious effect on shoot development at an elevated level.

[119]

Encyclia cordigera (Kunth) Dressler Seeds

1
2 MS + AC (0.15%) produced the best germination response (100%), while 1

4 MS + AC (0.15%)
generated seedlings with the longest height (1.53 cm). MS + AC (0.15%) gave the maximum root
number (2) and root length (2 cm).

[50]

Epidendrum denticulatum Barb. Rod Seeds

In vitro seed-derived plants were subjected to different LED types with blue/red (B/R) combinations
for 90 days. White (W) light influenced the production of higher fresh and dry mass, while blue (B)
light gave higher anthocyanins value under in vitro conditions. The total chlorophyll values were
higher under B/R Light, and B and B/R wavelengths brought higher Fv/Fm values.

[120]

Epidendrum fulgens Brongn.

Different explants (protocorm
bases, leaf, and root tips) derived
from in vitro seed-derived
plantlets.

The PLB induction was higher in MS +10 µM TDZ. PLB number increased with TDZ concentration
higher than 15 µM, but induction frequency reduced at TDZ concentration greater than 10 µM. The
most responsive explants for the highest PLB induction (90%) were protocorm bases with plants
regenerated only in a single subculture to hormone-free medium in a shorter time (12 weeks)
compared to other leaves (24 weeks) and root tips (60 weeks) explants.

[33]

Eulophia dabia (D. Don) Axenic rhizome segments

1
2 MS showed 5% seed germination efficiency. MS medium with casein hydrolysate and AC produced
the best rhizome growth from rhizome-like bodies. Maximum shoot induction (96.1%) response was
witnessed on MS + 4.4 µM BAP +AC using axenic rhizome with maximum shoots (4.3) and shoot
length (13.4 cm).

[121]
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Gastrochilus matsuran (Makino) Seeds

1
2 MS (without vitamins) + 1 µM NAA + 1.5 µM GA3 + 0.2% peptone + AC (0.05%) + 1% banana pulp

+ 3% sucrose + 0.8% agar gave the highest seed germination (93.3%). MS + 2 µM TDZ produced the
best secondary protocorm formation. MS + 2 µM IBA or 1 µM NAA showed maximum conversion of
protocorms into seedlings.

[70]

Laelia anceps ssp. anceps Seeds
MS +2 mg L−1 BAP + 2 mg L−1 IAA + 2 mg L −1 NAA gave the highest seed germination rate
(82.20%), with seedlings exhibiting the highest leaf number (1.64) and length (1.11 cm) per explant.
MS +1 mg L−1 IAA + 150 mL L−1 CW produced the best rooting percentage (78.20%).

[122]

Ludisia discolor Nodal

Explants treated with 0.40% HgCl2 produced the best survival (63.1%) and growth (22.5%) rate of the
culture. 1

2 MS + 1.0 mg L−1 NAA + 0.1 mg L−1 TDZ + AC (0.2%) + 8% banana cultivar
homogenate + 3% sucrose + 3.5 g L−1 generated maximum survival (42%) and plant growth
rate (19.6%).

[34]

Malaxis acuminata D. Don
Transverse thin cell layer
segments (1–4 mm) excised from
the pseudobulb

Maximum shoot proliferation (21 micro-shoots/explant) was found in MS + 1.5 mg L−1 meta-Topolin
(mT) + 5 mg L−1 chitosan. MS +1.5 mg L−1 IBA + 5 mg L−1 phloroglucinol (PG) produced the best
rooting response (root number—7.22 ± 0.45; root length—3.62 ± 0.28 cm).

[9]

Mokara Sayan X Ascocenda Wangsa
gold Leaf sections

MS + 3 mg L−1 TDZ induced maximum PLBs (34 PLBs cm−2 leaf section), induction frequency
(82.8%), and highest growth rate (93.7 mg day−1). The protocorms were best encapsulated at 3%
sodium alginate and 75 mM calcium chloride. Furthermore, 71.2% germination frequency displayed
by synthetic seeds stored at 25 ◦C even after 180 days, while those stored at 4 ◦C
degenerated completely.

[123]

Orchis militaris L. Seeds

mM (Malmgren modified terrestrial orchid medium) + CW (5%) + birch sap (5%) + AC (0.1%)
produced the highest seed germination (82.6%). The seedling formation was through protocorm
development without callus formation in all 3 modified culture media (Harvais, KC and Malmgren).
Modified Harvais 2 medium was suitable for protocorm proliferation in darkness, while KC
incorporated with AC was appropriate for further culture development leading to seedling formation.

[48]

Orchis simia Lam Seeds

mM (modified Malmgren medium) + pineapple juice (PJ) + casein hydrolysate (CH) gave the highest
seed germination (94.51 ± 0.96%). mM + CW + AV yielded the quickest seed germination
(6.8 ± 0.20 days), while mM + PJ with either AV (Aminoven) or CH made larger and higher-weight
protocorms. Medium with PJ + AV generated the longest plantlet (4.2 ± 0.04 cm), shoot lengths
(1.96 ± 0.042 cm), and heaviest weight (0.58 ± 0.002 g), while the maximum root formation was
witnessed in medium with CW and AV (5.2 ± 0.20).

[124]

Paphiopedilum SCBG Huihuang 90
(P. SCBG Prince × P. SCBG Miracle) Seeds

Seeds germinated on Hyponex No. 26 medium + 0.5 g L−1 AC + 1.0 mg L−1 NAA. The protocorms
produced meristem mass after transferring them to 1

2 MS + 0.05 mg L−1 2,4-D. Higher level of IAA
and jasmonic acid (JA) promoted PLBs differentiation, while lowering GA3 concentration was
essential for shoot apical meristem (SAM) development.

[37]
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Paphiopedilum insigne Seeds
The production of protocorm was high in 1

4 MS +1 mg·dm−3 BAP + 2 mg·dm−3 TDZ (73%) and
5 mg·dm−3 KN + 1 mg·dm−3 BAP (67%). Both combinations revealed 99% leaf formation from
protocorms. The fresh weight of regenerants was high (9.07 mg) in 5 mg·dm−3 KN +1 mg·dm−3 BAP.

[36]

Paphiopedilum niveum Rchb.f. Seeds

The highest percentage (68.33%) of somatic embryo formation was noticed in modified
VC+ 0.1 mg L−1 NAA, with the production of the maximum number of somatic embryos
(5.19 ± 0.67 per explant). High fresh weight accumulated (183.33 mg) in modified VW without NAA
and KN.

[69]

Phalaenopsis amabilis (L.) Blume Shoot tips

1
2 MS + 3% (w/v) sucrose + 0.1 g L−1 myoinositol, 2 mg L−1 thidiazuron + 1 mg L−1 BAP was
employed to initiate culture with shoot-tip explants. Shoot multiplication was observed better under
the blue + green light irradiation, but biomass accumulation was higher with white LEDs. The best
shoot branching and multiplication were noticed with higher KN content, total cytokinins, and GA3
under blue + green lights.

[82]

Phalaenopsis amboinensis J. J. Sm Seeds
Best seed germination (90.7%) and protocorm development (51.4%) were witnessed on the VW
medium. Leaf, root, and plantlet development was superior in medium augmented with
15% CW + 10 g L−1 banana homogenate (BH).

[125]

Phalaenopsis pulcherrima (Lindl.) J. J.
Sm Leaf segments

VW + CW (2%) +100 g L−1 potato + sucrose (2%) +AC (0.2%) + 50 g L−1 banana extract + 3 mg L−1

thidiazuron, and 1
2 MS + 0.5 mg L−1 niacin + 0.1 mg L−1 thiamine–HCl + 0.5 mg L−1

pyridoxine–HCl + 100 mg L−1 myo-inositol + 2 mg L−1 glycine + banana extract (2%) + 3 mg L−1

thidiazuron was used for culture initiation using leaf explants. The maximum PLBs and highest PLB
induction were observed under R (red): B (blue) LEDs on both MS and VW media. Shoot elongation,
shoot number, and chlorophyll a and b content were promoted in response to R: B LEDs.

[126]

Rhynchostylis retusa (L.) Blume Root tips
Root explants with intact tips and root caps with distal ends displayed good growth irrespective of
the chemical regime. M + 3 mg L−1 KN + 1 mg L−1 NAA + 2% sucrose showed maximum culture
regeneration (31%) in the proximal region of the root segment giving 28 plantlets in 15 weeks.

[89]

Rhynchostylis retusa (L.) Blume Immature capsules

1
2 MS and 1

4 MS demonstrated the earliest seed germination and protocorm development. MS + 10%
CW provided high shoot multiplication (12.8) and the longest shoot length (5.3 cm) in MS + 10% CW.
The greatest root number (7.3) and root length (5.0 cm) were noticed in MS + fungal elicitor CVS4
extracted from the stem of Vanda cristata.

[127]

Spathoglottis plicata Blume Leaves

The highest somatic embryogenesis (93.7%) was observed in MS +1.0 mg L−1 2,4-D. Somatic embryo
proliferation and shoot bud development were high in MS + 2.0 mg L−1 BAP. 1

2 MS + 1.0 mg L−1 IBA
generated maximum rooting (93.6%) in 1

2 MS + 1.0 mg L−1 IBA. Synthetic seeds were best formed
with somatic embryos encapsulated in 3% sodium alginate + 100 mM CaCl2.

[128]
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Spathoglottis plicata Blume Seeds

High seed germination (93%) was observed on MS + 1.0 mg L−1 BAP, while lower germination was
witnessed on MS with either KN, IAA, or NAA. The shoots obtained from liquid culture showed a
better rooting response (94%), producing higher root numbers and lengths (13.0 ± 0.22 roots per
shoot, 4.0 ± 0.25 cm length) compared to root development (6.5 ± 0.29 roots and 3.3 ± 0.19 cm length)
observed on SS medium.

[6]

Stanhopea tigrina Bateman ex Lind. Seeds

High seed germination (98%) was witnessed after 120 days of culture on MS + 1% AC. MS + 10 g L−1

apple extract or 10 g L−1 banana extract or 30 mL L−1 CW or 5.0 mg L−1 BAP were effective for shoot
induction (1.25 ± 0.35). Maximum root formation (9.00 ± 0.68 roots) was achieved in MS + 5.0 mg L−1

IAA + 100 mL L−1 CW.

[129]

Tolumnia Snow Fairy Leaf segments from in vitro
plants

Maximum PLB formation was found in MS + 4.0 mg L−1 BAP + 0.5 mg L−1 NAA with an average
of 24.0 PLBs. However, there was no PLB formation from the outer leaves; only the inner
expanding leaves showed protocorm induction (25.5 PLBs per explant) on
MS + 4.0 mg L−1 BAP + 0.5 mg L−1 NAA. The shoot generation rate from PLBs was 33.3% for the
whole PLB, while upper PLB halves produced 40%.

[75]

Vanda bicolor Griff Seeds MS + 3 µM NAA + 3 µM BA showed 88.2% seed germination. The protocorms developed into
plantlets with healthy leaves (6.2) and roots (3.3) on MS + 3 µM NAA + 6 µM BA + AC (0.6%). [19]

Vanda brunnea Rchb.f. Shoot tips

A high plant regeneration rate (92–100%) was witnessed with Orchimax and MS medium
supplemented with 0.5 mg L−1 BA. Orchimax showed the highest plant regeneration rate (100%),
irrespective of the presence of BA in the medium. The number of plants obtained in Orchimax
(6.2 per explant) was two times more than the plants produced (3.1 per explant) in MS.

[130]

Vanda cristata Wall. ex Lindl. Whole leaf

The regeneration responses from the leaf explants were maximum (100%) on both M and KC medium
fortified with NAA (10.6 µM) and BAP (8.8 µM). The highest number of plantlets (6) were obtained
after explant differentiation via callus, PLBs, and shoot bud formation on the same
hormonal combination.

[131]

Vanilla planifolia Jacks. ex Andrews Seeds

Seeds germinated successfully on 1
2 MS + 2 mg L−1 glycine + 0.5 mg L−1 niacin + 0.5 mg L−1

pyridoxine HCl + 0.1 mg L−1 thiamine + 1 g L−1 tryptone + 20 g L−1 sucrose + 7 g L−1 agar. The seed
germination time increased from 75 to 90 min when the mature seeds were treated with 4% sodium
chlorite solution before inoculation, and germination percentage was recorded highest with immature
seeds collected 45 days after pollination. The seedlings developed after the protocorms were grown
on 1

2 MS + 20 g L−1 sucrose + 1 g L−1 AC + 20 g L−1 potato homogenate + 7 g L−1 agar.

[23]
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Vanilla planifolia Jacks. ex Andrews Leaf segments

The leaf explants produced non-embryogenic calli on MS + 3.0 mg L−1 2,4-D. The non-embryonic
callus acquired embryogenic potential when transferred on
MS + 1.0 mg L−1 BAP + 1.0 mg L−1 KN + 2.5 mg L−1 SN. Leaf explants, however, induced direct
somatic embryogenesis (92.0%) on MS + 1.0 mg L−1 BAP + 1.0 mgL −1 KN + 2.5 mg L−1 SN
generating maximum somatic embryos (30.0 per explant). The embryos encapsulated and stored at
−4 ◦C for 1 year demonstrated the highest germination (95.3 ± 0.49) and shoot multiplication
(17.2 shoots per SE) on MS + 0.5 mg L−1 BAP + 0.25 mg L−1 KN + 2.5 mg L−1 SN.

[25]

Vanda pumila Hook.f. Protocorms

Highest shoots (9.50 ± 0.29) per culture formed on 1
2 MS + 1.0 mg L−1 KN + 10% CW. The shoot

length was greatest (0.78 ± 0.07 cm) per culture on MS + 2.0 mg L−1 BAP + 10% CW. The
1
2 MS + 0.5 mg L−1 IAA produced high root formation (5 ± 0.00) per culture with good root length
(0.93 ± 0.07 cm).

[132]

Vanda tessellate (Roxb.) Hook. ex
G. Don Seeds

MS gave the maximum seed germination (94%). MS + 2.0 mg L−1 BAP + 0.5 mg L−1 IAA produced
the highest (89.4%) calli induction. Highest somatic embryo production (96%) from PLBs was
observed in MS + 1.0 mg L−1 BAP + 0.5 mg L−1 IAA. Synthetic seed formation was best in MS + 2%
sodium alginate + 100 mM CaCl2. Maximum germination (91%) of the cold stored encapsulated seeds
was witnessed in MS + 50 mg L−1 ascorbic acid + 25 mg L−1 each of citric acid, adenine sulphate, and
L-arginine + 0.5 mg L−1 each of BAP, KN, and IAA.

[133]

Note: 1
2 MS = half strength Murashige and Skoog medium; 2,4-D = 2,4-dichlorophenoxy acetic acid; CW = coconut water; BAP = 6-benzylamino purine; FT = foliar fertilizer;

GA3 = gibberellic acid; IAA = indole-3-acetic acid; IBA = indole-3-butyric acid; KC = Knudson C medium; KN = kinetin; MS = Murashige and Skoog medium; M = Mitra medium;
NAA = 1-naphthalene acetic acid; Pic = picloram; PLB(s) = protocorm-like-bodies; PM = Phytamax medium; TDZ = thidiazuron; MVW/VW = Vacin and Went; ZN = zeatin;
SN = silver nitrate.
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3. Orchid Micropropagation Using Temporary Immersion System (TIS)

TIS overcomes the limitations of SS and liquid culture systems by temporarily sub-
merging the plants in the liquid medium for shorter periods, followed by exposing them
directly to the gaseous environment by draining the liquid medium. The shorter immersion
time and more prolonged gas exposure lower the detrimental effects of hyperhydricity
and asphyxia on plants, providing optimal environmental conditions for efficient nutrient
absorption under the least liquid contact [134]. Greater gas exposure improves oxygen
transport to cultured cells minimizing oxygen limitation and lowering the asphyxia effect
on the plant tissues in TIS [135]. Furthermore, enhancing headspace with carbon dioxide
(CO2) and culture agitation by hydrodynamic forces without mechanical devices in TIS
allows normal development and increases plant tissue multiplication with regular pho-
tosynthetic activities and minor shear stress [136]. Figure 2 gives a general overview of
orchid propagation using TIS. Despite many benefits of TIS, the application of the SS system
for orchid micropropagation cannot be overlooked as both the culture systems could be
incorporated into the orchid propagation program for the effective mass production of
these ornamental plants. Figure 3 shows the interrelationship of the two culture systems
and how they can be employed for orchid micropropagation.
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Figure 2. (a) In vitro orchid seed germination. (b) Protocorm formation. (c) Shoot multiplication
to derive inoculum for temporary immersion system (TIS) culture initiation. (d) SETIS temporary
immersion bioreactor. (e) Plant multiplication in TIS producing multiple shoots and roots. (f) Ac-
climatization of orchids propagated through TIS.

3.1. Important Factors Influencing Temporary Immersion System (TIS)

The culture medium provides nutrients required by the plants to grow and develop.
Using a suitable medium in the TIS system is essential for successful plant propagation.
Though MS medium is employed most frequently in TIS, the need for an appropriate
culture medium depends on the nutrient requirement of plant species during its develop-
mental period [137]. The volume of the culture medium is also crucial in influencing plant
multiplication rate, leaf and root formation, and growth. The shoot multiplication rate was
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enhanced from 8.3 shoots (in 30 days) to 23.9 shoots (30 days) when the medium volume in
the TIS bioreactor was increased from 5.0 to 50.0 mL per explant in Saccharum spp. [138].
Escalona et al. [139] also established the optimum medium volume for maximum shoot
proliferation of pineapple at a higher volume of 200 mL per explant. Roels et al. [140]
demonstrated the escalated shoot multiplication rate (11.9 to 13.8), shoot length (4 to 5 cm),
leaf number (3.1 to 3.7), and root number (2.8 to 3.2) when the medium volume was raised
from 10 to 30 mL in TIS. Uma et al. [141] observed the highest shoot production of bananas
(24 shoots) in a 250 mL volume of the medium as compared to shoots generated (20 shoots)
in other volumes (100 mL and 500 mL) tested. However, a larger culture volume than its
optimum level was not favorable for plant growth as extracellular chemicals excreted from
the cultures were diluted in a higher volume [137]. Container size of the TIS may also
influence the plant growth as bigger vessels can accumulate larger medium volumes avoid-
ing culture overcrowding and early shortage of nutrients. Monette [142] demonstrated
longer shoot development in grapevine in bigger containers of square wide-mouth Mason
jars (910 mL) compared to smaller Erlenmeyer flasks (125 mL). Krueger et al. [143] also
revealed the advantage of larger culture vessels (7 L) over smaller baby food jars (140 mL)
in imparting a positive influence on shoot elongation and multiplication by providing
larger head space and lowering culture congestion.
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TIS provides better culture aeration cultures than continuous and partial immersion
liquid culture systems [135]. Exposure of the plants to gas is essential to avoid unwanted
asphyxia in the culture [144]. Plants usually require different oxygen and carbon dioxide
concentrations for proper development [99]. Bioreactors fitted with pressure and flow
regulators can provide proper gas exposure to the cultures to enhance multiplication and
growth. Increasing oxygen and carbon dioxide to a certain level is warranted as they are
the crucial components of photosynthesis affecting plant growth and metabolism [99]. The
oxygen transfer rate depends on its mass transfer coefficient, which is easily influenced by
agitation and air flow rate and the design of the bioreactor [95]. The growth of seedless
watermelons was enhanced when the oxygen level was raised by 40% inside the TIS [145].
The plants in the TIS bioreactor are temporarily submerged in the liquid medium for a
short duration, during which they receive nutrients from the medium. When exposed to
the gas after short immersion, the plants acquire oxygen and carbon dioxide, which are
also essential for their development [95]. Optimizing the immersion time and frequency is
vital as lengthening the immersion time will increase the hyperhydricity effect, and more
prolonged gas exposure will enhance tissue drying and moisture loss, deterring normal
development and proliferation [99]. The immersion time and frequency in TIS varied
considerably with species and micropropagation process involved. Potato tuberization
was effective when the plants were submerged for a longer duration (1 h) every 6 h, while
somatic embryogenesis was accelerated with a brief immersion time of 1 min every 12 h
in C. arabica [146,147]. The shoot multiplication rate of Coffea microcuttings also changed
with different immersion times with plant submersion durations of 1, 5, and 15 min every
6 h producing multiplication rates of 3.5, 5.4, and 8.4, respectively [148]. Immersion
frequency also influenced culture growth in TIS as immersion of 4 h six times per day
produced maximum shoots (17.33) in Dianthus caryophyllus but with the highest rate of
hyperhydricity [96]. The immersion of explants for 4 h four times daily produced the
most desirable shoot growth (14.33 new shoots) without any hyperhydricity effect. Bello-
Bello et al. [149] found the highest shoot multiplication rate (10.78 shoots per explant)
of Hylocereus undatus in 2 min immersion time at 4 h intervals, while the least shoots
(5.46 shoots per explant) were recorded in immersion frequency of every 16 h. Furthermore,
the most extended shoots were formed at an immersion frequency of every 4 h, and the
short shoots were noticed in other immersion frequencies (every 8, 12, and 16 h).

Explant inoculation density is one of the key factors that influence the growth of
culture in the TIS. The optimum density of the explant should be determined as its increase
in a culture vessel with constant medium volume may lead to poor aeration and congestion,
affecting plant growth [149]. Pérez-Alonso et al. [150] showed potato microtuber formation
improved from 168 to 234 when inoculum density from 60 explants per TIS was increased
to 90 explants. However, there was an enhancement of the total fresh weight of microtubers
per TIS (164.7 g) with less inoculum density of 60 explants compared to fresh weight
(47 g) obtained with a higher density of 90 explants [150]. García-Ramírez et al. [151]
also demonstrated the effect of inoculum density on the physiological development and
morphology of Bambusa vulgaris shoots by taking 6, 12, and 18 explants per TIS. The
inoculum density of 12 explants was more favorable for shoot growth as shoot and leaf
number, shoot length, and chlorophyll content increased. Nevertheless, higher inoculum
density was not suitable for culture growth with the accumulation of less total chlorophyll,
lower dry mass, and water content of the shoots. Posada-Pérez et al. [152] employed
inoculation densities of 100, 200, and 300 somatic embryos per TIS of papaya to determine
the optimum density for best plant growth. The maximum response for callus, leaf and root
formation, and root length were witnessed with the inoculation of 100 somatic embryos
per TIS. Uma et al. [141] used varied inoculum densities (3, 6, and 12 explants) per TIS to
ascertain the optimum inoculum density for the best shooting response in bananas. The
TIS with explant densities of 3 and 6 generated higher shoots (24 shoots/explants) than
those with inoculum densities of 12 explants.
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3.2. Benefits and Drawbacks of TIS

The benefits of using TIS over a conventional SS system are enormous in terms of
lowering the production and labor cost by preventing frequent subculturing using higher
culture liquid volume and containers, enhancing plant multiplication rate by accelerat-
ing nutrient absorption through uniform intermittent contact with liquid medium and
plant tissues, normal morphological plant development by reducing hyperhydricity and
asphyxia effects, and the possibility of successful large scaleup with full automation of
culture systems [95,141,145]. Lorenzo et al. [138] reported 46% reduction in the production
cost of shoot multiplication of Saccharum spp. using TIS compared to the conventional SS
culture system. Pineapple generation using TIS produced a 100-fold increase in shoot gen-
eration and lowered the production cost by 20% compared with standard liquid medium.
Bello-Bello et al. [149] established in vitro protocols for scaling-up Pitahaya propagation
using TIS, which produced a multiplication twice that of semi-solid and partial immersion
media. Ducos et al. [153] also succeeded in scaling up culture production by generating
2.5 million pregerminated embryos of Coffea canephora annually in a 40 m2 size culture
room using 100 TIS units of 10 L volume each. Ptak et al. [154] demonstrated the positive
influence of metatopolin and benzyladenine on plant development with two times more
production of morphologically normal plants from SEs in TIS than SS medium without any
hyperhydricity. TIS also helps reduce medium browning due to oxidation, plant contami-
nation through air vents, and lower agitation stress on plant tissues due to the absence of
mechanical devices [155,156]. Though TIS is mainly utilized for plant micropropagation,
it also offers an alternative to SS and liquid culture for increasing biomass yield and sec-
ondary metabolite production at a low cost. Pavlov and Bley [157] found high biomass
accumulation (18.8 mg g−1) and betalains yield (9.6 mg g−1) when hairy roots of Beta
vulgaris were cultured in TIS at immersion frequency of 15 min immersion every 60 min in-
terval. Kokotkiewicz et al. [158] reported the TIS to be more effective in phenolic secondary
metabolite accumulation (xanthones and benzophenone derivatives) in the cell culture
of Cyclopia genistoides than liquid culture systems providing a possible cheap alternative
source of the phytochemicals from plants. Kunakhonnuruk et al. [159] found the produc-
tion of biomass per clump of Drosera communis (3.40 g fresh weight and 0.36 g dry weight)
in TIS thrice and 1.8 times greater than SS and continuous immersion systems, respectively.
Furthermore, the maximum plumbagin yield per replication (17.31µg/replication) was
attained in cultures grown in TIS compared to those in SS and continuous culture systems.
TIS has also been applied for in vitro production of foreign proteins in plant cells and
tissues. Michoux et al. [160] obtained high expression of a modified form of the green
fluorescent protein (GFP+) and a vaccine antigen, fragment C of tetanus toxin (TetC), in
transgenic cells cultured in TIS with thidiazuron for inducing proper shoot initiation. The
yield of GFP+ (660 mg L−1 of bioreactor) and TetC (95 mg L−1) were much higher than
protein expression witnessed in transformed cells in suspension cultures.

Despite having the many advantages of TIS, it also includes one of the main limitations
of difficulty in scaling up to the commercial scale. The volume of containers involved in the
TIS can be increased to 10–20 L, which is still less for plant propagation at the commercial
level. However, the utilization of larger vessels might hamper the performance of TIS as
the use of 10 L jars did not produce normal embryo development of C. canephora due to
uneven light distribution [153]. The increased plant biomass in bigger culture containers
disrupted light penetration and resisted nutrient and oxygen transfer [153,161]. Utilization
of larger culture vessels may not necessarily be an effective approach to scale up the pro-
cess for plant propagation. One way of overcoming this shortcoming is by using several
smaller-size containers (1–5 L) that may be subjected to simultaneous operation under
preset culture parameters in an automated fashion that will ensure plant propagation at
a commercial scale. The TIS bioreactors should be designed to provide a particular mi-
croenvironment conducive to the growth and development of complex differentiated plant
tissue and organs [162]. Many TIS with varying designs are developed to meet the specific
culture requirements for large-scale plant multiplication. Some popular TIS available in the



Plants 2023, 12, 1136 17 of 32

markets are Twin-Flask, Ebb-and-Flow, RITA, Thermo-photobioreactor, BioMINT, SETIS,
and PLANTIMA [163]. However, these commercially available TIS are associated with
several drawbacks, such as complex automation, unsuitable for forced ventilation and
CO2 enrichment, low headspace, humidity in the growth chamber, no nutrient medium
renewal, occupation of more space in the growth chamber, tilting platforms requirements,
difficulty in biomass harvesting, complex automation and construction, and high cost
and energy requirement [163]. Attempts have been made to refine and improve the TIS
bioreactors circulating in the markets so that the existing shortcomings are eliminated and
more effective, cheap, simple, and easy to store and handle compact bioreactor designs
with autoclavable and reusable plastic elements with options for multiple uses are readily
available.

3.3. Application of TIS for In Vitro Orchid Propagation

The first instance of the application of TIS for orchid culture was evident when Tisserat
and Vandercook [164] established an automated plant culture system (APCS), which did
away with the necessity of the frequent manual subculturing of the culture to freshly
prepared medium after every 4 to 8 weeks in either agar solidified or liquid medium. The
shoot tips of Potinera orchid hybrid were subjected to different immersion frequencies to
determine the optimum immersion frequency for the best plant growth response. Orchid
tips subjected to less immersion frequency (4 and 1 immersion cycles/day) showed a
lower survival rate when compared to those with a higher immersion frequency of 12 or
24 immersion cycles/day. When grown in an automated culture system, the orchid tips
generated higher tissue mass than those in the agar-gelled medium. The orchid tissue
production employing the APCS was four times higher in nine months than in the tissue
mass generated in the same period on agar solidified medium.

Young et al. [165] used TIS and a continuous immersion system (CIS) to multiply PLBs
of Phalaenopsis orchid from PLB explants obtained from in vitro grown leaf segments. TIS
with the charcoal filter attached produced maximum PLBs (about 18,000) in eight weeks of
incubation from 20 g of inoculum on 2 L Hyponex medium. The different aeration rates
at 0.5 or 2.0 volumes of air per volume of medium min−1 (vvm) did not impact the PLB
multiplication as they generated a similar amount of biomass. Liu et al. [30] used air-driven
periodic immersion (API) bioreactors to culture PLBs obtained from lateral buds of the
flower stalks of Doritaenopsis. Comparison of PLB growth on solid, liquid, and API showed
the highest PLB proliferation and growth in the API system. PLBs growth increased by
4–6 fold when immersion time was set for 5 min at 4 h intervals. The increased level
of PLBs formation in the API system may be due to the combined nature of both solid
and liquid cultures. Yang et al. [136] also examined the feasibility of producing PLBs in
bioreactors using shoot tips derived from in vitro plantlets of Oncidium ‘Sweet Sugar’. To
initiate bioreactor cultures, 30g fresh weight (FW) PLB pieces were used, with PLBs being
submerged in the medium throughout the culture period in the CIS while an immersion
period of 1 h after every hour was applied for the TIS. The two bioreactor systems exhibited
different growth rates of PLBs with a maximum growth ratio (10.9) witnessed in the CIS.
Superior PLB proliferation may be due to the increased rate of nutrient uptake by the
cultures because of their constant contact with the medium in the continuous immersion
system. The earlier studies showed TIS appropriate for shoot multiplication [166,167],
while the CIS is suitable for culture of storing organs such as adventitious roots [168,169],
bulblets [170], and microtubes [171]. Ekmekçigil et al. [172] applied a thin cell layer and
RITA temporary immersion bioreactor to mass propagate PLBs and shoots of Cattleya
forbesii at the commercial level. The highest PLB production (PLBs per RITA—2237 PLBs
and per explant—111.9 PLBs) was recorded when 20 tTCL-PLB explants were inoculated in
250 mL of medium with an immersion frequency of 1 min/4 h. Similar inoculum density in
lower medium volume (150 mL) at the same immersion frequency generated the maximum
shoot formation (shoots per RITA—3998 shoots and shoots per explant—199.9 shoots).
Fritsche et al. [173] also found TIS favorable for PLB multiplication in Cattleya tigrina
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with MS medium incorporated with 30 g L−1 sucrose and Morel vitamins. Fresh weight
increment rate (FWI) of PLB formation was significantly improved in TIS with a 2-fold
increase in PLB proliferation (77.3 g) in comparison to that of PLB formation (35.3 g) in a
continuous immersion system on the gelled medium.

Hempfling and Preil [174] used in vitro grown shoots of Phalaenopsis cv. Jaunina as
inoculum for adventitious shoot multiplication and rooting in TIS. The shoot formation
was maximum at 25.4 after 12 weeks of culture with an immersion frequency of eight
immersion per day and immersion time of 10 min each. An increase in the time interval
of medium recharge to four weeks significantly reduced the shoot multiplication rate to
14.5. The rooting response was tested by exposing shoots of 4–7 cm from TIS cultures
to TDZ-free medium incorporated with 0.5 and 1.0 mg L−1 IAA or NAA. Maximum
shoots were rooted (93.8%) with the production of the highest root number (3.7 roots per
shoot) in medium supplemented with 1.0 mg L−1 IAA after subjecting to six immersions
per day with an immersion time of 10 min each. Pisowotzki et al. [175] investigated
the effect of PVPP on the in vitro shoot development of Phalaenopsis-hybrids grown in
TIS. They observed that the phenolic compounds extracted from liquid and plant tissues
exhibited the same peak pattern after HPLC separation, though the concentration of these
compounds varied between different tissues, with their concentration higher in shoots
than leaves. There was a reduction in biomass production and shoot proliferation rate
when the phenolic compound was withdrawn from the culture medium, indicating its
positive influence on culture growth. Biomass generation and shoot multiplication were
higher in TIS system than in the conventional SS. Ramos-Castellá et al. [176] investigated
the efficiency of TIS (RITA) for shoot multiplication of Vanilla planifolia. The highest
shoot multiplication rate (14.27 shoots per explant) was best observed in TIS, applying an
immersion frequency of 2 min every 4 h. The most appropriate medium volume for shoot
multiplication was determined at 25 mL per explant, delivering the highest multiplication
rate of 17.54 ± 1.14 shoots per explant. The TIS and partial immersion system did not
produce a significant change in shoot length (12.67 ± 1.2), but solid medium generated
the shortest shoots (10.47 ± 1.01 mm). The shoots were successfully rooted in TIS when
transferred to 1

2 MS medium enriched with 0.44 NAA at an immersion frequency of
2 min every 4 h. Ramírez-Mosqueda and Iglesias-Andreu [29] employed three different
TIS, viz., Recipient for Automated Temporary Immersion (RITA), Temporary Immersion
Bioreactors (BIT), and Gravity Immersion Bioreactors (BIG) for establishing efficient in vitro
protocols for Vanilla planifolia micropropagation. Shoot multiplication was the highest
(18.06 shoots/explant) in BIT systems compared to shoot formation observed with RITA
(12.77 shoots/explant) and BIG (6.83 shoots/explant). However, the maximum shoot length
was witnessed in BIG (1.69 cm) and RITA (1.64 cm) compared to the BIT system. The shoots
were rooted effectively in the three TIS with the highest number of roots noticed in BIT
(4.27 roots/explant), followed by BIG (2.76 roots/explant) and RITA (1.90 roots/explant).
Ramirez-Mosqueda and Bello-Bello [177] established commercially applicable in vitro
propagation protocols for Vanilla planifolia by employing SETIS bioreactor. This bioreactor
differs from RITA, BIT, and BIG systems in having horizontally placed larger-capacity
vessels (4000 mL) with more headspace for plant development, enabling easy scaleup to
commercial scale. Plant height and leaf number were recorded highest in TIS at 4.24 cm and
3.72 per explant, respectively. TIS also reported elevated percentages of closed stomata and
a stomatal index indicating a high functionality of stomata, favoring a low transpiration
rate. The survival rate of the in vitro propagated plants after acclimatization was also high
(98%) for TIS.

Zhang et al. [32] examined culturing factors involved in pseudobulb development
and plant growth by growing 6 mm long seedlings obtained from in vitro germinated
seeds of Bletilla striata in a TIS. The biggest stem diameter was observed in immersion
frequency of 3 min immersion every 6 h while the largest pseudobulb (4.88 ± 0.17 mm) was
noticed in 3 min per 2 h interval. However, changing the immersion frequency from 2 to 4 h
gave longer plant height but no significant increase in pseudobulb diameter. The optimum
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inoculum density was also determined at 300 explants per treatment, with plantlets showing
the largest stem diameter (2.31 ± 0.08 mm) and the greatest length (141.27 ± 6.48 mm).
Leyva-Ovalle et al. [178] developed an efficient in vitro protocol for Guarianthe skinner
using TIS. The highest shoots per explant (6.06 ± 0.17) were noticed in TIS compared to
SS medium (2.96 ± 0.18.) and partial immersion (1.70 ± 0.19). The 4 h interval was most
favorable for plant development when different immersion frequencies (4, 6, and 8 h, with
2 min per immersion) were tested in the TIS system. The number of subculture cycles
(subculture performed after every 30 days) impacted shoot number formation, with the
maximum shoot number (16.56 ± 0.86) generated in the third subculture. The longest shoots
(3.67 ± 0.19 cm) and leaf number (3.76 ± 0.10 leaves) were recorded in a rooting medium of
1
2 MS medium with GA3. Kunakhonnuruk et al. [179] established efficient in vitro protocols
using TIS for large-scale propagation of Epipactis flava. The plants generated in TIS with an
immersion frequency of 5 min every 4 h interval were healthier (53.3%) than SS (20.0%) and
the continuous immersion system (CIS) (5.5%). The percentage of the new shoot (96.7%)
and bud formation (91.7%) in TIS were higher compared to those in SS (46.7%) and CIS
(40.0%). The plantlets derived from the TIS showed the highest survival percentage (76.7%)
compared to SS (28.9%) and CIS (23.3%) after proper acclimatization.

Yoon et al. [180] studied factors involved in biomass production using 1.0 to 1.5 cm
long in vitro grown shoots of Anoectochilus formosanus as explants in bioreactor systems. The
most appropriate inoculum size for best shoot proliferation was 8 g L−1, while maximum
biomass accumulation was witnessed in the Hyponex medium augmented with 3% sucrose,
coconut water (50 mL L−1), and AC (0.5 mg L−1) under a PPFD of 50 µmol m−2 s−1 light
condition. The TIS was programmed with an immersion duration of 30 min four times
daily. Zhang et al. [181] determined immersion frequency (min/h; 5/6) to be most suitable
for biomass production and the highest total alkaloid content for in vitro Dendrobium nobile
seedlings developed on 10 µM MeJA treated medium in TIS. TIS with MeJA generated
maximum alkaloid content (7.41 mg g−1 DW) and production (361.24 mg L−1) when
compared to those of TIBS without Meja (3.20 mg g−1 DW, 174.34 mg L−1). The in vitro
propagation of different orchids using TIS is briefly described in Table 2.
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Table 2. Micropropagation of different orchids using temporary immersion system (TIS).

Orchid Species Explant Type Culture Systems Type of Medium and Hormone
Combinations Used

Medium
Volume

Immersion Time
and Frequency Experimental Results References

Cattleya tigrina
A. Rich. ex Beer

Homogeneous
shoots (≥5 mm)
with leaves and
adventitious
roots

CIS (continuous
immersion system)
and TIS

Liquid MS fortified with
30 g L−1 sucrose and Morel
vitamins (2 g L−1 Phytagel
added for CIS)

30 mL for CIS;
200 mL for TIS -

The inoculated shoots gave rise to
PLB directly and continued to
proliferate without growth
hormones. PLB multiplication
significantly enhanced in TIS with
2-fold higher production (77.3 g)
of PLBs) than those formed on the
gelled medium of CIS
(35.4 g PLBs).

[173]

Cattleya
walkeriana
Gardner

In vitro seedlings
(1 cm long)

SSS (semi-solid
system), liquid,
CIS), and TIS

Liquid MS augmented with
1.34 µM NAA, 30 g L−1 of
sucrose (6 g L−1 of agar added
for solid medium).

60 mL for solid and
liquid medium;
600 mL for CIS
and TIS.

An immersion
period of 3 min
every 90 min.

The longest aerial part (2.06 cm)
and biggest fresh mass (0.032 g) of
the propagated plant were
observed in the TIS. Furthermore,
the largest fresh mass was noticed
in the CIS and TIS bioreactors due
to the continual contact of the
explants with the medium. The
TIS performed best as compared
to other culture systems.

[182]

Cymbidium
sinense Willd Rhizome segment CIS and TIS

Medium containing g L−1

Hyponex I, 0.5 g L−1 Hyponex
II, 1 g L−1 peptone, 2 mg L−1

BA, 0.2 m L−1 NAA, 0.2 mg L−1

AC and 30 g L−1 sucrose for CIS;
medium with 2 g L−1 Hyponex
I, 0.5 g L−1 Hyponex II, 1 g L−1

peptone, 4 mg L−1 BA,
0.2 mg L−1 NAA and 30 g L−1

sucrose for TIS.

2000 mL for CIS
and TIS.

1 h immersion with
a drying period of
1 h.

Shoot induction from rhizome
failed in CIS, unlike TIS, which
produced the best shooting
response and plantlet generation
in medium appended
with 4 mg L−1 BAP and
0.2 mg L−1 NAA. The root
formation rate was prominent
(94.7%) in the medium enriched
with 1.0 mg L−1 NAA.

[31]
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Table 2. Cont.

Orchid Species Explant Type Culture Systems Type of Medium and Hormone
Combinations Used

Medium
Volume

Immersion Time
and Frequency Experimental Results References

Dendrobium
candidum Wall
ex Lindl.

PLBs from the
nodal stem
segment

Raft type
(protocorms
cultured on the
net), CIS and TIS
(ebb and flood)

1
2 MS incorporated with
0.5 mg L−1 NAA, 2.5% (w/v)
sucrose, 150 mg L−1 NaH2PO4
and 1% (v/v) banana
homogenate.

2000 mL

The fresh and dry biomass
accumulation was highest
(323.33 g L−1 and 16.13 g L−1) in
CIS while it was least
(270.60 g L−1 and 14.67 g L−1)
with ebb and flood method
demonstrating better protocorm
growth in immersion cultures.
Accumulation of bioactive
compounds was maximum
(polysaccharides—404.48 mg g−1

DW, coumarins—18.36 mg g−1

DW, polyphenolics—13.33 mg g−1

DW, and flavonoids—3.97 mg g−1

DW) in immersion cultures. An
inoculum density of 50 g L−1 was
appropriate for biomass and
bioactive compound accumulation
in cultures.

[183]

Dendrobium
nobile Lindl.

Protocorms from
in vitro
germinate seeds

SSS and TIS

The liquid 1
2 MS medium

containing 0.5 mg L−1 NAA,
2% sucrose and 10% CW
(0.7% agar added for SS culture)

1000 mL
5 min immersion
for every 2, 4, 6,
and 8 h duration.

The total fresh weight was the
highest (302.85 g) with 6 h
immersion frequency, while dry
matter content (11.56%) was the
maximum with 8 h immersion
frequency. The longest shoot
(72.83 mm), highest internode
number (4.52), and largest stem
diameter (4.05 mm) were achieved
in 6 h of immersion frequency in
the TIB. After acclimatization in
the greenhouse, the shoot growth
and plant survival rate were better
with plants obtained from TIS
than with the plants generated
through SSS.

[184]
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Table 2. Cont.

Orchid Species Explant Type Culture Systems Type of Medium and Hormone
Combinations Used

Medium
Volume

Immersion Time
and Frequency Experimental Results References

Epidendrum
fulgens Brongn.

In vitro
generated
plantlets

Natural ventilation
system (NV) and
TIB system

Liquid MS appended with 3%
sucrose for TIS (gelled media
with 2 g L−1 phytagel poured
into polypropylene containers
containing PTFE filters allowing
NV at a rate of 54 dm3 day−1 for
NV culture system).

400 mL of gelled
media for NV system;
400 mL liquid media
for TIB system

3 min immersion
every 3 h duration

The two culture systems (NV and
TIBS) significantly affected plant
growth and quality. The number
of leaves, shoots, roots, and fresh
weight was greater for plants
developed in TIBS than those
generated in the NV system.
There was a 2-fold increase in root
number for plants grown in TIBS
compared to those in NV system,
even though there was a
significant impact on stomata
number and photosynthetic
pigment contents

[33]

Mokara Leuen
Berger Gold

Callus
tissue SSS and TIS

MS incorporated with BA
(0.5 mg L−1), B1 (5 mg L−1),
adenin sulfate (10 mg L−1),
peptone (1 g L−1), CW (10%)
and sucrose (20 g L−1) for SSS;
MS supplemented with CW
(10%), sucrose (20 g L−1) and
other growth regulators at
different concentrations for TIS.

10 m for SS and
250 mL for TIS

1 min immersion
time for 1 h interval

The callus proliferation was more
prominent in TIS than SSS on MS
supplemented with CW (30%),
sucrose (30 g L−1), and 2.4 D
(1 mg L−1). The shoots were
rooted best on MS augmented
with NAA (1 mg L−1), B1
(5 mg L−1), CW (10%), and
sucrose (20 g L−1).

[185]

Paphiopedilum
rothschildianum
Rchb.f.

Callus
induced from
seeds and
protocorm
explants

SSS and TIS

1
2 MS enriched with 0–22.6 µM
2,4-D and 4.54 µM TDZ for
SS culture;
1
2 MS appended with 2.27 µM
TDZ and 12.0 µM BAP for TIS.

150 mL
Immersion time of
5 min after every
125 min

Callus proliferation in TIS
produced a 3-fold increase in fresh
weight compared to that cultured
on SSS. Protocorm development
from callus explant increased
3-fold in TIS with a regeneration
capacity of 168 PLBs per gram
calli. PLB regeneration capacity
was enhanced further with
increased sucrose concentration
(15 µ to 58 µM) with the
generation of 190 PLBs per
gram calli.

[186]
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Table 2. Cont.

Orchid Species Explant Type Culture Systems Type of Medium and Hormone
Combinations Used

Medium
Volume

Immersion Time
and Frequency Experimental Results References

Paphiopedilum
rothschildianum
Rchb.f.

Callus
derived PLBs SSS and TIS

MS supplemented with 4.54 µM
TDZ singly or in association
with 13.6 µM 2,4-D.

150 mL 5 min immersion
after every 125 min.

Higher sucrose concentration
promoted better PLB formation
(4.0) on TIS, contrasted with
greater PLBs formation in lower
sucrose concentration in SSS. A
2-fold increase in PLB formation
was observed on TIS compared to
SSS, producing 168 PLBs per gram
calli. Furthermore, the
regeneration capacity in TIS
enhanced to 190 PLBs per gram
calli with higher sucrose
concentration (58 mM).

[187]

Phalaenopsis Shoot
apical meristem TIS

The liquid medium with
1.5 g L−1 Hyponex I, 0.1 mg L−1

NAA, 4 mg L−1 BAP,
200 mL L−1 CW and 20 g L−1

sucrose.

250 mL 10 min immersion
every 4 h each time

The production of axillary shoots
correlated with days in the culture.
After 5 months of culture, a single
virus-free short shoot segment
generated around 200 plantlets on
average. Shoots were separated
into single and transferred to root
initiation medium to get complete
plantlets in 3–4 months.

[188]

Vanilla planifolia
Jacks In vitro shoots Automated

TIS (RITA)

MS supplemented with
2 mg L−1 BA with different
concentrations of Argovit (0, 25,
50, 100 and 200 mg L−1).

200 mL

2 min per
immersion with a
time interval of
every 4, 8, and 12 h.

Maximum shoots (14.89) per
explant were recorded at Argovit
doses of 50 mg L−1, while the
least shoots (4.55) were observed
at Argovit doses of 200 mg L−1.
The highest shoot length
(14.89 cm) was noticed at
50 mg L−1 of Argovit, and the
shortest (0.82 ± 0.6 cm) was
witnessed in Argovit doses of
200 mg L−1. Fresh weight was
maximum (438.00 ± 18.42 mg) in
shoots under 50 mg L−1 dose of
Argovit and the lowest
(143.80 ± 12.34 mg) was noted in
200 mg L−1 of Argovit.

[189]
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Table 2. Cont.

Orchid Species Explant Type Culture Systems Type of Medium and Hormone
Combinations Used

Medium
Volume

Immersion Time
and Frequency Experimental Results References

Vanilla planifolia
Jacks

Shoot nodal
segments TIS

MS basal medium
supplemented with 30 g L−1

sucrose and 2.15 mg L−1 BA.

25 mL of medium per
explant.

2 min immersion
every 8 h.

The longest (2.79 cm) and
maximum shoot number (9.15) per
explant were recorded after the
first subculture, and the least (4.57)
shoots were achieved in the fourth
subculture. 100% of the roots were
rooted with 80% survival, but all
showed variegation. 100% genetic
uniformity was observed from
molecular analysis with ISSR
markers and morphological
stability was evident from the
heritability of leaf pigmentation.

[190]

Vanda tricolor
Lindl.

In vitro grown
shoots Thin layer and TIS

MS basal medium fortified with
150 mL L−1 CW, and 30 g L−1

sucrose.

250 mL for TIS and
5 mL for thin layer
system

Immersion time of
5 min and 10 min
every 12 h interval
for TIS; incubated
in continuous
120 rpm in a
gyratory shaker for
thin layer system.

The sugar utilization in the thin
layer system was more (25.28%)
than in the TIS bioreactor (6.31%),
resulting in a higher growth rate
and biomass accumulation. The
largest biomass production was
noticed in the thin layer system,
with a growth rate of 0.056 cm per
day. However, the ability to
sustain shoot viability and
survivability was higher in TIS
compared to the thin layer system.

[191]
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4. Conclusions

Orchid micropropagation using the SS system is one of the promising methods of plant
propagation on a large scale. However, expensive production costs, low multiplication rates,
and detrimental effects of hyperhydricity and asphyxia limit the use of the system for mass
plant generation. The use of TIS for orchid propagation reduces the production cost, does
away with physiological problems of hyperhydricity and asphyxia, and makes scale-up
and complete automation of the system highly feasible. However, the scale-up of TIS may
require large, air-conditioned spaces, which may significantly increase production costs.
The efficiency of both SS and TIS for orchid micropropagation cannot be questioned, but the
refinement and improvement of both systems are the need of the hour for their commercial
application in plant production. With more efforts being put into developing more effective,
cheap, and reliable TIS, the objectives of mass orchid production for commercial and
conservational purposes may soon be realized.
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