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Universidad Técnica Federico Santa Maŕıa
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Quadratic and Quartic Integrals Using the Method of Brackets

B Ananthanarayan, Sumit Banik, Sudeepan Datta and Tanay Pathak

Abstract. The method of brackets is used to evaluate quadratic and quartic type
integrals appearing in the classical table of integrals by Gradshteyn and Ryzhik

in terms of hypergeometric functions. Some generalizations are also presented.

1. Introduction

The method of brackets, introduced in [15], is a method for the evaluation of
definite integrals (mostly over the half-line). A variety of entries in the classical table
of integral by Gradshteyn and Ryzhik [16] have been evaluated in [10] by this method.
Many other types of integrals have appeared recently in the literature. For instance,
Coffey [5] considers integrals of Russel type generalizing [18] and [1], Bravo et al. [4]
studied integrals of Frullani type and Gonzalez et al [9] evaluates problems coming
from the moments of the hydrogen atom. Many other examples appear in [11] and
[13].

Many of the integrals considered by previous authors have their origin in the
evaluation of Feynman diagrams [6, 14, 15, 8, 12, 17, 19, 21]. The results presented
here provide new evaluations of some entries in the integrals appearing in Gradshteyn
and Ryzhik [16]. The integrands are of quadratic or quartic type, which have also
been considered elsewhere. For instance, the basic integral that we consider has been
evaluated only for n ∈ N:

(1.1)

∫ ∞
0

dx

(ax2 + 2bx+ c)n
=

(−1)n−1

(n− 1)!

∂n−1

∂cn−1

[ 1√
ac− b2

cot−1 b√
ac− b2

]
, (a > 0, ac > b2)

Here we present an evaluation for arbitrary n in terms of hypergeometric functions.
The method of brackets has been partly inspired by the negative dimensional inte-

gration method that arose in elementary particle physics applications due to Halliday
and Ricotta [17] and was further used by Suzuki [20, 21, 22].
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The paper contains some elementary examples, given to illustrate the method.
These include a generalization of the Gaussian integral and an example of a path
integral from Feynman and Hibbs [7]. The next section evaluates some quadratic type
integrals and their generalizations. In the final section we evaluate a quartic integral
and then conclude the section with the evaluation of a generalized quartic integral.

2. Ramanujan’s Master Theorem and the Method of Brackets

At this point it is important to recall the Ramanujan’s master theorem which
forms the basis for the method of brackets. This result states that if a complex-valued
function has an expansion of the form

f(x) =

∞∑
k=0

φ(k)

k!
(−x)k,

then the Mellin transform of f is given by

(2.1)

∫ ∞
0

xs−1f(x)dx = Γ(s)φ(−s),

with Γ(s) the classical gamma function.
The next step is to recall the basic rules of the method of brackets. The paper

then presents a variety of integral evaluations using this procedure.

Definition 2.1. The method makes the use of brackets which is defined as

(2.2) 〈a〉 =

∫ ∞
0

xa−1dx.

The bracket itself is a divergent integral, but when it appears inside a summation,
then it acts like a delta function. The formal rules for operating with these brackets
are described as follows.

Rules 2.2. For any function f(x), its power series is written in the form

(2.3) f(x) =

∞∑
n=0

φnanx
αn+β−1.

The symbol

φn :=
(−1)n

Γ(n+ 1)

will be called the indicator of n. The symbol φn is used to keep track of the indices
appearing in the bracket sums.

Rules 2.3. For any α ∈ C, the expression

(2.4) G = (a1 + a2 + · · ·+ ar)
α,

is given by a bracket series

(2.5) G =
∑

m1,··· ,mr

φ1,2,··· ,r a
m1
1 · · · amr

r

〈−α+m1 + · · ·+mr〉
Γ(−α)

.
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The notation above is

φ1,2,··· ,r ≡ φm1φm2 · · ·φmr and
∑

m1,··· ,mr

≡
∞∑

m1=0

· · ·
∞∑

mr=0

.

Proof. Start with the expression

Γ(n)

kn
=

∫ ∞
0

e−kx xn−1 dx

and substitute k = (a1 + a2 + · · ·+ ar) to obtain

Γ(n)

(a1 + a2 + · · ·+ ar)n
=

∫ ∞
0

e−(a1+a2+···+ar)x xn−1 dx,

=

∫ ∞
0

e−a1xe−a2x · · · e−arx xn−1 dx.

Expand each exponential term in power series to produce

Γ(n)

(a1 + a2 + · · ·+ ar)n
=

∑
n1,n2···nr

φ1,2···r(a1)n1(a2)n2 · · · (ar)nr

∫ ∞
0

xa1+a2+···+ar+n−1 dx,

and integrating over x yields the result. �

The next rule assigns the value of a one-dimensional bracket series with one indi-
cator.

Rules 2.4. The bracket series

(2.6)
∑
n

φnf(n)〈an+ b〉,

is assigned the value

(2.7)
1

a
f(n∗)Γ(−n∗).

where n∗ solves the equation an+b = 0. This definition extends to higher dimensional
bracket series. For example, a two-dimensional bracket series

(2.8)
∑
n1,n2

φn1,n2
f(n1, n2)〈a11n1 + a12n2 + c1〉〈a21n1 + a22n2 + c2〉,

is assigned the value

(2.9)
1

|a11a22 − a12a21|
f(n∗1, n

∗
2)Γ(−n∗1)Γ(−n∗2).

where n∗1, n
∗
2 is the unique solution to the linear system

a11n1 + a12n2 + c1 = 0,(2.10)

a21n1 + a22n2 + c2 = 0,
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obtained by the vanishing of the expressions in the brackets. A similar rule generalized
to higher dimensional series is,∑

n1···nr

φ1,··· ,rf(n1, · · · , nr)〈a11n1 + · · · a1rnr + c1〉 · · · 〈ar1n1 + · · · arrnr + cr〉,

is assigned the value

(2.11)
1

|det(A)|
f(n∗1, · · · , n∗r)Γ(−n∗1) · · · f(−n∗r),

where A is the matrix of coefficients (aij) and {n∗i } is the solution of the linear system
obtained by the vanishing of the brackets. The value is not defined if the matrix A is
not invertible. It could be shown that the above rule is really the Ramanujan’s master
theorem at work.

Proof: Consider the following bracket series

G =
∑
n

φnf(n)〈an+ b〉 =
∑
n

φn

∫ ∞
0

f(n)xan+b−1 dx(2.12)

and the change of variables xa = t yields

G =
∑
n

φn

∫ ∞
0

f(n) (t)n+ b
a−

1
a

dt

a t1−
1
a

which simplifies to

G =
∑
n

φn

∫ ∞
0

f(n)tn+ b
a−1 dt

a
.

The Ramanujan’s master theorem now gives

(2.13) G =
1

a
f

(
− b
a

)
Γ

(
b

a

)
.

which is rule 2.4 for the one dimensional case. We can similarly proof the higher di-
mensional cases. Above proof also shows the bracket indeed acts like a delta function
when used inside a summation.

Note. In the case where the assignment leaves free parameters, any divergent se-
ries in these parameters are discarded. In case several choices of free parameters are
available, the series that converge in a common region are added to contribute to the
integral.

Notation. The value of the integral is denoted by I1,··· ,n where i1, i2, · · · , in are the
free variables contributing to the solution.
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3. Examples

The first few examples already appear in the literature. This has a pedagogical
value, it illustrates how the method of brackets is applied.

Example 3.1. Generalised Gaussian Integral. This is the integral

(3.1) I =

∫ ∞
0

e−x
p

dx.

To evaluate this entry by the method of brackets, expand the function appearing inside
the integral, to produce

e−x
p

=

∞∑
n=0

φn(xp)n,

so that (3.1) becomes

I =

∞∑
n=0

φn

∫ ∞
0

xpn+1−1dx(3.2)

=

∞∑
n=0

φn〈pn+ 1〉.

The value of the bracket series is given by computing parameter n from the vanishing
of the bracket:

(3.3) pn+ 1 = 0.

This gives

(3.4) n = −1

p
.

The value of the integral is then given by using Rule 3:

I =
1

p
Γ

(
1

p

)
.

For special case p = 2, one obtains the familiar Gaussian integral.

Example 3.2. An integral from Feynman and Hibbs. The integral considered
here is taken from the appendix given in the book of Feynman and Hibbs [7]. The
integral is complex and difficult to evaluate using the conventional methods. Here we
present an evaluation using the method of brackets.

The integral is

I =

∫ ∞
0

eia/x
2+ibx2

dx.(3.5)
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The evaluation begins with the expansion of the functions appearing in the integral

eia/x
2

=
∑
n1

φn1(−ia)n1(x)−2n1 ,

eibx
2

=
∑
n2

φn2
(−ib)n2(x)2n2 .

Replacing this in (3.5) gives

I =
∑
n1,n2

φ1,2

∫ ∞
0

(−ia)n1(−ib)n2x2n2−2n1+1−1 dx,(3.6)

=
∑
n1,n2

φ1,2(−ia)n1(−ib)n2〈2n2 − 2n1 + 1〉.

The evaluation of this bracket series, by solving a system of equations coming from
the vanishing of brackets, yields a 2× 2 system of rank 1. The solutions are given by
choosing n1 or n2 as the free variable.

1) n1 as the free variable. Then

n∗2 =
2n1 − 1

2
.

and rule 2.4 produces

I1 =
∑
n1

φ1(−ia)n1(−ib)n
∗
2

Γ(−n∗2)

2
.

Substituting the value of n∗2 and summing up the resulting series in n1 produces the
solution

(3.7) I1 =
(−1)1/4

√
π cos(2

√
ab)

2
√
b

.

2) n2 as the free variable now yields

n∗1 =
2n2 + 1

2
,

and rule 2.4 now gives

I1 =
∑
n2

φ2(−ia)n
∗
1 (−ib)n2

Γ(−n∗1)

2
.

Substituting the values and summing up the series over n2 now produces

(3.8) I2 =
i(−1)1/4

√
π sin(2

√
ab)

2
√
b

.

Since both the solutions have the same region of convergence, they full result is I1 +I2,
which reduces to

(3.9) I = I1 + I2 =
(−1)1/4e2i

√
ab
√
π

2
√
b

.

This is the final result.
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4. Quadratic Integrals

This section contains the evaluation of some examples of quadratic type. These
are integrals taken from [16] where the integrand contains the factor ax2 + 2bx+ c.

4.1. Entry 3.252.1. The first integral considered here is

(4.1) I =

∫ ∞
0

dx

(ax2 + 2bx+ c)n
.

The value of the integral, as given in Gradshteyn and Ryzhik [16], is

(4.2)

∫ ∞
0

dx

(ax2 + 2bx+ c)n
=

(−1)n−1

(n− 1)!

∂n−1

∂cn−1

[ 1√
ac− b2

cot−1 b√
ac− b2

]
,

with a > 0, ac > b2 and n ∈ N. A proof of this formula, for n ∈ N, is given in [2]. The
solution presented here is valid for n /∈ N, restricted only by convergence conditions.

To use the method of brackets, start by expanding the denominator as a bracket
series as

(4.3) (ax2 + bx+ c)−n =
∑

n1,n2,n3

φ1,2,3
(ax2)n1(2bx)n2(c)n3〈n+ n1 + n2 + n3〉

Γ(n)
.

Replace this expansion in the (4.1) and integrating over x produces the following
bracket series, with three indices and two brackets:

I =
∑

n1,n2,n3

φ1,2,3
(a)n1(2b)n2(c)n3〈n+ n1 + n2 + n3〉〈2n1 + n2 + 1〉

Γ(n)
.

The method now yields the following system of equations

n+ n1 + n2 + n3 = 0,

2n1 + n2 + 1 = 0.

There are three variables and two equation so there are 3 different solutions, taking
one free variable each time.

1) n2 as the free variable. The solution obtained using rule 2.4 is

(4.4) I2 =

√
πc

1
2−nΓ

(
n− 1

2

)
1F0

(
n− 1

2 ; ; b
2

ac

)
2
√
aΓ(n)

−
bc−n 2F1

(
1, n; 3

2 ; b
2

ac

)
a

,

with the conditions

(4.5) a 6= 0, c 6= 0,
∣∣∣ b2
ac

∣∣∣ < 1.

This evaluation is valid for all the values of n ∈ R+, restricted only to the region of
convergence of the integral.

2) n1 and n3 as the free variables. The solution obtained using n1 and n3 have
the same region of convergence hence they both are to be added to get the full answer.
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This gives

I1,3 =
an−1b1−2nΓ(1− n)Γ

(
n− 1

2

)
1F0

(
n− 1

2 ; ; acb2
)

2
√
π

+

c1−nΓ(n− 1) 2F1

(
1
2 , 1; 2− n; acb2

)
2bΓ(n)

,

for a 6= 0, c 6= 0, b 6= 0, |ac/b2| < 1. Observe that the solution above is also valid when
n /∈ N.

Note 4.1. Now (4.2) and (4.4) produces the identity

(4.6)
(−1)n−1

(n− 1)!

∂n−1

∂cn−1

[ 1√
ac− b2

cot−1 b√
ac− b2

]
=

√
πc

1
2−nΓ

(
n− 1

2

)
1F0

(
n− 1

2 ; ; b
2

ac

)
2
√
aΓ(n)

−
bc−n 2F1

(
1, n; 3

2 ; b
2

ac

)
a

.

4.2. Entry 3.252.3. We now consider the integral

(4.7) I =

∫ ∞
0

dx

(ax2 + 2bx+ c)n+ 3
2

,

which appears as entry 3.252.3 in Gradshteyn and Ryzhik [16]:

(4.8)

∫ ∞
0

dx

(ax2 + 2bx+ c)n+ 3
2

=
(−2)n

(2n+ 1)!!

∂n

∂cn

( 1√
c(
√
ac+ b)

)
,

for a > 0, c > 0, b > −
√
ac.

In order to evaluate this example by the method of brackets, expand the denomi-
nator as a bracket series:
(4.9)

(ax2 + 2bx+ c)−n−
3
2 =

∞∑
n1,n2,n3

φ1,2,3a
n1(2b)n2cn3x2n1+n2

〈n+ 3
2 + n1 + n2 + n3〉

Γ(n+ 3
2 ).

Replacing this expansion in (4.7), and integrating over x produces the bracket series:

(4.10) I =

∞∑
n1,n2,n3

φ1,2,3a
n1(2b)n2cn3

〈2n1 + n2 + 1〉〈n+ 3
2 + n1 + n2 + n3〉

Γ(n+ 3
2 ).

The usual procedure now gives the linear system

2n1 + n2 + 1 = 0,

n+
3

2
+ n1 + n2 + n3 = 0.

This is a system of rank 2, yielding three expressions for the integral.
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1) n2 as the free variable. This yields

(4.11)

I2 =
c−n

2a (ac− b2)

√πa3/2Γ(n+ 1) 1F0

(
n; ; b

2

ac

)
Γ
(
n+ 3

2

) +
2
(
b3 − abc

)
2F1

(
1, n+ 3

2 ; 3
2 ; b

2

ac

)
c3/2

 ,

for c > 0, b2 < |ac|. This solution is valid for all n ∈ R+.

2) n1 and n3 as the free variable. The solution obtained using n1 and n3 have the
same region of convergence hence they both are to be added to get the full answer.
The final solution is:

I1,3 =
1

2
Γ

(
−n− 1

2

)(
an+ 1

2 b−2nΓ(n+ 1)1F0

(
n; ; acb2

)
√
π (b2 − ac)

−
c−n−

1
2 2F̃1

(
1
2 , 1; 1

2 − n; acb2
)

b

)
,

(4.12)

for b > 0, |ac| < b2. Here 2F̃1 is the regularized Hypergeometric 2F1, defined by

2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c). This solution is valid for all n ∈ R+ except half-
integers 1

2 ,
3
2 , ...etc.

Note 4.2. Using (4.8) and (4.11) gives the relation

(−2)n

(2n+ 1)!!

∂n

∂cn

( 1√
c(
√
ac+ b)

)
=

c−n

2a (ac− b2)

(√
πa3/2Γ(n+ 1) 1F0

(
n; ; b

2

ac

)
Γ
(
n+ 3

2

)
+

2
(
b3 − abc

)
2F1

(
1, n+ 3

2 ; 3
2 ; b

2

ac

)
c3/2

)
.

(4.13)

4.3. Entry 3.252.4. The integral considered now is entry 3.252.4 in [16], defined
by

(4.14) I =

∫ ∞
0

x dx

(ax2 + 2bx+ c)n

The value of this integral is given as

(4.15)

∫ ∞
0

x dx

(ax2 + 2bx+ c)n
=



(−1)n

(n− 1)!!

∂n−2

∂cn−2

( 1

2(ac− b2)
− b

2(ac− b2)
3
2

cot−1(
b√

ac− b2
)
)
, ac > b2,

(−1)n

(n− 1)!!

∂n−2

∂cn−2

( 1

2(ac− b2)
+

b

4(b2 − ac) 3
2

ln
(b+

√
b2 − ac

b−
√
b2 − ac

))
, b2 > ac > 0,

an−2

2(n− 1)(2n− 1)b2n−2
, ac = b2.

The procedure is now standard: expand the denominator as a bracket-series:

(4.16) (ax2 + 2bx+ c)−n =

∞∑
n1,n2,n3

φ1,2,3a
n1(2b)n2cn3x2n1+n2

〈n+ n1 + n2 + n3〉
Γ(n)

.
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and substitute the expansion in (4.14), integrate over x to produce the bracket series

(4.17) I =

∞∑
n1,n2,n3

φ1,2,3a
n1(2b)n2cn3

〈2n1 + n2 + 2〉〈n+ n1 + n2 + n3〉
Γ(n)

.

This is evaluated from the linear system

2n1 + n2 + 2 = 0,

n+ n1 + n2 + n3 = 0,

which produces

1) n2 as the free variable

I2 =
c1−nΓ(n− 1) 2F1

(
1, n− 1; 1

2 ; b
2

ac

)
2aΓ(n)

−

√
πbc

1
2−nΓ

(
n− 1

2

)
1F0

(
n− 1

2 ; ; b
2

ac

)
2a3/2Γ(n)

,(
c > 0, b > 0,

∣∣∣ b2
ac

∣∣∣ < 1
)
.

(4.18)

with a solution valid for all n ∈ R+.

2) n1 and n3 as the free variable

I1,3 = −
Γ(1− n)

(
2an−2b4−2nΓ

(
n− 1

2

)
1F0

(
n− 1

2 ; ; acb2
)
−
√
πc2−n 2F̃1

(
1, 3

2 ; 3− n; acb2
))

4
√
πb2

,

(
a > 0, b > 0,

∣∣∣ac
b2

∣∣∣ < 1
)
,

(4.19)

giving an expression valid for all n /∈ N.

The case ac = b2 is treated in the same manner.

Note 4.3. As in the previous examples, this evaluation and (4.15) and (4.19) we
can write the following identity

(−1)n

(n− 1)!!

∂n−2

∂cn−2

( 1

2(ac− b2)
− b

2(ac− b2)
3
2

cot−1(
b√

ac− b2
)
)

=

c1−nΓ(n− 1) 2F1

(
1, n− 1; 1

2 ; b
2

ac

)
2aΓ(n)

−

√
πbc

1
2−nΓ

(
n− 1

2

)
1F0

(
n− 1

2 ; ; b
2

ac

)
2a3/2Γ(n)

.
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4.4. Generalization. We now present a generalization of the quadratic type
integrals in the form

(4.20) I =

∫ ∞
0

xn dx

(ax2 + 2bx+ c)m
.

The evaluation by the method of brackets begins with an expansion of the denominator
as a bracket series.

(ax2 + 2bx+ c)−m =
∑

n1,n2,n3

φ1,2,3
(ax2)n1(2bx)n2(c)n3〈m+ n1 + n2 + n3〉

Γ(m)
.

Substituting in the (4.20) and integrating over x produces the bracket series:

I =
∑

n1,n2,n3

φ1,2,3
(a)n1(2b)n2(c)n3〈m+ n1 + n2 + n3〉〈2n1 + n2 + n+ 1〉

Γ(m)
.

This is evaluated by solving

m+ n1 + n2 + n3 = 0,

2n1 + n2 + n+ 1 = 0.

This is a system of rank 2. The solutions are expressed in terms of a single free variable:

1) n2 as the free variable

I2 =
a−

n
2−

1
2 Γ
(
n+1

2

)
c

1
2 (n−2m)+ 1

2 Γ
(
m− n

2 −
1
2

)
2F1

(
m− n

2 −
1
2 ,

n+1
2 ; 1

2 ; b
2

ac

)
2Γ(m)

−
ba−

n
2−1Γ

(
n
2 + 1

)
c

1
2 (n−2m)Γ

(
m− n

2

)
2F1

(
m− n

2 ,
n
2 + 1; 3

2 ; b
2

ac

)
Γ(m)

,

(4.21)

for b2 < |ac|.
2) n1 and n3 as the free variables. The solution corresponding to n1 and n3 as
the free variables have the same region of convergence and are added together to get
the full answer. The final answer after simplification is

I1,3 =
2−2m+n+1am−n−1 b−2m+n+1Γ(2m− n− 1)Γ(−m+ n+ 1) 2F1

(
m− n

2 −
1
2 ,m−

n
2 ;m− n; acb2

)
Γ(m)

+
2−n−1b−n−1Γ(n+ 1)c−m+n+1Γ(m− n− 1) 2F1

(
n+1

2 , n+2
2 ;−m+ n+ 2; acb2

)
Γ(m)

,

(4.22)

with |ac| < b2. The above evaluation for some general powers n and m is not given
in Gradshteyn and Ryzhik. Special values for m and n will reproduce the previous
examples.
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4.5. Special case n = 0. This is given in terms of the free indices.

1) n2 as the free variables

Simplifying we get

I2 =

√
πc

1
2−mΓ

(
m− 1

2

)
1F0

(
m− 1

2 ; ; b
2

ac

)
2
√
aΓ(m)

−
bc−m 2F1

(
1,m; 3

2 ; b
2

ac

)
a

.(4.23)

which is same as (4.4)

2) n1 and n3 as the free variables. Simplifying the answer yields

I1,3 =
21−2mam−1b1−2mΓ(1−m)Γ(2m− 1)1F0

(
m− 1

2 ; ; acb2
)

+
c1−mΓ(m−1) 2F1( 1

2 ,1;2−m; ac
b2

)
2b

Γ(m)
.

(4.24)

The Legendre duplication formula on Γ(2m− 1) gives (4.6).

5. Quartic Integrals

The quartic integral

(5.1) I =

∫ ∞
0

dx

(ax4 + 2bx2 + c)m
,

can be scaled to the special case a = c = 1. This has been investigated by Amdeberhan
et al. [3]. The above integral has been evaluated by the method of brackets for the
special case of a = 1 and c = 1 in [11]. Here we evaluate it for some general a and c.

First expand the denominator as a bracket series

(ax4 + 2bx2 + c)−m =
∑

n1,n2,n3

φ1,2,3
(ax4)n1(2bx2)n2(c)n3〈m+ n1 + n2 + n3〉

Γ(m)
.

Substituting the above expansion in (5.1) and integrating over x yields the bracket
series

I =
∑

n1,n2,n3

φ1,2,3
(a)n1(2b)n2(c)n3〈m+ n1 + n2 + n3〉〈4n1 + 2n2 + 1〉

Γ(m)
.

This is solved in terms of the linear system

m+ n1 + n2 + n3 = 0,

4n1 + 2n2 + 1 = 0.

There are three variables and two equation so there are 3 different solution by taking
one free variable each time. The following are the solutions obtained:
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1) n2 as the free variable

I2 =
Γ
(

1
4

)
c

1
4−mΓ

(
1
4 (4m− 1)

)
2F1

(
1
4 ,m−

1
4 ; 1

2 ; b
2

ac

)
4 4
√
aΓ(m)

−
bΓ
(

3
4

)
c−m−

1
4 Γ
(

1
4 (4m+ 1)

)
2F1

(
3
4 ,m+ 1

4 ; 3
2 ; b

2

ac

)
2a3/4Γ(m)

,

for b2 < |ac|.
2) n1 and n3 as the free variables. The solution corresponding to n1 and n3 as
the free variables have the same region of convergence and are added together to get
the full answer. The final answer after simplification is

I1,3 =
2−2m− 1

2 am−
1
2 b

1
2−2mΓ

(
1
2 (1− 2m)

)
Γ
(

1
2 (4m− 1)

)
2F1

(
m− 1

4 ,m+ 1
4 ;m+ 1

2 ; acb2
)

Γ(m)

+

√
π
2 c

1
2−mΓ

(
1
2 (2m− 1)

)
2F1

(
1
4 ,

3
4 ; 3

2 −m; acb2
)

2
√
bΓ(m)

,

for |ac| < b2.

5.1. Generalization. Next we evaluate a more general quartic integral given by

(5.2) I =

∫ ∞
0

dx

xn(ax4 + 2bx2 + c)m
.

The above integral occurs as a recursion relation in entry 2.161.6 of the table [16].
The evaluation method is now standard. First expand the denominator as a

bracket series

(ax4 + 2bx2 + c)−m =
∑

n1,n2,n3

φ1,2,3
(ax4)n1(2bx2)n2(c)n3〈m+ n1 + n2 + n3〉

Γ(m)
.

Substituting the above expansion in (5.2) and integrating over x produces the bracket
series

I =
∑

n1,n2,n3

φ1,2,3
(a)n1(2b)n2(c)n3〈m+ n1 + n2 + n3〉〈4n1 + 2n2 − n+ 1〉

Γ(m)
.

This is evaluated by solving the two linear equations

m+ n1 + n2 + n3 = 0,

4n1 + 2n2 − n+ 1 = 0.

There are three variables and two equation so there are 3 different solution by taking
one free variable each time.
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1) n2 as the free variable

I2 = a
n−3
4 c

1
4 (−4m−n−1)

(√
a
√
c Γ
(

1
4 −

n
4

)
Γ
(
m+ n

4 −
1
4

)
2F1

(
1−n

4 , 1
4 (4m+ n− 1); 1

2 ; b
2

ac

)
4Γ(m)

−
b Γ

(
3
4 −

n
4

)
Γ
(
m+ n

4 + 1
4

)
2F1

(
3
4 −

n
4 ,m+ n

4 + 1
4 ; 3

2 ; b
2

ac

)
2Γ(m)

)
,

for b2 < |ac|.
2) n1 and n3 as the free variables. The solution corresponding to n1 and n3 as
the free variables have the same region of convergence and are added together to get
the full answer. The final solution is

I1,3 = 2−
n
2−

3
2 b−

n
2−

1
2

(
21−2mb1−2ma

1
2 (2m+n−1)Γ

(
1
2 (−2m− n+ 1)

)
Γ
(

1
2 (4m+ n− 1)

)
Γ(m)

× 2F1

(
m+

n

4
− 1

4
,m+

n

4
+

1

4
;m+

n

2
+

1

2
;
ac

b2

)

+
2nbnΓ

(
1−n

2

)
c

1
2 (−2m−n+1)Γ

(
1
2 (2m+ n− 1)

)
2F1

(
1
4 −

n
4 ,

3
4 −

n
4 ;−m− n

2 + 3
2 ; acb2

)
Γ(m)

))
,

for |ac| < b2.

The special case n = 0 gives the previous results.
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