
Computer Physics Communications 287 (2023) 108699
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

FeynGKZ: A Mathematica package for solving Feynman integrals using

GKZ hypergeometric systems ✩,✩✩

B. Ananthanarayan, Sumit Banik, Souvik Bera, Sudeepan Datta ∗

Centre for High Energy Physics, Indian Institute of Science, Bangalore, 560012, Karnataka, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 November 2022
Received in revised form 3 February 2023
Accepted 11 February 2023
Available online 24 February 2023

Keywords:
Feynman integrals
Multiloop Feynman integrals
Computer algebra
Multivariate hypergeometric functions
Analytic continuation

In the Lee-Pomeransky representation, Feynman integrals can be identified as a subset of Euler-Mellin
integrals, which are known to satisfy Gel’fand-Kapranov-Zelevinsky (GKZ) system of partial differential
equations. Here we present an automated package to derive the associated GKZ system for a given
Feynman diagram and solve it in terms of hypergeometric functions using two equivalent algorithms,
namely the triangulation method and the Gröbner deformation method. We present our code in the
form of a Mathematica package FeynGKZ.wl which requires the softwares polymake, Macaulay2 and
TOPCOM, and the packages AMBRE and Olsson.wl as dependencies. As applications of the package, we
find series solutions to the GKZ systems of several one-loop and two-loop Feynman integrals. These are
included in the file Examples.nb that can be downloaded along with the package from GitHub.

Program summary
Program Title: FeynGKZ.wl, version 1.0
CPC Library link to program files: https://doi .org /10 .17632 /m8zds756vb .1
Developer’s repository link: https://github .com /anant -group /FeynGKZ
Licensing provisions: GNU General Public License 3
Programming language: Wolfram Mathematica version 13.0 or higher
External routines/libraries: Macaulay2 version 1.20, TOPCOM version 0.17.8, polymake version 4.6,
AMBRE version 2.1.1 and Olsson.wl
Nature of problem: Deriving the GKZ system associated with a given Feynman integral, and solving it in
terms of multivariate hypergeometric functions.
Solution method: Automating the triangulation and Gröbner deformation methods for obtaining �-series
solutions to the GKZ hypergeometric system associated with a given Feynman integral.

References

[1] Wolfram Mathematica; proprietary software.
[2] polymake, open-source software.
[3] Macaulay2, open-source software.
[4] TOPCOM, open-source software.
[5] AMBREv2.1.1.m, open-source Mathematica package.
[6] Olsson.wl, open-source Mathematica package.

© 2023 Elsevier B.V. All rights reserved.

✩ The review of this paper was arranged by Prof. Z. Was.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding author.
E-mail addresses: anant@iisc.ac.in (B. Ananthanarayan), sumitbanik@iisc.ac.in (S. Banik), souvikbera@iisc.ac.in (S. Bera), sudeepand@iisc.ac.in (S. Datta).
https://doi.org/10.1016/j.cpc.2023.108699
0010-4655/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2023.108699
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108699&domain=pdf
https://github.com/anant-group/FeynGKZ
https://doi.org/10.17632/m8zds756vb.1
https://github.com/anant-group/FeynGKZ
http://www.wolfram.com/mathematica/
https://polymake.org/
http://www2.macaulay2.com/Macaulay2/
https://www.wm.uni-bayreuth.de/de/team/rambau_joerg/TOPCOM/index.html
https://jgluza.us.edu.pl/ambre/
https://arxiv.org/abs/2201.01189
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:anant@iisc.ac.in
mailto:sumitbanik@iisc.ac.in
mailto:souvikbera@iisc.ac.in
mailto:sudeepand@iisc.ac.in
https://doi.org/10.1016/j.cpc.2023.108699

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
1. Introduction

The evaluation of multi-loop multi-scale Feynman integrals at ever increasing levels of complexity, has been of great interest and im-
portance as they are the cornerstone of high precision theoretical calculations to match the precision level of present and future colliders.
In particular, analytical results for these are of great importance, even if in special cases, as they would offer interesting insights as well
as useful cross-checks with the corresponding numerical results. For an overview on the different analytical and numerical techniques, see
[1] and [2].

In dimensional regularization, Feynman integrals can be expressed in terms of multiple hypergeometric functions [3] which are widely
known objects in mathematics literature. Several methods have been developed to solve Feynman integrals in terms of hypergeometric
functions. One of the most popular being the Mellin-Barnes (MB) method [4–6]. Here we focus on another powerful method which is based
on the work of Gel’fand, Kapranov, and Zelevinsky (GKZ) [7–10] which explores a system of partial differential equations (PDEs) whose
solutions are hypergeometric functions and Euler-Mellin (EM) integrals. While studying the differential equations satisfied by Feynman
integrals, Kalmykov and Kniehl were among the first to point out [11], based on the work of Beukers [12], that Feynman integrals could
in all likelihood be solutions of an underlying GKZ system.

After the discovery of the Lee-Pomeransky (LP) representation [13] of the Feynman integral, the connection between Feynman integrals
and GKZ systems is more straightforward. This has been explicitly shown in [14,15], where the associated A-matrix of the GKZ system
can be constructed from the G-polynomial of the LP representation. The GKZ system can also be derived from the PDE satisfied by the
MB representation of the Feynman integral as discussed in [16–18]. The derived GKZ system can then be used to study different analytic
properties of the original Feynman integral. For example, one can derive series solutions using two alternative algorithms as discussed
in [14] and [15]. Alternatively, the GKZ framework is also useful to study the singular locus of Feynman integrals [19], vector spaces
generated by Feynman integrals [20], Cohen-Macaulay property of Feynman integrals [21], matroids attached to Feynman integrals [22],
etc. GKZ theory, along with ideas from studies of Calabi-Yau manifolds, has been useful in understanding the analytic structure of a certain
class of amplitudes to all orders of perturbation [23,24]. It is also noted that the PDEs of the GKZ system is closely related to the PDEs
appearing in the Yangian bootstrap approach [25]. Furthermore, due to the connection between GKZ systems and D-module theory, one
can efficiently derive first-order differential equations [26] satisfied by a basis of master integrals of a Feynman integral. The realisation of
parametric Feynman integrals as EM integrals has also of late provided a novel computational algorithm to numerically evaluate Euclidean
Feynman integrals, employing methods inspired from tropical geometry [27].

Despite recent rapid progress in the theoretical side of these emerging topics, there are no publicly available automated computational
tools for the study of GKZ systems associated to Feynman integrals. We take the first step in this direction by presenting the Mathematica
package FeynGKZ.wl which can derive the GKZ system satisfied by a given Feynman integral. Subsequently, we find the series solutions
of the derived GKZ system using two equivalent algorithms. One of these relies on Gröbner deformations (GD) which loosely speaking
is a generalization of the method of Frobenius for ODEs in a single variable, to PDEs in several variables [28]. The other technique relies
on taking suitable triangulations of the polytope defined by a certain point configuration. It may be noted that both methods yield
solutions in terms of multivariate hypergeometric functions. FeynGKZ.wl uses Macaulay2 and TOPCOM [29] for intermediate steps in
the GD and triangulation method, respectively. It also uses polymake [30] to calculate the normalized volume of the Newton polytope
associated to the A-matrix of the GKZ system. The Mathematica packages AMBRE [31] and Olsson.wl [32] are used as well to derive
MB representations for scalar Feynman integrals and to express double-sums in terms of known hypergeometric functions, respectively.

The outline of the paper is as follows. In section 2, we provide an overview of the GKZ hypergeometric systems. In section 3, we
briefly recap scalar Feynman integrals and their LP representation. In section 4, we recall how to derive the GKZ system from the LP
representation and find series solutions using either the GD or triangulation approach. In Section 5, we discuss the usage of the external
modules of FeynGKZ.wl. In section 6 we demonstrate the package by taking a simple one-loop massive Feynman integral. Finally, in
Section 7 we present our conclusions and remarks. In appendices A and B we provide the usage of some additional external modules and
global variables of the package, respectively. In appendix C, we list the Feynman integrals we have demonstrated in the file Examples.nb
which can be downloaded along with the package FeynGKZ.wl from https://github .com /anant -group /FeynGKZ.

2. Overview of GKZ hypergeometric systems

In this section, we provide a brief overview of the GKZ hypergeometric system. To keep the mathematical framework short, we provide
only the notions required for the computational aspects. The full theory requires more rigorous mathematical ideas which are not required
for our purpose. The interested reader will find those in the following [28,33–36]

2.1. Setting up the GKZ system

Let A = aij be a (n + 1) × N matrix with n + 1 ≤ N , having rank n + 1 and all elements are integers. We assume that the vector
(1, 1, . . . , 1) lies in the Q-row span of A and the column vectors of A generate Zn+1 over Z. The toric ideal associated with the matrix
A is defined as,

IA := 〈∂u − ∂ v |Au = Av ; u, v ∈NN〉 ∈C[∂] (1)

where C[∂] =C[∂1, . . . , ∂N] is a commutative polynomial ring.
Given a column vector β = (β0, . . . , βn)T ∈ Cn+1, the GKZ hypergeometric system characterised by matrix A and parameters β is

defined as the left ideal HA(β) generated by IA and 〈A · θ − β〉.

HA(β) = IA ∪ 〈A · θ − β〉 ∈C[z1, . . . , zN , ∂1, . . . , ∂N] (2)

where the vector θ = (θ1, . . . , θN)T contains the Euler operators θi = zi∂i as its elements. This is also known as the A-hypergeometric ideal
due to the presence of the matrix A. A holomorphic function φ(z1, . . . , zN) is called the A-hypergeometric function if HA(β) • φ = 0.
Here we are only interested in non-logarithmic series solutions of the above system.
2

https://github.com/anant-group/FeynGKZ

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
2.2. EM integrals as solutions to GKZ hypergeometric systems

It is pertinent here to discuss the solutions to GKZ systems in terms of EM integrals, for we shall later see that a generalized version
of Feynman integrals could be understood in terms of such solutions.

To define the EM integral, we consider a generic Laurent polynomial:

f (α1, ...,αn; z1, ..., zN) ≡ f z(α) :=
N∑

j=1

z j

n∏
i=1

α
aij

i ; aij ∈Z (3)

We can now define an EM integral as a generalization of the Mellin transform of the rational function 1/ f :

I f z (ν, ν0) =
∫

R+
n

dnα αν−1 f z(α)−ν0 (4)

where, dnα = ∏n
i=1 dαi , and αν−1 = ∏n

i=1 α
νi−1
i .

Analytic and convergence properties of such integrals have been detailed in [37,14,15] by considering the Newton polytope correspond-
ing to the Laurent polynomial, namely, in Theorems 2.2 and 2.4 in [37].

It has been shown in [37] (Theorem 4.2) that for generic z j , the EM integral I f z with parameters (ν, ν0) = (ν1, ..., νn, ν0) could be
understood as a solution to a GKZ hypergeometric system of the form Eq. (2) with the following data:

A = {aij; i ∈ {1, ...,n + 1}, j ∈ {1, ..., N}}|aij = 1; i = 1}
β = −(ν0, ν)T = −ν

(5)

where, ν = (ν0, ν)T .
Thus, the GKZ system associated with f z(α) takes the following form in terms of the parameter vector ν:

HA(ν) = IA ∪ 〈A · θ + ν〉 (6)

3. Scalar Feynman integrals and the Lee-Pomeransky representation

In the momentum-space representation, scalar Feynman integrals take the following form:

I�(ν, D) =
∫ l∏

r=1

dDkr

iπ
D
2

1∏n
j=1(−q2

j + m2
j)

ν j
(7)

where, l is the number of loops, D is the space-time dimension, ν = (ν1, ..., νn) are the propagator powers. kr -s and q j -s are the loop-
momenta and internal-momenta for the Feynman graph �.

Introducing the Feynman parameters α = {αi : i ∈ {1, ..., n}} for all the internal edges, and using the notation ω = ν − lD
2 , a parametric

representation for the integral above is obtained:

I�(ν, D) = �(ω)
(n∏

i=1

1∫
αi=0

dαi α
νi−1
i

�(νi)

) δ(1 − ∑n
j=1 α j)

F (α)ωU (α)
D
2 −ω

(8)

This expression is dubbed the Feynman parametric representation for the integral. U (α) and F (α) are called the first and second Symanzik
polynomials, respectively.

There is another alternative representation which involves a single polynomial G(α) = U (α) + F (α),

I�(ν, D) = �(D
2)

�(D
2 − ω)

(n∏
i=1

∞∫
αi=0

dαi α
νi−1
i

�(νi)

)
G(α)−

d
2

= �(D
2)

�(D
2 − ω)�(ν)

∫
Rn+

dααν−1G(α)−
d
2

(9)

where, we use the following notation:

dα =
n∏

i=1

dαi , αν−1 =
n∏

i=1

α
νi−1
i , �(ν) =

n∏
i=1

�(νi) (10)

This representation is called the Lee-Pomeransky representation [13] for the Feynman integral, and the polynomial G(α) is called the Lee-
Pomeransky polynomial. Hereafter, we shall call this polynomial the G-polynomial.

For further details on the different representations of Feynman integrals, we refer the interested reader to [2].
3

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
4. Solution methodology

4.1. The toric G-polynomial and the A-matrix

Polynomials with generic coefficients of its monomials are called toric polynomials. It has been shown in [14] that a toric version of the
G-polynomial defines a GKZ-system. This toric version is expressed as follows:

Gz(α) =
∑
a j∈A

z jα
a j =

N∑
j=1

z j

n∏
i=1

α
aij

i (11)

where, N is the number of monomials, z j are generic coefficients that contain information about the kinematics in the non-generic limit,
and are complex numbers z j ∈ (C\0)N . A is a finite set with N pairwise distinct column vectors a j = (a1 j, ..., anj)

T ∈ Zn≥0. As such, A is
a matrix of order n × N .

The matrix A defines a configuration of N points in affine space Zn . The convex hull of these points defines a convex polytope:

P = Conv(A) :=
{ N∑

j=1

k ja j

∣∣∣k ∈RN≥0,

N∑
j=1

k j = 1
}

(12)

The toric G-polynomial is a special case of a Laurent polynomial where only non-negative exponents appear. Therefore by Eq. (5), we
can write the associated A-matrix as follows:

A =
(

1
A

)
=

(
1 1 ... 1
a1 a2 ... aN

)
∈Z(n+1)×N

≥0 (13)

where, ai ∈Zn≥0.
This condition ensures that the columns in A are the homogeneous coordinates of the point configuration defined by A. This is the

convention used in TOPCOM [29]. More details about this homogeneity condition can be found in [38].
The Newton polytope associated to the toric G-polynomial is defined as the convex hull of the exponent vectors:

�Gz := Conv({a j = (a1 j, ...,anj)
T |z j �= 0}, j ∈ {1, ..., N}) (14)

For details about convex polytopes in general and the Newton polytope in particular, we refer the reader to [15,2].
From this discussion, we can see that �Gz = Conv(A).

4.2. The triangulation method

4.2.1. Triangulations of �Gz

A triangulation of �Gz is its subdivision into simplices {σ1, ..., σr}, such that union of all simplices gives the full polytope, and the
intersection of two distinct simplices is either empty or a proper face of both. Here, σi ⊂ {1, ..., N} is an index set, i ∈ {1, ..., r}, and
σ = {1, ..., N}\σ is the complement of σ .

Regular or coherent triangulations T (h) = {σ1, ..., σr} are those for which there exists a height vector h ∈ RN , such that for every
simplex σi of such a triangulation, there exists another vector pi ∈Rn+1 satisfying

pi · a j = h j for j ∈ σi

pi · a j < h j for j /∈ σi
(15)

It has been shown in [38] that a regular triangulation can always be obtained, given an arbitrary convex polytope.
As mentioned earlier in section 2.1, we consider the rank of A ∈ Z(n+1)×N to be n + 1. Let δ be the greatest common divisor of all

(n + 1) × (n + 1) minors of A. Then the normalized volume of σ is given by vol0(σ) = |detAσ |/δ where, Aσ denotes the submatrix formed
by retaining the columns indexed by σ and dropping the others. This definition could be found in [36,39].

Unimodular triangulations {σ1, ..., σr} are those for which, vol0(σi) = 1 ∀ i ∈ {1, ..., r}.

4.2.2. Generalized Feynman integrals
Employing the notion of the toric G-polynomial with generic coefficients z j ∈ (C\0)N such that Re(z j) > 0, we can consider a gener-

alized Feynman integral as the meromorphic continuation of the integral

IGz (ν, ν0) = �(ν0)

∫
Rn+

dααν−1Gz(α)−ν0 (16)

defined on ν = (ν0, ν) ∈Cn+1, with ν0 = D
2 .

From the discussion in [15], another representation of IGz (ν, ν0) could be obtained as a multi-fold MB integral:

IGz (ν, ν0) = z
−A−1

σ ν
σ

vol0(σ)

∫
γ

dt

(2π i)r
�(t)�(A−1

σ ν −A−1
σ Aσ t)z−t

σ z
A−1

σ Aσ t
σ (17)
4

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
From the above, a special case follows where N = n + 1. If there exists some region R ⊆ Cn+1 such that IGz (ν, ν0) is absolutely
convergent for ν ∈ R , then det Aσ �= 0, and the Feynman integral takes a simple form:

IGz (ν, ν0) = �(A−1
σ ν)

vol0(σ)
z−A−1

σ ν (18)

where, owing to the square matrix form, σ contains all the columns, that is, Aσ =A. Thus, vol0(σ) = |det A|/δ.

4.2.3. Generalized Feynman integrals as GKZ hypergeometric functions
Comparing Eq. (11) with Eq. (3) and Eq. (16) with Eq. (4), we can see that generalized Feynman integrals could be understood as EM

integrals. Thus, IGz (ν, ν0) satisfies the GKZ hypergeometric system HA(ν) with the associated data as specified in (5), where ν0 = d
2 . For

a formal proof, we refer the reader to [15] (Theorem 3.1).
A basis for the solution space of HA(ν) could be obtained using the regular triangulations of �Gz , with the restriction that the

parameter vector ν be very generic. Details of this procedure could be found in [9] (Theorem 2.17) and [40].
Elements of this basis are called the Γ -series. The number of such elements is given by rank HA(ν) = vol0(Conv(A)). Since GKZ

hypergeometric systems are holonomic, it is ensured that the dimensionality of the solution space (and hence the number of such basis
elements) is finite.

For unimodular regular triangulations, each simplex of the triangulation can lead to only one such series, and hence, we can label the
�-series by their corresponding simplices. It can be shown that in the unimodular case, the �-series associated to some simplex σ ∈ T
takes the following form:

�σ (ν, z) = z
−A−1

σ ν
σ

∑
λ∈N |σ |

0

(A−1
σ ν)A−1

σ Aσ λ

λ!
zλ
σ

(−zσ)A
−1
σ Aσ λ

(19)

Using the Knudsen-Mumford theorem [41,42], it could be argued [15] that by adding monomials to the toric G-polynomial such that
Gz → G ′

z′ (or equivalently, by scaling the underlying Newton polytope �Gz with some integer scale-factor such that �Gz → �G ′
z′

), an
unimodular triangulation can always be obtained. As a result, it would be enough to consider only those regular triangulations of �Gz

that happen to be unimodular as well, in order to construct a basis for the solution space of HA(ν).
Starting with the case ν ∈ (C\Z)n+1, we can write the corresponding generalized Feynman integral as a linear combination of the

�-series:

IGz (ν, ν0) =
∑
σ∈T

Pσ (ν)�σ (ν, z) (20)

for z j ∈ CN such that Re(z j) ≥ 0 wherever the �-series converge. The prefactors Pσ (ν) are meromorphic functions in the parameter
vector, and are to be computed in order to obtain a series representation for the Feynman integral.

One simple way to compute these prefactors is to exploit subtriangulations of the triangulation T . By a series of arguments, the authors
in [15] show that one such trivial subtriangulation could be considered to be one of the simplices of T . In this case, using Eq. (18), it
could be shown that these prefactors are given by Pσ (ν) = �(A−1

σ ν), since due to the unimodularity condition, vol0(σ) = 1.
As a result, using the above and Eq. (19), we can write the generalized Feynman integral as follows:

IGz (ν, ν0) = �(A−1
σ ν)

∑
σ∈T

z
−A−1

σ ν
σ

∑
λ∈N |σ |

0

(A−1
σ ν)A−1

σ Aσ λ

λ!
zλ
σ

(−zσ)A
−1
σ Aσ λ

=⇒ IGz (ν, ν0) =
∑
σ∈T

z
−A−1

σ ν
σ

∑
λ∈N |σ |

0

�(A−1
σ ν +A−1

σ Aσ λ)

λ!
zλ
σ

(−zσ)A
−1
σ Aσ λ

(21)

where the series have a common convergence domain.
Eq. (18) and Eq. (21) comprise the main equations that go into the geometric solution side of our package. Note that these equations

provide us with solutions only for the generalized Feynman integral. Suitable limits for the variables z j need to be set in order to get back
to the original Feynman integral, and the process has been discussed at length in [15].

4.3. The GD method

Here we summarize the key steps of the GD method, which is based on the algorithm proposed by Saito, Sturmfels and Takayama
(SST) [28]. Let D N be a Weyl algebra of N variables over a field K. It is generated by the variables z1, . . . , zN , ∂1, . . . , ∂N where all the zi ’s
commute among themselves and so do the ∂i ’s, but [∂i, z j] = δi j . An element p that belongs to the Weyl algebra can be written in the
canonical form, where all the ∂i are brought to the right by the use of commutation relations.

p =
∑

i, j∈NN

ci j z
i∂ j (22)
5

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
Here zi for i ∈NN implies zi1
1 . . . ziN

N and the same for ∂ j . For a vector w ∈RN ,

in(−w,w)(p) :=
⎧⎨
⎩

∑
r,s∈NN

crszr∂ s | − 〈w, r〉 + 〈w, s〉 is maximum

⎫⎬
⎭ (23)

where 〈_, _〉 is the usual scalar product in RN .
For an ideal I ⊂ D N , the Gröbner deformation of I with respect to the weight w is defined as

in(−w,w)(I) := 〈in(−w,w)(p)|p ∈ I〉
The initial ideal is the Gröbner deformation of the toric ideal IA associated with matrix A with respect to a generic weight vector.

Let M be a monomial ideal in K[∂]. A standard pair associated with it is a pair (∂a, σ) where a ∈NN and σ ⊂ {1, . . . , N} satisfying

• ai = 0 for all i ∈ σ

• for all choices of integers b j ≥ 0, ∂a ∏
j∈σ ∂

b j

j /∈ M

• for all l /∈ σ , ∃ b j ≥ 0 : ∂a∂
bl
l

∏
j∈σ ∂

b j

j ∈ M

Let S(M) be the set of all the standard pairs of M then the decomposition of M into irreducible monomial ideals can be found as

M =
⋂

(∂a,σ)∈S(M)

〈∂ai+1
i : i /∈ σ 〉

From the standard pair one can compute the indicial ideal as [33]

indw(IA) =
⋂

(∂a,σ)∈S(inw (IA))

〈(
θ j − a j

)
, j /∈ σ

〉

and fake indicial ideal as

findw(HA(β)) =
⋂

(∂a,σ)∈S(inw (IA))

〈(
θ j − a j

)
, j /∈ σ

〉 + 〈A · θ − β〉

The roots of the fake indicial ideal are called fake exponents of the GKZ system for a given weight. We denote the fake exponents by v .
Let us denote the kernel of the matrix A by

L := kerZ(A) (24)

For u ∈ L, one can write u = u+ − u− , where u+ and u− contains non-negative entries.
Following [28], we define the falling factorials for a vector v ∈KN ,

[v]u− =
∏

i:ui<0

−ui∏
j=1

(vi − j + 1)

[u + v]u+ =
∏

i:ui>0

ui∏
j=1

(ui + j)

In what follows, we assume that the vector v does not contain negative integers so that

[u + v]u+ �= 0 for all u ∈ZN

The series solution of the GKZ system can be written as [28]

φv :=
∑
u∈L

[v]u−
[u + v]u+

zu+v

This sums up the general strategy to find the canonical series solutions of a GKZ system HA(β).

5. Documentation and usage

In this section we describe the usage of the external modules of the package FeynGKZ.wl. There are a total of nine external modules
that the user has access to. Here, we enlist only six of them that participate in creating the basic workflow of our package, namely,
deriving the GKZ system for a given Feynman integral and solving the system in terms of hypergeometric functions. The remaining three
modules with additional functionality have been described in appendix A.
6

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
For a given Feynman integral, our first step is to find the A-matrix associated to its GKZ system. This is done by using the FindAMa-
trix command. This command can accept two different input patterns of the Feynman integral: the momentum representation or the
Schwinger parametric representation.

FindAMatrix[{MomentumRep, LoopMomenta, InvariantList, Dim, Prefactor}]

or,

FindAMatrix[{{U, F, PropagatorPowers}, LoopNumber, InvariantList, Dim, Prefactor}]

Below, we provide details about the input arguments for FindAMatrix.

• MomentumRep: A list containing information about all the propagators in the Feynman integral. It consists of multiple sub-lists,
each of which has the following pattern:
{Propagator-Momentum, Propagator-Mass, Propagator-Power}.

• U: The first Symanzik polynomial corresponding to the given Feynman integral.
• F: The second Symanzik polynomial corresponding to the given Feynman integral.
• PropagatorPowers: A list containing all the powers of the propagators of the Feynman integral.
• LoopMomenta: A list containing the loop-momenta for the given Feynman integral.
• LoopNumber: The number of loops appearing in the given Feynman integral. It must be an positive integer.
• InvariantList: A list of kinematic substitutions.
• Dim: the space-time dimension.
• Prefactor: An overall factor that is independent of the loop-momenta.
• Options:

– UseMB: This option accepts a boolean value. Its default value is False. When set True, FindAMatrix calls AM-
BREv2.1.1.m to obtain the MB-representation corresponding to the given Feynman integral, and uses it to compute the
A-matrix.

Upon a successful run with UseMB → False, FindAMatrix prints the U, F and G polynomials, the A-matrix, the normalised Eu-
clidean volume of the polytope defined by the A-matrix as calculated by polymake, and the total time taken by the command to
run.

The option UseMB → True works only when the Feynman integral is given in its momentum representation. When run with UseMB
→ True, AMBRE is called to derive the MB representation, which is subsequently used to derive the A-matrix following an algorithm
similar to [16]. This option is still at an experimental stage as it works only when the derived MB representation is in a certain form.

The next step is to compute either the set of all unimodular regular triangulations, or the set of all square-free initial ideals, for the GKZ
system defined by the A-matrix obtained in the previous step. One may do this by using either of the following two external modules:

FindTriangulations[FindAMatrixOut]

This external module computes unimodular regular triangulations corresponding to the A-matrix generated by FindAMatrix
using TOPCOM. Below, we provide details about the input arguments for FindTriangulations.

• FindAMatrixOut: Result returned by FindAMatrix.
• Options:

– MaxRegularTriangs: This option can take either of the two values: All, or some positive integer. Its default value is All.
When set to All, FindTriangulations tries to find all possible regular triangulations. When set to a positive integer n,
FindTriangulations stops after obtaining upto n regular triangulations and then scans for unimodular regular triangula-
tions.

– PrintRegularTriangs: This option accepts a boolean value. By default, this option is set to False. When set to True,
FindTriangulations prints the regular triangulations in addition to the unimodular regular triangulations.

– RunInParallel: This option accepts a boolean value. By default, this option is set to False. When set to True, Mathemat-
ica’s native parallelization features are used.

– Docker: This option accepts a boolean value. By default, this option is set to False. When set to True, one can call TOPCOM
from a Docker container having the name topcom, to obtain the regular triangulations. This option might come in handy,
should one fail to install TOPCOM natively on their system.

Upon a successful run with all options set to their default values, FindTriangulations prints all the unimodular regular triangulations,
and the overall time consumed at this stage of the computation.
7

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
FindInitialIdeals[FindAMatrixOut]

This external module generates all possible square-free initial ideals corresponding to the A-matrix generated by FindAMa-
trix. Below, we provide details about its input arguments.

• FindAMatrixOut: Result returned by FindAMatrix.

Executing FindInitialIdeals prints all possible square-free initial ideals associated with the given A-matrix, and the overall time
consumed. This module does the following:

• Use Macaulay2 to obtain the toric ideals associated with the A-matrix.
• Use the gfanInterface package of Macaulay2 to find all possible initial ideals.
• Filter for all possible square-free initial ideals.

We now construct the series solutions for a given choice of unimodular regular triangulation or square-free initial ideal generated by
FindTriangulations or FindInitialIdeals, respectively.

SeriesRepresentation[Triangulations, TriangNum]

or,

SeriesRepresentation[Ideals, IdealNum]

where, the input arguments are as follows:

• Triangulations: Result returned by FindTriangulations.
• TriangNum: Serial number of the unimodular regular triangulation for which the corresponding series solution is to be derived
• Ideals: result returned by FindInitialIdeals.
• IdealNum: Serial number of the square-free initial ideal for which the corresponding series solution is to be derived.
• Options:

– SubstituteScales: This option accepts a boolean value. By default, this option is set to True. When set to True, all the
generic coefficients z j , are substituted with their appropriate kinematic counterparts while constructing the series solution for
the given non-generic Feynman integral. When False, this substitution is not done.

– ParameterValue: This option accepts a list of parameter substitutions.
By default, this option is assigned an empty list.

Running SeriesRepresentation with the result returned from FindTriangulation or FindInitialIdeals will first print the
triangulation number TriangNum or the ideal number IdealNum, respectively. It will then print the number of summation variables
involved in the series solution, the scale substitutions done internally to construct the non-generic limit result for SubstituteScales
→ True. For SubstituteScales → False, it simply prints the generic scales in terms of z j . Finally, it prints the summands of the
�-series terms constituting the series solution and the total time taken.

Subsequently, one may wish to check if the solution returned from SeriesRepresentation can be written in terms of known
hypergeometric functions. This functionality has been implemented in the external module GetClosedForm. For single-fold series, it
relies on Mathematica’s native capabilities to obtain a closed-form expression. However, for double-sums, these capabilities are usually not
sufficient, and therefore, we use the package Olsson.wl [32] to try to obtain a closed-form expression for the series solution. Below, we
specify the syntax of this module:

GetClosedForm[MySeries]

which has the following input arguments:

• MySeries: Result returned by SeriesRepresentation or GroebnerDeformation.
• Options:

– ParameterValue: This option accepts a list of parameter substitutions.
By default, this option is assigned an empty list.

This module prints closed-form expressions if found, else it prints the original series, in the same order as in SeriesRepresentation.
Beyond double-sums, it is not straightforward to write �-series terms as known hypergeometric functions. Therefore, in the present

version GetClosedForm can yield closed form result upto two-fold series. In fact, even in the two-fold case, one might not necessarily
be always able to express these terms as hypergeometric closed-forms.
8

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
Fig. 1. The two-mass bubble diagram.

The final module NumericalSum is meant for numerical summation of the series solution we obtain from SeriesRepresenta-
tion. It also works for the series solution derived from the module GroebnerDeformation which is described in appendix A.1.

NumericalSum[MySeries, SubstitutionRules, SumLim]

with the following input arguments:

• MySeries: Result returned by SeriesRepresentation or GroebnerDeformation.
• SubstitutionRules: This a list to substitute numerical values to parameters and scales of MySeries before numerical sum-

mation.
• SumLim: The upper-limit for summing over the summation variables. The same upper-limit is maintained for each summation

variable.
• Options:

– NumericalPrecision: Can be used for arbitrary precision calculations. By default, this option is set to MachinePreci-
sion.

– RunInParallel: This option accepts a boolean value. Its default value is False. When set to True for cases with a rather
complicated MySeries or a large SumLim, running NumericalSum may achieve a non-trivial gain in speed.

Running NumericalSum for a given MySeries, SubstitutionRules and SumLim would print the numerical result, along with the
net time taken for the module’s execution.

6. Example: two-mass bubble

In this section, we provide an explicit demonstration of the typical Feynman integral evaluation procedure using FeynGKZ.wl. We
consider the Feynman integral corresponding to the two-mass bubble diagram (Fig. 1),

I�(ν1, ν2, D; p2
1) =

∫
dDk1

iπ
D
2

1

(−k2
1 + m2

1)
ν1(−(p1 + k1)2 + m2

2)
ν2

(25)

with two unequal masses m1 and m2, and external momentum p1.
We start with specifying the paths to FeynGKZ.wl, the polymake executable and the points2triangs executable from TOPCOM.

They are stored as strings in the predefined variables FeynGKZPath, PolyMakePath and TOPCOMPath, respectively. Internally, these
variables have been set to the default values NotebookDirectory[], "/usr/bin" and "/usr/local/bin", respectively. For our
case here, we shall assume that they have been installed in the following non-standard locations.

In[1]:= FeynGKZPath="/home/user/gkz/math/" ;
PolyMakePath="/home/user/polymake/bin" ;
TOPCOMPath="/home/user/topcom/bin" ;

Once this has been done, one can load the package as follows.

In[2]:= Get[FeynGKZPath<>"FeynGKZ.wl"] ;

Prints ⇒ FeynGKZ 1.0 - a Mathematica package for solving
Feynman Integrals using GKZ hypergeometric systems

Authors: B. Ananthanarayan, Sumit Banik, Souvik Bera, Sudeepan Datta

Last updated: 2nd November, 2022
9

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
Then we specify the momentum representation of the Feynman integral in Eq. (25) as follows,

In[3]:= MomentumRep={{k1,m1,a1}, {p1 + k1,m2,a2}};
LoopMomenta={k1};
InvariantList={p21 → −s};
Dim= 4− 2ε;
Prefactor= 1;

Next, we use the module FindAMatrix to compute the A-matrix associated with the GKZ system satisfied by this Feynman integral.

In[4]:= FindAMatrixOut= FindAMatrix[{MomentumRep,LoopMomenta,

InvariantList,Dim,Prefactor},UseMB→ False];
Prints ⇒ The Symanzik polynomials → U= x1 + x2

,F= m21x
2
1 + sx1x2 + m21x1x2 + m22x1x2 + m22x

2
2

The Lee-Pomeransky polynomial → G=
x1 + m21x

2
1 + x2 + sx1x2 + m21x1x2 + m22x1x2 + m22x

2
2

The associated A−matrix →
⎛
⎝1 1 1 1 1

2 1 1 0 0
0 1 0 2 1

⎞
⎠, which has codim= 2.

Normalized Volume of the associated Newton Polytope → 3
Time Taken 1.50005 seconds

The codimension (codim) of A is defined as the number of columns minus the number of rows.
After this, we can calculate the unimodular regular triangulations of the point configuration defined by the A-matrix using FindTri-

angulations as follows:

In[5]:= Triangulations = FindTriangulations[FindAMatrixOut];

Prints ⇒ Finding all regular triangulations ...
Found 5 Regular Triangulations, out of which 3 are Unimodular
The 3 Unimodular Regular Triangulations →
1 :: {{1,2,3},{2,3,4},{3,4,5}}
2 :: {{1,2,3},{2,4,5},{2,3,5}}
3 :: {{2,4,5},{1,3,5},{1,2,5}}
Time Taken 0.126965 seconds

Alternatively, we can also calculate all possible square-free initial ideals from the A-matrix using FindIntialIdeals,

In[6]:= InitialIdeals = FindInitialIdeals[FindAMatrixOut];

Prints ⇒ There are 3 possible square-free initial ideals :
1 :: {t2t5, t1t5, t1t4}
2 :: {t1t5, t1t4, t3t4}
3 :: {t1t4, t3t4, t2t3}
Time Taken 3.38268 seconds

Next, one can find the �-series solutions for the non-generic Feynman integral either for a given choice of square-free initial ideal or
unimodular regular triangulation. As described earlier in the documentation, this is done using SeriesRepresentation. We derive
the series solution corresponding to the second unimodular regular triangulation as follows,
10

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
In[7]:= SeriesSolution = SeriesRepresentation[Triangulations,2];

Prints ⇒ Unimodular Triangulation → 2
Number of summation variables → 2
Non-generic limit → {z1 → m21, z2 → s+ m21 + m22, z3 → 1, z4 → m22, z5 → 1}
The series solution is the sum of following 3 terms.
Term 1 ::((

(−1)−n1−n2 Gamma[−2+ ε + a1 − n1 − n2] Gamma[4− 2ε − a1 − a2 + n2]

Gamma[a2 + 2n1 + n2] (m21)
2−ε−a1

(
m21m

2
2

(s+ m21 + m22)
2

)n1(m21
s+ m21 + m22

)n2

(s+ m21 + m22)
−a2

)/(
Gamma[a1] Gamma[4− 2ε − a1 − a2] Gamma[a2]

Gamma[1+ n1] Gamma[1+ n2]
))

Term 2 ::((
(−1)−n1−n2 Gamma[−2+ ε + a2 − n1 − n2] Gamma[4− 2ε − a1 − a2 + n2]

Gamma[a1 + 2n1 + n2] (m22)
2−ε−a2

(
m21m

2
2

(s+ m21 + m22)
2

)n1(m22
s+ m21 + m22

)n2

(s+ m21 + m22)
−a1

)/(
Gamma[a1] Gamma[4− 2ε − a1 − a2] Gamma[a2]

Gamma[1+ n1] Gamma[1+ n2]
))

Term 3 ::((
(−1)−n1−n2Gamma[2− ε − a2 + n1 − n2] Gamma[2− ε − a1 − n1 + n2]

Gamma[−2+ ε + a1 + a2 + n1 + n2]
(

m21
s+ m21 + m22

)n1 (
m22

s+ m21 + m22

)n2

(s+ m21 + m22)
2−ε−a1−a2

)/(
Gamma[a1] Gamma[4− 2ε − a1 − a2]

Gamma[a2] Gamma[1+ n1] Gamma[1+ n2]
))

Time Taken 0.066558 seconds

where n1 and n2 are the summation indices, each of which runs from 0 to ∞. Let us now try to express these results in terms of known
hypergeometric functions using the module GetClosedForm which internally uses Olsson.wl [32] for this step.

In[8]:= GetClosedForm[SeriesSolution];

Prints ⇒ Closed form found with Olsson!
Term 1 ::

1

Gamma[a1] Gamma[−2+ ε + a1]

H3
[
a2,4− 2ε − a1 − a2,3− ε − a1,

m21m
2
2

(s+ m21 + m22)
2
,

m21
s+ m21 + m22

]
m41 (m21)

−ε−a1 (s+ m21 + m22)
−a2

Term 2 ::
1

Gamma[a2] Gamma[−2+ ε + a2]

H3
[
a1,4− 2ε − a1 − a2,3− ε − a2,

m21m
2
2

(s+ m21 + m22)
2
,

m22
s+ m21 + m22

]
m42 (m22)

−ε−a2 (s+ m21 + m22)
−a1

Term 3 ::((
G1

[
− 2+ ε + a1 + a2,2− ε − a1,2− ε − a2,− m22

s+ m21 + m22

,− m21
s+ m21 + m22

]
Gamma[2− ε − a1] Gamma[2− ε − a2]

Gamma[−2+ ε + a1 + a2] (s+ m21 + m22)
2−ε−a1−a2

)/(
Gamma[a1]

Gamma[4− 2ε − a1 − a2] Gamma[a2]
))

Time Taken 0.05827 seconds

where, H3 and G1 are the double variable Horn H3 and G1 functions [3].
11

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
We can also numerically evaluate the result returned in Out[7], which has been stored in the variable SeriesSolution.

In[9]:= SumLim= 30;
ParameterSub={ε → 0.001,a1 → 1,a2 → 1,s→ 10,m1 → 0.4,m2 → 0.3};
NumericalSum[SeriesSolution, ParameterSub, SumLim];

Prints ⇒ Numerical result = 997.382
Time Taken 0.222572 seconds

7. Discussions and conclusions

In this work, we have considered two very active and interconnected fields of research: Feynman integrals and multivariate hyperge-
ometric functions. While the former is of great importance to the particle physics community as they present challenges at the frontier
with consequences to precision tests of the Standard Model, the latter is a rich field in mathematics which has been studied for over a
century and has found numerous applications in several domains of physics. The connection between these two diverse fields of research
was first pointed out in late 1960s by Regge [44]. Since then, considerable efforts have been made to study them in parallel, and our work
in this paper is motivated by these considerations.

One systematic approach to study multivariate hypergeometric functions came from GKZ, in the form of what we know today as
the theory of GKZ hypergeometric systems. Multivariate hypergeometric series are solutions to the partial differential equations of the
GKZ system. The mechanism to find a basis of solutions for the GKZ system was advanced by the original authors themselves in the
triangulation scheme. On the other hand, SST introduced the GD method of finding solutions to a GKZ system, which is inspired by the
method of Frobenius for solving ordinary differential equations. Its connection to Feynman integrals has become explicit in the recent
years due to development of the LP representation for counting the number of master integrals for any given family of Feynman integrals
[13].

To recall, the GD and the triangulation methods, were recently used to evaluate Feynman integrals in [14] and [15] respectively. In both
the aforementioned articles, the LP polynomial is used to construct the A-matrix. Alternatively, one can start from the MB representation
and derive the associated GKZ system for a given Feynman integral, as advocated in [16–18]. Although, the methods were algorithmic, no
explicit computer programs were publicly available.

We have presented in this work a working code automating the above methods for solving GKZ systems that are associated with Feyn-
man integrals. Our package is based on Mathematica, which relies on Macaulay2, polymake and TOPCOM, for the GD and triangulation
methods, respectively. We have described in detail these methods and their implementation with adequate usage documentation, and
have also made our code available in the public domain. We believe that our implementation would also help the user to appreciate the
underlying equivalence of both the methods, particularly in the setting of Feynman integral evaluation. To this end, we have maintained
the following principles in our implementation:

• Enabling sufficient flexibility in the usage, so that the user can take an informed decision about the method they would feel at ease to
proceed with in a particular circumstance - which would also help them in ensuring that the results obtained from both the methods
are always indeed the same.

• Provision of two commands that could be used to explicitly test the equivalence of unimodular regular triangulations and square-free
initial ideals. The details of these commands have been provided in appendix A.2.

We have also automated the part where we can obtain the A-matrix from the MB representation. Our algorithm is inspired by consider-
ations in [16] and its rigorous validity is a subject of ongoing work.

An alternative method to derive MB representations is proposed in [43], which can yield lower-fold MB integrals compared to AMBRE in
certain cases. This may yield some improvements to our current implementation of the method for obtaining solutions to the underlying
GKZ system, and is a topic for future investigation.

We have tested our package analytically as well as numerically using FIESTA [45] by evaluating several familiar yet reasonably non-
trivial Feynman integrals for which results mostly exist in the literature. One of them includes the non-trivial two-loop self-energy with
four propagators presented recently in [18]. Several other examples can be found in the Mathematica notebook Examples.nb which can
be downloaded along with the package from GitHub.

It may be noted here, the time taken by the command FindTriangulations to find all the unimodular regular triangulations is
typically lesser than the same for the command FindInitialIdeals that is used to find all the square-free initial ideals. In this sense,
the command points2triangs of TOPCOM works faster than the gfan command of Macaulay2. There is one more advantage of the
triangulation method. The process of finding the unimodular regular triangulations can be stopped midway, after yielding the required
number of triangulations. This is not possible in the gfan command of Macaulay2. Even so, the results coming from the GD method
provide a useful crosscheck of the results obtained through the triangulation method.

FeynGKZ.wl yields several series solutions in terms of multivariate hypergeometric functions that are analytic continuations of each
other, each being valid in its own convergence region. These solutions are valid for generic values of the dimension and propagator powers.
The evaluation of these solutions for integer powers of propagators where logarithmic terms appear, could be carried out by performing a
suitable limit-taking procedure manually. We hope to automate this in a future version of the package. This is however not a restriction in
the MB approach [6], where one uses multivariate residues to evaluate the integer propagator case and obtain logarithmic series solutions.
Therefore, in future, it will be useful to study a cross-fertilization of the two techniques.
12

https://github.com/anant-group/FeynGKZ

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

B. Ananthanarayan thanks the Albert Einstein Centre for Fundamental Physics at the University of Bern, Switzerland, for hospitality at
the time this manuscript was being prepared. B. Ananthanarayan and Sumit Banik thank the organizers of Tropical and Convex Geometry
and Feynman integrals at the ETH, Zurich, for inviting them to participate, where many exciting discussions on related topics took place.
Sumit Banik thanks the organizers of Elliptic Integrals in Fundamental Physics at MITP, Mainz, for an invitation to participate, where related
discussions took place. Sumit Banik thanks V. Chestnov, R. P. Klausen, H. Munch and F. Tellander for enriching conversations on GKZ theory.

Appendix A. Other external modules - documentation

In this section, we provide the documentation for the three remaining external modules that were not covered in the main text.

A.1. The GroebnerDeformation external module

This external module provides an alternative method to construct the �-series solutions, employing the SST algorithm. Its syntax is as
follows:

GroebnerDeformation[FindAMatrixOut]

with the following input arguments:

• FindAMatrixOut: result returned by FindAMatrix.
• Options:

– InitialIdeal: Serial number of the square-free initial ideal for which the corresponding series solution is to be derived. Its
default value is False.

– Weight: This option accepts a list of non-negative integers, whose length is same as the number of columns of the A-matrix.
Its default value is False.

– AllInitialIdeals: This option accepts a boolean value. Its default value is False. When set to True, this module yields
series solutions for all the possible square-free initial ideals sequentially.

– ParameterValue: This option accepts a list of parameter substitutions. By default, this option is assigned an empty list.

Note: the options InitialIdeal and Weight cannot be used simultaneously. One of them must be set to False while using the
other. If the given weight vector is generic, the series solution for the corresponding initial ideal is obtained, otherwise the module prints
an error message.

A.2. The TriangulationToIdeal and IdealToTriangulation external modules

These external modules are useful in mapping unimodular regular triangulations to the corresponding square-free initial ideals, and
vice-versa. They rely on Macaulay2 to function as intended.

Below, we describe the syntax for each of these external modules:

TriangulationToIdeal[Triangulations, TriangNum]

where, the input arguments are as follows:

• Triangulations: Result returned by FindTriangulations.
• TriangNum: Serial number of the unimodular regular triangulation for which the corresponding square-free initial ideal is to be

derived.

and,
13

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
IdealToTriangulation[Ideals, IdealNum]

where, the input arguments are as follows:

• Ideals: Result returned by FindInitialIdeals.
• IdealNum: Serial number of the square-free initial ideal for which the corresponding unimodular regular triangulation is to be

derived.

Appendix B. Global variables used in FeynGKZ.wl

Below, we enlist the global variables that have been used in our package. The user can modify some of them as per their convenience,
while others are not meant for such usage.

• FeynGKZPath
Set this variable such that it points to the directory containing FeynGKZ.wl and its dependencies AMBREv2.1.1.m and Ols-
son.wl.
Note: the path must be passed as a string.
By default, it points to NotebookDirectory[].

• PolyMakePath
Set this variable such that it points to the directory containing the polymake executable.
Note: the path must be passed as a string.
By default, it points to /usr/bin.

• TOPCOMPath
Set this variable such that it points to the directory containing the points2triangs executable from TOPCOM.
Note: the path must be passed as a string.
By default, it points to /usr/local/bin.

• Dim
Space-time dimension of the Feynman integral.

• n
Summation indices.

• z
Generic coefficients of the toric G-polynomial.

Appendix C. Feynman integrals in Example.nb

In this appendix, we provide the list of the Feynman integrals solved in Examples.nb using FeynGKZ.wl. The list is organised in
terms of the codimension of the associated A-matrices. All the integrals are evaluated in the d = 4 − 2ε dimension.

1. Codim = 0
• Massless Bubble: Here, the massless one-loop bubble with off-shell external momentum is considered. We find the solution as a

single term using the triangulation method.
• On-Shell Massless Triangle: Here, the one-loop triangle integral with massless propagators and external momenta p2

1 = 0, p2
2 = 0 and

p1 · p2 = − s
2 is considered. We find the solution as a single term using the triangulation method.

2. Codim = 1
• One-Mass Bubble: Here, the one-loop bubble with one massive propagator with off-shell external momentum is considered. The GD

method is used to find the series solution.
• On-Shell Massless Box: Here, the one-loop box integral with massless propagators and on-shell external momenta p2

1 = p2
2 = p2

3 = 0
is considered. The triangulation method is used to find the series solution.

3. Codim = 2
• Off-Shell Massless Triangle: Here, the one-loop triangle integral with massless propagators and off-shell external momenta is consid-

ered. The GD method is used to find the series solution.
• Two-Mass Bubble: Here, the one-loop bubble with two massive propagators and off-shell external momentum is considered. The

triangulation method is used to find the series solution.
• On-shell massive sunset: Here, the two-loop sunset diagram with three massive propagators and on-shell external momentum p2 = 0

is considered. The triangulation method is used to find the series solution.
4. Codim = 3

• Three-Mass Sunset: Here, the two-loop sunset diagram with three massive propagators and off-shell external momentum is consid-
ered. The triangulation method is used to find the series solution.

5. Codim = 4
• Two-Loop Self-Energy with Four Propagators: Here, the two-loop self energy integral with four propagators is considered. The triangu-

lation method is used to find the series solution.
14

B. Ananthanarayan, S. Banik, S. Bera et al. Computer Physics Communications 287 (2023) 108699
6. Codim = 5
• Off-Shell Massive Triangle: Here, the one-loop triangle integral with three massive propagators and off-shell external momenta is

considered. The triangulation method is used to find the series solution.

These examples were considered in [14–16,18] using the GKZ approach. The solutions of these Feynman integrals obtained from our
package provide a crosscheck on the results presented in the literature and match numerically with FIESTA [45].

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .cpc .2023 .108699.

References

[1] V.A. Smirnov, Analytic Tools for Feynman Integrals, 2012.
[2] S. Weinzierl, Feynman integrals, arXiv:2201.03593 [hep -th], 2022.
[3] H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, 1985.
[4] V.A. Smirnov, Phys. Lett. B 460 (1999) 397–404, arXiv:hep -ph /9905323.
[5] J.B. Tausk, Phys. Lett. B 469 (1999) 225–234, arXiv:hep -ph /9909506.
[6] B. Ananthanarayan, S. Banik, S. Friot, S. Ghosh, Phys. Rev. Lett. 127 (15) (2021) 151601, arXiv:2012 .15108 [hep -th].
[7] I. Gelfand, M. Graev, A. Zelevinsky, Dokl. Akad. Nauk SSSR 295 (1) (1987) 14–19.
[8] I. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, 1994.
[9] I.M. Gelfand, M.M. Kapranov, A. Zelevinsky, Hypergeometric Functions, Toric Varieties and Newton Polyhehra, 1991.

[10] I. Gelfand, M.M. Kapranov, A. Zelevinsky, Adv. Math. 84 (1990) 255–271.
[11] M.Y. Kalmykov, B.A. Kniehl, Phys. Lett. B 714 (2012) 103–109, arXiv:1205 .1697 [hep -th].
[12] F. Beukers, J. Reine Angew. Math. 2016 (2011) 183–206.
[13] R.N. Lee, A.A. Pomeransky, J. High Energy Phys. 11 (2013) 165, arXiv:1308 .6676 [hep -ph].
[14] L. de la Cruz, J. High Energy Phys. 12 (2019) 123, arXiv:1907.00507 [math -ph].
[15] R.P. Klausen, J. High Energy Phys. 04 (2020) 121, arXiv:1910 .08651 [hep -th].
[16] T.-F. Feng, C.-H. Chang, J.-B. Chen, H.-B. Zhang, Nucl. Phys. B 953 (2020) 114952, arXiv:1912 .01726 [hep -th].
[17] T.-F. Feng, H.-B. Zhang, C.-H. Chang, Feynman integrals of Grassmannians, arXiv:2206 .04224 [hep -th], 2022.
[18] T.-F. Feng, H.-B. Zhang, Y.-Q. Dong, Y. Zhou, GKZ-system of the 2-loop self energy with 4 propagators, arXiv:2209 .15194 [hep -th], 2022.
[19] R.P. Klausen, J. High Energy Phys. 02 (2022) 004, arXiv:2109 .07584 [hep -th].
[20] D. Agostini, C. Fevola, A.-L. Sattelberger, S. Telen, Vector spaces of generalized Euler integrals, arXiv:2208 .08967 [math .AG], 2022.
[21] F. Tellander, M. Helmer, Cohen-Macaulay property of Feynman integrals, arXiv:2108 .01410 [hep -th], 2021.
[22] U. Walther, On Feynman graphs, matroids, and GKZ-systems, arXiv:2206 .05378 [math -ph], 2022.
[23] A. Klemm, C. Nega, R. Safari, J. High Energy Phys. 04 (2020) 088, arXiv:1912 .06201 [hep -th].
[24] K. Bönisch, F. Fischbach, A. Klemm, C. Nega, R. Safari, J. High Energy Phys. 05 (2021) 066, arXiv:2008 .10574 [hep -th].
[25] F. Loebbert, D. Müller, H. Münkler, Phys. Rev. D 101 (6) (2020) 066006, arXiv:1912 .05561 [hep -th].
[26] V. Chestnov, F. Gasparotto, M.K. Mandal, P. Mastrolia, S.J. Matsubara-Heo, H.J. Munch, N. Takayama, Macaulay matrix for Feynman integrals: linear relations and intersec-

tion numbers, arXiv:2204 .12983 [hep -th], 2022.
[27] M. Borinsky, Tropical Monte Carlo quadrature for Feynman integrals, arXiv:2008 .12310 [math -ph], 2020.
[28] M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, vol. 6, Springer Science & Business Media, 2013.
[29] J. Rambau, in: Proceedings of the International Congress of Mathematical Software, 2002.
[30] E. Gawrilow, M. Joswig, polymake: a Framework for Analyzing Convex Polytopes, 2000.
[31] J. Gluza, K. Kajda, T. Riemann, Comput. Phys. Commun. 177 (2007) 879–893, arXiv:0704 .2423 [hep -ph].
[32] B. Ananthanarayan, S. Bera, S. Friot, T. Pathak, Olsson.wl: a Mathematica package for the computation of linear transformations of multivariable hypergeometric functions,

arXiv:2201.01189 [cs .MS], 2021.
[33] E. Cattani, Three Lectures on Hypergeometric Functions, 2006.
[34] J. Stienstra, in: Instanbul 2005: CIMPA Summer School on Arithmetic and Geometry Around Hypergeometric Functions, 2005, arXiv:math /0511351.
[35] F. Beukers, Notes on A-Hypergeometric Functions, 2011.
[36] T. Hibi (Ed.), Gröbner Bases, Springer, Japan, 2013.
[37] C. Berkesch, J. Forsgård, M. Passare, Euler–Mellin Integrals and A-Hypergeometric Functions, 2011.
[38] J. Loera, J. Rambau, F. Santos, Triangulations. Structures for Algorithms and Applications. Vol. 25, 2010.
[39] R.R. Thomas, Lectures in Geometric Combinatorics. Vol. 33. Student Mathematical Library, American Mathematical Society, 2006.
[40] I.M. Gelfand, M.I. Graev, V. Retakh, Russ. Math. Surv. 47 (1992) 1–88.
[41] F.F. Knudsen, in: Toroidal Embeddings I, Springer Berlin Heidelberg, Berlin, Heidelberg, 1973, pp. 109–164.
[42] W. Bruns, J. Gubeladze, Polytopes, Rings, and K-Theory, Springer Monographs in Mathematics, Springer, New York, 2009.
[43] M. Prausa, Eur. Phys. J. C 77 (9) (2017) 594, arXiv:1706 .09852 [hep -ph].
[44] T. Regge, in: Battelle Rencontres, 1968, pp. 433–458.
[45] A.V. Smirnov, N.D. Shapurov, L.I. Vysotsky, Comput. Phys. Commun. 277 (2022) 108386, arXiv:2110 .11660 [hep -ph].
15

https://doi.org/10.1016/j.cpc.2023.108699
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibF74F3B3A79BDD880D7D96386ACAC4598s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib63C2E56970608DACC9E8A3C52E4B9BCFs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibF243F7CE8BF81984B6F3E0BC01DC4DABs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib01EF0D901358A2636F54C531EDCA5796s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib085AB63C99C51DA5957E6890E8582665s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib7A13DAE9BA65726FD0BB4A332659D805s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib03642E58C3C2036C9397800FA2755529s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibF8489CF26E4FDA34BF52F9B1DED19870s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibA069975BD0076886C68D21F62A369050s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib317266B7AAA8A6A8024F5005A55E0CDEs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib8A82711C257A6561F390BB50648F000Bs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibB4BCD26F0D04485A7CEECDFC3DA61AD1s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib37FD9244085058DAD02A090227AAF32Cs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibC798A1E8DC5729281CB9D9139B2CDC6Ds1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibEAE97DF37E90763F500CC0D8FE42E93Cs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibBFDE65158B0A611D4AB99F426CDE8D12s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibD02DA059CD7F7353EC23C7F6167A3D54s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib9A60A06F4524EFA59F5750857F10F421s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib23B681F93BA802332722A650BCE7C045s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib05C290FD432D3658B377F7AA42E181B1s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib98BE86B0E8BA08FC0D7D435AECC55415s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib530E690694CE614B31BC8FC9C50BE26As1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib7FC17832B2F88F86B7F378CC7E4DFC0Cs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibBAA21BCF314BF7B037B01BCF9C22FA01s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib9CC7F05BB7C942C5E4740F9653733498s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibA3C884AE9319AE2ACBC658F82B1BDBA3s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibA3C884AE9319AE2ACBC658F82B1BDBA3s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibFAF69CF82F934B88BEBD9A62D96AD56Cs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib23F7AEA788F73DF61E33A6D3653D66FAs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib3E39DE111026D020D450B6183E869517s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib395A1C52FC804032A3FB7446D0314708s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib847ADBEDE210207F51931E18CC3BD28Ds1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib588814F5C6E61B46A28ED817422C5386s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib588814F5C6E61B46A28ED817422C5386s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibF748C5C1002152D87861BC54340D673Cs1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib6F8458670EAC19B9FE6FD69D01808CF2s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib5C639B2D6682DF1538F872DFFA23A156s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib61B770A9735D6AF3DA9E0F87C1E57428s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib7E37EFC881F51C4DCEAD40E3E9A31142s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibCD4BEC2A69A757D0503E8367D9456347s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib132E2EC5F72A74EC55B958E28DD7C555s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib261C2BA93EF343E655DECC4BB0770E70s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib3DED938F39E877568327589D7AF5FA26s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib8B7FD5C506F563F6A17BBF767F57F885s1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bib18A61753331817576424566B3CA7E39As1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibE568D9F9F8E1BC8303F319CCDBF3AE0Ds1
http://refhub.elsevier.com/S0010-4655(23)00044-9/bibFE3674CCA6F6E09D42C8CD7345063CCAs1

	FeynGKZ: A Mathematica package for solving Feynman integrals using GKZ hypergeometric systems
	1 Introduction
	2 Overview of GKZ hypergeometric systems
	2.1 Setting up the GKZ system
	2.2 EM integrals as solutions to GKZ hypergeometric systems

	3 Scalar Feynman integrals and the Lee-Pomeransky representation
	4 Solution methodology
	4.1 The toric G-polynomial and the A-matrix
	4.2 The triangulation method
	4.2.1 Triangulations of ∆Gz
	4.2.2 Generalized Feynman integrals
	4.2.3 Generalized Feynman integrals as GKZ hypergeometric functions

	4.3 The GD method

	5 Documentation and usage
	6 Example: two-mass bubble
	7 Discussions and conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Other external modules - documentation
	A.1 The GroebnerDeformation external module
	A.2 The TriangulationToIdeal and IdealToTriangulation external modules

	Appendix B Global variables used in FeynGKZ.wl
	Appendix C Feynman integrals in Example.nb
	Appendix D Supplementary material
	References

