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Abstract. Consider the set of scalars α for which the αth Hadamard power
of any n × n positive semi-definite (p.s.d.) matrix with non-negative entries
is p.s.d. It is known that this set is of the form {0, 1, . . . , n− 3} ∪ [n− 2,∞).
A natural question is “what is the possible form of the set of such α for a
fixed p.s.d. matrix with non-negative entries?”. In all examples appearing
in the literature, the set turns out to be union of a finite set and a semi-

infinite interval. In this article, examples of matrices are given for which the
set consists of a finite set and more than one disjoint interval of positive length.
In fact, it is proved that the number of such disjoint intervals can be made
arbitrarily large, by giving explicit examples of matrices.

The case when the entries of the matrices are not necessarily non-negative
is also considered.

1. Introduction

Entrywise functions of matrices preserving positive semi-definiteness has been a
topic of active research. The long history of this field starts with the Schur product
theorem (see [HJ13]), followed by the works of Schoenberg [Sch42], Rudin [Rud59]
and others. In particular, the study of entrywise power functions x → xα has been of
special interest to several mathematicians (see [BE07,FH77,GKR15,Hia09,Jai17]).
By the Schur product theorem, the mth Hadamard power A◦m := [amij ] of any p.s.d.

matrix A = [aij ] is again p.s.d. for every positive integer m. Let P+
n denote the set

of n× n p.s.d. matrices with non-negative entries. For A = [aij ] ∈ P+
n and α ≥ 0,

the αth Hadamard power of A is the matrix A◦α := [aαij ]. We use the convention

00 = 1. Now for A ∈ P+
n , we define

SA := {α ≥ 0: A◦α ∈ P+
n }.

By the Schur product theorem we have that all the natural numbers belong to SA for
every A ∈ P+

n . Also, 0 belongs to SA for every A ∈ P+
n , as the matrix with all entries

1 is p.s.d. FitzGerald and Horn [FH77] showed that n− 2 is the ‘critical exponent’
for such matrices, i.e., n − 2 is the least number for which A◦α ∈ P+

n for every
A ∈ P+

n and for every α ≥ n− 2. Thus
⋂

A∈P+
n
SA = {0, 1, . . . , n− 3} ∪ [n− 2,∞).

They considered the matrix A ∈ P+
n with (i, j)th entry 1 + εij and showed that if

α is not an integer and 0 < α < n− 2, then A◦α is not positive semi-definite for a
sufficiently small positive number ε. Later, Jain [Jai17] showed that this remains
true if εij is replaced with xixj for any distinct positive real numbers x1, . . . , xn.
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2 J. S. BASLINGKER AND B. DAN

What is the possible form of the set SA for a fixed matrix A ∈ P+
n ? In all

examples appearing in the literature, the set turns out to be the union of a finite
set and a semi-infinite interval. Such sets have appeared in different areas like
probability, complex analysis and representation theory, under the names Wallach
set and Berezin-Wallach set. Gindikin set, which also has a similar structure, shows
up in random matrix theory. For more details see [Khare(), Section 36].

We first note down the following properties of SA for any A ∈ P+
n for any n.

(1) N ∪ {0} ⊆ SA.
(2) If α, β ∈ SA, then α+ β ∈ SA. Thus, SA is a monoid under addition.
(3) If [0, δ] ⊆ SA for some δ > 0, then the monoid property ensures that

SA = [0,∞).
(4) SA has finitely many connected components (see Remark 3). One of the

components is a semi-infinite interval containing [n− 2,∞).
(5) SA is a closed subset of [0,∞).

The first two properties follow from the Schur product theorem and the last one
follows from the continuity of the smallest eigenvalue.

In all examples appearing in the literature, for fixed A ∈ P+
n , the set SA has only

one interval (semi-infinite) component. The rest of the components are all singleton
sets. We show that the structure of SA need not always be a semi-infinite interval
together with a finite set. One can observe that if A ∈ P+

2 , then SA = [0, ∞).
If A ∈ P+

3 , then SA = {0} ∪ [ρ, ∞) for some ρ ∈ [0, 1]. Indeed, it follows from
[FH77, Theorem 2.2] that [1, ∞) ⊆ SA and if A◦α is p.s.d. for α > 0, then
A◦β = (A◦α)◦β/α is p.s.d. for any β > α. For n ≥ 4, we give examples of A ∈ P+

n

such that SA has at least two interval1 components.
We now consider the matrix

An := [1 + xixj ]1≤i,j≤n(1)

for distinct positive real numbers x1, x2, . . . , xn. Theorem 1.1 of [Jai17] showed
that SAn

= {0, 1, . . . , n−3}∪ [n−2,∞). Let n ≥ 4. For k ∈ {2, 3, . . . , n−2} define

An,k,ε := An + εRn,k, ε ≥ 0,

where Rn,k is the n×n matrix with 1 in the last k diagonal entries and 0 otherwise.
Note that An,k,ε is p.s.d. We prove that for small enough ε, SAn,k,ε

has at least k
interval components, one around each of the integers from n− k − 1 to n− 3 and
the last one is the semi-infinite interval containing n− 2.

Theorem 1. Fix integers n ≥ 4 and 2 ≤ k ≤ n − 2, and let the matrix An be
as in (1). Let ε > 0 be sufficiently small (depending on An). Then there exists
δ > 0 such that [� − δ, � + δ] ⊆ SAn,k,ε

for any � ∈ {n − k − 1, n − k, . . . , n − 3}.
Also, for each such � there exists α� ∈ (�, �+ 1) such that α� /∈ SAn,k,ε

. Moreover,
SAn,k,ε

∩ [0, n− k − 2] = {0, 1, . . . , n− k − 2}.
Remark 2. Note that SAn,k,ε

may have more than k interval components but all
such extra intervals should be contained in [n− k− 2, n− 2]. In other words, there
is no interval before n− k − 2.

The proof of the above theorem is given in Section 2. The proof works for
k = n−1 and n as well. In those cases, there is interval around each of the integers

1By interval we always mean interval of positive length.
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ON HADAMARD POWERS OF POSITIVE SEMI-DEFINITE MATRICES 3

from 1 to n − 2. Note that an interval containing 0 is not possible in any of the
above examples. We make Remark 3 on the maximum number of possible intervals
in SA for A ∈ P+

n .

Remark 3. For any A ∈ P+
n , SA can have at most n! interval components. Indeed,

note that the determinant of anym×m principal submatrix of A◦α is an exponential
polynomial in α with at mostm! sign changes. Therefore by [Jai17, Proposition 3.2],
the number of zeros of determinants (as functions of α) of all principal submatrices
combined is at most

∑n
m=1 m!, which is bounded by 2n!. This implies that the

total number of intervals in SA can be at most n!.

If A has arbitrary real (not necessarily non-negative) entries, then a natural
extension of real Hadamard powers is now considered. Let Pn denote the set of
n × n p.s.d. matrices with arbitrary real entries. For A = [aij ] ∈ Pn and α ≥ 0,
we define the matrix |A|◦α◦ := [|aij |α]. In particular if α = 1, then we denote the
matrix |A|◦α◦ by |A|◦. Now for A ∈ Pn, we define

S|A|◦ := {α ≥ 0: |A|◦α◦ ∈ Pn}.

By the Schur product theorem and the fact that the matrix with all entries 1 is
p.s.d., we have that all the non-negative even integers belong to S|A|◦ for every
A ∈ Pn. Hiai [Hia09] proved an analogue of the theorem of FitzGerald and Horn
for n × n real positive semi-definite matrices. He showed that n − 2 is the least
number for which |A|◦α◦ ∈ Pn for every A ∈ Pn and for every α ≥ n − 2. For the
case α < n − 2, Bhatia and Elsner [BE07] studied an interesting class of n × n
positive semi-definite Toeplitz matrices with real entries

Cn := [cos((i− j)π/n)]0≤i,j≤n−1.(2)

They showed that for every even positive integer n, the matrix |Cn|◦α◦ is not positive
semi-definite if n− 4 < α < n− 2. We note here that S|A|◦ is also a monoid under
addition and a closed subset of [0,∞), for any A ∈ Pn for any n. Now from
the result of [BE07, Hia09], the monoid property and the fact that all the non-
negative even integers belong to S|A|◦ for every A ∈ Pn, it follows that S|Cn|◦ =
{0, 2, . . . , n− 4}∪ [n− 2,∞) for even positive integers n. Jain [Jai17] studied these
matrices for odd n and proved that S|Cn|◦ = {0, 2, . . . , n− 5} ∪ [n− 3,∞) for odd
positive integers n ≥ 2. Thus one has

⋂
A∈Pn

S|A|◦ = {0, 2, . . . } ∪ [n− 2,∞) for all
integers n ≥ 2.

In this case also, one can ask about the possible form of the set S|A|◦ for a fixed
matrix A ∈ Pn. One can observe that if A ∈ P2, then S|A|◦ = [0, ∞). If A ∈ P3,
then it can be argued similarly as in the case of matrices with non-negative entries
that S|A|◦ = {0}∪[ρ, ∞) for some ρ ∈ [0, 1]. For n ≥ 4, we give examples of A ∈ Pn

such that S|A|◦ has more than one interval component. Let n ≥ 4. Consider the
matrix

Cn,ε = Cn + εIn, ε ≥ 0,

where Cn is the matrix defined in (2) and In is the identity matrix of order n. Note
that Cn,ε ∈ Pn and so [n − 2,∞) ⊆ S|Cn,ε|◦ (follows from [Hia09, Theorem 5.1]).
We prove Theorem 4.
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4 J. S. BASLINGKER AND B. DAN

Theorem 4. Fix integer n ≥ 4. Let ε > 0 be sufficiently small (depending on n).
Then there exists δ > 0 such that for any

k ∈
{
{2, 4, . . . , n− 4, n− 2} if n is even,

{2, 4, . . . , n− 5, n− 3} if n is odd,

[k − δ, k + δ] ⊆ S|Cn,ε|◦ . Also, for each such k we have k − 1 /∈ S|Cn,ε|◦ .

We prove the above theorem in Section 3.

A numerical example. We give an example which shows that one can get at least
two disjoint intervals when only the last diagonal entry of An is perturbed. We give
the following numerical example when n = 4. Take xi = 1/(i+1), i = 1, . . . , 4 and
ε = 10−7. Let A4 be defined as in (1) with these xis and let

A4,1,ε := A4 + εR4,1,

where R4,1 is the matrix of order 4 with 1 in the last diagonal entry and 0 otherwise.
Note that for α > 1, all the leading principal minors of order upto 3 of A◦α

4,1,ε are
positive (follows from [Jai17, Theorem 2.6]). Therefore the matrix A◦α

4,1,ε is positive
definite if and only if det(A◦α

4,1,ε) > 0. Now we plot det(A◦α
4,1,ε) to see that there are

two disjoint intervals where A◦α
4,1,ε is positive definite.

Figure 1. det(A◦α
4,1,ε) against α

We end this section with the following observation.

Remark 5. For two n× n matrices A ≥ B ≥ 0 with non-negative entries, define

SA,B := {α ≥ 0: A◦α ≥ B◦α}
S′
A,B := {α ≥ 0: (λA+ (1− λ)B)◦α ≤ λA◦α + (1− λ)B◦α}.

Following Hiai (see [Hia09, Definition 1.1]), SA,B (resp. S′
A,B) is the set of α for

which the function x 
→ xα is Schur monotone (resp. Schur convex) for A and B.
From [FH77] and [Hia09] we have⋂

A≥B≥0

SA,B = {0, 1, . . . , n− 2} ∪ [n− 1,∞)

and ⋂
A≥B≥0

S
′

A,B = {0, 1, . . . , n− 1} ∪ [n,∞).
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ON HADAMARD POWERS OF POSITIVE SEMI-DEFINITE MATRICES 5

We remark that analogous results for these cases also hold. Indeed, Theorem 1
shows that SAn,k,ε,0 and S′

An,k,ε,0
contain at least k interval components each. Sim-

ilar results hold for matrices with arbitrary real entries due to Theorem 4.

2. Proof of Theorem 1

In this section we prove Theorem 1.

Proof of Theorem 1. For any real symmetric matrix M , let λmin(M) denote the
smallest eigenvalue of M . We know that

λmin(M) = min
‖u‖=1

uTMu.(3)

We first prove the existence of α� for � ∈ {n − k − 1, n − k, . . . , n − 3}. From
[Jai17, Theorem 2.6] we have

λmin(A
◦α
n )

{
= 0 α ∈ {0, 1, . . . , n− 2},
< 0 0 < α < n− 2, α /∈ {1, 2, . . . , n− 2}.

(4)

Note that λmin(A
◦α
n,k,ε) is a continuous function in ε and α. So, using (4) we get the

existence of the points α� for small enough ε.
We fix such an ε. Since SAn,k,ε

is a monoid containing 1, it is enough to prove

the existence of δ such that [n − k − 1 − δ, n − k − 1 + δ] ⊆ SAn,k,ε
. Let v(α) =

(v
(α)
1 , . . . , v

(α)
n )T be a unit eigenvector corresponding to the eigenvalue λmin(A

◦α
n,k,ε)

of A◦α
n,k,ε. Now we consider the following two cases.

Case 1. Suppose all of v
(α)
n−k+1, v

(α)
n−k+2, . . . , v

(α)
n go to 0 as α tends to n − k − 1.

Define u(α) := (v
(α)
1 , . . . , v

(α)
n−k). Then we have

λmin(A
◦α
n,k,ε) = (v(α))TA◦α

n,k,εv
(α) = (u(α))TA◦α

n−ku
(α) + h(α)

≥ λmin(A
◦α
n−k)‖u(α)‖2 + h(α),(5)

where h(α) is the sum of terms in (v(α))TA◦α
n,k,εv

(α) in which at least one of v
(α)
n−k+1,

v
(α)
n−k+2, . . . , v

(α)
n is present. The inequality in (5) follows from (3). Note that

h(α) → 0 as α → n− k − 1. Also, ‖u(α)‖ → 1 as α → n− k − 1. Again, A
◦(n−k−1)
n−k

is p.s.d. and from [Jai17, Theorem 2.6] we have that det(A
◦(n−k−1)
n−k ) > 0. So,

λmin(A
◦(n−k−1)
n−k ) > 0. Thus it follows from (5) that there exists δ > 0 such that

λmin(A
◦α
n,k,ε) > 0 for all α ∈ [n− k − 1− δ, n− k − 1 + δ].

Case 2. Suppose at least one of v
(α)
n−k+1, v

(α)
n−k+2, . . . , v

(α)
n does not go to 0 as α

tends to n − k − 1. Without loss of generality, suppose there exists η1 > 0 and a

sequence αm converging to n− k − 1 such that |v(αm)
n | > η1 for all m.

We have

λmin(A
◦α
n,k,ε) = (v(α))TA◦α

n,k,εv
(α)

= (v(α))TA◦α
n v(α)+

k−1∑
i=1

(
(1+x2

n−k+i+ε)α − (1+x2
n−k+i)

α
)
(v

(α)
n−k+i)

2

+
(
(1 + x2

n + ε)α − (1 + x2
n)

α
)
(v(α)n )2.
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6 J. S. BASLINGKER AND B. DAN

Note that there exists η2 > 0 such that (1 + x2
n + ε)α − (1 + x2

n)
α > η2 for all

α ∈ [n− k − 2, n− k]. Then we have for all m such that αm ∈ [n− k − 2, n− k]

λmin(A
◦αm

n,k,ε) ≥ (v(αm))TA◦αm
n v(αm) + η21η2 ≥ λmin(A

◦αm
n ) + η21η2.

The last inequality follows from (3). But A
◦(n−k−1)
n is p.s.d. and from [Jai17,

Theorem 2.6] we have that det(A
◦(n−k−1)
n ) = 0. Hence λmin(A

◦(n−k−1)
n ) = 0.

Therefore, lettingm go to infinity and using the continuity of the smallest eigenvalue

we get that λmin(A
◦(n−k−1)
n,k,ε ) > 0. This implies that there exists δ > 0 such that

λmin(A
◦α
n,k,ε) > 0 for all α ∈ [n− k− 1− δ, n− k− 1+ δ]. This completes the proof

of the first part of the theorem.

Finally, note that from [Jai17, Theorem 2.6] we have λmin(A
◦α
n−k) < 0 for all non-

integer α ∈ [0, n− k − 2]. Hence by Cauchy’s interlacing theorem [HJ13, Theorem
4.3.17] we have λmin(A

◦α
n,k,ε) < 0 for all non-integer α ∈ [0, n− k − 2]. This proves

the last part of the theorem. �

3. Proof of Theorem 4

We now prove Theorem 4.

Proof of Theorem 4. First suppose n is an even integer. Since S|Cn|◦ is a monoid
containing 2, [BE07, Theorem 2] gives λmin(|Cn|◦α◦ ) < 0 for 0 < α < n−2 with α /∈
{2, 4, . . . , n− 2}. Also, by the Schur product theorem we have λmin(|Cn|◦α◦ ) ≥ 0 for
α ∈ {2, 4, . . . , n− 2}. Therefore, using the continuity of λmin(|Cn|◦α◦ ), we conclude
that λmin(|Cn|◦α◦ ) = 0 for α ∈ {2, 4, . . . , n− 2}. Thus we have

λmin(|Cn|◦α◦ )

{
= 0 α ∈ {0, 2, 4, . . . , n− 2},
< 0 0 < α < n− 2, α /∈ {2, 4, . . . , n− 2}.

Let
λ0 := min{|λmin(|Cn|◦(k+1)

◦ )| : 0 ≤ k ≤ n− 4, k even }.
Define

Hn,ε,α := |Cn,ε|◦α◦ − |Cn|◦α◦ = ((1 + ε)α − 1)In

for 0 ≤ α ≤ n− 2. We choose ε > 0 small enough so that

γ := sup{(1 + ε)α − 1 : 0 ≤ α ≤ n− 2} < λ0.

For such choice of ε, let

γ0 := inf{(1 + ε)α − 1 : r ≤ α ≤ n− 2},
where 0 < r < 1 fixed. Clearly, γ0 > 0. Now using the continuity of λmin(|Cn|◦α◦ )
and the fact that λmin(|Cn|◦α◦ ) = 0 for α ∈ {2, 4, . . . , n − 2}, we find δ > 0 such
that for α ∈ [k − δ, k + δ], |λmin(|Cn|◦α◦ )| ≤ γ0 for k ∈ {2, 4, . . . , n− 4}.

We now use Weyl’s inequality [HJ13, Theorem 4.3.1] to get bounds on the small-
est eigenvalue of |Cn,ε|◦α◦ . Note that for 0 ≤ α ≤ n− 2, |Cn,ε|◦α◦ = |Cn|◦α◦ +Hn,ε,α.
Therefore by [HJ13, Theorem 4.3.1] we have

λmin(|Cn|◦α◦ ) + γ0 ≤ λmin(|Cn,ε|◦α◦ ) ≤ λmin(|Cn|◦α◦ ) + γ

for r ≤ α ≤ n− 2.
Thus we proved that for k ∈ {2, 4, . . . , n − 4, n − 2}, λmin(|Cn,ε|◦α◦ ) > 0 for

α ∈ [k − δ, k + δ] and λmin(|Cn,ε|◦(k−1)
◦ ) < 0. This concludes the proof when n is

even.
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ON HADAMARD POWERS OF POSITIVE SEMI-DEFINITE MATRICES 7

Now suppose n is odd. Then using [Jai17, Theorem 3.3] we get

λmin(|Cn|◦α◦ )

⎧⎪⎨
⎪⎩
= 0 α ∈ {0, 2, 4, . . . , n− 3},
< 0 0 < α < n− 3, α /∈ {2, 4, . . . , n− 5},
> 0 α > n− 3.

The rest of the proof for this case is similar to the case when n is even and is
omitted. �
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