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Abstract

We formulate a precise conjecture about the size of the L∞-mass of the space of Jacobi
forms on Hn ×C

g×n of matrix index S of size g. This L∞-mass is measured by the size of
the Bergman kernel of the space. We prove the conjectured lower bound for all such
n, g, S and prove the upper bound in the k aspect when n = 1, g ≥ 1. When n = 1 and
g = 1, we make a more refined study of the sizes of the index-(old and) new spaces, the
latter via the Waldspurger’s formula. Towards this and with independent interest, we
prove a power saving asymptotic formula for the averages of the twisted central
L-values L(1/2, f ⊗ χD) with f varying over newforms of level a prime p and even weight
k as k, p→∞ and D being (explicitly) polynomially bounded by k, p. Here χD is a real
quadratic Dirichlet character. We also prove that the size of the space of Saito-Kurokawa
lifts (of even weight k) is k5/2 by three different methods (with or without the use of
central L-values), and show that the size of their pullbacks to the diagonally embedded
H×H is k2. In an appendix, the same question is answered for the pullbacks of the
whole space S2k , the size here being k3.
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1 Introduction
This article addresses the classical sup-norm problem in the context of automorphic
forms for the spaces of holomorphic Jacobi and Siegel modular forms—these correspond
to automorphic forms on the Jacobi group and the Siegel modular group, respectively.
While Jacobi theta functions are one of the oldest examples of automorphic forms, Siegel
modular forms (SMF in short) play important roles in the study of quadratic forms and
higher dimensional Abelian varieties among various other things. Let Snk be the space of
holomorphic cuspidal SMF of scalar weight k on �n := Spn(Z). When k is even, one has
inside S2k the space of Saito-Kurokawa lifts, denoted by SKk (SK lifts in short), which are
functorial lifts from elliptic modular forms of weight 2k − 2 on SL2(Z). On this space,
there are deep and fascinating period/pullback formulas (cf. [21]) and conjectures about

the L2-‘mass’ (cf. [7,31]) for the pullback F◦ of an SK lift F , where F◦(τ , τ ′) = F (
(

τ 0
0 τ ′

)
),
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(τ , τ ′ ∈ H). Of high contemporary interest has been to understand the Lp-‘mass’ (1 ≤
p ≤ ∞) of these spaces and specifically the sup-norm bounds of the pullbacks of the
eigenfunctions of all Hecke operators. Here and throughout this paper, the ‘size’ or L∞-
mass of a subspace of the space of automorphic forms on a symmetric space S with respect
to a suitable discrete group � is measured by the supremum on S of its Bergman kernel
(BK in short) for the subspace which is invariant under the discrete group �, see e.g., (1.2),
where S = Hn,� = �n and the subspace is SKk .
Let Hn be the Siegel’s upper half-space of degree n. Let us recall that the sup-norm

problem for F ∈ Snk with Petersson norm ‖F‖2 = 1, asks for a bound of the form
supZ∈Hn det(Y )k/2|F (Z)| � P(k), where P is a suitable polynomial function of k . This
problem has been studied extensively in the past few decades for almost all kinds of auto-
morphic objects—and has its origin in analysis, see e.g., the introductions in [8,11,13]
etc. for more on the context and relevance of this old and classical problem. For SMF,
however, the first general result seems to be that in [13], where a precise conjecture for
P(k) was also mentioned (viz. P(k) = kn(n+1)/8). The two main ingredients required for
successful results on this problem are the Fourier expansion and the geometric side of the
Bergman kernel of the space.
However if one works with a (smaller) sub-family, the above-mentioned feature con-

cerning the BK is no longer present or expected to be tractable - and thus the problem has
to be dealt with differently with new ideas, as we will discuss shortly. We only mention
here that our sub-family will be the SK lifts – and that these objects also serve as a very
good testing ground for various open questions, in particular the very general (and hard)
conjecture on sup-norm: for any ε > 0,

‖F‖∞ := supZ∈Hn det(Y )k/2|F (Z)| �ε,n kn(n+1)/8+ε (F ∈ Bn
k ), (1.1)

where Bn
k denotes the L2-normalised Hecke basis of Snk , and k →∞.

If one assumes the GLH for all twisted GL(2) L-functions associated to holomorphic
newforms, then a result of Blomer [8] demonstrates (1.1) when n = 2 for SK lifts. By all
means, the best one can do at present seems to be the bound ‖F‖∞ � k5/4+ε (see [15,
Remark 2.5]) by adapting the method in [8] and using the non-trivial result of Young [42]
on uniform bounds for L(1/2, f ⊗ χD) (χD being the quadratic character of Q(

√
D) and

f ∈ S2k−2, a Hecke eigenform). However, we bring to the reader’s attention that Young’s
result is technically not enough for this purpose as it is only for odd square-free D at the
moment1—so strictly speaking, the above result was conditional. Interestingly, the bound
‖F‖∞ � k5/4+ε will also follow from one of our main results on the size of the Bergman
kernel for SKk given below, without the use of L-functions.
LetB∗k be the set of L2-normalised basis of Hecke eigenforms in SKk which are obtained

as lifts of normalisedHecke eigenforms in S2k−2. This convention about lifts is understood
throughout the paper. It follows from Lemma 7.2 that B∗k is orthonormal. Put

B(SKk )(Z) :=
∑

F∈B∗k
det(Y )k |F (Z)|2; sup(SKk ) := supZ∈H2 B(SKk )(Z). (1.2)

1There could be a chance of removing this assumption-from private communication with M. Young, but certainly is
far from anything obvious.
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We refer to the quantity sup(SKk ) as the ‘size’ or L∞-mass of SKk . We can now state one
of the main results of the paper, which gives the correct size of sup(SKk ).

Theorem 1.1 Let k be even.2 Then for all such k large enough,

k5/2 � sup(SKk )�ε k5/2+ε .

Webelieve that the ε in the upper bound can be dropped, but can not see immediately how
to do that. Dropping all but one term, one recovers the bound ‖F‖∞ � k5/4+ε mentioned
above. We give two proofs of Theorem 1.1, neither of which use Young’s result. In fact its
usage gives worse results by our method for the second moment, i.e., for sup(SKk ) (since
Young’s result is on the 3rdmoment) but gives good bounds for higher moments; this will
be discussed later, cf. (1.5). A corollary of the upper bound in Theorem 1.1 can be stated
as follows.

Corollary 1.2 Let k be even. Then there exist F ∈ B∗k such that ‖F‖∞ �ε k3/4+ε . More-
over, there exists an L2-normalised G ∈ SKk (which may not be a Hecke eigenform) such
that ‖G‖∞ � k5/4.

For the assertion about G, see the construction in [13, Corollary 1.5] which we do not
repeat here.
We mention here the related recent result from [13] which proves, among other things,

that

k9/2 � supZ∈H2

∑
F∈B2

k
det(Y )k |F (Z)|2 � k9/2+ε , (1.3)

fromwhich one gets the existence F or G ∈ S2k satisfying the above corollary (and evidence
for (1.1)) – but one cannot however pinF orG down to SKk . But this is desirable, given that
the SK-lifts contribute much smaller amount to the mass coming from S2k as follows from
Theorem 1.1. So Corollary 1.2 is new, and interesting because F satisfies (1.1). In contrast,
from [8] we know the existence of an H ∈ B∗k with ‖H‖∞ �ε k3/4−ε , which suggests
that (1.1) is perhaps specific for Hecke eigenforms. Lastly, let us note that Theorem 1.1 is
consistent with (1.1), and along with (1.3) provides (stronger) evidence towards (1.1).
Our knowledge for the sup-norm of an individual F ∈ S2k is unfortunately very limited.

Best is what one can obtain from the Bergman kernel, viz. ‖F‖∞ �ε k9/4+ε (cf. (1.3)).
Ideally, one would hope that for SK-lifts one could do better. For this one would require
robust bounds on the geometric side ofB(SKk )(Z). However, as far as we could see, there is
no ‘immediatelyuseful’ geometric sideof theBergmankernel for this space (cf. Section7.1),
as the definition of this space is via the Fourier expansion. To us, it seems that the best
avenue for amelioration over the bound k5/4+ε would be via an improvement of Young’s
bound [42] (for all fundamental discriminants) in the twist aspect, this is demonstrated
in Sect. 8. We understand that this is a very hard problem in itself.
Moreprecisely, ifwedefinehighermomentsbyF2r := supZ∈H2

∑
F∈B∗k det(Y )kr |F (Z)|2r

(forB∗k see (1.2)), and assume that (i.e. go beyond theWeyl-type bound in the twist aspect)
for all fundamental discriminants D:∑

f ∈Bk
L(1/2, f ⊗ χD)3 �ε k1+εD1−δ+ε (1.4)

2For odd weights we get non-holomorphic lifts, cf. [4]. It would be interesting to look into these objects.
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(Bk being the normalised Hecke basis) for some absolute positive constant δ, it follows
(see the end of in Sect. 8) that

F6 �ε k15/2−2δ+ε (1.5)

for all ε > 0. From this we would immediately get a saving over the exponent 5/4 alluded
to in the above. Note that one has F2r � k5r/2 as an application of Theorem 1.1. Of
course, the exponent of k in (1.4) can not be improved (except may be the ε) since by
Hölder’s inequality, we see that (see e.g., [8, Lemma 3] for the first assertion below)

k �D
∑

f ∈B2k−2
L(k − 1, f ⊗ χD)�ε (

∑
f
1)2/3(

∑
f
L(k − 1, f ⊗ χD)3)1/3,

from which the lower bound k follows for the cubic moment in (1.4). We call the proof of
(1.5) as the ‘third’ method of proof of Theorem 1.1 which uses bounds on central L-values
(with δ = 0), even though it is conditional on assuming (1.4) for all D.
We now say something about the ‘first’ and ‘second’ methods of proofs of Theorem 1.1.

To discuss the first method, we are led to the second main topic of this paper: the inves-
tigation of the sup-norm problem in the context of Jacobi forms. Our motivation here is
twofold—for one, this seems to be the first investigation of the problem for non-reductive
Lie groups viz. the Jacobi groups, and two, the results obtained thus have application to
solving the same question for SK lifts.
Let us recall some basic notation on Jacobi forms of matrix (or lattice) index. Let �+g

be the set of all g × g symmetric, positive–definite, half-integral matrices (i.e., T ∈ �+g
means T = (tij) with 2tij , tii ∈ Z) andMg,n(C) denote the set of g × n complex matrices.
For any S ∈ �+g , Jk,S;(n,g) (resp. J

cusp
k,S;(n,g)) denotes the space of holomorphic Jacobi forms

(resp. Jacobi cusp forms) of weight k and index S on Hn×Mg,n(C). Let Bk,S;(n,g) denote an
orthonormal basis for J cuspk,S;(n,g) and put (for τ (:= u+ iv) ∈ Hn, z(:= x + iy) ∈ Mg,n(C))

Bk,S;(n,g)(τ , z) :=
∑

φ∈Bk,S;(n,g)
(det v)ke−4π tr(Sv−1[y])|φ(τ , z)|2; (1.6)

sup(J cuspk,S;(n,g)) := sup(τ ,z)∈Hn×Mg,n(C) Bk,S;(n,g)(τ , z). (1.7)

It is easily checked that for any u ∈ GLn(Z) one has

Bk,S;(n,g)(τ , z) = Bk,S[u];(n,g)(τ , (ut )−1z), (1.8)

which implies that the sup-norms as defined in (1.7) corresponding to S and S[u] are
the same. Henceforth, we thus assume 2S to be reduced. The invariants (1.6) and their
maximum values in (1.7) are the other main protagonists of this work; and we propose a
precise conjecture about their sizes.

Conjecture 1.3

sup(J cuspk,S;(n,g)) � k
3n(n+1)

4 + gn
2 det(2S)

n
2 , as k · det(2S)→∞;

with the implied constant depending only on g, n. Practically the above conjecture should
be thought of separately in the k or S aspect, fixing the other component.
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In fact, we go a step further and propose a conjecture about the sup-norm of an individual
Jacobi form of scalar index.

Conjecture 1.4 For an L2-normalised Jacobi form φ ∈ J cuspk,m,(n,1), one has ‖φ‖∞ �
k (n2+3n)/8m−n/2 as k ·m→∞.

One should note that Conjectures 1.4 and 1.3 are compatible with each other if we believe
in Klingen’s conjecture that dim(J cuspk,m,(n,1)) � kn(n+1)/2mn (cf. [26, Remark p. 683]). One
can propose a conjecture above for any g ≥ 1, provided a good asymptotic formula for the
dimension is known. This seems not available at the moment. Conjecture 1.4 is expected
especially for Jacobi Hecke eigenforms.
To understand the lower bound, one natural way would be to understand the size of∑
φ |cφ(l, r)|2, where φ runs over an orthonormal basis of J cuspk,S;(n,g) as k → ∞. This is

unfortunately not available quantitatively as of now when n ≥ 3 (not even for SMF),
but one can prove a qualitative result (without an error term) as a substitute. Using
the interpretation via the Fourier coefficients of Poincaré series, we prove (slightly more
generally) that

limk→∞ C(l′, r′;Pl,r
k,S) = δS(l, r; l′, r′),

where C(l′, r′;Pl,r
k,S) denotes the (l

′, r′)-th Fourier coefficient of the Jacobi Poincaré series
Pl,r
k,S and δS(..) is a certain count of automorphisms, see Sect. 3.1. Note that C(l, r;Pl,r

k,S) is
proportional to

∑
φ |cφ(l, r)|2, where cφ(l, r) denotes the (l, r)-th Fourier coefficient of the

Jacobi form φ. For SMF of degree n and even weights k , this was proved in [30]; our proof
is quite different from that, and has a simpler yet strong term-wise decay of the terms of
Poincaré series, see Lemma 3.2 and subsequent arguments. Using all of these, we show in
Proposition 3.3 that the lower bound indeed holds in Conjecture 1.3.
When n = 1, we prove the following result concerning the size of J cuspk,S,g where J cuspk,S,g :=

J cuspk,S,(1,g). See Proposition 3.3 and (3.5), which shows further that the lower bound below
actually holds for all n, S as k →∞.

Theorem 1.5 Let k be even. Then for any ε > 0 there exist k0 ≥ 1 depending only on g
such that for all k ≥ k0,

k
3
2+ g

2 det(2S)
1
2 � sup(J cuspk,S,g )�ε k

g+3
2 +ε det(2S)

g+3
2 +ε . (1.9)

One immediate application of Conjecture 1.3 or any result like Theorem 1.5 is towards
estimating the dimension of the ambient spaces of automorphic forms (see e.g., [44,
Corollary 1] in our context). In the case of Jacobi forms, one gets very easily a polynomial
bound for the dimension by using the Conjecture 1.3. Of course, good point-wise bounds
for the BK are more useful–see e.g., [13].
Comparing with Conjecture 1.3 we see that in the k aspect, the above theorem proves

this conjecture. However, in the index aspect it is quite far away from the expectation. But
still (1.9) is not void in the S-aspect if we consider even unimodular lattices 2S (for 8|g).
We note that the index has some similarities with the level of a modular form, in view
of the Hecke equivariant isomorphism between Jk,m and a certain subspace ofM2k−2(m).
And then the above issue is not very surprising, as superior ‘hybrid’ (weight along with
level) aspect results are very rare on the sup-norm problem.
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When n = 1, g = 1, we are in the setting of classical Jacobi forms Jk,m. Then the
‘first’ method of proof of Theorem 1.1 uses (in a small region) bounds for the geometric
side of the Bergman kernel for J cuspk,m . Moreover, for index m = l2 (l ≥ 1), we point out
to the reader a peculiar situation: the contribution of ‘index-old’ Jacobi forms Ul(J

cusp
k,1 )

inside J cuspk,l2 (here Ul(φ) = φ(τ , lz)) is of the same order as that of the space J cuspk,1 (as per
Conjecture 1.3), see Sect. 5. The contribution of another index-old part, viz. Vp(J

cusp
k,1 )

(p prime) inside J cuspk,p is shown to be at most O(k2p), which is better as compared to
what one gets from Theorem 1.5. We also show that the contribution of the index p-new
space in J cuspk,p is at least as big as the conjectured bound (1.3) for the full space. These are
summarized in Propositions 5.1 and 5.3. For the treatment of newspace, we depend on
an asymptotic result on the average of central L-values via Waldspurger/Baruch-Mao’s
([9,39,40]) formula. That the k aspect size is the same for all the above spaces is expected,
as all of them grow linearly in k , it is the index aspect that needs attention.
Namely, in Sect. 6 we prove an asymptotic formula for the first moment of the family of

central L-values L(1/2, f ⊗ χD)/L(1, sym2f ) as f varies in the space of newforms of level p
and weight 2k − 2, such that k, p→∞ with D growing at most as polynomially with k, p.
For the full level and fixed twist χD, this was worked out in [8, Lemma 3]. The level aspect
is more delicate. Of course, this result should be of independent interest as well.
For f ∈ Snew2k−2(p), putAp := 1+ p

p+1 (1+ (−1)k−1 sgnD)C(p) and Bp := 2+2C(p) where
C(p) is given as:

C(p) := −1
p+ 1

∑
t≥0

pt

(p+ 1)2t
∑

d|pt cpt (d)
2. (1.10)

Here c
(d) are the Tchebyshev coefficients (see [34]) which occur in the expression of
λf (pn) as a polynomial in λf (p). Using the estimates for Tchebyshev’s coefficients from
[34, Corollary 2] with Y = 1/2 (loc. cit.), it is easy to see thatC(p)� 1/p. Our main result
is given below.

Theorem 1.6 Let B∗2k−2(p) denote the set of newforms for the space Snew2k−2(p). Then for any
fundamental discriminant D, we have

(1) when (p, D) = 1,

∑
f ∈B∗2k−2(p)

L(1/2, f ⊗ χD)
L(1, sym2f )

= Ap(2k − 2)p
2π2 + Oε(D7/8+εk19/24+εp9/16+ε);

(1.11)

(2) when p|D and k and D be such that (−1)k−1 sgn(D) = 1, then

∑
f ∈B∗2k−2(p)

L(1/2, f ⊗ χD)
L(1, sym2f )

= Bp(2k − 2)p
2π2 + Oε(D7/8+εk−1/12p−1/4+ε).

(1.12)

When (p, D) = 1, the above asymptotic is valid for D � k10/21−εp1/2−ε and when p|D,
it is valid for D � k26/21−εp10/7−ε . Let us note that Theorem 1.6 does not follow from
[34,42], partly because none is hybrid with respect to all the parameters in play: weight,
level and the twist.
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We must mention here about two more parts which play crucial role while discussing
the size of the newspace: that of Sects. 5.2 and 5.3. Namely, in Sect. 5.2 we show how
the choice of D = −4p leads to the lower bound k2p1/2 (which is the size of J cuspk,p , if we
believe in Conjecture 1.3) for the size of the newspace. But for this we have to appeal to
the classical newform theory for Jacobi forms, e.g., as considered in [33]. However, we
must first reconcile the “two” notions of newspaces presented in loc. cit. and then derive
the requisite Waldspurger type formula in the context of Jacobi forms when p|D using
Baruch-Mao’s result ([9]). Along the way, we write down the main results about Eichler-
Zagier correspondence in a way which we believe would be useful in the future. This is
the content of Sect. 5.3.
The ‘second’ method is presented in Sect. 7.4. It does not use the geometric side of

the Bergman kernel for Jacobi forms of index bigger than 1, but uses full knowledge of
Jacobi Poincaré series of index 1. One of our motivations behind exploring more than
one method is that one of them could have the potential to implement (some variant) the
amplification method to improve the individual sup-norm bound for an SK lift. It is not
immediately clear how this might work out. This is partly explained by the fact that the
standard definition of the SK lifts is via their Fourier expansion–fromwhich the geometric
side of the Bergman kernel is hard to study, see Sect. 7.1. This led us to make the remark
above that the third method, with an improvement in sub-convexity results could be one
of the best avenues in this regard.
In the last section, we investigate the size of ‘pullbacks’ (to the diagonal H × H) of an

SMF.When the SMF is an SK lift, we have a deep result of Ichino expressing its support in
Sk ⊗ Sk in terms of central L-values. In fact, this was the basis of the works [7,31], where
the L2-mass of such pullbacks were investigated. We are interested in the L∞-mass of the
space consisting of the pullbacks (in the spirit of this paper) and show that the size of such
pullbacks is either k3 or k2 depending on how one normalises the L2-norm; it is k3 if we
sum over all the pullbacks (to the diagonal, see 1st paragraph of the introduction) F◦ of F
with ‖F‖ = 1, and it is k2 if we sum the same with ‖F◦‖ = 1, provided it is nonzero. This
suggests that the bound ‖F◦‖∞ � k1/2 might be expected for an F ∈ SKk , at least when
F is a Hecke eigenform. Also ‖F‖ := ‖F‖2 throughout this paper.
Conjecture 1.7 Let F ∈ SKk be a Hecke eigenform such that F◦ �= 0 and ‖F◦‖2 = 1.
Then ‖F◦‖∞ � k1/2+o(1).

A curious corollary of our calculations is about the linear independence of the square-
root of the central L-values L(1/2, sym2 g × f ) as g, f vary in Sk , S2k−2 respectively, see
Corollary 9.4.
Moreover, in an Appendix to Sect. 9 (see Sect. 9.2), we determine the size of pullbacks

of the full space S2k and find the answer to be k3 – which says that the pullbacks fill up
all the mass in Sk ⊗ Sk (cf. Theorem 9.7). We point out that the main idea here is the
realization of space of pullbacks of SK lifts (or even for the full space S2k ) as a certain
simple subspace of Sk ⊗ Sk , which allows us to find their sizes; and also allows one to talk
about the ‘preliminary’ bounds for the size of these pullbacks. Merely using the Fourier
expansions of the pullbacks (which involves sums of square-roots of central L-values or
averages of Fourier coefficients of half-integral weight cusp forms, for which we do not
have a Petersson formula or some other substitute) gives worse results, see Lemma 9.3 in
this regard.
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Wewould like to remind the reader that the average results in this paper have their own
value: note that merely squaring and adding the best unconditional sup-norm bounds
do not usually give the expected average result. The goal of this paper is not to provide
individual sup-norm bounds, but to study the BK. Individual sup-norm bounds will be
taken up separately.
We end the introduction by mentioning several questions and remarks which can be

pursued for further research on the topics considered in this paper.

(i) It is not clear to us how to improve the index aspect of Theorem 1.5. One might use
the fact that Jk,m ∼= Vk,m ⊗ Thm, where Vk,m is the space of certain vector-valued
SL2(Z) modular forms, and Thm is the (space spanned by the) congruent theta tuple
modm. But we can’t perceive this to be radically different from what has been done
in this paper.

(ii) Conjecture 1.3 perhaps could be proved for n = 2 with efforts, by using the available
results for SMF of degree 2 (cf. [13]). For higher degrees, one might get some result,
but probably even the k aspect will be weak.

(iii) As the reader might have noticed, the ‘trivial’ (but not easy) bound for an SK lift of
a Hecke eigenform, stands bounded above by k5/4. One would hope to improve this
bound– the best possible bound in this direction is k3/4 (see the introduction in [13]).
Perhaps the ‘theta-lifting’ perspective plays a role. But this will be specific to degree
2. The same comment goes for pullbacks of Hecke eigenforms (cf. Corollary 9.6)
where the bound which we get is k1+ε and the expected bound is k1/2.

(iv) One might be able to remove the presence of ε in the statement of Theorem 1.1.
(v) Perhaps successful results on higher moments of twisted central L-values will also

help improve our bounds, see Sect. 8. One might try to use an asymptotic formula
or a good upper bound for the higher moments in the setting of Theorem 1.6. See
for instance [5, (3.9)] for the second moment, in the level and twist aspects. We have
already discussed [42] to this effect.

(vi) It is desirable to understand the contributions of the index-old and index-new forms
(inside Jk,m) in a more refined and accurate way – also for higher degrees and matrix
indices.

(vii) It is natural to consider the level aspect version of the results in this paper. These are
under consideration by the authors.

2 Notation and setting
In this paper, we will mostly use standard notation, some of which are collected below,
and the rest will be introduced as and when it is necessary. For standard facts about Siegel
modular forms and Jacobi forms, we refer the reader to [16,17,25,43].
(1) We use the standard conventions in analytic number theory. We note A � B and

A = O(B) are the Vinogradov and Landau notations, respectively. By, A � B we mean
that there exists a constant c ≥ 1 such that B/c ≤ A ≤ cB. Any subscripts under them
(e.g., A �n B) indicates the dependence of any implicit constants on those parameters.
Throughout, ε will denote a small positive number, which can vary from one line to
another. (2) Let Z,Q,R, and C denote the integers, rationals, reals and complex numbers
respectively. For a commutative ring R with unit, Mn,m(R) and Mn(R) denote the set of
n × m and n × n matrices over R, respectively. GLn(R) denotes the group of invertible
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elements inMn(R). Symn(R) denotes the set of all n×n symmetric matrices over R. Spn(R)
denotes the symplectic group of degree n over R.�n (resp.�+n ) denotes the set of all n×n
symmetric, positive semi–definite (resp. positive–definite), half–integral matrices (that is
T = (tij) with 2tij , tii ∈ Z). We will denote the transpose of A by At . For matrices A and
B of appropriate size, we write A[B] := BABt . Moreover, 1n and 0n will be the identity

and zero matrices, respectively. (3) For A =
(
a b
c d

)
∈ GSp+n (R) (the group of symplectic

similitudes with positive similitude factor), we denote by A↑ to be the image of A under

the diagonal embedding of GSp+n (R) ↪→ GSp+n+m(R) given by A �→

⎛
⎜⎜⎜⎝
a 0
0 det(A)

b 0
0 0m

c 0
0 0m

d 0
0 1m

⎞
⎟⎟⎟⎠.

(4) Let Hn := {Z ∈ Mn(C) : Z = Zt , ImZ > 0} be the Siegel’s upper half plane of
degree n. The symplectic group Spn(R) acts on Hn byM〈Z〉 = (AZ + B)(CZ + D)−1, for

M =
(
A B
C D

)
∈ Spn(R) and Z ∈ Hn. Let Fn denote the Siegel’s fundamental domain for

the action of Spn(Z) on Hn.

2.1 Jacobi forms of type (n, g)

Let R be Z, Q or R, then the Heisenberg group Hn,g
R is given by

Hn,g
R = {[(λ,μ), κ] : λ,μ ∈ Mg,n(R), κ ∈ Mg (R), κ + μλt ∈ Symg (R)}

with the composition law

[(λ1,μ1), κ1] · [(λ2,μ2), κ2] := [(λ1 + λ2,μ1 + μ2), κ1 + κ2 + λ1μ
t
2 − μ1λ

t
2].

The symplectic group Spn(R) acts on Hn,g
R from right by

[(λ,μ), κ]M := [(λ,μ)M, κ]; M ∈ Spn(R), [(λ,μ), κ] ∈ Hn,g
R .

The Jacobi group of type (n, g) over R is defined as

Gn,g
R := Spn(R) � Hn,g

R

with the group law given by

(M1, X1)(M2, X2) := (M1M2, (X1M2) · X2), forM1,M2 ∈ Spn(R) and X1, X2 ∈ Hn,g
R .

The Jacobi group Gn,g
R acts on Hn ×Mg,n(C) by

(M, [(λ,μ), κ]) · (τ , z) := (M〈τ 〉, (z + λτ + μ)(cτ + d)−1),

whereM =
(
a b
c d

)
with a, b, c, d ∈ Mn(R) andM〈τ 〉 = (aτ + b)(cτ + d)−1.

For any k ∈ Z and S ∈ �+g , G
n,g
R

acts on functions on Hn ×Mg,n(C) as follows:

(φ|k,Sγ )(τ , z) := Jk,S(γ , (τ , z))φ(γ (τ , z)), (2.1)
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where γ = (M, [(λ,μ), κ]) and the automorphy factor Jk,S is given by

Jk,S(γ , (τ , z)) := e(tr(S(−(z + λτ + μ)(cτ + d)−1c(z + λτ + μ)t + τ [λ]+ 2λzt + κ + μλt ))
det(cτ + d)k

.

The Jacobi group of type (n, g) is given by

�J
n,g := {(M,X) ∈ Gn,g

Z
: M ∈ Spn(Z)}.

A holomorphic function φ on Hn ×Mg,n(C) is called a Jacobi form of weight k and index
S if

(1) φ|k,Sγ = φ ∀γ ∈ �
J
n,g .

(2) φ is bounded at the cusps of Spn(Z)\Hn (automatic for n ≥ 2, due to the Köcher
principle).

Any such φ as a Fourier expansion given by

φ(τ , z) =
∑

T∈�n

∑
R∈Mn,g (Z)

4T−S−1[R]≥0
Cφ(T, R)e(tr(Tτ + Rz)).

If the Fourier coefficients survive only for 4T − S−1[R] > 0, then φ is called a Jacobi cusp
form. Jk,S;(n,g) (resp. J

cusp
k,S;(n,g)) denotes the space of holomorphic Jacobi forms (resp. Jacobi

cusp forms) of weight k and index S on Hn ×Mg,n(C).
The space of Jacobi cusp forms, J cuspk,S;(n,g) is equipped with an inner product and is given

by

〈φ,ψ〉 :=
∫

�
J
n,g\Hn×Mg,n(C)

φ(τ , z)ψ(τ , z)(det v)k exp(−2π tr(Sv−1[y])) du dv dx dy
(det(v))n+g+1

,

for φ,ψ ∈ J cuspk,S;(n,g) and τ = u+ iv, z = x + iy.
At various places we need the following operators Vm defined on Jacobi forms of degree

1 and index 1 (even though they can be defined for any index). For φ ∈ J cuspk,1 define (cf.
[16, § 4 (2)])

Vm(φ)(τ , z) = mk−1 ∑
γ
(cτ + d)−ke(mcz2/(cτ + d)2)φ

(aτ + b
cτ + d

,
mz

cτ + d
)
, (2.2)

where γ =
(
a b
c d

)
runs over a set of representatives �1\M2,m(Z). Here M2,m(Z) denotes

the set of size 2 integral matrices with determinant m. Then Vm maps J cuspk,1 to J cuspk,m . By
choosing upper triangular representatives, one arrives at the following Fourier expansion
of Vm(φ) (cf. [16, Theorem 4.2 (7)]):

Vm(φ)(τ , z) =
∑

n,r

( ∑
a|(n,r,m)

ak−1cφ(nm/a2, r/a)
)
e(nτ + rz). (2.3)
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2.2 SK lifts

We now recall the formula for the Fourier coefficients of F ∈ SKk in terms of those of the
lifted φ ∈ J cuspk,1 . Throughout the remainder of this paper we shall put

F (Z) =
∑

m≥1 φm,F (τ , z)e(mτ ′),

where we write Z =
(

τ z
zt τ ′

)
and φm,F = Vm(φ1,F ) with Vm as defined in (2.2). By the

results of [16,32], when k is even F ∈ SKk and this correspondence φ �→ F is a Hecke
equivariant isomorphism from J cuspk,1 → SKk . F is called the SK lift of φ. For any D ≡
0,−1 mod 4,D > 0, cφ,F (D) := cφ1,F (D). Then for T =

(
n r/2
r/2 m

)
and c(T ) = (n, r,m) –

the content of T , the following relation holds:

aF (T ) =
∑

a|c(T )
ak−1cφ,F

(
D/a2

)
. (2.4)

where D = det(2T ). We also often realize the SK lift to be from S2k−2 via the Shintani
and Eichler-Zagier maps, all of which are Hecke equivariant isomorphisms. We thus
parametrize F ∈ SKk as F = Ff for a unique f ∈ S2k−2. In particular, Ff is a Hecke
eigenform if and only if f is.

2.3 Bergman Kernel for Jacobi forms

LetBk,S;(n,g) be an orthonormal basis for J cuspk,S;(n,g). Then the Bergman kernel (a reproducing
kernel for the space of Jacobi cusp forms J cuspk,S,(n,g)) is given by,

Bk,S;(n,g)(τ , z; τ0, z0) =
∑

φ∈Bk,S;(n,g)
φ(τ , z)φ(τ0, z0). (2.5)

It can also bewritten explicitly as given below. Let hk,S,(n,g) be a function on (Hn×Mg,n(C))2

defined as (see e.g., [38,44]):

hk,S,(n,g)(τ , z; τ0, z0) := det(τ − τ̄0)−ke
(−(τ − τ̄0)−1S[z − z0]

)
.

Let k > g + 2n. For (τ , z), (τ0, z0) ∈ (Hn ×Mg,n(C))2 the Bergman Kernel for the space of
Jacobi forms can be written as (see [44, Proposition 2])

Bk,S;(n,g)(τ , z; τ0, z0) := λk,S;(n,g)
∑

ξ∈�
J
(n,g)

(hk,S;(n,g)|(1)k,Sξ )(τ , z; τ0, z0), (2.6)

where λk,S;(n,g) = 2−n(n+3)/2π−n(n+1)/2(det(2 S))n
∏n−1

t=0
∏n−t

j=1 (k− g+t
2 − j) and |(1)k,S denotes

the action of the Jacobi group �
J
(n,g) with respect to the first pair of variables (τ , z).

2.4 Siegel-Jacobi Poincaré series.

For a positive definite matrix l ∈ �+n and r ∈ Mn,g (Z), the (l, r)-th Jacobi Poincaré series
of weight k and index S is defined as (see [10], we replace (τ , z) with (Z,W ))

Pl,r
k,S(Z,W ) :=

∑
γ∈�

J
(n,g);∞\�J

n,g
e(tr(lZ))e(tr(rtW ))|k,Sγ . (2.7)
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One knows that Pl,r
k,S ∈ J cuspk,S;(n,g) for k > 2n+ g and for any φ ∈ J cuspk,S;(n,g) (see [10, Theorem

6.4])

〈φ, Pl,r
k,S〉 = λk,S;(n,g)(l, r)Cφ(l, r), (2.8)

where �n(s) := πn(n−1)/4 n−1∏
i=0

�(s − i
2 ) and

λk,S;(n,g)(l, r) :=
�n(k − n+g+1

2 )(4l − S−1[r])−k+(n+g+1)/2

(π )nk−n(n+g+1)/2(det 2S)n/2 . (2.9)

LetC(l1, r1;Pl2 ,r2
k,S ) denote the (l1, r1)-th Fourier coefficient of Pl2 ,r2

k,S . Then, using (2.8), we
get

∑
φ∈Bk,S;(n,g)

Cφ(l1, r1)Cφ(l2, r2) = λk,S;(n,g)(l2, r2)−1C(l1, r1;Pl2 ,r2
k,S ), (2.10)

which is the Petersson trace formula for the space J cuspk,S;(n,g).

3 Lower bound for the Bergman kernel for the space of Jacobi forms
When n > 1, a possible approach to obtain the best possible lower bound for the Bergman
kernel for J cuspk,S;(n,g) is via an ‘asymptotic orthogonality’ of Fourier coefficients of cusp forms
– see below. This avoids the use of explicit knowledge of the Fourier coefficients of Siegel-
(Jacobi) Poincaré series; something which is known to be quite difficult to deal with (cf.
[13]). When n = 1, of course we can handle them better (cf. [6]).

3.1 Asymptotic orthogonality of the Fourier coefficients of Siegel–Jacobi Poincaré series

In this section, we prove the following asymptotic orthogonality result (cf. [30] for Siegel
cusp forms).

Proposition 3.1 Let k be even. Then

limk→∞ C(l′, r′;Pl,r
k,S) = δS(l, r; l′, r′), (3.1)

where δS(l, r; l′, r′) = #
{
(A, λ) ∈ GLn(Z)×Z

g :
(

l r/2
rt/2 S

) [(
A 0
λ Ig

)]
=

(
l′ r′t/2

r′/2 S

) }
.

So from (2.10), one can say that the Fourier coefficients are ‘asymptotically orthogonal’
on average over an orthonormal basis as k → ∞, if we also use (2.9). This result has
application towards the sup-norm problem and other equidistribution problems (cf. [30],
[13, Lemma 4.1] and below).
For any y0 > 0, let us define the set

F (y0) = {Z = U + iV ∈ Hn : V = y0In}.

In [30], (3.1) was established for n ≥ 1, g = 0 via a technical lemma which states that

for y0 large enough, for all Z ∈ F (y0) and all M =
(
a b
c d

)
∈ Spn(Z) with c �= 0, one

has | det(cZ + d)| > 1 (cf. [30, Lemma 5]). Further, in [30, Remark 7] it was speculated
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that the above result should hold for all y0 > 1 based on Gottschiling’s (see [18]) explicit
description of the finitely many boundary components of F2. Such description is not
available for n > 3 (see [24, § 5] for a partial result when n = 3), as far as we know.
We prove the following result, which is an improvement over [30, Lemma 5], in that it

holds for all n ≥ 1, all y0 > 1 and does not require the explicit description of the boundary
components of Fn.
We write cM, dM, . . . etc. for the lower blocks ofM ∈ Spn(Z).

Lemma 3.2 Let y0 > 1 and Z ∈ F (y0). Then, for any M =
(
aM bM
cM dM

)
∈ Spn(Z) with

cM �= 0,

| det(cMZ + dM)| ≥ y0.

Proof Since M is fixed, we omit the superscript in cM etc. Let r = rank(c). Since c �= 0,
we have r ≥ 1. Then, for any such co-prime symmetric pair (c, d) as in the lemma, using

Siegel’s lemma (e.g., see [14, Lemma3.1])we canwrite (c, d) =
((

c1 0
0 0

)
wt,

(
d1 0
0 1

)
w−1

)
.

Here w ∈ GLn(Z) and c1 is a r × r matrix of rank r.
Next, we have

| det(cZ + d)| = | det(c1(Z[w])1 + d1)| ≥ | det((Z[w])1 + c−11 d1)| ≥ det(Im(Z[w])1),

where Z1 denotes the upper left corner of Z of size r and we have used the fact that
c−11 d1 is symmetric-this follows because (c1, d1) is again a co-prime symmetric pair. For
completeness, let us mention that we used the standard inequality | det(A+ iB)| ≥ det B,
where A, B ∈ Symn(R) and B > 0.
Writing Z = U + iy0In, we see that

Im(Z[w])1 = (y0In[w])1 = y0(wtw)1.

Since w has integer entries, it follows immediately that for any y0 > 1, | det(cZ + d)| ≥
yr0 ≥ y0. This completes the proof of the lemma. ��

From [10, Prop. 6.1], Pl,r
k,S converges absolutely and locally uniformly (uniformly on all

compact sets) provided k > n+ g + 1. For us the compact set will be

C(y0) = {(Z,W ) ∈ Hn ×Mg,n(C) : U mod 1, V = y0In; X mod 1, Y = 0};

where y0 > 1 has been chosen as in Lemma 3.2—so that for all Z as above, one has
| det(cZ + d)| > 1 for allM ∈ Spn(Z) with cM �= 0.
We can write

C(l′, r′;Pl,r
k,S) =

∫
(Z,W )∈C(y0)

Pl,r
k,S(Z,W ) e

(− tr(l′Z + r′tW )
)
dZ dW. (3.2)

For us, it would be sufficient to assume l = In, r = 0, and r = r′, l = l′; but we prove a
somewhat general result.
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Write, Pl,r
k,S =

∑
γ Aγ with γ = (M, (λ, 0)) ∈ �

J
(n,g);∞\�J

n,g . From (2.7) and (2.1), Aγ is
given by

e
(
− tr(SW̃ (cMZ + dM)−1cW̃ t )

)
e
(
tr(SZ[λ]+ 2SλWt

)
e
(
tr(lM〈Z〉 + rtW̃ (cMZ + dM)−1

)
det(cMZ + dM)k

,

where we have put W̃ :=W + λZ.
First, we show that for any (Z,W ) ∈ C(y0) and γ as above with cM �= 0, Aγ → 0 as

k →∞ not depending on S. To see this, let us put Z =
(
Z Wt

W Z′

)
and T =

(
l rt/2

r/2 S

)

(here Z′ will be chosen suitably so that Z ∈ Hn+g ). Denote by γ ↑, the image of γ under
the embeddings of Spn(Z) and the Heisenberg groupHn,g

Z
into Spn+g (Z). Then γ ↑〈Z〉 can

be obtained from the action of Spn+g (Z) on Hn+g (see Sect. 2 (3) and [43]). To be precise,
for γ = (M, (λ, 0)), we have

γ ↑〈Z〉 =
(

M〈Z〉 M〈Z〉λt + aMWt

W̃ (cMZ + dM)−1 W̃ (cMZ + dM)−1(dMλt − cMWt )+ λWt + Z′

)
.

Then a calculation shows,

Aγ = det(cMZ + dM)−ke
(
tr(T · γ ↑〈Z〉)) e(− tr(SZ′)

)
. (3.3)

It is clear that |e( tr(T · γ ↑〈Z〉))| ≤ 1 and

|Aγ | ≤ | det(cZ + d)|−k exp (
2π tr(SY ′)

)
.

We choose Y ′ := S−1. Clearly Im(Z) =
(
V 0
0 S−1

)
since Y = Im(W ) = 0, and it is > 0

since V > 0 and S > 0. Next, from Lemma 3.2, we have

| det(cZ + d)|−k | exp (
2π tr(SY ′)

)| ≤ y−rk0 e2πg ≤ y−k0 e2πg ,

uniformly for all (l, r; S) since r ≥ 1 (as cM �= 0). This shows that Aγ → 0 as k → ∞
uniformly for all S.
We also see from (3.3) and Lemma 3.2, that for (Z,W ) ∈ C(y0), the Poincaré series Pl,r

k,S
is dominated term wise by the series (since k > 2n+ g)

Ml,r
S := e2πg

∑
γ
| det(cZ + d)|−2n−g−1 exp(−2π tr(T · Im(γ ↑〈Z〉))),

which converges absolutely and locally uniformly on Hn ×Mg,n(C) and is independent of
k . Combining this with the fact that Aγ → 0 when cγ := cM �= 0 as k →∞, we get that
Pl,r
k,S →

∑
cγ=0 Aγ by applying Lebesgue’s dominated convergence theorem.

Next, put

CS :=
{(

Z Wt

W iS

)
∈ Hn+g |(Z,W ) ∈ C(y0)

}
.
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Note that any M ∈ Spn,∞(Z)\ Spn(Z) with cM = 0 can be taken to be M =
(
u 0
0 (ut )−1

)

with u ∈ GLn(Z). Thus, by using the dominated convergence theorem again, we see that
(cf. (3.2) and (3.3))

lim
k→∞

C(l′, r′;Pl,r
k,S) =

∑
γ , cγ=0

∫
CS

Aγ e
(− tr(l′Z + r′tW )

)
dZ dW

=
∑

u∈GLn(Z), λ det(u)
k
∫
CS

e
(
tr(T · γ ↑〈Z〉 − T ′ · Z)

)
dZ dW,

where T ′ =
(

l′ r′t/2
r′/2 S

)
. Expanding out γ ↑〈Z〉, we see that the integral is nonzero only

when T [A] = T ′, where A =
(
u 0
λ Ig

)
. Thus, we obtain Proposition 3.1.

3.2 Lower bound for Bergman kernel

Using the asymptotic orthogonality property for the Jacobi Poincaré series from the pre-
vious section, we obtain the conjectured lower bound for sup(J cuspk,S;(n,g)).
First, note that the quantity (det v)ke−4π tr(Sv−1[y])|φ(τ , z)|2 is invariant under �

J
g . Thus,

using the Cauchy–Schwarz and basic integral inequalities, we have for any v0 > 0 and
y0 ∈ Mg,n(R) (see [13, section 3.1] for example)

sup(J cuspk,S;(n,g))� (det v0)ke−4π tr(Sv
−1
0 [y0])e−tr(4πv0)

∑
φ∈Bk,S;(n,g)

|cφ(1n, 0)|2.

We also have that (from (2.10))

∑
φ∈Bk,S;(n,g)

|cφ(1n, 0)|2 = (4π )nk−n(n+g+1)/2(det 2S)n/2

�n(k − n+g+1
2 )

C(1n, 0;P1n,0
k,S ), (3.4)

From the asymptotic orthogonality, we have for k →∞,

C(1n, 0;P1n,0
k,S )� 1.

Combining this with (3.4) we see that

sup(J cuspk,S;(n,g))�n,g (det v0)ke−4π tr(Sv
−1
0 [y0])e−tr(4πv0) (4π )

nk (det 2S)
n
2

�n(k − n+g+1
2 )

�n,g (det v0)ke−4π tr(Sv
−1
0 [y0])e−tr(4πv0) (4eπ )

nkk
3n(n+1)

4 + gn
2 det(2S)

n
2

knk
,

by Stirling’s formula for the Gamma function.
Then choosing v0 = k

4π 1n and y0 = 0 we get the following lower bound.

Proposition 3.3 Let k be even. Then

sup(J cuspk,S;(n,g))�n,g k
3n(n+1)

4 + gn
2 det(2S)

n
2 as k →∞.
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When n = 1, the behaviour of Fourier coefficientsC(1n, 0;P1n,0
k,S ) is explicitly known (see

Proposition 4.1 below and also [12]). To be precise, we know that C(1, 0;P1,0
k,S ) � 1 for

k ≥ k0 for some explicit k0 depending only on g . Thus for such a k0,

sup(J cuspk,S,g )�g k
3
2+ g

2 det(2S)
1
2 for k ≥ k0; (3.5)

4 Upper bounds for the sup-norms of Jacobi forms on average
4.1 Bounds from the Fourier expansion

First, we show (cf. [13]) that the size of the Bergman kernel can be understood via the
Fourier coefficients of the Siegel-Jacobi Poincaré series. Let Pn,r

k,S ∈ J cuspk,S,g denote the (n, r)-
th Jacobi Poincaré series and denote their Fourier coefficients by C(n′, r′;Pn,r

k,S ). Then we
have

∑
φ∈Bk,S,g

|cφ(n, r)|2 = C(n, r;Pn,r
k,S )λ

−1
k,S,D =: pk,S(n, r),

where we write D = det
(
2n r
rt 2S

)
and

λk,S,D = �(
)(det 2S)
−1/22−g/2(2πD)−
 with 
 = k − g/2− 1. (4.1)

Then same arguments as in [13, Lemma 4.4] give us that

Bk,S,g (τ , z) ≤ vke−4πS[yt ]/v
( ∑

n,r; 4n>S−1[r]
pk,S(n, r)

1
2 e−2πnve−2πry

)2

=: qk,S(y, v)2.

Since Bk,S,g (τ , z) is invariant under the Jacobi group, we may and will restrict (τ , z) in
the standard Jacobi fundamental domain given by (here F is the standard fundamental
domain for the action of SL2(Z) on H)

F J = F J
g := {τ = u+ iv, z = x + iy | τ ∈ F , y mod v, x mod 1}. (4.2)

Using bounds for the Salie-Kloosterman sums (cf. [6]) appearing in the expression for
pk,S(n, r) and that on the Bessel functions, we get the following asymptotic for the (n, r)-th
Fourier coefficient of the Jacobi Poincaré series Pn,r

k,S (see [12, (5.1),(5.2)] for the bounds).

Proposition 4.1 Let pk,S(n, r) be as above. Then for, k ≥ g + 2 (and 
 as in rm (4.1))

pk,S(n, r) = 2g/2(2πD)


�(
)(det 2S)
−1/2
(
2+ O

( Dg/2+ε


g/2+1/3(det 2S)g/2+1/2+ε

))
. (4.3)

For convenience, let us define the quantities v′ and S̃ > 0, a matrix with integral entries,
by

v′ := v(2 det(2S))−1, S̃ := det(2S)(2S)−1. (4.4)

Let us note that D = det(2 S)(2n − (2 S)−1[r]) = 2n det(2 S) − S̃[r]. Now consider the
following sum over D and r:

Q(α,β) :=
∑

D,r
(4πv′D)
/2

/
�(
)1/2 exp

(−2πv′D)
)
αD−β exp(−2π (ry+ S̃[r]v′)),
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(4.5)

where r runs over Z
g and D > 0 varies such that D ≡ −S̃[r] mod det(2 S).

Corresponding to the two terms in (4.3) we can then write

qk,S(y, v)� q(1)k,S(y, v)+ q(2)k,S(y, v), (4.6)

where

q(1)k,S(y, v) = v
g
4+ 1

2 (det(2S))
1
4 e−2πS[y]/vQ(0, 0), (4.7)

q(2)k,S(y, v) = v
g
4+ 1

2 (det(2S))−
g
4−εe−2πS[y]/vQ

(− g
4
− 1

6
,− g

4
− ε

)
. (4.8)

In (4.5), denote the sum over D > 0 byQ1. Using Stirling’s formula, we have

Q1(α,β) �
∑

D

(
4πv′D

/


)
/2 exp

(

/2− 2πv′D

)

α+1/4D−β . (4.9)

Lemma 4.2 LetQ1(α,β) be as above. Then (with 
 as in (4.1)),

Q1(α,β)�
⎧⎨
⎩vβ
α−β+1/4(det(2S))−β for v � 
1/2+ε ;


α−β+3/4+εvβ−1(det(2S))−β
(
1+ v
−1/2

)
for v � 
1/2+ε .

Proof First, note that the function h(x) := (4πx/
)
/2 exp(
/2− 2πx) attains maximum
at x = 
/(4π ). Moreover, when |x − 
/(4π )| � 
1/2+ε , h(x) has exponential decay in

. Below, we take some care with respect to the parameter S, which we want to control
uniformly.
When v′D /∈ 
/(4π ) + O(
1/2+ε), we divide the range of D into 4πv′D ≤ 2


and the dyadic intervals 2t
 < 4πv′D ≤ 2t+1
 for t ≥ 1. Next, we count the
D satisfying the congruence condition D ≡ −S̃[r] mod det(2 S). For each of the D
above, the corresponding summands decay sub-exponentially (cf. [13, (4.26)]). Finally,
summing over these sub-intervals, we see that the tail of Q1(α,β) is bounded by
exp(−c
ε)(v′ det(2S))−1 = exp(−c
ε)v−1, for some constant c > 0 (see [13], especially
[13, Lemma 4.10, Lemma 4.11]). This reduces the sum (4.9) into a finite sum over D
satisfying v′D = 


4π + O(
1/2+ε).
Weput the relation v′D � 
 in the resultingfinite sumand thus endupwith the following

bound:Q1(α,β)� Cvv′β
α−β+1/4 taking into account the congruence condition; where

Cv := #{D > 0 |D ≡ −S̃[r] mod det(2S), v′D = 


4π
+ O(
1/2+ε)} � 
1/2+ε

det(2S)v′
+ 1.

(4.10)

Recall that v′ det(2S) = v/2 from (4.4). From (4.10), Cv � 1 if 
1/2+εv−1 � 1. In this case,

Q1(α,β)� vβ
α−β+1/4(det(2S))−β .

In the other case, i.e., when 
1/2+εv−1 � 1, we have

Q1(α,β)� 
α−β+3/4+εvβ−1(det(2S))−β
(
1+ v
−1/2

)
.

��



14 Page 18 of 52 Anamby and Das ResMath Sci (2023) 10:14

Since the bound forQ1 is independent of r ∈ Z
g , we have

Q(α,β)� Q1(α,β)RS(y, v); RS(y, v) :=
∑

r∈Zg exp(−2π (ry+ S̃[r]v′)). (4.11)

To estimate RS(y, v), we simplify things by invoking the fact that S can be assumed to be
Minkowski-reduced. If we denote by s1, s2, . . . , sg be the diagonal elements of 2S and put
r = (r1, r2, . . . , rg ), then we know that

S̃[r] �g (r21 det(2S)/s1 + r22 det(2S)/s2 + . . . r2g det(2S)/sg ).

Then the quantity RS(y, v) from (4.11) can be estimated as a product of g one-dimensional
sums:

RS(y, v)�
∏

j

∑
rj∈Z

exp(−2π (rjyj + r2j vs
−1
j )).

The one dimensional sums Rsj (yj, v) are estimated using the Gaussian integrals (see e.g.,
[19, No. 3.322]), and we get

Rsj (yj, v) ≤ e2πsjy
2
j /v

(
1+

√
sjv−1

)
, (4.12)

so that

RS(y, v)�
∏

j
e2πsjy

2
j /v

(
1+

√
sjv−1

)
= e2πS[y

t ]/v
∏

j

(
1+

√
sjv−1

)
.

Thus from Lemma 4.2, (4.12) and (4.6), (4.7), (4.8) along with the fact that v � 1 from
(4.2), we arrive at the following bound for qk,S .

Lemma 4.3 Let qk,S(y, v) be as in (4.6). Then (with 
 as in (4.1))

qk,S(y, v)�
⎧⎨
⎩


1/4 (det(2S))
1
4 v

g
4+ 1

2
∏

j

(
1+

√
sjv−1

)
for v � 
1/2+ε ;


3/4+ε (det(2S))
1
4 v

g
4− 1

2
(
1+ v
−1/2

) ∏
j

(
1+

√
sjv−1

)
otherwise.

4.2 Bounds from the Bergman kernel

We have from [3, Lemma 3.2] and (2.6),

Bk,S,g (τ , z; τ0, z0) = 2k−2 π−1 
 det(2S)1/2 i
+1
∑

γ∈SL2(Z)
(�|(1)k,Sγ )(τ , z; τ0, z0), (4.13)

where �|(1)γ indicates the actions of γ with respect to the first set of variables, and

� = �k,S(τ , z; τ0, z0) := (τ − τ̄0)
g
2−k

∑
η∈(2S)−1Zg/Zg

θS,η(τ , z)θS,η(τ0, z0), and

θS,η(τ , z) :=
∑

r∈Zg e(τS[r + η]+ 2S(η + r, z)). (4.14)

Let γ =
(
a b
c d

)
∈ SL2(Z), then

θS,μ (γ (τ , z)) (cτ + d)−
g
2 e

(−cS[z](cτ + d)−1
) = ∑

η∈(2S)−1Zg/Zg

εS(η,μ; γ )θS,η(τ , z),
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where εS(η,μ; γ ) are complex numbers of absolute value 1 as in e.g. [3]. From (2.5) and
(1.6) we have that

Bk,S,g (τ , z) = vke−4πS[yt ]/vBk,S,g (τ , z; τ , z).

Thus the modified Bergman kernel Bk,S,g (τ , z) can now be written as

Ck,S,g (v, y)
∑

γ∈SL2(Z)
vk (j(γ , τ )(γ (τ )− τ ))−k+

g
2
∑
η,μ

εS(η,μ; γ )θS,η(τ , z)θS,μ(τ , z),

(4.15)

where Ck,S,g (v, y) = 
 det(2S)1/2 e−4πS[yt ]/v .
From (4.15), we can bound Bk,S,g (τ , z) by

� Ck,S,g (v, y)vk
∑
γ

∣∣j(γ , τ )(γ (τ )− τ )/2i
∣∣−k+ g

2
∣∣ ∑

ν,μ
εS(ν,μ; γ )θS,ν(τ , z)θS,μ(τ , z)

∣∣.
(4.16)

Let ρS(γ ) = (εS(ν,μ; γ ))ν,μ and � = (θS,μ)μ. Then we know that ρS(γ ) is unitary (see
e.g., [3]). Thus the sum over ν,μ is

= 〈ρS(γ )�,�〉�〈ρS(γ )�, ρS(γ )�〉1/2〈�,�〉1/2 = 〈�,�〉 =
∑

μ
|θS,μ|2,

where we use Cauchy-Schwartz for the first inequality, and the unitary property of ρS(γ )
for the second. Here 〈 , 〉 denotes the standard inner product on Euclidean space.
Note that from [3, Lemma 3.2], we have (see also [38, p. 182, (11)] for n = 1)

∑
μ
|θS,μ(τ , z)|2 = (det S)1/2 v−g/2 �∗(τ , z),

where

�∗(τ , z) =
∑

λ,μ∈Zg e
(−S[z − z̄ − λτ̄ − μ](τ − τ̄ )−1 − τ̄S[λ]− 2λtSz̄

)
. (4.17)

We want good upper bounds for �∗(τ , z). In (4.17) we first consider the sum over μ and
see that it is bounded by

≤ exp(4πS[y]/v)
∑

μ∈Zg exp
(π (−u2 + v2)

v
S[λ]− π

v
S[μ]− 2π

v
uλtSμ+ 4πytSλ

)
.

Now considering the sum over λ as well and bounding it absolutely, we are left with

�∗(τ , z)� exp(4πS[yt ]/v)
∑

λ,μ
exp

(π (−u2 + v2)
v

S[λ]− π

v
S[μ]

)
× exp

(
− 2π

v
uλtSμ+ 4πytSλ− 2πvS[λ]− 4πλtSy

)

� exp(4πS[yt ]/v)
∑

λ,μ
exp

(−π (u2 + v2)
v

S[λ]− π

v
S[μ]− 2π

v
uλtSμ

)
.
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We then notice that

∑
λ,μ

exp
(−π (u2 + v2)

v
S[λ]− π

v
S[μ]− 2π

v
uλtSμ

)
=

∑
λ,μ

exp
(
− πvS[λ]− π

v
S[uλ+ μ]

)
.

At this point, we can assume that S is diagonal, with sj denoting the diagonal elements.
Therefore, we can bound (4.18) as

∏
j

∑
λj ,μj

exp
(
−asjλ2j − bsj(uλj + μj)2

)
; (4.18)

where a �g v and b �g v−1. For the one-dimensional sums, using the well-known bounds
on Gaussian exponential integrals (see e.g., [19, No. 3.322]), we get

∑
p,q

exp(−m(ap2 + b(up+ q)2)� (
1+ (am)−1/2

) (
1+ (bm)−1/2

)
.

Thus, we have

�∗(τ , z)� e4πS[y
t ]/v

∏
j

(
1+

√
vs−1j

)(
1+

√
(sjv)−1

)
� e4πS[y

t ]/v
∏

j

(
1+

√
vs−1j

)
.

Now we bound the sum over γ . Write r = k − g
2 (= 
+ 1) and define

M(τ ) :=
∑

γ
vr

∣∣(γ (τ )− τ

2i
)j(γ , τ )

∣∣−r .
From Corollary 2.16 and Proposition 3.2 in [36], we have for any η > 0 and A > 0

M(τ )� 1+ vr−
1
2+η + vr−A.

Then the sum over γ in (4.16) is bounded byM(τ ). Thus, we have

Lemma 4.4 For any (τ , z) ∈ F J and 
 as in (4.1),

Bk,S,g (τ , z)� 
 det(2S)
(
1+ v
−

1
2+η + v
−A

) ∏
j

(
1+

√
vs−1j

)
.

4.3 Final bounds

With the bounds on BK from the Fourier expansion obtained in Sect. 4.1 and the bounds
from the geometric side of the BK in Sect. 4.2 at hand, we are now ready to prove the
upper bound in Theorem 1.5. To do this, we split the fundamental domain F J

g (F1 to be
precise) into suitable regions and use the bounds from the aforementioned subsections.
In particular, we consider the following regions. Recall the definition of 
 from (4.1).

4.3.1 v � �det(2S)1+ε

In this region, we show that Bk,S,g (τ , z) has exponential decay both in 
 and det(2 S). To
do this, first note that from (4.6) and (4.5), Bk,S,g (τ , z) is bounded by the quantity

vg/2+1 det(2S)1/2e−4πS[y]/vRS(y, v)2
(
Q1(0, 0)2+det(2S)−g/2−1/2−εQ1(− g

4
− 1

6
,− g

4
−ε)2

)
.
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Next, using [13, Lemma 4.11], for any finite α,β , we see that the quantity Q1(α,β) has
exponential type decay in the region v′ � 
. To be precise,

Q1(α,β)� exp(−c0v′).

Thus when v � 
(det(2S))1+ε , the quantity Bk,S,g (τ , z) is (with some absolute constant
c > 0)

� v′g/2+1 det(2S)g/2+3/2
∏

j

(
1+

√
sjv−1

)
exp(−c0 v′)� exp(−c k(det(2S))ε).

4.3.2 � � v � �(det(2S))1+ε

In this region, from Lemma 4.4 we get

Bk,S,g (τ , z)� 
3/2+ε(det(2S))2+ε
∏

j

(
1+

√

(det(2S))1+ε/sj

)
� 
3/2+g/2+ε(det(2S))g/2+3/2+ε .

4.3.3 v � �

First, consider the case v � 
1/2+ε det(2S). In this region, from the first bound in
Lemma 4.3, we have

Bk,S,g (τ , z)� 
3/2+g/2 det(2S)1/2.

Note here that the condition on v implies that det(2 S)� 
1/2−ε .
Next, we consider the intersection of regions v � 
 and v � 
1/2+ε det(2 S). Thus, we

have to worry only about the case det(2S) � 
1/2−ε . In this region, from Lemma 4.4, we
have

Bk,S,g (τ , z)� 
3/2+ε det(2S)
∏

j

(
1+ 
1/2s−1/2j

)
� 
3/2+g/2+ε det(2S)1/2.

Thus we have the following bound on Bk,S,g (τ , z).

Proposition 4.5 For (τ , z) ∈ F J , we have

Bk,S,g (τ , z)� k3/2+g/2+ε(det(2S))g/2+3/2+ε .

5 Contribution from index old and new forms
In this section, we restrict ourselves to n = 1 and g = 1. We demonstrate that for certain
indices m, there are ‘large’ natural subspaces of J cuspk,m . This is done by (unconditionally)
computing lower bounds or even the sizes of their respective BK. Here, by index old
subspaces (cf. [37, p. 138]) we mean the image of lower index Jacobi forms in J cuspk,m under
the (combination of the) Hecke operators Ul and Vm. We also show that for BK of the
index newspace, that is the orthogonal complement of the index old subspace in J cuspk,m ,
the same is true as mentioned above. Unconditionally, we also show that it is possible to
improve the upper bound from Proposition 4.5 for some of these old subspaces, which
indicate that the bound on BK is closer to the conjectured bound than that implied by
Proposition 4.5.
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5.1 Size of some index-old spaces

In this section we demonstrate our assertionsmade above about the sizes of certain index-
old subspaces.

5.1.1 The old-space Ul (J
cusp
k,1 )

Consider the operator Ul : Jk,1 → Jk,l2 . We estimate the contribution of the old-space
Ul(J

cusp
k,1 ) towards the BK for J cuspk,l2 . That is, we estimate the quantity

sup(Ul(J
cusp
k,1 )) := sup

H×C
∑

φ

vke−4π l2y2/v|φ(τ , lz)|2
〈Ulφ, Ulφ〉 .

For Ulφ = φ(τ , lz), first we compute 〈Ulφ, Ulφ〉 in terms of 〈φ,φ〉. We have an explicit
formula for U∗l but not for U∗l Ul , which we would need, so we compute things directly.
Write dμ(τ , z) = dxdydudv/v3. Then 〈Ulφ, Ulφ〉 equals

∫
τ∈F1 ,y mod v,x mod 1

vke−4π l2y2/v|φ(τ , lz)|2dμ(τ , z)

= l−2
∫

τ∈F1 ,y mod lv, x mod l
vke−4πy2v|φ(τ , z)|2dμ(τ , z)

= l−2
l∑

j=1

∫
τ∈F1 ,(j−1)v≤y≤jv, x mod l

vke−4πy2/v|φ(τ , z)|2dμ(τ , z).

Making a change of variable z �→ z + (j − 1)τ , we get

= l−1
l∑

j=1

∫
τ∈F1 ,0≤y≤v, x mod 1

vke−4π (y+(j−1)v)2/v|φ(τ , z + (j − 1)τ )|2dμ(τ , z)

= l−1
l∑

j=1

∫
τ∈F1 ,0≤y≤v, x mod 1

vke−4π (y+(j−1)v)2/v|e(−(j − 1)2τ − 2(j − 1)z)|2|φ(τ , z)|2dμ(τ , z)

= l−1 · l 〈φ,φ〉 = 〈φ,φ〉.

The same calculation holds for two forms φ,φ′. In particular, orthogonal forms go to
orthogonal forms. Also, note that Ul is injective. Thus we see that sup(Ul(J

cusp
k,1 )) equals

sup
H×C

∑
φ

vke−4π l2y2/v|φ(τ , lz)|2
〈Ulφ, Ulφ〉 = sup

H×C

∑
φ

vke−4πy2/v|φ(τ , z)|2
〈φ,φ〉

= sup(J cuspk,1 ) � k2 = k2.

Thus the size of Ul(J
cusp
k,1 ) is same as that of J cuspk,1 .

5.1.2 The old-space Vp(J
cusp
k,1 )

Next, we consider the operators Vm : Jk,1 → Jk,m defined for each m ≥ 1 in (2.2). When
m = p, a prime, the image Vp(Jk,1) is part of the index-old subspace inside J cuspk,p . We
will discuss the properties of this operator in more detail in Sect. 7.3.1. Now we only
borrow a fact from Lemma 7.2. Namely, 〈Vpφ, Vpφ〉 = (λf (p)+ (p+1)pk−2λf (1))〈φ,φ〉 �
pk−1〈φ,φ〉, and thatVp(φ), Vp(ψ) are orthogonal if φ,ψ are orthogonal (or distinct) Hecke
eigenforms. Since J cuspk,1 admits a Hecke basis, it follows from these two facts that Vp is
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injective (but this may not be true for non-prime indices) and thus for a Hecke basis {φ}
of Jk,1, we can write

sup(Vp(J
cusp
k,1 )) := sup(τ ,z)∈H×C

∑
φ
(Ṽp(φ)/

∥∥Vpφ
∥∥)2,

where, for φ ∈ J cuspk,m andm ≥ 1, we define φ̃(τ , z)2 := vke−4πmy2/v|φ(τ , z)|2, and note that
it is �J invariant. From its definition, notice that ˜Vm(φ)

2 equals

vke−4πmy2/v|Vm(φ)|2 = m−2vke−4πmy2/v
∣∣∣ ∑
ad=m

∑
b mod d

akφ(
aτ + b

d
, az)

∣∣∣2

= m−2
∣∣∣ ∑
ad=m

∑
b mod d

(ad)k/2φ̃(
aτ + b

d
, az)

∣∣∣2 = mk−2
∣∣∣ ∑
d|m

∑
b mod d

φ̃(
aτ + b

d
, az)

∣∣∣2.

Next, we can use the Cauchy-Schwartz inequality and the lower bound on
∥∥Vp(φ)

∥∥ to
write

sup(Vp(J
cusp
k,1 ))� p−1 sup(τ ,z)∈H×C

∑
φ

(
∑
ad=p

d) ·
∑
ad=p

∑
b mod d

φ̃
(aτ + b

d
, az

)2

� p−1(p+ 1) sup(τ ,z)∈H×C
∑
ad=p

∑
b mod d

∑
φ

φ̃
(aτ + b

d
, az

)2
� p−1(p+ 1)2 sup(τ ,z)∈H×C

∑
φ

φ̃(τ , z)2 � p k2.

Therefore this bound is better than what we would have obtained from Proposition 4.5.
Now we compute a lower bound for sup(Vm(J

cusp
k,1 )). For any m ≥ 1 and any fixed

v0 > 0, y0,

sup(Vm(J
cusp
k,1 )) ≥

∫
u mod 1

∫
x mod 1

∑
φ

vk0e
− 4πmy20

v0 (|Vmφ(u+ iv0, x + iy0)|/ ‖Vmφ‖)2dudx

≥ vk0e
− 4πmy20

v0 e−4πv0
∑
φ

1
‖Vmφ‖2∣∣∣∣

∫
u mod 1

∫
x mod 1

Vmφ(u+ iv0, x + iy0)e(−(u+ iv0))dudx
∣∣∣∣
2

= vk0e
− 4πmy20

v0 e−4πv0
∑
φ

∣∣∣cVmφ(1, 0)
∣∣∣2

‖Vmφ‖2

Using the Fourier expansion of Vmφ from (2.3) and ‖Vmφ‖2 � mk−1+ε ‖φ‖2 (see
Sect. 7.3.1), we get that

sup(Vm(J
cusp
k,1 ))� m−k+1−εvk0e

− 4πmy20
v0 e−4πv0

∑
φ

(∣∣cφ(m, 0)
∣∣/ ‖φ‖)2

= m−k+1−εvk0e
− 4πmy20

v0 e−4πv0 (λk,1,4m)−1C(m, 0;Pm,0
k,1 ).

whereλk,1,4m ∼ �(k−3/2)(4πm)−k+3/2 is as in (4.1) if we notice that S = 1 andD = −4m
in loc. cit.Weknowthat (cf. [12, Prop. 6.3])C(t, 0;Pt,0

k,1) > 1/2 for t � k2−ε . Thus, choosing
y0 = 0, v0 = k/4π , we conclude that for any ε > 0,
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sup(Vm(J
cusp
k,1 ))�ε k2m−1/2−ε .

We summarize the results of this subsection in the following proposition.

Proposition 5.1 For any l ≥ 1, we have sup(Ul(J
cusp
k,1 )) � k2. For any prime p,

k2p−1/2−ε � sup(Vp(J
cusp
k,1 )) � k2p, the lower bound being actually valid for any m ≥ 1.

Thus the subspace Ul(J
cusp
k,1 ) has the same size, up to absolute constants, as that of the space

J cuspk,1 .

5.2 Size of index-new space

We first define two classical notions of a ‘new-space’ in the literature (which we denote
by ”new1” and ”new2”) in the context of J cuspk,m , and show that they are actually equal.
Apparently these two definitions are in use in [33], but we could not find a relation
between them in [33]. Even though we work here only withm, a prime, for which Sect. 5.3
would have been enough, but for future applications inmind and to fill this seeming gap in
the literature, we present Lemma 5.2. We believe that it will be useful for the community.
This subsection also explains our need to write Sect. 5.3 in the first place, something we
believe should be communicated.
We have the following decomposition for J cuspk,m into index-new and index-old spaces

according to [37, p. 138, (4)] (see also [33, p. 2613, (41)]). The first definition states that it
is just the orthogonal complement of the (explicitly defined) space of index-old forms.

J cuspk,m = J cusp,new1k,m

⊥⊕
ld2|m,ld2>1

Jk,m/ld2 |Ud ◦ Vl = J cusp,new1k,m

⊕
(l,d)

J cusp,new1k,m/ld2 |Ud ◦ Vl. (5.1)

The second definition runs via eigen-packets of elliptic newforms. Let {fi} denote an
orthogonal basis of eigenforms for Snew2k−2(p) and define,

J cusp,newk,m (fi) := span{φ ∈ J cuspk,m |TJ (q)φ = λfi (q)φ, for primes q � m},

and define J cusp,new2k,m := ⊕
fi J

cusp,new
k,m (fi) (see [33, sec. 5.1]).

Lemma 5.2 With the above notations, one has J cusp,new1k,m = J cusp,new2k,m .

Proof We use the fact that the Hecke operators TJ (n) for (n,m) = 1 are Hermitian on
J cuspk,m and that TJ (n) commutes with Vl, Ud when (n, lmd) = 1 (cf. [16, § 4, Corollary 1]).
By abuse of notation, we denote by the same symbol TJ (n) the Hecke operators on index
m and for lower index forms. Moreover, TJ (n) leaves J

cusp,new1
k,m invariant ([37, p. 138]).

We first show that J cusp,new1k,m ⊆ J cusp,new2k,m . Since J cusp,new1k,m is invariant under the Hermi-
tian TJ (n) as noted above, we can decompose it into simultaneous eigenspaces for all the
TJ (n). From [37, p. 138, (ii)] we know that there exists a Hecke equivariant isomorphism
S between J cusp,new1k,m and M−,new

2k−2 (m) for all m ≥ 1. By looking at the spanning set of
newforms in J cusp,new1k,m , therefore the eigenvalues occurring in the eigenspaces underTJ (n)
above must come (only) from those ofM−,new

2k−2 and we are done since this is precisely the
definition of J cusp,new2k,m .
Next we show J cusp,new2k,m ⊆ J cusp,new1k,m by induction on m. This is clear when m = 1.

In fact, we already have equality by [16, Thm. 5.4] and standard results on the Shimura
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correspondence (cf. e.g., [16, § 5]).Next, assume that J cusp,new2k,m′ ⊆ J cusp,new1k,m′ for anym′ < m.
Since J cusp,new1k,m ⊆ J cusp,new2k,m for any m, we have J cusp,new2k,m′ = J cusp,new1k,m′ as our induction
hypothesis.
Now consider a newform f ∈ Snew2k−2(m). Write 0 �= φ ∈ J cusp,new2k,m (f ) as (with the tuple

(l, d) as mentioned above)

φ =
∑

t
φt +

∑
s=(l,d) ψs|Ud ◦ Vl,

where φt and ψs run through a basis consisting of simultaneous eigenfunctions of TJ (n),
for all n such that (n,m) = 1 on J cusp,new1k,m and J cusp,new1k,m′ respectively, where m′ = m/ld2

as (l, d) varies over as in (5.1). If we apply TJ (n) on both sides and equate coefficients, we
would get for all (n,m) = 1,

λf (n) = λt (n) = λs(n) (5.2)

for all s, t for which ψs,φt are nonzero. Here obviously the quantities λ∗(n) denote the
eigenvalue of the relevant objects under TJ (n). But then, by induction hypothesis, λs(n) is
the eigenvalue of a levelm′ (< m) elliptic newform (here we use multiplicity-one to get a
unique such newform) so (5.2) is not possible again by multiplicity-one. Therefore, all the
ψs must be 0 and J cusp,new2k,m ⊆ J cusp,new1k,m .
Thus we have J cusp,new1k,m = J cusp,new2k,m and we call either of the spaces as J cusp,newk,m . ��

For a fixed i, let {φij}j be an orthogonal basis for J cusp,newk,m (fi). In general, note that the
multiplicity in the space of newforms in the case of Jacobi forms might be greater than
one-as is the case sometimes with half-integral weight forms of level 4N with N not
square-free, and in many cases the aforementioned newspaces are isomorphic as Hecke
modules. Then we define our object of interest in this subsection–the contribution of the
newspace towards the size of the BK of J cusp,newk,m —by

Bnew
k,m (τ , z; τ0, z0) :=

∑
i,j

φij(τ , z)φij(τ0, z0)
〈φij ,φij〉 .

For any negative fundamental discriminant D with (D,m) = 1 and D ≡ r2 mod 4m,
we have aWaldspurger-type formula (cf. [33],.3 cf. (5.9) form prime, probably (5.3) is true
for anym ≥ 1, but have not verified this. We will only usem to be a prime.)

∑
j

|cφij (|D|)|2
〈φij ,φij〉 = �(k − 1)|D|k−3/2

R2
D22k−3πk−1mk−2

L(k − 1, fi ⊗ χD)
〈fi, fi〉 . (5.3)

Here RD = #{t mod 2m | t2 ≡ D mod 4m}. For example, when m is a prime, RD = 1
or 2 depending on whether D ≡ 0, m2 mod 4m or otherwise. If we choose (n, r) such
that D = r2 − 4mn is a fundamental discriminant with (D,m) = 1, we quote from [33,
Thm. 5.7] that (by an argument verbatim same as in Sect. 3.2)

sup(J cusp,newk,m )� vk0e
−4πmy2/ve−4π

r2−D
4m v0 |D|k−3/2�(k − 1)

(4π )kmk−2
∑

fi

L(k − 1, fi ⊗ χD)
〈fi, fi〉 .

3There seems to be an extraneous index factor imM in [33, (29)] The factor R2
D is also missing.
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Choosing v0 = k
4πn , y = 0, we see that with (D,m) = 1,

sup(J cusp,newk,m )� |D|k−3/2�(k − 1)
(4π )2kmk−2 ·

(
k
e

)k ∑
fi∈S−,new2k−2 (m)

L(k − 1, fi ⊗ χD)
〈fi, fi〉 . (5.4)

From now onwe will assume that m = p, a prime.On the one handwe have tomaximize
the lower bound and so should choose D as large as possible in (5.4). On the other hand,
choosingD very large compared to pwould destroy the asymptotic formula of the average
of L-values in (5.4). Moreover, the analytic conductor of the modular forms fi ⊗ χD is
k2D2p if (D, p) = 1 whereas it is k2p2 if, say D = −4p. The former choice of larger
conductor leads to some difficulty with the asymptotic analysis, see below. So choosing
D = −4p seems to be a good option. This is also supported by the fact that we can always
arrange (n, r) such that 0 < |r2 − 4np| ≤ 4p by the division algorithm, so D = −4p
maximizes our choice from this point of view as well.
However, there is a technical problem now - the Waldspurger-type formula as in (5.3)

is not written down for index p Jacobi forms when p|D. Fortunately, it is possible to put
together various resources to overcome this, which we do below. The final result is that
(5.4) holds true when p|D as well. We will choose D = −4p, but have to distinguish
between the cases p ≡ 1, 3 mod 4. This leads to the final lower bound, which is discussed
in Sects. 5.5.1 and 5.5.2, respectively.

5.3 Detour via Eichler–Zagier map, Baruch-Mao’s formula when p|D
Let k be even. We use the following results.
(i) Let us put S+,p

±
k−1/2(4p) := {g =

∑
ag (n)qn ∈ S+k−1/2(4p) : ag (n) = 0 for

(−n
p

)
= ∓1}.

Further, put S+,p
± ,new

k−1/2 (4p) := S+,p
±

k−1/2(4p) ∩ S+,newk−1/2(4p). The generalized Eichler-Zagier

(EZ) map Zp : J
cusp
k,p → S+,p

+
k−1/2(4p) is defined by means of the Fourier expansion as

∑
D,r

cφ(D, r)e
(
r2 − D
4p

τ + rz
)
�→

∑
D<0

⎛
⎝ ∑

r mod 2p,r2≡D mod 4p

cφ(D, r)

⎞
⎠ e(|D|τ )

Note that cφ(D, r) does not depend on r as φ ∈ J cusp,newk,p (cf. [33, Cor. 5.3]). Thus when

restricted to the newspace, Zp : J
cusp,new
k,p → S+,p

+ ,new
k−1/2 (4p) becomes a Hecke equivariant

isomorphism (cf. [16, Theorem 5.6], [33, Theorem 5.4]) and reads as4

∑
D,r

cφ(D, r)e
(
r2 − D
4p

τ + rz
)
�→

∑
D
RDcφ(D)e(|D|τ ), (5.5)

where the pair (D, r) runs over integers such that D < 0 and D ≡ r2 mod 4p and in the
second sum D < 0, D ≡ � mod 4p and RD is as before.
This implies that a strong multiplicity-one result holds for both of these spaces in view

of (another) Hecke-equivariant isomorphism (via the trace formula) between J cusp,newk,m and
a Snew,−2k−2 (m) (cf. [38], the minus refers to the root number being −1) for anym ≥ 1.
(ii) Further from Kohnen’s work [27, Sec. 5, Theorem 2 (iii)] the spaces S+,p

± ,new
k−1/2 (4p)

(which can also be described as the +1 eigenspace under a suitable involution) and

4We point out an incorrectly stated definition given in [33, Theorem 5.4] wherein the quantities RD were omitted.
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Sp
± ,new

2k−2 (p) (consisting of the +1 eigenspace of the Fricke involution) are isomorphic as
Hecke modules (under some linear combination of Shimura maps, sayS ). In particular,
multiplicity-one holds for these spaces.
(iii) (Baruch-Mao) We only invoke the details pertinent to our case at hand, for more

details the reader is referred to [9, Theorem 1.1] and the example following it. We take
some care in presenting the argument, as it is not very commonly available in the setting
we need.
Let g ∈ S+,p

+ ,new
k−1/2 (4p), and letSD be the D-th Shimura map (see e.g., [27]), one for each

fundamental discriminant D, including D = 1. If we put f = S1(g), then by multiplicity-
one on Snew2k−2(p) and the commutation of the mapsSD with all Hecke operators, one gets
that SD(g) = af (|D|)f for all D; and moreover under the isomorphism mentioned in (ii)
above, g corresponds to f since the image of g under the linear combination of Shimura
maps leading to an isomorphism–as mentioned above–is still a constant multiple of f , if
we re-scale this map.With this convention, the result of Baruch-Mao (which removes the
assumption (p, D) = 1 from [28]) states that for all D with (−1)k−1D > 0 (i.e., D < 0 in
our case)

|cg (|D|)|2
〈g, g〉 = 2�(k − 1)|D|k−3/2

3πk−1
L(k − 1, f ⊗ χD)

〈f, f 〉 . (5.6)

The factor 3 = [�0(4p) : �0(p)] comes because our Petersson norms are not normalised
by volume. The reader might notice that we have not mentioned any local conditions, viz.
(D/p) = ηp(f ) because certainly the result holds for these discriminants (even when p|D)
and it is also known that both sides of (5.6) are 0 when (D/p) = −ηp(f ), see [28, Remark
after Corollary 1] and the second part of the example following [9, Theorem 1.1]. Here we
use that D < 0 and k is even. Moreover, ηp(f ) is the eigenvalue of the Fricke involution at
p.

5.4 Relation between Petersson norms

Let g ∈ S+,p,newk−1/2 (4p) be the image of φ ∈ J cusp,newk,p : g = Zp(φ) as in (5.5). Put f = S1(g) ∈
Sp

+ ,new
2k−2 (p). Then g, f are uniquely determined, and RDcφ(D) = cg (|D|). Thus (5.6) holds
with cg (|D|) replaced byRDcφ(|D|). The only thing that ismissing now is a relation between
〈φ,φ〉 and 〈g, g〉. This deep result is available from the thesis of Skoruppa [35, Satz 4.1],
but perhaps is not well-known, so we give a brief account by translating it to our situation.
Let us first state the result and then explain the notation. In the passing, note that it is
not enough to quote a similar inner product relation from [1] since they deal with index
1 Jacobi forms of level p, whereas we have index p to start with. Also it seems difficult to
generalize the method in loc. cit. via residues and Rankin-Selberg method to our situation
because of complicated congruence relations on the Fourier expansions. We therefore
take the path via Eichler-Zagier maps.
Namely, in the notation of [35, p. 94, (4)], if φ,ψ ∈ J1,fk,m (a certain subspace of Jk,m, see

below) and χ mod F is a Dirichlet character, then

〈φ,ψ〉 = [SL2(Z) : �0(4m)]−1 cχk,m〈Zχ

k,m(φ),Z
χ

k,m(ψ)〉. (5.7)
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Here cχk,m = (4m)k−1ωf
m(1)· |{ρ mod 2m | (ρ, FQ) = 1}|−1, where F |2m and Q is the

largest square dividingm andZχ

k,m is the generalized Eichler-Zagier map. For the constant
ω
f
m(1), whenm = p a prime, see below.
Now note that for us the Dirichlet character χ mod F is 1, F = 1, m = p (and Q = 1

in loc. cit.). Jk,p (more generally for any index m) can be decomposed as a direct sum of
certain canonical subspaces J1,fk,p (f |p, f square-free). Now from [35, Satz 2.3] it follows that
(since k is even) Jk,p = J1,1k,p and the other component is 0. Thus for any φ,ψ ∈ Jk,p, from
(5.7) we get the following identity relating the Petersson norms if we note that the quantity
ω
f
p(1) occurring in the definition of c1k,m equals p + 1 (cf. [35, p. 23, (13) and p. 39, (29)]).

Note also that the Petersson norms in [35] are normalized by volume, whereas ours are
not. The factor p+ 1 above thus cancels out and we get:

〈φ,φ〉 = 3−1 · 22k−2pk−2〈g, g〉. (5.8)

In conclusion, we can write the following Waldspurger’s formula for any fundamental
discriminant D < 0 and any φ ∈ J cusp,newk,p , with f, g as in this subsection.

|cφ(|D|)|2
〈φ,φ〉 = �(k − 1)|D|k−3/2

R2
D22k−3πk−1pk−2

L(k − 1, f ⊗ χD)
〈f, f 〉 . (5.9)

Thus summing (5.9) over the corresponding (isomorphic) newspaces, (5.4) holds for all
fundamental discriminants D < 0. For the lower bound of sup(J cusp,newk,p ) we will choose
D = −4p but for the upper bound we need (5.9) for all D < 0. This leads us to study an
asymptotic formula of the averages of central L-values, which is the content of the next
section.

5.5 Back to the size of the new-space

Recall the following relation between 〈f, f 〉 and L(1, sym2). If f ∈ S2k−2(p) be a newform,
then we have (cf. [23, (2.36),(3.14)])

12ζ (2)〈f, f 〉 = �(2k − 2)p(4π )3−2kL(1, sym2f ). (5.10)

Moreover the estimate in (5.4) is now valid for p|D also. We now distinguish two cases.

5.5.1 p ≡ 1 mod 4

We now choose D = −4p when p ≡ 1 mod 4 so that D is a fundamental discriminant.
Note that in our notation, Sp

+ ,new
2k−2 (p) = Snew,−2k−2 (p) when k is even. With these at hand, we

now invoke Theorem 1.6 and Corollary 6.2, use the conversion in (5.10) (see (6.28) for the
asymptotic formula) and substitute back in (5.4) to see that

sup(J cusp,newk,p )� (4p)k−3/2�(k − 1)
(4π )2kpk−2

·
(
k
e

)k (4π )2k−3

�(2k − 3)
� k2p1/2. (5.11)

5.5.2 p ≡ 3 mod 4

Recall that D < 0 and D ≡ � mod 4p. When p ≡ 3 mod 4 we still take D = −4p. In
this caseD is not fundamental, but recall that for any discriminantD, if we uniquely write
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D = n2D0, where D0 is a fundamental discriminant, then for any newform f under our
consideration, we have (cf. e.g., [28, p. 241, (11)])

cg (|D|) = cg (|D0|)
∑

d|n,(d,p)=1 μ(d)
(
D
d

)
dk−1λf (n/d). (5.12)

For us D0 = −p and n = 2. It is easy to see that only d = 1 survives in the sum over d|n
above, and the sum equals λf (4). Thus here we would require an asymptotic formula for

∑
f
λf (4) L(1/2, f ⊗ χ−p)〈f, f 〉−1

with the extra eigenvalue included. The result is given below, whose proof is however
deferred to until the end of the next section, for better exposition. See Sect. 6.3 and
Proposition 6.4. In particular, the same lower bound as in (5.11) holds true forp ≡ 3 mod 4
as well.

5.5.3 Bounding the size of newspace via central L-values
For any discriminant D, from (5.12), we have |cg (|D|)|2 � n2k−3+ε |cg (|D0|)|2. Now using
the Waldspurger/Baruch-Mao’s formula for |cg (|D0|)|2, we get the following bound on
the size of index-newspace which can be treated as in Sect. 4. We believe that the bound
below could be useful for future investigations.

sup(J cusp,newk,p )�vke−4πpy2/v �(k − 1)
22k−3πk−1pk−2

( ∑
D,r,D=n2D0

D
k
2− 3

4+ε
( ∑

f

L(k − 1, f ⊗ χD0 )
〈f, f 〉

) 1
2

× exp
(
− πv
2m

D
)
exp(−2π (ry+ r2v

4m
))

)2
.

This relation produces the conjectured upper bound for the new-space in certain regions
(viz. v � k and v � kp1+ε). But we would still require the arguments from the geometric
side of the BK to obtain the conjectured bounds in the remaining regions, which at the
moment gives the same bound k2p2. Thus we do not carry these out and only mention the
global upper bound. For convenience, we state the results on the new-space as follows.

Proposition 5.3 For k even we have k2p1/2 � sup(J cusp,newk,p ) � k2p2. Assuming Conjec-
ture 1.3, one has sup(J cusp,newk,p ) � sup(J cuspk,p ).

6 A first moment of central L-values
In this section we prove Theorem 1.6. We first discuss the root numbers of twists and
then appeal to a variant of the Petersson formula on the space of newforms. Let us note
that our formula (see Theorem 1.6) is uniform with respect to the parameters D, p, k , and
this is important for the sup-norm problem.We have restricted to level p because the part
of the argument from the Jacobi forms side seems reasonably tractable only in index p.
For higher indices (cf. e.g., (5.8)) much more complicated scenario ensues. Perhaps with
more care, one would be able to generalise Theorem 1.6 to any square-free level.

6.1 Root number

For a newform f of weight 2k − 2 and level p, the root number of f is given by εf =
ηp(f )(−1)k−1 where ηp(f ) denotes the Atkin-Lehner eigenvalue of f at p (see [22, Section
5.11]). Moreover, one has the relation (see e.g., [23, eq. (2.23)]) ηp(f ) = −λf (p)p1/2. The
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root number εf⊗χD of the L-function attached to f ⊗ χD can then be calculated as (see
[34, Section 8.1]):

εf⊗χD = χD(−r)μ(q′)q′1/2λf (q′)εf .

Here we write p = rq′ with (r, D) = 1 and q′|rad(D), with rad(D) being the product of the
primes dividing D. Therefore, when (p, D) = 1, we have

εf⊗χD = χD(−p)εf = sgn(D)χD(p)εf = −(−1)k−1 sgn(D)χD(p)λf (p)p1/2; (6.1)

and when p|D,

εf⊗χD = −χD(−1)λf (p)p1/2εf = sgn(D)ηp(f )ε(f ) = (−1)k−1 sgn(D).

In the case of our interest, i.e., k even and D < 0 with D ≡ � mod 4p, we have
χD(−1) = −1,χD(p) = 1 and εf = λf (p)p1/2. Thus for the sup-norm problem we would
be interested in,

εf⊗χD =
⎧⎨
⎩−λf (p)p1/2 if (p, D) = 1 and D ≡ � mod 4p;

1 if p|D.
(6.2)

Remark 6.1 For f ∈ B∗2k−2(p), the twisted central L-value L(1/2, f ⊗ χD) = 0 (for sign
reasons) in the following cases:

(1) (−1)k−1 sgn(D) = −1 such that p|D,
(2) sgn(D)χD(p)εf = −1 and (p, D) = 1.

In the cases where the root number does not enforce vanishing of all the central L-values,
our asymptotic formula holds true.

Corollary 6.2 The sums
∑

f ∈B∗2k−2(p) in (1.11), (1.12) ofTheorem1.6areactually supported
on the set B−2k−2(p) ⊂ B∗2k−2(p) consisting of newforms with root number −1.

This is clear from the above discussion - the L-values L(1/2, f ⊗ χD) vanish if the root
number of f is +1, given the other conditions.

6.2 Proof of Theorem 1.6

For better understanding, the proof is subdivided into various subsections below.
From the relation (5.10), it is enough to get an asymptotic for

∑
fi L(1/2, fi⊗χD)〈fi, fi〉−1.

Using the approximate functional equation for L(1/2, fi ⊗ χD), we see that
∑

fi L(1/2, fi ⊗
χD)〈fi, fi〉−1

=
∑
n

χD(n)
n1/2

V (n/q1/2)
∑
fi

λfi (n)
〈fi, fi〉 +

∑
n

χD(n)
n1/2

V (n/q1/2)
∑
fi

εfi⊗χD

λfi (n)
〈fi, fi〉 , (6.3)

where the level q of the twists satisfy q = pD2 if (p, D) = 1 and q = D2 if p|D (see e.g., [34,
p. 311, para 3]). We denote by q := k2q, the analytic conductor of L(s, f ⊗ χD). Further
note that λfi (n) is real for all n.



Anamby and Das Res Math Sci (2023) 10:14 Page 31 of 52 14

Denote the two sums in (6.3) as S and T , respectively. When (p, D) = 1, the analysis of
the sums S and T will be somewhat different from each other since the root number is
not constant (cf. (6.2)). We will consider S in Sect. 6.2.1 and T in Sect. 6.2.2 below.
For both S, T we will use a variant of ‘Petersson formula’ for the newspace of level p, see

[23], [34, Theorem 3]. In the notation of loc. cit., we put

∑
fi
λfi (n)〈fi, fi〉−1 =

(4π )2k−3

�(2k − 3)
�∗p(1, n).

From [34, Theorem 3], we have the following formula for the quantity �∗p(1, n).

�∗p(1, n) =
∑
LM=p

μ(L)
ν(L)

∑

|L∞




ν(
)2
∑

d1 ,d2|

c
(d1)c
(d1)

∑
v|(n,L)

v μ(v)
ν(v)

∑
b|( nv ,v)

∑
e|(d2 , nb2 )

�M(d1, nd2
e2b2 ),

(6.4)

where the notations are as in [34]. In particular μ(∗) is the Möbius function, ν(p) =
p+1, ν(1) = 1 and�M(s, t) = δ(s, t)+2π i−2k+2

∑
M|c c−1S(s, t; c)J2k−3(4π

√
st/c), where

S(∗, ∗; c) and J2k−3(∗) denote the classical Kloosterman sum and Bessel function, respec-
tively.

6.2.1 Analysis of S

∑
n

χD(n)
n1/2

V (n/q1/2)
∑
fi

λfi (n)〈fi, fi〉−1 =
(4π )2k−3

�(2k − 3)
∑
n

χD(n)
n1/2

V (n/q1/2)�∗p(1, n).

Denote by S1(n) and S2(n) the terms corresponding to L = 1 and L = p in (6.4), respec-
tively. Then

S = (4π )2k−3

�(2k − 3)
∑

n
χD(n)
n1/2

V (n/q1/2)(S1(n)+ S2(n)). (6.5)

Using the decay of V (y) (see [22, Proposition 5.4]), the sum over n can be truncated at
n� q1/2+εk1+ε = q1/2+ε with negligible error in k , p and D.
From (6.4) and from the fact that c1(1) = 1, we see thatS1(n) = �p(1, n), where�p(1, n)

is as defined above.
From [23, Corollary 2.2], we have the following asymptotic result:

S1(n) = �p(1, n) = δ(1, n)+ O
( n3/8

(n, p)1/2p5/4−εk13/12
)
. (6.6)

WriteS1(n) =M1(n)+Ek
1 (n) corresponding to themain term and the error term in (6.6).

Here we write Ek
1 (n) to stress the dependence on k . It is understood that all the quantities

depend on p. Then we find that

∑
n

χD(n)
n1/2

V (n/q1/2)M1(n) = V (1/q1/2) = 1+ O(q−α/2), (6.7)

where we have used the asymptotic V (y) = 1 + O((yk−1)α) with 0 < α ≤ k/6 (see [22,
Proposition 5.4]).
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For the error term Ek
1 (n) we use that V (y) is bounded and thus in both the cases, we get

∑
n

χD(n)
n1/2

V (n/q1/2)Ek
1 (n)�

∑
n�q1/2+ε

1
n1/2

n3/8

(n, p)1/2p5/4−εk13/12

� p−
5
4+εk−

5
24+εq

7
16+ε . (6.8)

Now consider S2(n). Again from (6.4) we have

S2(n) = −1
p+ 1

∑
t≥0

pt

(p+ 1)2t
∑

d1 ,d2|pt
cpt (d1)cpt (d2)

∑
v|(n,p)

v μ(v)
ν(v)

∑
b|( nv ,v)

∑
e|(d2 , nb2 )

�1(d1, nd2
e2b2 ). (6.9)

We use the following asymptotic for �1(m, n) (see [23, Corollary 2.2]).

�1(m, n) = δ(m, n)+ O((mn)3/8+εk−13/12). (6.10)

Corresponding to the main and error terms, we write S2(n) = M2(n) + Ek
2 (n). We first

evaluate the main termM2(n).

M2(n) = −1
p+ 1

∑
t≥0

pt

(p+ 1)2t
∑

d1 ,d2|pt
cpt (d1)cpt (d2)

∑
v|(n,p)

v μ(v)
ν(v)

∑
b|( nv ,v)∑

e|(d2 , nb2 )
δ(d1, nd2

e2b2 ). (6.11)

Note here that, since d1, d2 are powers of p in (6.11), we have

M2(n)

⎧⎨
⎩= 0 if n is not a power of p;

� 1/p if n is a power of p.
(6.12)

•The case p|D: In this case, theonly contribution comeswhen (n, p) = 1, sinceχD(n) = 0
for (n, p) > 1. When (n, p) = 1, the contribution from the sum over v is δ(d1, nd2).
Since both d1 and d2 are divisors of p, δ(d1, nd2) = δ(1, n)δ(d1, d2). Thus when p|D, the
contribution fromM2(n) is

∑
n

χD(n)
n1/2

V (n/q1/2)M2(n) = C(p)+ O(p−1q−α/2), (6.13)

if we recall the definition (and a bound) of C(p) from (1.10).
• The case (p, D) = 1: When (n, p) = 1, the contribution from the sum over v is

δ(d1, nd2) = δ(1, n)δ(d1, d2). Next, consider the case (n, p) = p. In this case, the contribu-
tion from the v sum is

(1− p
p+ 1

)
∑

e|(d2 ,n)
δ(d1, nd2/e2)− p

p+ 1
∑

e|(d2,n/p2)

δ(d1, nd2/e2p2). (6.14)

Since d1 = pj1 , d2 = pj2 , for some j1, j2 ≤ t, the contribution comes only when n is a
power of p. Also, cpt (pi) = 0 when t �≡ i mod 2. Therefore, the sum survives only when n
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is an even power of p, say n = p2j for some j ≥ 1. Now,multiplying by n−1/2 and summing
over n (that is j ≥ 1), we get the following telescoping sum (noting that n sum is truncated
at� q1/2+ε):

∑
1≤j�logp q

1
4+ε

( 1
pj

∑
e|(d2 ,p2j)

δ(d1,
p2jd2
e2

)− 1
pj−1

∑
e|(d2 ,p2(j−1))

δ

(
d1,

p2(j−1)d2
e2

) )

= −δ(d1, d2)+ O(q−
1
4−ε). (6.15)

Now observe that χD(n) = 1 for all n = p2j and V (y) = 1 + O((yk−1)α). Thus for any
α < 1/2, using (6.12) and combining it with the contribution from (n, p) = 1 (cf. (6.15)),
we get

∑
n

χD(n)
n1/2

V (n/q1/2)M2(n) = p
p+ 1

C(p)+ O(p−1q−α/2 + p−1q−
1
4−ε). (6.16)

Next, we estimate the error term Ek
2 (n) of S2(n).

Ek
2 (n)�

k− 13
12

p+ 1
∑
t≥0

pt

(p+ 1)2t
∑

d1 ,d2|pt
cpt (d1)cpt (d2)

∑
v|(n,p)

∑
b|(n/v,v)

∑
e2|(d2 ,n/b2)

(
nd1d2
b2e22

)3/8+ε

� n
3
8+ε

k
13
12 p

∑
t≥0

1
pt

∑
d1 ,d2|pt

cpt (d1)cpt (d2)(d1d2)3/8+ε � n
3
8+ε

k
13
12 p

∑
t≥0

1
pt(1/4−ε) �

n
3
8+ε

k
13
12 p

.

(6.17)

Here we use the bound from [34, Lemma 2]. Therefore, the total contribution from the
errors Ek

2 (n) as n is summed is:

�
∑
n

χD(n)
n1/2

V (n/q1/2)Ek
2 (n)� k−13/12p−1

∑
n�q1/2+ε

1
n1/8−ε

� p−1k−5/24+εq7/16+ε .

(6.18)

Combining the contributions from S1(n) and S2(n), we get

(1) When (D, p) = 1, putting together the contributions from (6.7), (6.8), (6.16) and
(6.18), for any α < 1/2 we get,

S = (4π )2k−3

�(2k − 3)

(
1+ p

p+ 1
C(p)+O(k−αp−α/2D−α + p−9/16+εk−5/24D7/8+ε)

)
.

(6.19)

(2) When p|D, from (6.7), (6.8) (6.13) and (6.18) we get

S = (4π )2k−3

�(2k − 3)

(
1+ C(p)+ O(k−αD−α + p−5/4+εk−13/12D7/8+ε)

)
. (6.20)
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6.2.2 Analysis of T

Now we estimate the dual sum for the case (p, D) = 1. Since λ(p)λ(n) = λ(pn) and from
(6.1), we get

T =− (−1)k−1 sgn(D)χD(p)p1/2
(4π )2k−3

�(2k − 3)
∑

n
χD(n)
n1/2

V (n/q1/2)�∗p(1, pn)

= −(−1)k−1 sgn(D)χD(p)p1/2
(4π )2k−3

�(2k − 3)
∑

n
χD(n)
n1/2

V (n/q1/2)(T1(n)+ T2(n)),

(6.21)

where T1(n) and T2(n) are the terms corresponding to L = 1 and L = p in �∗p(1, pn),
respectively. We now treat T1(n) and T2(n) one by one.
We clearly have Ti(n) = Si(pn) for i = 1, 2. Thus, from (6.6), we have

∑
n

χD(n)
n1/2

V (n/q1/2)T1(n)� p−
15
8 +εk−

5
24+εq

7
16+ε . (6.22)

For T2(n), first note from (6.9) (replacing n by np) that

T2(n) = −1
p+ 1

∑
t≥0

pt

(p+ 1)2t
∑

d1 ,d2|pt
cpt (d1)cpt (d2)

∑
v|p

v μ(v)
ν(v)

∑
b|( npv ,v)

∑
e|(d2 , npb2 )

�1(d1, npd2e2b2 ).

(6.23)

The contribution from v sum is

∑
e|(d2 ,np)

�1(d1, npd2e2 )− p
p+ 1

( ∑
e|(d2 ,np)

�1(d1, npd2e2 )+
∑

e|(d2,n/p)
�1(d1, npd2pe2 )

)

= 1
p+ 1

∑
e|(d2 ,np)

�1(d1, npd2e2 )− p
p+ 1

∑
e|(d2 ,n/p)

�1(d1, nd2pe2 ). (6.24)

Now in (6.23) write T2(n) = M∗
2(n) + Ek,∗

2 (n) corresponding to main and error terms of
(6.10). First, recall thatM∗

2(n) =M2(pn). Using the same analysis as in (6.14) and (6.15),
we see that the only contribution of the n sum, where we have put np = p2j , is from the
telescoping sum up to an error O(q− 1

4−ε) as we observed after (6.15):

χD(p)p1/2
∑

1≤j�logp q
1
4+ε+ 1

2

⎛
⎝ 1
pj

∑
e|(d2 ,p2j)

δ(d1,
p2jd2
e2

⎞
⎠− 1

pj−1
∑

e|(d2 ,p2(j−1))
δ

(
d1,

p2(j−1)d2
e2

)
)

= −χD(p)p1/2δ(d1, d2)+ O(q−
1
4−ε).

Therefore, we see that (for α < 1/2)
∑

n
χD(n)
n1/2 V (n/q1/2)M∗

2(n) is (recall the definition of
C(p) from (1.10))

= χD(p)p1/2

(p+ 1)2
∑
t≥0

pt

(p+ 1)2t
∑
d|pt

cpt (d)2 + O(p−1q−α/2 + q−
1
4−ε)

= −χD(p)p1/2

(p+ 1)
C(p)+ O(p−1q−α/2 + p−1q−

1
4−ε). (6.25)
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For the error term of T2(n) similar estimates as in (6.17) follow and we get that Ek,∗
2 (n) =

Ek
2 (pn) is

� k− 13
12

p+ 1
∑
t≥0

pt

(p+ 1)2t
∑

d1 ,d2|pt
cpt (d1)cpt (d2)

(
1
p

∑
e|(d2 ,np)

(
npd1d2

e2

) 3
8+ε +

∑
e|(d2 ,n/p)

(
nd1d2
pe2

) 3
8+ε

)

� n
3
8+ε

k
13
12 p

11
8 −ε

∑
t≥0

1
pt

∑
d1 ,d2|pt

cpt (d1)cpt (d2)(d1d2)
3
8+ε � n

3
8+ε

k
13
12 p

11
8 −ε

∑
t≥0

1
pt(

1
4−ε)

� n
3
8+ε

k
13
12 p

11
8 −ε

.

Thus

∑
n

χD(n)
n1/2

V (n/q1/2)Ek,∗
2 (n)� k−

13
12 p−

11
8 +ε

∑
n�q1/2+ε

1
n1/8−ε

� p−11/8+εk−5/24+εq7/16+ε .

(6.26)

Putting together (6.25), (6.26) we see that (for α < 1/2)

T = (4π )2k−3

�(2k − 3)

(
(−1)k−1 sgn(D)p

p+ 1
C(p)+ O(p−1/2q−α/2 + p−7/8+εk−5/24+εq7/16+ε)

)
.

(6.27)

Gathering everything together, we see that

(1) When (p, D) = 1, we choose α = 1/2− ε and add (6.19) with (6.27) to get

∑
f ∈B∗2k−2(p)

L(1/2, f ⊗ χD)
〈f, f 〉 = (4π )2k−3

�(2k − 3)

(
Ap + O(D7/8+εk−5/24+εp−7/16+ε)

)
.

(2) When p|D we choose α = 1/2− ε and add (6.20) with (6.27) to get

∑
f ∈B∗2k−2(p)

L(1/2, f ⊗ χD)
〈f, f 〉 = (4π )2k−3

�(2k − 3)

(
Bp + O(D7/8+εk−13/12p−5/4+ε)

)
.

(6.28)

��

Remark 6.3 Note that in the above proof, we have used the asymptotic formula from [23,
Corollary 2.2] for�N (s, t). One could have also used [22, Theorem 16.7], which has better
exponents of s, t. This is of help when we wish to improve the level aspect, but only so
in the error terms of asymptotic formulae in Theorem 1.6, for a fixed k . However, in this
process the power of k in the error term will be larger than in the main term, which does
not help us.

6.3 More twists

In this subsection we provide the justification behind the choice D = −4p when p ≡
3 mod 4 in Sect. 5.5.2.
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Proposition 6.4 Keep the same conditions as in Theorem 1.6. Then,

∑
f ∈B∗2k−2(p)

λf (4)
L(1/2, f ⊗ χD)
L(1, sym2f )

= Bp(2k − 2)p
4π2 + O(D7/8+εk−1/12p−1/4+ε).

Proof We will only indicate the analogous steps required to handle this situation. Quite
analogously to (6.5), (6.21) in the proof of Theorem 1.6, we put

S′(n) := χ−p(n)
n

1
2

V (
n
q

1
2
)
∑
fi

λfi (4)λfi (n)
〈fi, fi〉 , T ′(n) := χ−p(n)

n
1
2

V (
n
q

1
2
)
∑
fi

εfi⊗χD

λfi (4)λfi (n)
〈fi, fi〉 ,

Thus we need to understand

S′ + T ′, where S′ :=
∑

n
S′(n), T ′ :=

∑
n
T ′(n).

We recall the following well-known Hecke relation. For any A ≥ 1,

λf (4A)λf (n) =
∑

d|(4A,n),(d,p)=1 λf (4An/d2).

Now notice that the sum over n is supported only on n such that (n, p) = 1. When we
consider S′(n), A = 1 and when we consider T ′(n), A = p. By the above remark, for us
both the sums over d are just over d|(4, n). Thus

S′ =
∑
d|4

∑
n≡0 mod d

χ−p(n)
n1/2

V (
n

q1/2
)
∑
fi

λfi (4n/d2)
〈fi, fi〉

=
∑

d|4
χ−p(4/d)d1/2

2
∑

n

χ−p(n)
n1/2

V (
4n

dq1/2
)
∑

fi

λfi (dn)
〈fi, fi〉 . (6.29)

Let us call the sums over the three values of d as S′d . Clearly S
′
1 = S/2 up to the error term

in Theorem 1.6 (cf. (6.5) – with V (y) replaced by V (4y)). We claim that the other terms
S′2, S′4 go into error terms. Indeed a moment’s reflection shows that the main terms in the
case of p|D in the analysis of the quantity S = ∑

n S(n) came only from n = 1 (cf. (6.7),
(6.8)). So the claim is justified. The error terms remain the same.
When it comes to T ′ = ∑

n T (n) from above we have to consider terms T ′d analogous
to (6.29), but now n replaced by pn. Comparing with (6.22) in the proof of Theorem 1.6,
we see that there is no main term “from L = 1” in our cases, and further no main terms
arise in subsequent analysis “from L = p”, since 2np, 4np are never perfect powers of p,
see e.g., (6.24). This means T ′ itself is relegated to the error term, which is the same as
that in Theorem 1.6. ��

7 Sup-norms of SK lifts on average
In this section, we establish bounds on the size of Bergman kernel for the space of SK lifts
in order to prove Theorem 1.1 i.e., k5/2 � sup(SKk )�ε k5/2+ε . It is natural to utilize the
‘geometric side’ of the BK (as an average of a suitable function over a suitable group) for
this space, but it is not clear how to satisfactorily utilize the same, see the next subsection
for more remarks. However to avoid this, we will transform the question to one on Jacobi
forms of index 1, which are better understood.We then use the bounds onBergman kernel
for these spaces to obtain the required bounds for SK lifts.
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7.1 Geometric side of the Bergman kernel

For completeness and with a view towards future investigations, we briefly indicate what
expression one gets for the geometric side of the BK of SK lifts. We give two approaches,
of course the resulting expression must be the same from both of them.

7.1.1 From the Fourier expansion

We start with the Fourier expansion of BKk (Z,W ) in theW variable. Below, all the sums
over F are over an orthonormal basis of SKk .

BKk (Z,W ) =
∑

F
det(Y )kF (Z)F (W ) =

∑
F
det(Y )kF (Z)

∑
T
AF (T )e(−TW ).

(7.1)

For a discriminant D < 0, let PD(τ , z) be the D-th Poincaré series in J cuspk,1 . Let PD be
the SK lift of PD. Write PD = ∑

F cFF (Z), then one can compute that cF = 〈PD, F〉 =
b−1k aF (Q), where Q ∈ �2 is any matrix with disc(Q) = D with (2,2)-th entry 1 and
bk = 6(4π )k�(k)−1. This follows from e.g., [29, Theorem 1, 3]. Therefore, we get PD =∑

F b
−1
k aF (Q)F (Z), However, notice that in (7.1) we need to account for all T and not

only those which represent 1. This will be done by appealing to the Maass-relations. For
any G ∈ SKk , one knows (see e.g., [32])

aG

((
a b/2
b/2 d

))
=

∑
r|(a,b,d) r

k−1aG

((
ad/r2 b/2r
b/2r 1

))
.

We will call the matrices in the RHS above as Qr(T ). With this notation then,
∑

F
AF (T )F (Z) =

∑
r|c(T )

rk−1
∑

F
aF (Qr (T ))F (Z) =

∑
r|c(T )

rk−1bkPdet(T )/r2 (Z).

Therefore, we can write

BKk (Z,W ) = det(Y )k
∑

T

∑
r|c(T )

rk−1bkPdet(T )/r2 (Z)e(−TW ). (7.2)

Now PD(τ , z) = ∑
γ∈�

J∞\�J e( s
2−D
4 τ + sz) |k,1 γ which implies that for D ≡ −s2 mod 4

PD(Z) =
∑
m≥1

∑
g∈SL2(Z)\�0(m)

∑
γ∈�

J∞\�J

e(
s2 − D

4
τ + sz) |k,1 γ |k,1 g e(mτ ′),

which allows one to write (7.2) in terms of functions as an average over the relevant
groupoids.

7.1.2 From the BK of Jacobi forms of index 1

Let B∗k denote a Hecke basis for SKk and consider

B∗(Z1, Z2) :=
∑

Ff ∈B∗k
det(Y )kL(k, f )Ff (Z1)Ff (Z2)

〈Ff , Ff 〉 .

The reason to start from the weighted Bergman kernel is that the factors L(k, f ) show up
during the conversion of 〈Ff , Ff 〉 to 〈φ,φ〉 of Hecke eigenforms F ↔ φ. For the size of
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the BK, if we use the trivial bound L(k, f ) � 1, this only affects the answer by an absolute
constant:

B(SKk )(Z) � B∗(Z, Z).

Using the Fourier Jacobi expansion of Ff and the relation between Petersson norms (see
(7.5) below) we see that

B∗(Z1, Z2) = πkck
∑

φ

1
〈φ,φ〉

∑
r,s

φ(τ1, z1)|Vr · φ(τ2, z2)|Vs e(rτ ′1 − sτ ′2)

= πkck
∑

r,s
Bk,1,1(τ1, z1; τ2, z2)|(1)Vr |(2)Vs e(rτ ′1 − sτ ′2),

where for i = 1, 2 we write Zi =
(

τi zi
zti τ ′i

)
and Bk,1,1(τ1, z1; τ2, z2) is the BK for the Jacobi

forms of index 1.
Using the geometric definition of Bk,1,1 from (4.13) and the definition of Vr operators,

we see that π1−kc−1k (2k − 3)−1i1/2−k2k−5/2B∗(Z1, Z2) equals

∑
r,s

∑
γs∈SL2(Z)\M+

2 (s)

∑
γr∈SL2(Z)\M+

2 (r)

∑
γ∈SL2(Z)

(
�|(1)k,1γr |(2)k,s (γ · γs)

)
(τ1, z1; τ2, z2)e(rτ ′1 − sτ ′2),

(7.3)

where � is as in (4.14). Moreover, M+
2 (t) denotes the set of 2 × 2 integral matrices of

determinant t.
Define �̃(Z1, Z2) := �(τ1, z1; τ2, z2)e(τ ′1 − τ ′2). Recall the action of M+

2 (Z) on H × C
2

from [20, p. 144]. This allows us to rewrite the sums in (7.3) as follows.

∑
γ2∈SL2(Z)\M+

2 (Z)

∑
γ1∈M+

2 (Z)
(�̃

∣∣(1)
k,1γ

↑
1

∣∣(2)
k,1γ

↑
2 )(Z1, Z2),

where γ
↑
j denote the standard diagonal embedding of the Jacobi group in the Siegel

modular group, (cf. Section 2 (3) and also [20, p. 144]) but with the GL2 component
having determinant at least 1.

7.2 Lower bound for sup(SKk )
We start by quoting from [13, (3.1)]

supZ∈H2

∑
f ∈B2k−2

det(Y )k (|Ff (Z)|/
∥∥Ff ∥∥)2 ≥ det(Y0)ketr(−4πY0))

∑
f
|aFf (I2)/

∥∥Ff ∥∥ |2,
(7.4)

where B2k−2 denotes the Hecke basis for S2k−2. Our argument here is similar in spirit
similar to that used by Blomer [8].
Recall that with F = Ff , one has aF (I2) = c(4), where h(τ ) = ∑

n c(n)qn is the half-
integral cusp form in Kohnen’s plus space. Further, by Waldspurger’s formula (cf. [28]),
for k even and D a fundamental discriminant such that D < 0,

|c(|D|)|2 = �(k − 1)
πk−1 |D|k−3/2L(k − 1, f ⊗ χD)

〈h, h〉
6〈f, f 〉 .
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Moreover, the following relations hold amongst the Petersson norms:

〈F, F〉
〈φ1,φ1〉 = L(k, f )π−kc−1k ;

〈φ1,φ1〉
〈h, h〉 = 22k−3 (ck = 3 · 22k+1

�(k)
). (7.5)

These together give the relation

48πk〈F, F〉 = L(k, f )�(k)〈h, h〉.

We normalise F with ‖F‖2 = 1. This implies that

|c(|D|)|2 � Dk−3/2

k
L(k − 1, f ⊗ χD)

(4π )2k

�(2k − 2) L(k, sym2(f ))
. (7.6)

Putting together (7.6) and (7.4), we finally see that (with D = −4 and Y0 = kI2
4π )

sup
Z∈H2

∑
f ∈B2k−2

det(Y )k |Ff (Z)|2 � det(4πY0)k exp(tr(−4πY0))4k−3/2
k �(2k − 2)

∑
f

L(k − 1, f ⊗ χ−4)
L(k, sym2(f ))

� k2k exp(−2k)4k−3/2
k2k−5/24k exp(−2k) � k5/2. (7.7)

where in (7.7) we have used the fact that
∑

f
L(k−1,f⊗χ−4)
L(k,sym2(f )) = 2k/π2+O(1) from [8, Lemma

3].

7.3 Upper bound–first method

Wenow prove the upper bound for the quantity sup(SKk ). Our first method is a combina-
tion of bounds for certain Fourier coefficients of Jacobi Poincaré series (cf. Proposition 4.1)
and some of themethods in [8,13]. The underlying idea, asmentioned in the introduction,
is that the L2-norm of the Fourier coefficients aF (T ) in a basis {F} controls the sup-norm
of the Bergman kernel efficiently (cf. [13]). We will see below that this idea essentially
gives us the desired upper bound for the Bergman kernel for SK lifts on the bulk of F2.
In the remaining small region of F2 we will use the Fourier-Jacobi expansion of the F
and embed the index-old forms φ1,F |Vm into J cuspk,m and look at their contribution to the
Bergman kernel for J cuspk,m . This will be our first method of bounding the Bergman kernel
for SK lifts.
We begin by estimating the quantity p∗(T ) := ∑

F∈B∗k |aF (T )|2. Then using the relation
(2.4),

p∗(T ) =
∑
F

∣∣ ∑
a|(n,r,m)

ak−1cφ,F
(
D
a2

) ∣∣2 = ∑
a,a′

(aa′)k−1
∑
F

cφ,F
(
D
a2

)
cφ,F

(
D
a′2

)

≤
( ∑

a
ak−1

( ∑
F
|cφ,F

(
D
a2

)
|2)1/2)2.
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Now using the bound for the Fourier coefficients of Poincaré series from Proposition 4.1
we see that

p∗(T )� 4kπ2kDk

�(k)�(k − 3/2)

(∑
a

ak−1
(
a2k (D−3/2a3 + k−5/6D−1+εa2−ε)

)1/2)2

�ε

4kπ2kDk

�(k)�(k − 3/2)

(
D−3/4c(T )1/2 + D−1/2+εk−5/12c(T )ε

)2
.

Next, note that we can write by [13, Lem. 4.4] (follows from Cauchy-Schwartz inequality)
that

∑
F∈B∗k

det(Y )k |F (Z)|2 ≤ q∗(Y )2

where we have put

q∗(Y ) :=
∑

T
p∗(T )1/2 det(Y )k/2 exp(−2πTY ). (7.8)

Plugging in the bound for p∗(T ) in (7.8) we get that q∗(Y ) is

� (4π )k√
�(k)�(k − 3/2)

∑
T

(
c(T )1/2 det(T )k/2

det(T )3/4
+ c(T )ε det(T )k/2

det(T )1/2−εk5/12+ε

)

det(Y )k/2 exp(−2πTY )

� k3/4Q(1/2, 3/4 − ε;Y )+ k1/3−εQ(ε, 1/2;Y ), (7.9)

where

Q(α,β ;Y ) := (4π )k

�(k)
∑

T
c(T )α det(Y )k/2 det(T )k/2−β+εe−2πTr(TY ). (7.10)

Lemma 7.1 One has Q(α,β ;Y )� k2−2β
∑

d�k dα−2β−ε det(Y )β−3/4 .

Proof We refer to part of the calculations done in [8]. Especially looking at [8, p. 346]
equation (4.1) onwardswe can arrive at the bounds givenbelow.As in loc. cit. putYd = dY .

Q(α,β ;Y )�
∑

d
dα−2β−ε

∑
T
(4π )k det(TYd)k/2e−2πTr(TYd )

det(T )β−ε�(k)
� k1/2−2β

∑
d�k

dα−2β−ε det(Yd)β
∑

TYd∈X
1,

whereX is the set of diagonalizable matrices whose eigenvalues are both of size k/(4π )+
O(
√
k log(k)). Then from [8, Lemma 4], we know that

∑
TYd∈X 1� k3/2+ε det(Y )−3/4.

� k1/2−2β+3/2
∑

d�k
dα−2β−ε det(Y )β−3/4 .

��
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Plugging in the values of (α,β) from (7.9) into Lemma 7.1 we get

q∗(Y )� k5/4+ε + k5/4+1/12 det(Y )−1/4 .

So here we need to focus on the region det(Y ) � k1/3 from methods pertaining to the
Bergman kernel for a suitable space. Further, note that since det Y � k1/3 and v ≤ v′ and
vv′ � det Y , we also have

v � k1/6, v′ � k1/3. (7.11)

7.3.1 The remaining region

In this subsection, we assume that v, v′ satisfy (7.11), which defines a region R. In this
region R we would use the information on the Bergman kernel on the space of Jacobi
forms. To do this, we embed the space spanned by the Vm-images of J cuspk,1 into J cuspk,m and
use the results from Sect. 4.2 onBk,m(τ , z); it turns out to be sufficient for the region under
consideration. First, let us recall the bound for Bk,m(τ , z):

Bk,m(τ , z)� km
(
1+ vk−1/2+ε + vk−A

) (
1+ v1/2m−1/2

)
.

The first quantity in braces above is bounded in R. Moreover, we can rewrite the above
bound as

Bk,m(τ , z)� km1/2v1/2
(
1+ vk−1/2+ε + vk−A

) (
1+m1/2v−1/2

)
.

Therefore inR,

Bk,m(τ , z)�
⎧⎨
⎩km1/2v1/2 ifm ≤ v;

km if v ≤ m.
(7.12)

First note that

∑
F
det(Y )k |F (Z)|2 ≤ tk

∑
F

(∑
m≥1 v

k/2 exp(−2πmy2/v)|φm,F | exp(−2πmt)
)2

≤ tk
∑

m,m′
∑

F
φ̃m,F φ̃m′ ,F exp(−2π (m+m′)t)

≤ tk (
∑

m
p(m)1/2 exp(−2πmt))2, (7.13)

where we have put

p(m) :=
∑

F
˜φm,F (τ , z)

2, t = v′ − y2/v.

Next, we want to check that if F, G ∈ SKk are orthogonal, then so are φm,F ,φm,G .

Lemma 7.2 Let F, G ∈ SKk be Hecke eigenforms such that 〈F, G〉 = 0. Then for all m ≥ 1,
〈φm,F ,φm,G〉 = 0.
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Proof Let F, G be SK lifts of f, g ∈ S2k−2, respectively. We have (cf. [29, p. 549-550])

〈φm,F ,φm,G〉 = 〈Vmφ1,F , Vmφ1,G〉 = 〈V ∗mVmφ1,F ,φ1,G〉
= 〈

∑
d|m ψ(d)dk−2TJ (m/d)φ1,F ,φ1,G〉

=
∑

d|m ψ(d)dk−2λf (m/d)〈φ1,F ,φ1,G〉,

where ψ(t) = t
∏

p|t (1+ 1/p). Here we should keep in mind the convention made before
(1.2).Moreover, 〈F, G〉 = 0 implies that 〈φ1,F ,φ1,G〉 = 0 (see [29, Theorem 2]). The lemma
follows. ��

The above proof also shows that

〈φm,F ,φm,F 〉 � mk−1+ε · 〈φ1,φ1〉.

Note however that φm,F could be 0 for somem. Therefore, whenm ≥ v,

p(m) =
∑∗

F

φ̃m,F
2

〈φm,F ,φm,F 〉 · 〈φm,F ,φm,F 〉 � km ·mk−1+επkck � (4πm)k

�(k − 1)
,

where
∑∗ denotes the sum over nonzero modular forms. Thus this part of the Fourier

series gives the contribution k5/2+ε because

∑
m≥v · · · ≤

(4π t)k

�(k − 1)
(
∑

m≥1m
k/2 exp(−2πmt))2 � 2k

�(k/2+ 1)2

�(k − 1)
� k5/2+ε .

(7.14)

For the terms wherem ≤ v we use the first inequality in (7.12) to get

p(m)� k13/12m1/2(4π )k �(k)−1,

and this gives the bound for
∑

m≤v

� k13/12
(4π t)k

�(k)
(
∑
m≤v

mk/2−1/4 exp(−2πmt))2 � 2kk13/12
t1/2

�(k)
· �(k/2+ 3/4)2

� k9/4+ε . (7.15)

Thus combining (7.15) and (7.14) we get from (7.13) that

∑
F∈B∗k

det(Y )k |F (Z)|2 � k5/2+ε .
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7.4 Upper bound–secondmethod

In this section, we provide an alternate proof of Theorem 1.1, that is independent of the
bounds for the geometric side of the Bergman kernel of Jacobi forms. In this direction, we
start by considering the sum

A(Z) :=
∑

F∈B∗k
det(Y )k |F (Z)|2

〈F, F〉 ,

where B∗k denotes a Hecke basis for SKk (cf. the convention before (1.2)). Let τ = u+ iv,
z = x+ iy and τ ′ = u′ + iv′ and φ ∈ J cuspk,1 denote the first Fourier–Jacobi coefficient of F .
Consider the expression

det(Y )−kA(Z) =
∑

F
|F (Z)|2
〈F, F〉 = πkck

∑
F
|F (Z)|2
〈φ,φ〉

1
|L(k, f )|

� πkck
∑

φ

1
〈φ,φ〉

∑
r,s

φr(τ , z)φs(τ , z)e(rτ ′ − sτ ′). (7.16)

where in (7.16) we have used (7.5) and bounded the quantity L(k, f )−1 by an absolute
constant, since k falls in the region of absolute convergence.
We have φr = φ|Vr with, φ ∈ Jk,1. Thus, we only have to bound the quantity:

A∗(Z) := πkck
∑

φ

1
〈φ,φ〉

∑
r,s

φ(τ , z)|Vr · φ(τ , z)|Vs e(rτ ′ − sτ ′).

Let us now replace φ/ ‖φ‖2 by φ – which therefore henceforth will run over an orthonor-
malized basis of J cuspk,1 . With this arrangement, and using the Fourier expansion of φ|Vr ,
A∗(Z) can be written as

∑
φ

∑
r,s

∑
n1 ,n2 ,t1 ,t2

∑
d1|(n1,t1 ,r)

∑
d2|(n2 ,t2 ,s)

(d1d2)k−1cφ(n1rd21
, t1d1 )cφ(

n2s
d22

, t2d2 )e(· · ·).

For i = 1, 2, write Di = 4nir − t2i and put Ti =
(
(Di + t2i )/4r ti/2

ti/2 r

)
. Also, put

S(D1, D2) :=
∑

φ
cφ(D1, t1)cφ(D2, t2). (7.17)

Thus we get

A∗(Z) =πkck
∑
r,s

∑
D1 ,D2 ,t1 ,t2

∑
d1|c(T1)

∑
d2|c(T2)

(d1d2)k−1S(D1d−21 , D2d−22 )e(· · ·)

= πkck
∑

T1 ,T2>0

∑
d1|c(T1)

∑
d2|c(T2)

(d1d2)k−1S(D1d−21 , D2d−22 )e(Tr(T1Z + T2Z)).

Nowweuse the Poincaré series to estimate the sum S(D1, D2). Since {φ} form an orthonor-
mal basis, we can write

2πk− 3
2Dk− 3

2
2 PD2 = �(k − 3/2)

∑
φ
cφ(D2)φ.
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Comparing the Fourier coefficients at D1 on both sides, we see that

�(k − 3/2)S(D1, D2) = 2πk− 3
2Dk− 3

2
2 pD2 (D1). (7.18)

Now we estimate proceed to estimate the coefficients pD2 (D1). First, we observe here that
the Fourier coefficients of the Jacobi Poincaré series of index 1 are the same as that of the
half–integral weight Poincaré series in the Kohnen-plus space (see [12, Proposition 6.2]).
This allows us to get better bounds for the Fourier coefficients pD2 (D1) as compared to
the bounds in Proposition 4.1.

Proposition 7.3 For k large, we have

pD2 (D1)� δD1 ,D2 +
(
D1
D2

)k/2−3/4 (
(D1D2)1/4+ε

k + (D1D2)ε
k1/3

)
.

Thus we get the following bound from (7.18);

Proposition 7.4

S(D1, D2)� πk

�(k−3/2) ·
(
δD1 ,D2D

k−3/2
2 + (D1D2)k/2−1/2

k + (D1D2)k/2−3/4+ε

k1/3

)
. (7.19)

Nowweproceed toboundA∗(Z).WewriteA∗(Z)� A1(Z)+A2(Z)+A3(Z) corresponding
to three terms in (7.19) and we bound each Ai(Z) as below.

7.4.1 Bounding Ai(Z)

A1(Z)� (4π )k (4π )k− 3
2

�(k)�(k − 3
2 )

∑
T>0

∑
d|c(T )

dk−1det(d−1T )k−3/2e−4πTr(TY )

� k3/2 det(Y )−kQ(1/4, 3/4;Y )2,

where Q(α,β ;Y ) is as in (7.10). Therefore, from Lemma (7.1) we see that,

A1(Z)� k3/2 · k1+ε det(Y )−k � k5/2+ε det(Y )−k

and similarly

A2(Z)� k1/2Q(ε, 1/2;Y )2 det(Y )−k � k5/2 det(Y )−k−1/2,

from Lemma 7.1 with α = ε and β = 1/2.

A3(Z)� k7/6Q(1/2, 3/4;Y )2 det(Y )−k � k13/6+ε det(Y )−k ,

by Lemma 7.1 with α = 1/2 and β = 3/4. This gives us A(Z) � k5/2+ε , which finishes
the proof.
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8 Higher moments and scope for improvement via subconvexity
In this section, we investigate the relation between the subconvexity bounds (for example,
see [42]) on the twisted central L-values L(1/2, f ⊗χD) of a GL(2) Hecke eigenform f and
the higher moments of det(Y )k/2|F (Z)| along an orthonormal Hecke basis. Put, for any
r > 0,

F2r := supZ∈F2

∑
F
det(Y )kr |F (Z)|2r .

For any r ∈ R, r > 1, and Z ∈ H2 consider the inequality

∑
F
det(Y )kr |F (Z)|2r �

(
max
F

det(Y )k |F (Z)|2
)r−1 ∑

F
det(Y )k |F (Z)|2; (8.1)

which shows immediately thatF2r � k5r/2+ε if we use Theorem 1.1.
Next, consider the following bound for the third moment of twisted central L-values

L(1/2, f ⊗χD) from [42], whereD is an odd fundamental discriminant (we assume it here
for every fundamental discriminant): for any ε > 0, one has

∑
f ∈Bk

L(1/2, f ⊗ χD)3 �ε k1+εD1−δ+ε (8.2)

for some absolute constant δ such that 0 ≤ δ ≤ 1. Thus, we assume an improvement the
D aspect of Young’s result in [42]. Our goal in the rest of this section is to show that this
results in an improvement of the upper bound of k15/2+ε ofF6 from (8.1). It seems to us
that this is the only viable avenue to improve the individual bounds for an SK lift. In [8],
assuming Generalized Lindelöf Hypothesis for L(1/2, f ⊗χD) for all negative fundamental
discriminants, it was shown that ‖F‖∞ � k3/4+ε , which is the best possible, as there exist
eigenforms with sup-norm� k3/4.
We start with the inequality:

∑
F

(det(Y )k/2|F (Z)|
〈F, F〉 12

)6 = ∑
F
det(Y )3k |F (Z)|6

〈F, F〉3

� (
∑

T
p6(T )

1
6 det(Y )

k
2 exp(−TY ))6,

where we have put p6(T ) = ∑
F |aF (T )|6/〈F, F〉3.

For any T , write 4 det(T ) = D = f 2D0 where D0 is fundamental. This expression is
unique. This f , we believe has no chance of being confused with the lifted modular form
f ∈ S2k−2. Looking at the expression for aF (T ) from (2.4), which involves the terms
det(2T )/a2, we have to determine (D/a2)0, for a given T and a as above, to relate them
to fundamental discriminants. Clearly, if no denotes the ‘odd’ part of an integer n, then
c(T )o|fo. Thus (D/a2)0 = D0 if a is odd. So is the case if D0 is odd.
Thus we only have to look at p = 2. Let n2 be the 2-part of n. If 2β‖a, then 22β |f 2D0. But

we know that ν2(D0) ≤ 3, so 22β−3|f 2 whichmeans 22β−2|f 2. Therefore, writingD0 = 4m
(m ≡ 2, 3 mod 4 and square-free)

D
a2
= f 2D0

a2
= (fo/ao)2f 22 D0

a22
= (fo/ao)2(f2/2β−1)2D0

4
= A2 ·m,
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for some A ∈ N. Since m ≡ 2, 3 mod 4 and square-free, the only way to write A2 · m
as B2 · D (D fundamental discriminant)–is D = 4m and B = A/2. This will show
that (D/a2)0 = D0. In effect, we have also proved above that a|f (in particular c(T )|f ).
Therefore

∑
a|c(T )

ak−1cφ(4 det(T )/a2) = cφ(|D0|)
∑

a|c(T )
ak−1

∑
b| fa

μ(b)
(
D
b

)
bk−3/2af (

f
ab

)

≤ cφ(|D0|)
∑

a|c(T )
ak−1(f /a)k−3/2+ε � cφ(|D0|)f k−3/2+εc(T )1/2.

Keeping in mind (8.2), this gives us

p6(T ) ≤
∑

F
cφ(|D0|)6f 6(k− 3

2 )+εc(T )3

〈F, F〉3 � det(T )3(k− 3
2 )+εc(T )3

k3�(2k − 2)3
∑

f
L(k − 1, f ⊗ χD0 )3

L(k, f )3L(k, sym2f )3
,

where we have used the relation between Petersson norms from (7.5). Thus,

p6(T )� det(T )3k−9/2+εc(T )3

k3�(2k − 2)3
k1+εD1−δ+ε

0 � k5/2+ε

�(k)6
det(T )3k−7/2−δ+εc(T )1−ε .

In conclusion therefore, we get (with the function Q(·, ·;Y ) from (7.10))
∑

F
det(Y )3k |F (Z)|6/〈F, F〉3 � k5/2+εQ(1/6, 7/12+ δ/6− ε;Y )6 � k15/2−2δ+ε det(Y )δ−1,

which is bounded by k15/2−2δ+ε since δ ≤ 1. For an individual F , we would have

det(Y )k/2|F (Z)| � k5/4−δ/3+ε .

9 L∞ mass of pullback of SK lifts
Here we would first restrict Ff ∈ SKk (f ∈ S2k−2) to the diagonal. The resulting object
(pullback) can be written as

Fo
f (τ , τ

′) := Ff |z=0 =
∑

g∈Bk
cg,f g(τ )g(τ ′), (9.1)

and by Ichino (see [21]), the quantities cg,f are given by L-values. More precisely,

|cg,f |2 =
|〈Ff |z=0, g × g〉|2

〈g, g〉4 = 2−k−1�(1/2, sym2g × f ), 〈h, h〉
〈f, f 〉 〈g, g〉2 .

Our goal in this section is to understand the size of the space SK◦k spanned by the pullbacks
of SK lifts; the L2-size of the same was studied in [7,31]. In order to quantify the concen-
tration of Ff along the diagonally embedded H × H ⊂ H2, we introduce the following
three quantities (for f �= 0)

M1(Ff ) =
sup(F◦f )
sup(Ff )

; M2(Ff ) =
sup(Fo

f )∥∥Ff ∥∥ ; M3(f ) :=
sup(F◦f )∥∥∥F◦f

∥∥∥ .

We present a precise result on the size of the relevant object of this subsection–the mass
of pullbacks of SK lifts measured along SKk . Recall that B2k−2 denotes the set of newforms
of level one on SL2(Z). Put

sup(SKp
k ) := sup(τ ,τ ′)∈H×H

∑
f ∈B2k−2

(vv′)k |Fo
f (τ , τ

′)|2/〈Ff , Ff 〉 (= sup(SKk |z=0))
(9.2)
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and to quantify the density of the pullbacks, we introduce the quantity

d := d(SKp
k ) := sup(SKp

k )
/
sup(SKk ).

Then d ≤ 1 and the value of d may be interpreted as the density of the pullbacks inside
the space of SK lifts in terms of L∞ mass – it measures the proportion of the contribution
of the pullbacks to the BK coming from SK lifts. Note however that the summation in
(9.2) runs over a spanning set of SK◦k but the forms F◦f may not be orthogonal.
The bound on d immediately gives us that sup(SKp

k )� k5/2+ε . Next, we prove the lower
bound sup(SKp

k ) � k5/2 (cf. Proposition 9.1 below), which shows that almost all of the
“mass” of SKk is concentrated along z = 0. A natural way to do this would be to appeal to
(9.1), and via themethod of Sect. 7.2; however, this would lead us to averages

∑
f (

∑
g cg,f )2

– as
∑

g cg,f is the (1, 1)-th Fourier coefficient of the RHS of (9.1). Since we have at present
not much control on this quantity, we take a different path.
Wefirst consider the Fourier expansion ofF◦f borrowed from that ofFf (for convenience,

we use the notation aF (T ) = aF (n, r,m) when T =
(

n r/2
r/2 m

)
):

F◦f =
∑

n,m
(
∑

r
aFf (n, r,m))e(nτ +mτ ′).

Let v0, v′0 ∈ H. Then we have sup(SKp
k ) is

� (v0v′0)ke−4π (v0+v
′
0)

∑
f

|aFf (I2)+ aFf (1, 1, 1)|2
〈Ff , Ff 〉

� (v0v′0)ke−4π (v0+v
′
0)

( ∑
f

|aFf (I2)|2
〈Ff , Ff 〉 +

∑
f

|aFf (1, 1, 1)|2
〈Ff , Ff 〉 − 2

∣∣∣∣ ∑
f
aF (I2)aF (1, 1, 1)

〈Ff , Ff 〉
∣∣∣∣
)
.

Now consider the individual terms on the LHS. Using the same arguments as in (7.7),

(v0v′0)ke−4π (v0+v
′
0)

∑
f

|aFf (I2)|2
〈Ff , Ff 〉 � k5/2.

Here we have made the choice v0 = v′0 = k/4π . Similarly, since D = −3 in the second
term, using the same arguments as in (7.7), we get

(v0v′0)ke−4π (v0+v
′
0)

∑
f

|aFf (1, 1, 1)|2
〈Ff , Ff 〉 � k5/2(3/4)k .

Now to estimate the off diagonal term, we use Poincaré series. The off diagonal term is
given by

(v0v′0)ke−4π (v0+v
′
0)

∑
f
aF (I2)aF (1, 1, 1)

〈Ff , Ff 〉 . (9.3)

Using the relation between Petersson norms from (7.5) and Proposition 7.4, (9.3) is

� (4π )k

�(k)
(v0v′0)ke−4π (v0+v

′
0)S(4, 3)� πk

�(k − 3
2 )

(4π )k

�(k)
k2k

(4π )2k
e−2k 12

k/2

k
� k3/2(3/4)k/2.

where S(D1, D2) is as in (7.17). Thus we have proved
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Proposition 9.1 Let sup(SKp
k ) be as above. Then

k5/2 � sup(SKp
k )� k5/2+ε .

Thus the density d � 1 – it will be interesting to calculate it explicitly.

Corollary 9.2 For f ∈ Sk normalized Hecke eigenform, one has the ‘trivial’ bound on its
size: sup

H
|F◦f |/

∥∥Ff ∥∥ � k5/4+ε .

9.1 The intrinsic BK

Recall the space SK◦k spanned by the pullbacks of all F ∈ SKk and let B◦k ⊂ SK◦k be an
orthogonal basis. Further, put (Sk ⊗ Sk )◦ to be the C span of g ⊗ g which is identified with
g(τ )g(τ ′), g ∈ Sk , a normalized Hecke eigenform. Call this set B◦◦k . The following lemma
gives a description of the space of “pullbacks” of SK lifts.

Lemma 9.3 With the above notation, SK◦k = (Sk ⊗ Sk )◦.

Proof From (9.1), clearly SK◦k ⊂ (Sk ⊗ Sk )◦. For the other direction, we compare dimen-
sions. dim(Sk ⊗ Sk )◦ = dim Sk . Let us put SKk (0) := {Ff | F◦f = 0}, so that SKk (0) is the
kernel of the Witt mapW (F �→ F◦ = F |z=0) restricted to SKk .
Then from [31, Proof of Thm. 1.9], we know that dim SKk (0) = dimMk−10 = dim Sk+2.

Therefore, the dimension of the imageW (SKk ) of theWittmap is dim S2k−2−dim Sk+2 =
dim Sk . SinceW (SKk ) is simply SK◦k , we are done. ��

The lemma has a curious corollary about linear independence of (square-root) central
L-values. Recall the quantity cg,f . Up to constants, its square equals L(1/2, sym2g × f ). Let
d1 = dim S2k−2 and d2 = dim Sk . Consider L := L(d1, d2), the d1 × d2 matrix (cg,f )f,g
where f, g run over normalized Hecke eigenforms in S2k−2, Sk , respectively. Writing the
elements F◦ (F Hecke eigenform in SKk ) as a column, say Ck , one can recast (9.1) into
a matrix equality: Ck = L · B◦◦k . If we let L to be the linear operator corresponding to L
mapping the span (Sk ⊗ Sk )◦ of B◦◦k to the span SK◦k of Ck . Clearly L is onto. This implies
that the rank of L equals d2. We summarize this in the corollary below.

Corollary 9.4 Let L be the d1 × d2 matrix as above. Then rank(L) is maximal.

Recall that B◦k ⊂ SK◦k denotes an orthogonal basis. Let us define

sup(SK◦k ) := sup(τ ,τ ′)∈H×H
∑

G∈B◦k
(vv′)k |G(τ , τ ′)|2/〈G,G〉. (9.4)

In view of Lemma 9.3, since the spaces SK◦k and (Sk ⊗ Sk )◦ are the same, we can also
write (9.4) as

sup(SK◦k ) = sup((Sk ⊗ Sk )◦) = sup(τ ,τ ′)∈H×H
∑

g∈Bk
(vv′)k |g(τ )g(τ ′)|2/〈g, g〉2. (9.5)

Proposition 9.5 With the above notation, k2 � sup(SK◦k )� k2+ε .

Proof In view of the Lemma (9.3), for the basis B◦k we can take the set {g(τ )× g(τ ′), g =
h

∥∥h∥∥−1
2 ∈ Sk , h a normalized Hecke eigenform}. Then ag×g (m, n) = ag (m)ag (n). There-

fore as in Sect. 3.2, withm = n = 1 and by using the Cauchy–Schwarz and basic integral
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inequalities, we have sup(SK◦k ) is

≥ (vv′)k exp(−4π (v + v′))
∑

h
|ah×h(1, 1)|2〈h, h〉−2

�(vv′)k exp(−4π (v + v′))k−1
( ∑

h
|ah(1)|2〈h, h〉−1

)2
� (vv′)k exp(−4π (v + v′))k−1 (4π )2k

�(k − 1)2
� k2,

where we have chosen v = v′ = k/4π and used the fact that the sum over h is �
(4π )k−1/�(k − 1) (see [22, Proposition 14.5]).
For the upper bound we use individual sup-norm bounds for h: from the result of Xia

[41], we know that
∥∥g∥∥∞ � k1/4+ε for g as above. Thus, from (9.5), we see that

∑
g
(vv′)k |g(τ )g(τ

′)|2
〈g, g〉2 � (k1/2+ε)2 · k � k2+ε .

��

Corollary 9.6 For Ff ∈ SKk a normalized Hecke eigenform, one has the ‘trivial’ bound on
its size: sup

H
|F◦f |/

∥∥∥F◦f
∥∥∥ � k1+ε , provided F◦f �= 0.

Note that we of course have the bound sup
H
|F◦f |/

∥∥Ff ∥∥ � k5/4 from Corollary 9.2 or
fromTheorem 1.1 by restriction of domain. If we assume the conjectural sizeN (Ff ) ∼ 2 as
k →∞ (cf. [7,31]), then it is immediate from Corollary 9.6 that sup

H
|F◦f |/

∥∥Ff ∥∥ � k1+ε ,
and k1/2+ε if we expect that Corollary 9.6 can be improved to k1/2+ε . To see this, we
write and note |F◦f |/

∥∥Ff ∥∥ = |F◦f |/
∥∥∥F◦f

∥∥∥ · ∥∥∥F◦f
∥∥∥ /

∥∥Ff ∥∥ � |F◦f |/
∥∥∥F◦f

∥∥∥ ·N (Ff ). However, the
current record for the size of N (Ff ) is N (Ff ) � k1−δ (cf. [2]) for a very small δ ≈ 0.0047
and this does not help (unconditionally) towards the betterment of Corollary 9.2 that one
would like to have.

9.2 Appendix to Sect. 9

In this section, we calculate the L∞ size of the image of theWitt operator on S2k which we
define by (soW (F ) = F◦ from the previous section)

W (F )(τ , τ ′) := Fz=0.

Since the arguments here are closely related to our ideas in this paper, and especially to
this section, we feel it is apt to include this here as an appendix. Assume that k is even.
Recall that our point of interest is

sup(W (S2k )) = supτ1 ,τ2∈H
∑

F∈BW(S2k )
(v1v2)k/2|W (F )|2
〈W (F ),W (F )〉 ,

where BW(S2k ) is an orthonormal basis for W (S2k ). The main idea is to find a convenient
basis for W (S2k ) and work with it, owing to the invariance of the Bergman kernel with
respect to the choice of a basis.
First, note that the size of Sk ⊗ Sk is clearly k3 as its BK is the product of that of

Sk with itself. Secondly, note that since F (
(

τ z
z τ ′

)
) = F (

(
τ ′ z
z τ

)
) for all F ∈ S2k , one
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has W (F ) ∈ (Sk ⊗ Sk )sym, where (Sk ⊗ Sk )sym be the space of all symmetric tensors
in Sk ⊗ Sk . Its dimension is sk (sk + 1)/2, where we have put sk = dim Sk . From [17,
1.5 Hilfssatz, Folgerung, p.150] we know that when k is even, W is surjective. Therefore,
if we want to find the size of the space of pullbacks W (S2k ) for S

2
k – we merely have to

choose an orthonormal basis of (Sk ⊗ Sk )sym. Since 2 is invertible for us, it is clear that
(Sk ⊗ Sk )sym = (Sk ⊗ Sk )diag where (Sk ⊗ Sk )diag = {

∑s
i=1 cigi ⊗ gi, gi ∈ Sk , s ≥ 1}. This

will indicate how much of the L∞ mass of S2k is supported by the diagonal.
We will prove that its size is k3. To see this, first put s(f, g) = f ⊗ g + g ⊗ f . Further, let

{gj}j be the normalized Hecke basis for Sk . We note that s(gi, gj), i ≤ j, 1 ≤ j ≤ sk is a basis
for (Sk ⊗ Sk )sym. Further, the elements of this basis are pairwise orthogonal. To see this,
note that

〈s(g1, g2), s(g3, g4)〉 = 2〈g1, g3〉〈g2, g4〉 + 2〈g1, g4〉〈g2, g3〉. (9.6)

Suppose that (without loss of generality) g1, g3 are unequal, hence orthogonal. Then (9.6)
reduces to 2〈g1, g4〉〈g2, g3〉 which can be nonzero if and only if g1 = g4 , g2 = g3.
As before, the quantity which measures the size is the BK: we sum over the modulus

square of the elements in an orthonormal basis. Since the BK does not depend on the
choice of the orthonormal basis, we can write

sup((Sk ⊗ Sk )sym) =
∑

i≤j
(vv′)k |s(gi, gj)|2
〈s(gi, gj), s(gi, gj)〉 . (9.7)

Let Pn be the n-th Poincaré series in Sk . We can write

s(Pm, Pn) = �(k − 1)2

(4πm)k−1(4πn)k−1
∑

i≤j
(ai(m)aj(n)+ ai(n)aj(m))

〈s(gi, gj), s(gi, gj)〉 s(gi, gj);

from which we get a Petersson formula:

�(k − 1)2

(4πm)k−1(4πn)k−1
∑

i≤j |ai(m)aj(n)+ ai(m)aj(n)|2 = pm(m)pn(n).

Now putting m = n = 1 and following the method in Sect. 7.2, the lower bound k3 is
immediate.
For the upper bound, let hi denote the orthonormalized gi. Then the RHS of (9.7) can

be bounded (up to absolute constants) by

∑
i≤j(v

k |hi(τ )|2 v′k |hj(τ ′)|2 + vk |hj(τ )|2 v′k |hi(τ ′)|2),

which is bounded by (
∑

i vk |hi(τ )|2)(
∑

j vk |hj(τ ′)|2)� k3 by [13, Section 7.2].
Summarizing the above calculations, we can now state the following.

Theorem 9.7 With the above notation and setting, if k is even, sup(W (S2k )) � k3.
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