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1. Introduction

Let S be a smooth oriented compact surface, and {p1, · · · , pd} be a collection a distinct 
points on S with positive integer multiplicities n1, · · · , nd ∈ N, respectively. Give a 
smooth metric g on S and smooth function u : S\{p1, · · · , pd} → R defined away from 
the points consider the system of PDE

Δgu = 1
ε2 (eu − τ2) + 4π

d∑
j=1

njδpj
,

Kg = − a

2τ2

[
τ2

ε2 (eu − τ2) − Δge
u

]
.

(1.1)

Here Δg is Laplace-Beltrami operator induced by the metric g, Kg is the Gaussian 
curvature of g, δpj

is the Dirac distribution on (S, ω) concentrated at pj, where ω is the 
area (volume) form of g, and τ, ε, a are positive real constants. With our convention, the 
Laplacian has negative eigenvalues. As proved by Y. Yang, the system (1.1) is equivalent 
to the self-dual Einstein-Maxwell-Higgs equations arising in theoretical physics [11,12].

The aim of this note is to present an obstruction to the existence of solutions of (1.1), 
and hence to the self-dual Einstein-Maxwell-Higgs equations on a compact surface, which 
depends on the configuration of points pj and their multiplicities nj . Observe that, taking 
g = eηg0 for a smooth function η and fixed background metric g0 and using the formula 
for the change in the scalar curvature

2Kg = e−η(2Kg0 − Δg0η),

the previous system is equivalent to (cf. [8, Equation (1.1)])

Δg0u = 1
ε2 e

η(eu − τ2) + 4π
d∑

j=1
njδpj

,

Δg0(η + a
τ2 e

u) = 2Kg0 + a

ε2 e
η(eu − τ2).

(1.2)

Here δpj
is the Dirac distribution on (S, ω0) concentrated at pj, where ω0 is the area 

form of g0. Define the vortex number by

N =
d∑

j=1
nj .

Or main result can be stated as follows.

Theorem 1.1. Suppose that (1.2) admits a solution (u, η) with d ≤ 2 for some parameter 
ε > 0 and some smooth background metric g0 on S, where η is a smooth function on S
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and u : S\{p1, · · · , pd} → R is a smooth function defined away from the points. Then, 
there must hold that

d = 2 and n1 = n2.

The previous theorem was originally proved in previous work by the first four au-
thors of this note, published online in Mathematische Annalen in February 2020 (see 
[3, Theorem 1.3 and Proposition 2.6]) and previously announced in [2]. As a matter of 
fact, our method of proof here is, as in [3], the evaluation of a Futaki invariant for the 
self-dual Einstein-Maxwell-Higgs equations. This invariant was first constructed in [3]
via the general theory for the Kähler-Yang-Mills equations developed in [1], and fol-
lows the same principles as the classical Futaki invariant in the Kähler-Einstein theory 
[5]. The main novelty of the present note is an alternative, independent construction of 
the Futaki invariant, by direct and explicit calculations. We have deliberatively avoided 
the use of the general moment map theory in [1,3] as well as any technicalities coming 
from the geometry of the self-dual Einstein-Maxwell-Higgs equations, trying to make the 
exposition self-contained and more accessible to the PDE community.

Theorem 1.1 gives infinitely many examples of configurations of points for which there 
cannot be solutions to the self-dual Einstein-Maxwell-Higgs equations on a compact sur-
face, in apparent contradiction with [8, Theorem 1.2] (see Remark 2.10 and the Erratum 
[9]). Our proof exploits systematically the complex geometry of the Higgs field φ in the 
self-dual Einstein-Maxwell-Higgs equations, which is implicit in the system of equations 
(2.1) (see Section 2.1).

2. An obstruction to the self-dual Einstein-Maxwell-Higgs equations

2.1. Preliminaries

Let S be a compact connected smooth surface. We fix {p1, · · · , pd} a collection of 
distinct points on S with positive integer multiplicities n1, · · · , nd ∈ N, respectively. We 
also fix positive real constants τ, ε, a > 0. By Gauss-Bonnet Theorem, the existence of 
solutions of (1.1) implies that

χ(S) = aN > 0.

Therefore, S must be diffeomorphic to the two-sphere S2 and furthermore one has the 
following ‘quantization condition’

a = 2
N

.

We fix a background metric g0 on S2 with volume V . One of the main methods introduced 
in [3] for the proof of Theorem 1.1 is the construction of an invariant, called the Futaki 
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invariant, which only depends on the conformal class of g0, the volume V , and the tuple 
({pj}, {nj}, τ, a), which vanishes identically provided that there exists a solution of (1.2). 
To recall the definition of the Futaki invariant, in this note we will focus on the special 
case

d ≤ 2.

Without loss of generality, we assume that p1 and p2 are the north and south pole on 
S2, respectively, and take g0 to be the round metric on S2 with total volume V . Given 
a positive integer 0 ≤ 
 ≤ N , we consider the following special case of equation (1.2)

Δg0u = 1
ε2 e

η(eu − τ2) + 4π(N − 
)δp1 + 4π
δp2 ,

Δg0(η + a
τ2 e

u) = 2Kg0 + a

ε2 e
η(eu − τ2).

(2.1)

The construction of the Futaki invariant exploits systematically the complex geometry 
of the Higgs field φ in the self-dual Einstein-Maxwell-Higgs equations, which is implicit 
in the system of equations (2.1). In order to use this geometry, in the sequel we identity 
the two-sphere with the complex Riemann sphere

S2 ∼= P 1.

Taking the stereographic projection from the north pole, we have

g0 = V

π

dx2 + dy2

(1 + x2 + y2)2 . (2.2)

In the complex coordinate z = x + iy, the Higgs field of our interest is

φ = z�. (2.3)

To define the Futaki invariant, we first write (2.1) in a different form. Define a smooth 
function Φ by

Φ = |z|2�
(1 + |z|2)N .

By a simple change of holomorphic coordinates z → z−1, it is easy to see that Φ extends 
to a smooth function on P 1. More invariantly, φ defines a global holomorphic section 
of the line bundle L = OP1(N) over P 1, which vanishes at the points p1 ≡ ∞ and 
p2 ≡ 0 with multiplicities N − 
 and 
, respectively. In the holomorphic coordinate z the 
Fubini-Study metric on L reads

hN
FS = 1

2 N
(1 + |z| )
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and therefore Φ = |φ|2
hN
FS

. For the next formula, notice that with our convention the 
Laplacian has negative eigenvalues.

Lemma 2.1.

Δg0 log Φ = −4πN
V

+ 4π(N − 
)δp1 + 4π
δp2 .

Proof. The claim follows now from the Poincaré-Lelong formula

i∂∂̄ log |φ|2hN
FS

= −iFhN
FS

+ 2π(N − 
)δp1 + 2π
δp2

= −N
idz ∧ dz

(1 + |z|2)2 + 2π(N − 
)δp1 + 2π
δp2 . �
Using the unknown function u in (2.1), we define a smooth function on the sphere by

f = u− log Φ.

Using the previous Lemma, the system (2.1) now reads

Δg0f = 1
ε2 e

η(efΦ − τ2) + 4πN
V

,

Δg0(η + a
τ2 e

fΦ) = 2Kg0 + a

ε2 e
η(efΦ − τ2).

(2.4)

Consider the radial vector field

v = v1,0 + v0,1 = z∂z + z∂z.

Of course, this is the local expression of a globally defined real holomorphic vector field 
on P 1 whose flow evolves along the meridians of S2 ∼= P 1, and vanishes at the poles. Let 
η be a smooth function on P 1. Using that v is holomorphic we have

∂̄(eηιv1,0ω0) = 0.

Since P 1 is simply connected, the Hodge decomposition of the de Rham cohomology 
ensures the existence of a global ∂̄-potential for eηιv1,0ω0.

Definition 2.2. Let η be a smooth real function on P 1. We define ϕη as the unique smooth 
complex-valued function on P 1 satisfying

∂̄ϕη = eηιv1,0ω0,

∫
ϕηe

ηω0 = 0.

P1
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We next construct a complex function ψf associated to the other unknown of the 
equation (2.4). Let ωFS denote the Fubini-Study Kähler form

ωFS := i∂̄∂ log h1
FS = idz ∧ dz

(1 + |z|2)2 .

Given a smooth function f on P 1, similarly as before we have

∂̄(ιv1,0(NωFS + i∂̄∂f)) = 0

and hence ιv1,0(NωFS + i∂̄∂f) admits a smooth global ∂̄-potential. The choice of nor-
malization for this potential is a delicate point, which we consider next. Geometrically, 
this is choosen so that (v1,0, ψf ) defines an infinitesimal automorphism of the Higgs field 
φ = z�, in the following sense.

Lemma 2.3. Let f be a smooth real function on P 1. We define ψf as the smooth complex-
valued function on P 1 given by

ψf = 
−N
|z|2

1 + |z|2 + ∂f(v1,0).

Then, if we set h = efhN
FS, the following identities hold

−i∂̄ψf = ιv1,0(i∂̄∂ log h),

ιv1,0 (∂φ + (∂ log h)φ) = ψfφ.
(2.5)

Proof. Observe that ψ0 = 
 − N |z|2
1+|z|2 defines a smooth global function on P 1, which 

satisfies

∂̄ψ0 = −N
zdz

(1 + |z|2)2 = iNιv1,0ωFS .

From this, using that v is holomorphic we obtain

∂̄ψf = iNιv1,0ωFS − ιv1,0 ∂̄∂f.

Similarly

ιv1,0
(
∂φ + (∂ log efhN

FS)φ
)

= ιv1,0

(

z�−1dz −N

zdz

1 + |z|2φ + (∂f)φ
)

= ψfφ. �

We will also need the following technical formula.
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Lemma 2.4. Set h = efhN
FS. Then the following identity holds

∂̄
(
ψf (efΦ − τ2)

)
= −ιv1,0

(
∂̄∂(efΦ) − τ2∂̄∂ log h

)
.

Proof. Applying the structural formulae for ψf in Lemma 2.3, we obtain

∂̄
(
ψf (efΦ − τ2)

)
= ∂̄

(
ψfφhφ− τ2ψf

)
= ∂̄

(
ιv1,0 (∂φ + (∂ log h)φ)hφ

)
+ τ2ιv1,0(∂̄∂ log h)

= −ιv1,0
(
∂̄∂(efΦ) − τ2∂̄∂ log h

)
. �

2.2. A Futaki invariant for the self-dual Einstein-Maxwell-Higgs equations

In this section we introduce the definition of the Futaki invariant for the self-dual 
Einstein-Maxwell-Higgs equations, following [3] (see Remark 2.7). As a warm-up, we 
recall first the definition of the classical Futaki invariant in our setup. This classical 
invariant, originally introduced by A. Futaki [5], provides an obstruction to the existence 
of Kähler-Einstein metrics on a compact complex manifold. Since we are dealing with 
the Riemann sphere, we will simply prove that the classical Futaki invariant identically 
vanishes.

Lemma 2.5 (Classical Futaki invariant). The following expression does not depend on 
the choice of smooth function η:

F0 = −
∫
S2

ϕη

(
2Kg0 − Δg0η

)
ω0.

Consequently, it vanishes identically.

Proof. We claim that F0 = F0(η) is independent of η, provided that 
∫
S2 e

ηω0 = V . If 
this is the case, given such η̃ and using that g0 has constant curvature

F0(η̃) = −2Kg0

∫
S2

ϕ0ω0 = 0

by definition of ϕ0. Furthermore,

ϕη+log t = tϕη

for any η, which implies F0(η̃ + log t) = tF0(η̃) = 0.
To prove our initial claim, we set g := eηg0 and ϕg := ϕη, and note that

F0(g) := F0(η) = −2
∫

ϕg

(
Kg − K̂

)
ω = −2

∫
ϕg

(
ρg − K̂ω

)

S2 S2
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where K̂ = 4π/V , ω denotes the volume form corresponding to g, and ρg = −i∂∂̄ log det g
denotes the Ricci form. Using that 

∫
S2 ω = V we can write

ω = eηω0 = (1 + Δg0u)ω0

for some smooth function u. Since the space of metrics conformal to g0 and with fixed 
volume is path-connected, it suffices to prove that the variation of F0 = F0(u) with 
respect to u vanishes identically. Taking a path ωt = ω + 2i∂∂̄ut and denoting d

dtut = u̇, 
we calculate

ϕ̇g = 2iv1,0(u̇), ρ̇g = i∂̄∂Δgu̇.

The second identity is straightforward. As for the first identity, from the defining equation 
(we set ϕ = ϕg for simplicity)

ϕλ̄ = igμλ̄v
μ,

taking the derivative with respect to t, we get

ϕ̇λ̄ = 2iu̇μλ̄v
μ = 2i(vμu̇μ)λ̄

by the holomorphicity of the vector field v1,0 = vμ∂μ, thus ϕ̇ = 2iv1,0(u̇) + c for some 
constant c. On the other hand, the normalization condition 

∫
S2 ϕω = 0 implies

0 =
∫
S2

ϕ̇ω + ϕ · 2i∂∂̄u̇ =
∫
S2

ϕ̇ω − 2i∂u̇ ∧ ∂̄ϕ

=
∫
S2

2ivμu̇μ · igzz̄dz ∧ dz̄ + cω − 2i
∫
S2

u̇zigzz̄v
zdz ∧ dz̄,

therefore c = 0 and ϕ̇g = 2ivμu̇μ = 2iv1,0(u̇).
We will also need the following identity

∂̄Δgϕg = −2ιv1,0ρg.

To prove this, we calculate

∂̄Δgϕg = 2∂̄(gαβ̄ϕαβ̄)

= 2gαβ̄(∂κ̄ϕαβ̄ − gαμ̄gλβ̄∂κ̄gλμ̄ϕαβ̄)dz̄κ

= 2gαβ̄∇κ̄∇β̄∇αϕ · dz̄κ

= 2gαβ̄
(
−R λ̄

κ̄αβ̄
∇λ̄ϕ + ∇α∇κ̄∇β̄ϕ

)
dz̄κ

= −2Rμκ̄g
μλ̄∇λ̄ϕdz̄

κ,
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in which we use the relation ∇κ̄∇β̄ϕ = ∇κ̄

(
igαβ̄v

α
)

= igαβ̄∇κ̄v
α = 0 by the holomor-

phicity of v1,0. Finally, using again the formula ∂̄ϕ = ιv1,0ω, i.e. ϕλ̄ = igμλ̄v
μ, the above 

equation yields

∂̄Δgϕg = −2iRμκ̄v
μdz̄κ = −2ιv1,0ρg.

Using the various identities above, we conclude with the following calculation

− d

dt
F0(gt) = 2i

∫
S2

v1,0(u̇)
(
ρg − K̂ω

)
+
∫
S2

ϕg

(
−i∂∂̄Δgu̇− K̂ · 2i∂∂̄u̇

)

= 2i
∫
S2

vzu̇z(ρg − K̂ω) +
∫
S2

ϕg

(
−i∂∂̄Δgu̇− K̂ · 2i∂∂̄u̇

)

= 2i
∫
S2

u̇zdz ∧ ιv1,0(ρg − K̂ω) +
∫
S2

ϕg

(
−i∂∂̄Δgu̇− K̂ · 2i∂∂̄u̇

)

= i

∫
S2

u̇zdz ∧ (−∂̄Δgϕg − 2K̂∂̄ϕg) +
∫
S2

ϕg

(
−i∂∂̄Δgu̇− K̂ · 2i∂∂̄u̇

)

= 1
2

∫
S2

Δgu̇
(
Δgϕg + 2K̂ϕg

)
ω − 1

2

∫
S2

(
ΔgϕgΔgu̇ + 2K̂ϕgΔgu̇

)
ω

= 0. �
We are ready to recall the definition of the Futaki invariant for the self-dual Einstein-

Maxwell-Higgs equations, originally introduced in [3].

Proposition 2.6 (Einstein-Maxwell-Higgs Futaki invariant). The following expression 
does not depend on the choice of smooth functions η and f

F�,N,V,τ = 2i a
τ2

∫
S2

ψf

(
4πN
V

− Δg0f + eη(efΦ − τ2)
)
ω0

−
∫
S2

ϕη

(
2Kg0 − Δg0(η + a

τ2 e
fΦ) − a

(
4πN
V

− Δg0f

))
ω0,

provided that 
∫
S2 e

ηω0 = V . Consequently, it defines an invariant which vanishes if the 
equations (2.4) admit a smooth solution (η, f) with 

∫
S2 e

ηω0 = V and ε2 = 1.

Proof. We denote F(η, f) = F�,N,V,τ , as above. By Lemma 2.5, we have a simplified 
expression

F(η, f) = 2i a
τ2

∫
ψf

(
4πN
V

− Δg0f + eη(efΦ − τ2)
)
ω0
S2
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+ a

∫
S2

ϕη

(
1
τ2 Δg0(efΦ) + 4πN

V
− Δg0f

)
ω0.

Using that 
∫
S2 e

ηω0 = V , we have eηω0 = (1 + Δg0u)ω0 for some smooth function u. 
As in the proof of Lemma 2.5, denoting ω = (1 + Δg0u)ω0 we can write the previous 
expression as

F(u, f) = 4i a
τ2

∫
S2

ψf

(
(NωFS + i∂̄∂f) + 1

2(efΦ − τ2)ω
)

+ a

∫
S2

ϕg

( 1
τ2 Δg(efΦ)ω + 2(NωFS + i∂̄∂f)

)
.

Taking variations with respect to u and applying Lemma 2.4 we have

δuF = 2i a
τ2

∫
S2

ψf

(
(efΦ − τ2) · 2i∂∂̄u̇

)

+ 2i a
τ2

∫
S2

v1,0(u̇)
(
2i∂∂̄(efΦ) + 2τ2(NωFS + i∂̄∂f)

)

= 2i a
τ2

∫
S2

u̇ · 2i∂∂̄
(
ψf (efΦ − τ2)

)

+ 2i a
τ2

∫
S2

∂u̇ ∧ ιv1,0
(
2i∂∂̄(efΦ) + 2τ2(NωFS + i∂̄∂f)

)

= 2i a
τ2

∫
S2

u̇ · 2i∂
(
∂̄
(
ψf (efΦ − τ2)

)
− ιv1,0(∂∂̄(efΦ) + τ2∂̄∂ log h)

)

= 0,

where we have used that i∂̄∂ log h = NωFS + i∂̄∂f . Similarly, taking variations with 
respect to f , gives

δfF = 4i a
τ2

∫
S2

∂ḟ(v1,0)
(
i∂̄∂ log h + 1

2(efΦ − τ2)ω
)

+ 4i a
τ2

∫
S2

ψf

(
i∂̄∂ḟ + 1

2 ḟ e
fΦω

)

+ a

τ2

∫
S2

ϕg · 2i∂∂̄
(
ḟ(efΦ − τ2)

)

= −4i a
τ2

∫
ḟ · ∂

(
ιv1,0

(
i∂̄∂ log h + 1

2(efΦ − τ2)ω
))
S2
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+ 4i a
τ2

∫
S2

(
ḟ · i∂̄∂ψf + 1

2ψf ḟe
fΦω

)

+ 2i a
τ2

∫
S2

ḟ(efΦ − τ2) · ∂(ιv1,0ω)

= −4i a
τ2

∫
S2

ḟ · ∂
(
ιv1,0(i∂̄∂ log h)

)
+ 1

2 ḟ · ∂(efΦ) ∧ ιv1,0ω + 1
2 ḟ(efΦ − τ2)∂(ιv1,0ω)

+ 4i a
τ2

∫
S2

ḟ · ∂
(
ιv1,0(i∂̄∂ log h)

)
+ 1

2 ḟ · ψfe
fΦω + 1

2 ḟ(efΦ − τ2)∂ (ιv1,0ω)

= 2i a
τ2

∫
S2

ḟ
(
ψfe

fΦω − ∂(efΦ) ∧ ιv1,0ω
)

= 2i a
τ2

∫
S2

ḟ
(
ψfφhφ− ιv1,0 (∂φ + φ∂ log h)hφ

)
ω

= 0,

where in the third inequality we used the first item of Equation (2.5) and in the last 
inequality we used the definition efΦ = φhφ and the second item of Equation (2.5). �
Remark 2.7. More precisely, the Futaki invariant for the self-dual Einstein-Maxwell-
Higgs equations constructed in [3] is a character of the Lie algebra of infinitesimal 
automorphisms of the triple (P 1, OP1(N), φ). The quantity F�,N,V,τ considered here is 
the evaluation of this character at the infinitesimal automorphism (v1,0, ψf ) constructed 
in Lemma 2.3.

2.3. Proof of Theorem 1.1

We start calculating an explicit formula for the Futaki invariant.

Lemma 2.8. The Einstein-Maxwell-Higgs Futaki invariant in Proposition 2.6 is

F�,N,V,τ = ia

(
V − 4πN

τ2

)
(N − 2
).

Proof. Take f = η = 0, and ω0 = V
2πωFS in Proposition 2.6, we get that

F�,N,V,τ = 2i a
τ2

∫
S2

ψ0

(
2NωFS + V

2π (Φ − τ2)ωFS

)

+ a

τ2

∫
ϕ0ΔωFS

ΦωFS
S2
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= 2i a
τ2

∫
S2

ψ0

(
2N − V

2π τ
2
)
ωFS + 2i a

τ2 · V

2π

∫
S2

Φψ0ωFS

− 4a
τ2

∫
S2

ϕ0ΦωFS

= 2i a
τ2

(
2N − V

2π τ
2
)∫

S2

ψ0ωFS + 2i a
τ2

V

2π

∫
S2

Φ
(
ψ0 −

|z|2 − 1
|z|2 + 1

)
ωFS ,

where ψ0 = 
 −N |z|2
1+|z|2 , and ϕ0 = V

2π ·
i
2
|z|2−1
|z|2+1 , and we used the fact that ΔωFS

ϕ0 = −4ϕ0. 
The final formula for the Futaki invariant follows from the calculations

∫
S2

ψ0ωFS =
∫
C

(

−N

|z|2
|z|2 + 1

)
idz ∧ dz̄

(|z|2 + 1)2

= 2π
∞∫
0

(
(
−N) 1

(1 + s)2 + N

(1 + s)3

)
ds

= π(2
−N),

and
∫
S2

Φ
(
ψ0 −

|z|2 − 1
|z|2 + 1

)
ωFS =

∫
C

(

−N

|z|2
|z|2 + 1 + 1 − |z|2

1 + |z|2
)

|z|2�
(1 + |z|2)N+2 idz ∧ dz̄

= 4π
∞∫
0

(

−N

r2

r2 + 1 + 1 − r2

1 + r2

)
r2�+1

(1 + r2)N+2 dr

= 2π
∞∫
0

(
 + 1)s� + (
−N − 1)s�+1

(1 + s)N+3 ds

= 2π s�+1

(1 + s)N+2 |
∞
0

= 0. �
We also need the following necessary condition for the existence of solutions to the 

self-dual Einstein-Maxwell-Higgs equations. This inequality was originally observed by 
Noguchi, Bradlow, and García-Prada in the context of Abelian vortices on a compact 
surface [4,6,7,10]. The proof follows directly by integrating the first equation in (2.4)
using the volume form eηω0.

Lemma 2.9. Assume that there exists a solution (f, η) to (2.4) with 
∫
S2 e

ηω0 = V and 
ε2 = 1. Then, there holds the following inequality
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V >
4πN
τ2 .

We are ready for the proof of our main result.

Proof of Theorem 1.1. Assume d ≤ 2 and that there exists a solution (u, η) of (1.2) for 
some smooth background metric g′0 on S2 and some parameter ε > 0. Notice that in 
the first equation in (1.2) we use the volume form ω′

0 of g′0 to define the distributional 
equation. That is, for any smooth function ψ on S2 one has

∫
S2

ψΔg′
0
uω′

0 =
∫
S2

ψ
1
ε2 e

η(eu − τ2)ω′
0 + 4π

d∑
j=1

njψ(pj).

Setting g = 1
ε2 e

ηg′0, and taking now ω the volume form of the metric g, one obtains

∫
S2

ψΔguω =
∫
S2

ψ(eu − τ2)ω + 4π
d∑

j=1
njψ(pj).

This means that (u, g) is a solution of

Δgu = (eu − τ2) + 4π
d∑

j=1
njδpj

,

Kg = − a

2τ2

[
τ2(eu − τ2) − Δge

u
]
,

(2.6)

where δpj
is the Dirac distribution on (S2, ω) concentrated at pj and ω is the volume 

form of g. Let V =
∫
S2 ω, and g0 be the constant scalar curvature metric on S2 defined 

by the formula (2.2). Let ω0 be the area form of the metric g0. Notice that 
∫
S2 ω0 = V . 

Set f := u − log Φ, where Φ is as in Lemma 2.1. Then, for η′ the smooth function on S2

such that ω = eη
′
ω0, the pair (f, η′) is a solution of

Δg0f = eη
′
(efΦ − τ2) + 4πN

V
,

Δg0(η′ + a
τ2 e

fΦ) = 2Kg0 + aeη
′
(efΦ − τ2),

such that 
∫
S2 e

η′
ω0 = V , i.e. the pair (f, η′) is a solution of equations (2.4) with the 

parameter ε2 = 1 and 
∫
S2 e

η′
ω0 = V . Therefore, by Proposition 2.6 and Lemma 2.8 we 

necessarily have

F�,N,V,τ = ia

(
V − 4πN

τ2

)
(N − 2
) = 0.

Finally, by Lemma 2.9, we have N = 2
, and therefore we conclude that
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d = 2 and n1 = n2 = 
 = N

2 . �
Remark 2.10. Our main result in Theorem 1.1 gives infinitely many examples of con-
figurations of points on the sphere for which there cannot be solutions to the self-dual 
Einstein-Maxwell-Higgs equations, in apparent contradiction with [8, Theorem 1.2] (see 
the Erratum [9]). For example, one can take d = 1 and arbitrary N , or d = 2 and 
n1 > n2.
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