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a b s t r a c t

Advanced prostate cancer patients initially respond to hormone therapy, be it in the form of androgen 
deprivation therapy or second-generation hormone therapies, such as abiraterone acetate or enzalutamide. 
However, most men with prostate cancer eventually develop hormone therapy resistance. This resistance 
can arise through multiple mechanisms, such as through genetic mutations, epigenetic mechanisms, or 
through non-genetic pathways, such as lineage plasticity along epithelial-mesenchymal or neuroendocrine- 
like axes. These mechanisms of hormone therapy resistance often co-exist within a single patient’s tumor 
and can overlap within a single cell. There exists a growing need to better understand how phenotypic 
heterogeneity and plasticity results from emergent dynamics of the regulatory networks governing an-
drogen independence. Here, we investigated the dynamics of a regulatory network connecting the drivers of 
androgen receptor (AR) splice variant-mediated androgen independence and those of epithelial-me-
senchymal transition. Model simulations for this network revealed four possible phenotypes: epithelial- 
sensitive (ES), epithelial-resistant (ER), mesenchymal-resistant (MR) and mesenchymal-sensitive (MS), with 
the latter phenotype occurring rarely. We observed that well-coordinated “teams” of regulators working 
antagonistically within the network enable these phenotypes. These model predictions are supported by 
multiple transcriptomic datasets both at single-cell and bulk levels, including in vitro EMT induction models 
and clinical samples. Further, our simulations reveal spontaneous stochastic switching between the ES and 
MR states. Addition of the immune checkpoint molecule, PD-L1, to the network was able to capture the 
interactions between AR, PD-L1, and the mesenchymal marker SNAIL, which was also confirmed through 
quantitative experiments. This systems-level understanding of the driver of androgen independence and 
EMT could aid in understanding non-genetic transitions and progression of such cancers and help in 
identifying novel therapeutic strategies or targets.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Hormone therapy resistance in prostate cancer often arises as a 
consequence of androgen-independent activation of pro-survival 
androgen receptor (AR) signaling [1]. Several genetic alterations are 
associated with AR re-activation during ADT, such as amplification of 
AR, AR structural rearrangements [2], and gain-of-function muta-
tions in the AR ligand binding domain [3]. In addition to genetic 
mechanisms of AR-reactivation, hormone therapy-resistant prostate 
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cancer also exhibits an increase in specific splice variants of full- 
length AR (AR-FL) [4]. The canonical AR gene has 8 exons that to-
gether encode four functional domains: the N-Terminal Domain 
(NTD), DNA-binding domain (DBD), hinge region, and Ligand Binding 
Domain (LBD). AR-V7 is a splice variant that lacks the LBD but can 
translocate into the nucleus [5]. AR-V7 has been implicated in hor-
mone therapy resistance in preclinical models [6–9] and has been 
shown to be predictive of shorter time to progression and poorer 
overall survival in men with advanced prostate cancer [10,11].

In addition to these AR-dependent mechanisms, AR-independent 
mechanisms of resistance also exist, such as bypass signalling via the 
glucocorticoid receptor signalling pathway [12] and the emergence 
of aggressive variant prostate cancer, mediated through lineage 
plasticity toward AR-low or AR-null, neuroendocrine-like [11,13], 
FGFR-driven [14], and/or epithelial-mesenchymal transition (EMT)- 
like phenotypes [15,16].

EMT, a cell biological process implicated in wound healing and 
embryogenesis, is often aberrantly activated in cancer, and can 
promote migration, invasion, and survival during metastatic dis-
semination. Once the disseminating cancer cells reach a distant 
organ through the bloodstream, they can undergo the reverse of EMT 
– Mesenchymal-Epithelial Transition (MET) – to facilitate coloniza-
tion [17]. EMT also promotes immune suppressive and immune- 
evasive phenotypes through both secretion of extracellular immune- 
suppressive cytokines, such as IL‐6, IL‐8, and GROα (reviewed in 
[18]), and by direct transcriptional activation of immune check-
points, such as PD-L1 [19,20]. The EMT-induced alterations in im-
mune signalling and function may also induce a positive feedback 
toward a more EMT-like state (reviewed in [18]). In addition to its 
role in metastasis and immune suppression/evasion, EMT and ther-
apeutic resistance have been found to be linked across multiple 
drugs and cancer types [21,22]. Despite the relationships between 
EMT-like biology and hormone therapy resistance, the crosstalk 
between EMT and AR signaling remains poorly understood. For in-
stance, while EMT is enriched in hormone therapy-resistant prostate 
cancer, overexpression of AR, especially that of AR-V7, has also been 
shown to increase levels of genes associated with stemness and EMT 
[23]. Conversely, the EMT factor, Snail, induces resistance to en-
zalutamide through alterations in AR signaling [15,24], suggesting 
that in prostate cancer, the EMT and AR-FL/AR-V7 axes can influence 
one another. AR-FL and AR-V7 can also upregulate mesenchymal 
markers, such as SNAI1, ZEB1, fibronectin, N-cadherin and vimentin 
[23,24]. Further, knockdown of AR in C4–2 cells disrupted the ability 
of drugs such as enzalutamide to induce EMT. This effect was 
mediated by the direct transcriptional control of the EMT-inducing 
transcription factor SNAI1 (Snail) by AR [24], implying that mod-
ulation of AR activity can, in specific lineage contexts, direct EMT- 
like lineage plasticity. Moreover, in bone metastases from castration- 
resistant prostate cancer (CRPC), immunohistochemical analysis re-
vealed upregulation of EMT-related proteins, suggesting potential 
clinical implications of EMT in CRPC [25]. In human C4–2B CRPC 
xenograft models knockdown of ISL1, a driver of EMT, attenuated 
enzalutamide resistance and reduced tumor growth [26], thereby 
highlighting putative bidirectional interplay between the EMT and 
AR signaling pathways [27]. EMT also promotes immune suppressive 
and immune-evasive phenotypes through both secretion of extra-
cellular immune-suppressive cytokines, such as IL‐6, IL‐8, and 
GROα [18], and by direct transcriptional activation of immune 
checkpoints, such as PD-L1 [19,20]. The EMT-induced alterations in 
immune signalling and function may also induce a positive feedback 
toward a more EMT-like state [18]. This interplay between multiple 
signalling axes can lead to an aggressive phenotype with enhanced 
migration, invasion, immune evasive capacity, and increased survival 
during metastatic dissemination.

Here, we elucidate the emergent dynamics of the interconnec-
tion between the EMT and AR axes through mathematical modeling 

of experimentally-defined and -curated underlying regulatory net-
works. Dynamical simulations for these networks revealed two 
dominant phenotypes: epithelial-sensitive (ES) and mesenchymal- 
resistant (MR), indicating that EMT and CRPC may promote each 
other. These model-based predictions were validated by analysis of 
multiple publicly-available preclinical and clinical datasets at bulk 
and single-cell level. Finally, we integrated PD-L1 in our network to 
demonstrate how the three axes of immune-evasion, androgen-in-
dependence and EMT may be interconnected. These results offer 
mechanistic insights into empirical observations about EMT and 
CRPC and demonstrate how non-genetic/non-mutational changes, 
such as phenotypic plasticity, are capable of aggravating disease 
progression.

2. Results

2.1. Crosstalk between EMT and AR signaling pathways can lead to 
multiple phenotypes

We identified a regulatory network that encompasses the ex-
perimentally-reported interactions among various key components 
of EMT (miR-200, ZEB1, SLUG, SNAIL) and AR signaling (AR, AR-V7) 
pathways as well as factors known to connect these axes (hnRNPA1, 
LIN28, let-7; Fig. 1A, i; Table S1). The connections included in this 
network were obtained from multiple in vitro and in vivo experi-
mental data sets, such as knockdown or overexpression, ChIP-seq, 
and protein-RNA interaction data. For instance, miR-200 and ZEB1 
can inhibit each other [28,29], as can LIN28 and let-7 [30], ZEB1 and 
AR [31], and SNAIL and SLUG [32]. SNAIL and SLUG can both activate 
AR-V7 [15,33], which can activate LIN28 [23]. These interactions lead 
to the formation of various interconnected feedback loops, capable 
of enabling complex emergent dynamics of this regulatory network. 
We have used such experimentally-informed approaches earlier to 
uncover novel insights about the dynamics of EMT and its associa-
tion with drug resistance in ER+ breast cancer [32,34].

To decode the emergent dynamics of this network, the network 
was simulated using RACIPE (Random Circuit Perturbation) which 
converts a network topology into a set of coupled ordinary differ-
ential equations (ODEs) [35], and simulates the dynamics for an 
ensemble of kinetic parameters chosen from a biologically-relevant 
range. Thus, each unique parameter set in the context of RACIPE can 
be thought of as representing an individual cell in a population, 
displaying cell-to-cell variability. Such variability can lead to frac-
tional killing and determine the IC50 of a population to a given drug 
[36]. For each parameter set, it further samples various initial con-
ditions to identify different possible steady states (phenotypes) onto 
which the system can converge.

For the given gene regulatory network, we obtained multiple 
stable states that can be visualized as a hierarchically-clustered 
heatmap (Fig. 1A, ii). From a qualitative perspective, miR-200, SNAIL 
and let-7 are co-expressed in this heatmap; similarly, ZEB1, SLUG, 
LIN28, AR, AR-V7 and hnRNPA1 are often co-expressed. To quantify 
these co-expression patterns, we calculated the bimodality coeffi-
cients for distributions of steady state values for each of these net-
work components. The kernel density estimates (KDE) plots with 
histogram fits show that the mesenchymal markers, such as ZEB1 
and SLUG, stemness factors, such as LIN28 and let-7, and hnRNPA1 
show clearly bimodal patterns; these trends were not as clearly 
observed for levels of miR-200, SNAIL, AR and AR-V7 (Fig. 1B,i; Table 
S2, S3). Next, to investigate the co-expression patterns in the 
heatmap more quantitatively, we calculated the pairwise correlation 
coefficients among all pairs of network nodes and across all steady 
state values given by RACIPE (Fig. 1B, ii). In this pairwise correlation 
matrix, we observed two groups – or “teams” – of factors, such that 
members in one “team” were all positively correlated with one an-
other, but negatively correlated with members of the other 
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“team”[37], thus reminiscent of patterns seen in earlier analysis of 
networks underlying phenotypic plasticity in cancer [20,38,39]. 
Here, one “team” is comprised of let-7, miR-200 and SNAIL while the 
other team contains ZEB1, SLUG, LIN28, AR, AR-V7 and hnRNPA1 as 
its members. These two “teams” can act antagonistically, forming a 
“toggle switch”, thus driving phenotypic heterogeneity, which is 
observed in the case of EMT-CRPC crosstalk.

We next sought to define the phenotypes along the epithelial- 
mesenchymal and drug resistance axes. To do this, we defined an 
‘EM score’ and an AR-mediated ‘Resistance score’ for our simulation 
results. Higher EM scores (difference between the z-normalized 
expression of ZEB1 and miR-200) indicate more mesenchymal 
samples. Resistance score was defined as the sum of z-normalized 
expression of AR and AR-V7, based on evidence that shows that 
higher expression of both AR and its splice variant AR-V7 can 
mediate the emergence of AR-dependent mechanisms of hormone 
therapy resistance in multiple experimental settings [40,41]. The 
Resistance score in this context does not consider AR-independent 
models of hormone therapy resistance, such as neuroendocrine-like 
phenotypes [42] or “double negative” (AR-/NEPC-) phenotypes [43]. 
A higher Resistance score indicates a stronger AR-mediated therapy 
resistance. The histograms for both these scores revealed bimodality 
(Fig. 1C, i-ii). Next, to observe these phenotypic combinations, we 
plotted a scatter plot with the EM scores and Resistance scores as 
axes (Fig. 1C,iii). Points are colored according to K-means clustering, 
with the highest silhouette score obtained for K= 2 (Fig S1A). After 
identifying cut-offs for EM and Resistance scores as obtained from 
respective bimodal histograms, three key phenotypes are observed: 

epithelial/sensitive (ES), mesenchymal/resistant (MR) and epithelial/ 
resistant (ER). The scatter plot reveals that K-means algorithm 
clusters the ER and MR phenotypes together, indicating that al-
though some cells may not necessarily undergo a canonical EMT, 
they may still show signs of hormone therapy resistance. The me-
senchymal/sensitive (MS) phenotype was also apparent at a minor 
frequency, indicating that most of the prostate cancer cells under-
going EMT are likely to show phenotypic traits consistent with 
hormone therapy resistance [43].

The points in each quadrant were then mapped onto a UMAP 
plot, with colors of points representing different phenotypes 
(Fig. 1D). Here again we observe that the different phenotypes form 
different clusters, with MS less well-delineated as a unique cluster, 
likely due to its low occurrence. Together, investigation of these 
dynamical properties of the EM and Resistance axes suggests that 
the dominant phenotypes for this network are ER, MR and ES.

2.2. Emergence of co-existing phenotypes is driven by coordinated 
“teams” within a network

The heatmap and correlation matrix obtained after RACIPE si-
mulation highlight the presence of two groups of co-expressed 
genes (Fig. 1A,ii; 1B,ii): one of them comprising ZEB1, SLUG, AR, AR- 
V7 and hnRNPA1, and the other comprising let-7, miR-200 and 
SNAIL. The first group contains EMT-inducing transcription factors in 
PCa (ZEB1, SLUG) [44,45], as well as drivers of ADT resistance (AR, 
AR-V7 and hnRNPA1) [46]. Except for SNAIL, the second group 
contains EMT-inhibiting microRNAs (let-7, miR-200). In our model, 

Fig. 1. Multi-stable dynamics of the coupled EMT–AR crosstalk network. A) (i) Gene regulatory network (GRN) showing crosstalk between EMT and Androgen Receptor (AR, 
AR-v7) signalling. Blue arrows represent activation links; red hammers represent inhibition. (ii) Heatmap of stable steady-state solutions for network shown in A (i), as obtained 
via RACIPE. B) (i) Kernel Density Estimate plots with histograms of z-score levels of individual nodes in a network, fitted to Gaussian distributions. Each panel legend shows the 
corresponding Bimodality Coefficient (BC). (ii) Pairwise correlation matrix in which each cell denotes the correlation coefficient between the corresponding set of genes. Red 
indicates positive correlation; blue indicates negative correlation; colormap indicates the strength and sign of correlation; cells with a cross (x) highlight non-significant cor-
relation (p  >  = 0.05). C) (i) Histogram of Resistance score (AR + AR-V7) fit to a Gaussian. (ii) Histogram of epithelial-mesenchymal (EM) score (ZEB1 - miR200) fit to a Gaussian. (iii) 
Scatter plot showing the corresponding EM and resistance scores for all RACIPE solutions obtained. D) (i) UMAP (uniform manifold approximation and projection) dimensionality 
reduction plots for steady-state solutions colored by Resistance score; colormap indicates the Resistance score. (ii) Same as (i) but for EM score. (iii) UMAP based on EM and 
resistance scores together; Quadrant 1 represents mesenchymal resistant, Quadrant 2 represents epithelial resistant, Quadrant 3 represents epithelial sensitive and Quadrant 4 
represents mesenchymal sensitive populations.
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we have considered one node to represent multiple members of the 
miR-200 family, most members of which can inhibit and are in-
hibited by ZEB1 and ZEB2 [47] and can inhibit EMT and metastasis in 
prostate cancer [48,49]. Together, these two groups may be reflective 
of the two major phenotypes illuminated by our simulations: 1) the 
group with upregulated ZEB1, SLUG, AR, AR-V7 and SLUG corre-
sponding to a MR phenotype, and 2) the group with downregulated 
levels of these molecules reflecting an ES phenotype. It is worth 
noting that these models likely do not include scenarios of lineage 
plasticity toward AR null lineage states and are focused on models 
that maintain AR expression.

Next, we asked whether emergence of these two groups of co- 
expressed molecules could be an outcome of specific kinetic para-
meter values chosen and sampled by RACIPE, or whether they are 
attributed to a consequence of the underlying topology of the reg-
ulatory network irrespective of parameters. To interrogate this fur-
ther, we mapped the “influence matrix” corresponding to the 
simulated network. This matrix is defined purely on the basis of 
network topology without simulating network dynamics, as pre-
viously defined [38]. Each element in this matrix defines how 
strongly a node in the network (represented by cell in the ith row) 
influences the levels of another node in the network (represented by 
cell in the jth column), through multiple paths of varying lengths 
through which these two nodes are connected in the given network. 
The influence matrix corresponding to our biological network 
(Fig. 2A) reveals that the network is comprised of two “teams”, such 
that members across teams are mutually inhibitory, but those within 
a team activate each other. The composition of these two “teams” is 
identical to that of two groups of co-expressed molecules (Fig. 1B, ii): 
one “team” including ZEB1, hnRNPA1, AR, AR-V7, LIN28 and SLUG, 

and the other including let-7, miR-200 and SNAI1. This analysis 
suggests that the underlying network topology defines the two 
“teams”.

We next interrogated whether the presence of “teams” is specific 
to the network considered here. To address this question, we cal-
culated the “team strength” of the “teams” identified in the influence 
matrix. This metric quantifies the strength of the two teams in the 
influence matrix by providing an estimate of how strongly members 
within a team support each other and how strongly members across 
teams inhibit each other. This estimate is defined on a scale of [0,1], 
with a higher corresponding to more well-defined teams. We first 
generated an ensemble of 100 randomized (hypothetical) networks 
with the same number of nodes and edges, but varied network to-
pology (Fig S1D) and calculated their “teamstrength”. While the 
calculated “team strength” of the randomly generated “teams” was 
largely centered around 0, the team strength of the experimentally- 
derived network was 0.2297 (Fig. 2B), indicating that the presence of 
“teams” in the experimentally-informed network is largely unique to 
the topology of underlying network. Moreover, in the ensemble of 
random networks generated, the higher the team strength, the 
stronger the correlation between EMT and Resistance scores, sug-
gesting that the presence of these “teams” contributes directly to 
the functional coupling between these two axes of plasticity 
(Fig S1B-C).

To confirm the composition of the “teams” obtained via an in-
fluence matrix, we performed principal component analysis (PCA) 
on the ensemble of solutions obtained by RACIPE simulations. The 
Scree plot (Fig. 2C, i) shows that the first two principal components 
can explain about 80% variance (61.2% from PC1 and 16.4% from PC2). 
To better visualize this trend, we created a correlation circle 

Fig. 2. Coordinated EMT and AR programs in network topology and transcriptomic data. A) Influence matrix for the biological network shown in Fig. 1A. B) Histogram of 
group strengths for 100 random (non-biological) networks generated by shuffling edges in the biological network. The group strength of the biological network us shown in red C) 
(i) Scree plot showing PCA components and their explained variance percentage (ii) PCA Correlation Circle of the RACIPE solutions of the biological network D) Scatter plots 
indicating Spearman's correlation between metrics of EMT (EMT KS score, EMT 76GS score, ZEB1 and SNAI2 expression levels) and ssGSEA scores for Wang Prostate Cancer 
Androgen Independent gene set, in TCGA (above) and GSE74685 (below). E) Pairwise correlation between different EMT scoring and androgen independence gene lists/metrics in 
different transcriptomic datasets (Left to right - GSE77959 (n = 30), GSE80042 (n = 44), GSE67681 (n = 6), TCGA (n = 551) and GSE22010 (n = 12)). Labels: 1 – ssGSEA scores for 
Wang Prostate Cancer Androgen Independent geneset (MsigDB), 2 – ZEB1 expression levels, 3 – KS score, 4 – ssGSEA scores for Hallmark EMT geneset (MsigDB), 5 – 76GS score. 
Color bar indicates Spearman's correlation coefficient. Crosses indicate corresponding p-value >  = 0.05.
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(Fig. 2C, ii) that shows that members from one “team” were located 
close to each other on one side of the circle, while those from the 
other team located close to each other on the other side. This ob-
servation further supports the proposed mutually antagonistic re-
lationship between these two “teams” of molecules embedded in the 
underlying network topology. The mutual antagonism between 
these “teams” control the various phenotypes observed in prostate 
cancer along the EMT and therapeutic resistance axes, for instance, 
as showcased by the presence of miR200 in one team and ZEB1 in 
the opposite team. A comparative analysis of this wild-type (WT) 
network with its randomized counterparts revealed that the for-
mation of “teams”, as identified by the PCA plot, is specific to the WT 
network (Fig S2). Overall, this analysis reveals that “teams” con-
taining interconnected molecular players underlie the observed as-
sociation between EMT and androgen independence.

2.3. Clinical data supports model predictions of the association between 
EMT and therapy resistance

To provide additional support for the association between EMT 
and AR signaling – as indicated by the predominance of ES and MR 
phenotypes – we examined how EMT and AR signatures correlated 
in various clinical data sets. One of the datasets (GSE74685) con-
tained transcriptomic data from 62 patients with castration-re-
sistant prostate cancer [25], while another cohort (n = 149) was 
obtained from The Cancer Genome Atlas (TGCA). We quantified the 
single-sample Gene Set Enrichment Analysis (ssGSEA) scores based 
on the Wang Androgen Independent Prostate Cancer [28] geneset 
from the Molecular Signatures Database (MSigDB) [50]. In both 
GSE74685 and TCGA cohorts, these ssGSEA scores were found to 
correlate positively with expression levels of ZEB1 and SNAI2, both 

of which promote a mesenchymal phenotype. Besides individual 
molecules, EMT scores based on larger gene sets – KS and 76GS [51]
– showed similar trends. [50]. The higher the KS score or the lower 
the 76GS score, the more mesenchymal a sample is. Consistent with 
model predictions, the ssGSEA score for the androgen independence 
gene list correlated positively with KS and negatively with 76GS 
(Fig. 2D).

To further validate our model predictions, we analyzed the fol-
lowing additional transcriptomic datasets – GSE77959 (human 
prostate specimens) [52], GSE80042 (time-course of in vitro EMT 
induction in LNCaP cells) [45], GSE67681 (cells from mice with Pten 
deletion and Kras activation) [53], GSE74685 [25] (CRPC tumors) and 
GSE22010 (immortalized prostate epithelial cells) [54]. Analysis of 
pairwise correlations among the ssGSEA scores for the androgen 
independence gene set, ZEB1 expression levels, KS and 76GS scores 
and ssGSEA scores for the Hallmark EMT gene set revealed positive 
correlations between the ssGSEA score for androgen independence 
and ZEB1, KS and the ssGSEA score for Hallmark EMT, and all four of 
these metrics correlated negatively with 76GS EMT scores (Fig. 2E). 
Together, these results suggest that AR-dependent models of an-
drogen independence and EMT status are tightly coupled.

2.4. Stochastic stimulations demonstrate cell-state switching among 
interconnected EMT and resistance traits

Stochasticity in various biological processes, such as transcription 
and translation, can produce non-genetic heterogeneity [55,56]. 
These stochastic factors can drive phenotypic switching, especially 
in a multi-stable system [57–59], such as the coupled EMT-AR cir-
cuit. Thus, it is possible that a cell can reversibly switch to a drug- 
tolerant state in response to drug treatment, and later lead to 

Fig. 3. Stochastic cell-state transitions along EMT and AR axes. A) (Top) Pie chart showing fraction of RACIPE parameter sets in terms of number of steady-state solutions 
enabled. (Bottom) Pie chart showing combinations of different phenotypes constituting bistable solutions. B) System dynamics for representing two biological EMT phenotypes (E, 
M) and Resistance (R, S) when starting from multiple different initial conditions. C) (Top) Stochastic cell-state transition from MR to ES phenotypes under the influence of gene 
expression noise. (Bottom) A zoomed-in version of the highlighted region. D) Landscape showing log (likelihood) on the Sensitivity and EM score planes, with the valleys 
representing the stable states possible in the system - epithelial sensitive, mesenchymal resistant E) EMT scores (KS scores, 76GS scores and ssGSEA scores for the Hallmark EMT 
gene set) for a single-cell RNA-seq dataset (GSE168668) comprising samples (cells) treated with DMSO, treated with enzalutamide for 48 h (ENZ48) and enzalutamide resistant 
(RES) cells. * ** *: p  <  0.01 for Students’ t-test.
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repopulation and consequent tumor relapse. Hence, we investigated 
the effect of noise/stochasticity on the dynamics of our gene reg-
ulatory network. We identified parameter sets via RACIPE that re-
sulted in multi-stable states and then performed stochastic 
simulations using specific parameter sets.

Among the ensemble of parameter sets in RACIPE simulations, 
21.3% were monostable, 27.8% were bistable, 25.8% were tri-stable 
and 25.1% had more than three states. Hence, the network con-
sidered here is predominantly multi-stable; in approximately 80% of 
cases, the system could converge to more than one stable state 
(phenotype), depending on the initial simulations. Among the dif-
ferent possible combinations of states observed in bistable para-
meter sets, the most common combination (37.21%) was the co- 
existence of ES (epithelial-sensitive) and MR (mesenchymal-re-
sistant) (Fig. 3A). From the bistable parameter sets corresponding to 
ES and MR phenotypes, we simulated the system in the absence of 
noise for multiple initial conditions and plotted the EM score and 
Sensitivity scores. Sensitivity score here is defined as the negative of 
the resistance score, i.e., a higher Sensitivity score means a Sensitive 
phenotype while a lower Sensitivity score means a Resistance phe-
notype. These simulations showed two distinct levels of steady-state 
EM scores and Sensitivity scores (Fig. 3B), each corresponding to the 
Epithelial and Mesenchymal region for the EM plot and Resistant 
and Sensitive for the Sensitivity plot. We also observed that the in-
itial conditions that lead to an epithelial state on the EM plot also led 
to Sensitive state on the Sensitivity plot. The same was also true for 
the mesenchymal and resistant state, thus supporting the associated 
dynamics and crosstalk of EMT and AR signaling. Next, we simulated 
the system dynamics under the influence of noise in gene expres-
sion. We observed that the system switched from mesenchymal- 
resistant (MR) to epithelial-sensitive (ES) phenotype in the presence 
of gene expression noise. This switch along the EM scores and sen-
sitivity scores happened almost simultaneously, thereby indicating a 
strong coupling of EMT and hormone therapy resistance axes in our 
GRN (Fig. 3C). To strengthen our analysis, we simulated the system 
under the presence of gene expression noise for multiple initial 
conditions and plotted the landscape of observed trajectories. We 
observed that the system revealed two deep “attractors” corre-
sponding to ES and MR states (Fig. 3D), thus enabling co-existence of 
these two cell-states in a population of heterogeneous gene ex-
pression.

Next, we examined whether EMT and drug resistance behaviors 
could drive each other. To do this, we quantified the extent of EMT 
using three independent EMT scoring metrics - KS and 76GS scores 
and ssGSEA scores for the Hallmark EMT gene set from single-cell 
RNA-sequence data for samples treated with dimethyl sulfoxide 
(DMSO), enzalutamide for 48 h (ENZ48) and cells resistant to en-
zalutamide (RES). All three EMT scoring metrics showed very con-
sistent trends in terms of induction of EMT in enzalutamide resistant 
cells as compared to cells treated with DMSO or acutely treated with 
enzalutamide for 48 h (Fig. 3E). This single-cell transcriptomic data 
analysis thus revealed a drug-induced transition from epithelial- 
sensitive to mesenchymal-resistant in prostate cancer cell lines.

2.5. Association of enriched PD-L1 levels with EMT and androgen 
independence

Another hallmark of tumor aggressiveness is immune evasion, 
and one key mechanism of immune evasion is through elevated 
expression of immune checkpoint molecules, such as Programmed 
Death Ligand I (PD-L1) that can suppress the adaptive immune re-
sponse. Interestingly, EMT has been reported to be associated with 
higher levels of PD-L1 and other immune checkpoints [20,60]. 
Therefore, we first examined TCGA data and found a significant 
positive association between expression levels of PD-L1 and SNAIL 
(SNAI1) (Fig. 4A). Using a SNAIL-inducible human LNCaP95 prostate 

cancer cell line [61,62], activation of Snail induces upregulation of 
PD-L1 mRNA (Fig. 4B) and protein (Fig. 4C). This implies that PD-L1 is 
regulated by the EMT mediator, SNAIL.

PD-L1 is a well-known driver of immune evasion in several 
cancer types [63]. Given the observed association of PD-L1 with the 
EMT axis and with enzalutamide-resistant prostate cancer cell lines 
[64], we expanded our regulatory network to include PD-L1 as a 
node (Fig. 4D) and simulated the emergent dynamics of this ex-
panded network. Steady state values obtained from RACIPE simula-
tions for this expanded network were hierarchically clustered in the 
heatmap (Fig. 4E), which showed PD-L1 expression to be closely 
related to that of SNAI1. Furthermore, high expression of AR coin-
cides with low expression of PD-L1 and vice versa, as further cor-
roborated by the pairwise correlation heatmap (Fig. 4F) obtained 
from the cohort of RACIPE solutions for this network. These simu-
lation-based results are supported by experimental data from three 
pairs of enzalutamide-sensitive and -resistant cell line models [62]
in which SNAI1 (Fig. 4G) and PD-L1 (Fig. 4H) are upregulated in 
enzalutamide-resistant models as compared to their enzalutamide- 
sensitive counterparts. The upregulation of SNAI1 and PD-L1 is 
consistent across all three paired enzalutamide-resistant models 
that each have unique genomic alterations, including dual loss of 
BRCA2 and RB1 in the CS2 sub-line [62].

To further investigate these relationships, we probed the corre-
lations between PD-L1 signatures, SNAI1 and AR expression levels in 
several transcriptomic datasets – TCGA, CCLE, GSE54460, and 
GSE74685 (Fig. 5A, i; 5B, i)). These datasets revealed that PD-L1 
expression levels significantly correlated positively with SNAI1, but 
negatively with AR levels. The expression values generated by our 
network simulations also recapitulated the correlation trends 
(Fig. 5A,ii; 5B,ii)).

To identify whether the above-mentioned trends are evident in 
additional transcriptomic datasets, we undertook a meta-analysis 
where we analyzed 70 independent transcriptomic datasets in 
prostate cancer (Table S4). We calculated the ssGSEA scores for 
epithelial and mesenchymal gene lists, as well as those for the 
Hallmark EMT signature. We observed that across 24 datasets with a 
statistically significant correlation between the epithelial and me-
senchymal scores, 22 (∼ 92%) of them showed a negative trend, in-
dicating that these two programs are strongly antagonistic to one 
another (Fig. 6A, top). The Hallmark EMT scores also positively cor-
related with Mes scores (Fig. 6A, bottom). Consistently, we observed 
a dominance of positive correlation of PD-L1 expression levels as 
well as Androgen Independence geneset activity with a more me-
senchymal phenotype (Fig. 6B-C). Overall, this meta-analysis [54]
confirms the association of EMT and AR-dependent scenario of an-
drogen independence with PD-L1 enrichment in prostate cancer.

3. Discussion

EMT-like lineage plasticity is associated with multiple key fea-
tures of aggressive disease across solid tumors, including metastasis, 
therapy resistance, and immune evasion. In the current work, we 
focused on the interconnections of EMT and AR gene regulatory 
networks in the context of hormone therapy resistance and immune 
evasion.

Here, we adopt a computational systems biology approach to 
elucidate the mechanisms underlying the development of anti-an-
drogen resistance, by unraveling the emergent dynamics of a 
minimal gene regulatory network incorporating various experi-
mentally-reported interactions among EMT players (SNAIL, SLUG, 
miR-200, ZEB1) and signaling by androgen receptor and its variants 
(AR, AR-v7). The dynamics of this coupled network reveals the (co-) 
existence of four phenotypes: epithelial sensitive (ES), epithelial 
resistant (ER), mesenchymal sensitive (MS) and mesenchymal re-
sistant (MR), with ES and MR being the dominant phenotypes. Thus, 
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our model could recapitulate how the transcriptional dynamics of an 
underlying regulatory network can give rise to phenotypic hetero-
geneity in terms of both epithelial-mesenchymal status and corre-
sponding anti-androgen resistance traits. Through a careful analysis 
of underlying network topology, we found that the regulators of EMT 
and castration resistance organized themselves into “teams” of 
players which act antagonistic to each other. Such organization of 
regulatory genes into teams was lost when the edges in this network 
were shuffled to generate many non-biological randomized 

hypothetical networks. This observation suggests the evolution of 
the network to this specific topology may reinforce the coupling 
between EMT and anti-androgen resistance traits. Furthermore, we 
showed that the ES and MR phenotypes can switch among each 
other due to noise in gene expression, showcasing the phenotypic 
plasticity features of this network.

These simulation results were supported by analysis of multiple 
transcriptomic datasets both at the bulk and single-cell levels, 
through demonstrating: a) more mesenchymal cell lines or primary 

Fig. 4. Association of PD-L1 with EMT/AR crosstalk. A) RNA-Seq data from The Cancer Genome Atlas shows a significant positive correlation between SNAIL and PD-L1 
expression in prostate cancer samples B) mRNA expression of PD-L1 with and without SNAIL in the LNCaP95-SNAIL inducible cell line C) Protein expression of SNAIL and PD-L1 in 
LNCaP95 with and without SNAIL activation D) Gene regulatory network showing the androgen receptor axis and EMT related genes, along with an added PD-L1 node E) Heatmap 
of stable steady-state solutions for the network shown in A, obtained via RACIPE F) Correlation matrix for the genes in the network; red indicates positive correlation and blue 
indicates negative correlation; x indicates correlations with p  >  0.05 and the color of each cell indicates the strength of the correlation. G) Western blotting for Snail in paired 
enzalutamide-sensitive (S) and –resistant (R) cell lines. GAPDH was included as a loading control. H) PD-L1 protein level quantification based on phospho-protein arrays. 
* indicates p  <  0.05.

Fig. 5. Association of PD-L1 signature with AR in simulation and transcriptomic data. A) (i) Scatter plots indicating the Pearson’s correlation between PD-L1 signature 
(calculated based on ssGSEA scores of 15 genes defined in [65]) and SNAI1 levels in various clinical data sets and (ii) Scatter plot indicating the Pearson’s correlation between PD- 
L1 and SNAI1 levels at steady state produced by simulations B. (i) Scatter plots indicating the Pearson’s correlation between PD-L1 and AR levels in various clinical data sets and 
(ii) Scatter plot indicating the Pearson’s correlation between PD-L1 and AR levels at steady state produced by simulations.
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tumors associated with an enrichment of the androgen in-
dependence geneset in prostate cancer samples (quantified by high 
KS scores, low 76GS scores, high levels of ZEB1, high ssGSEA scores 
for the Hallmark EMT pathway), b) enzalutamide-resistant cells had 
a more mesenchymal nature, and c) PD-L1 expression correlated 
positively with SNAIL expression but negatively with AR signaling. 
Thus, dynamical modeling predictions, integrated with multiple 
publicly-available datasets, show how EMT/AR crosstalk can impact 
other axes of plasticity, such as upregulation of immune checkpoints 
and subsequent immune evasion. Therefore, our results demonstrate 
how a minimal or core regulatory network can capture diverse in-
terconnections among multiple axes of plasticity and that these 
players can serve as a potential biomarker panel with prognostic 
significance, given their association with EMT, clinical response to 
hormone therapy and immune-evasive features.

EMT has been previously reported in castration-resistant pros-
tate cancer bone metastases [17]. Moreover, androgen deprivation 
has been shown to drive EMT in prostate cancer cell lines and patient 
derived xenografts (PDXs) [31]. Further, over-expression of AR-v7 
has been shown to promote induction of mesenchymal and stem-
ness markers [26], similar to our observations of coupled EMT and 
anti-androgen resistance axes. Besides the ES and MR phenotypes, 
our model also predicted two other phenotypes, although at a lower 
frequency - mesenchymal-sensitive (MS) and epithelial-resistant 
(ER). Future experiments should investigate the role of these phe-
notypes and determine whether these phenotypes are observed 
during MET, given the asymmetric or hysteretic dynamics of EMT/ 
MET. Another model prediction that needs detailed experimental 
validation is stochastic cell-state transition among cells with varying 
androgen dependence.

Our mechanism-based model simulations provide a template of 
how the emergence of phenotypic heterogeneity can be a function of 
feedback loops formed by transcriptional crosstalk. However, there 
are also several limitations to this study. For one, other regulatory 

layers that act on varying timescales – epigenetic [66], translational 
[67], genetic [68,69] and metabolic – may need to be incorporated 
into this framework to better understand their impact on phenotypic 
plasticity and gene expression heterogeneity and subsequent 
therapy resistance. As an example, the genetic alterations that pro-
mote lineage plasticity toward a more neuroendocrine-like pheno-
type render cells refractory to hormone therapy via distinct non-AR- 
dependent mechanisms [11,13]. Our model does not account for the 
underlying genetic lineages that give rise to AR-independent re-
sistance mechanisms. Including these additional players and un-
derlying genetic and phenotypic lineages (e.g., TP53/RB1 status, 
relative AR-dependency, neuroendocrine-like or “double negative” 
phenotypes) can facilitate more trajectories of anti-androgen re-
sistance, such as lineage plasticity to a neuroendocrine state. Our 
modeling framework can be expanded to include other reported 
mechanisms of castration resistance, such as those involving PAGE4 
[70] or stemness factors like SOX2 [71]. While modeling approaches 
can always be made more complex, our framework serves as a un-
ique platform to understand the interconnections between multiple 
gene regulatory axes. This platform can be applied to test combi-
natorial therapies that can counteract the impact of phenotypic 
plasticity (similar to efforts in ER+ breast cancer [72], where a 
combination of tamoxifen and EMT inhibitors was proposed) and/or 
strategies such as bipolar androgen therapy [73].

4. Materials and methods

4.1. Cytoscape

Cytoscape was used to generate Fig. 1A(i) and 4A(i). A table 
containing source node, target node and the type of interaction 
(activation or inhibition) was provided as input to generate these 
networks.

Fig. 6. Meta-analysis showing association between EMT, androgen independence and PD-L1 in bulk transcriptomics data. A) Volcano plots showing Spearman correlation 
coefficients (x-axis) and -log10(p-value) (y-axis) for Epi vs. Mes (top) and Hallmark EMT vs. Mes (bottom). Significant correlations (R >  ±  0.3 and p  <  0.05) shown as red (positive 
correlation), blue (negative correlation) datapoints. Each dot represents a unique data set. Numbers on each side of the volcano plots indicate the number of data sets that are 
positively correlated (red) or negatively correlated (blue). Same as A) but for B) Hallmark EMT vs. PD-L1 (top), Mes vs. PD-L1 (bottom), C) Hallmark EMT vs. Androgen 
Independence (top), Mes vs. Androgen independence (bottom).
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4.2. RACIPE (Random circuit perturbation)

Random Circuit Perturbation (RACIPE) [74] is a computational 
tool that takes the network topology (nodes and interactions) as 
input and generates an ensemble of kinetic models with parameters 
and initial conditions sampled within biologically relevant ranges. 
Each such model consists of coupled ordinary differential equations 
(ODEs) for each node and is represented as the basal production rate 
multiplied with shifted Hill functions for each interaction of which 
the gene is a target, along with a degradation term. These ODEs were 
solved using Euler’s method for multiple sets of initial conditions to 
give steady states. The ensemble of steady states that are obtained 
from this represent the variability in expression by different cells in 
a population. For our simulations, we used 10,000 parameter sets 
(10,000 models), where each model was solved for 100 initial con-
ditions.

4.3. Z-normalization

The RACIPE stable state data generated is log2 normalized. We 
performed z-score normalisation on the data using the expression 
given below:

=Z
X X̄

ij
ij i

i

=Z z score of the i node and j stable stateij
th th

=X log steady state value of the i node and j stable stateij 2
th th

=X̄ mean of steady state values of i nodei
th

= standard devaition of steady state values of the i nodei
th

4.4. Kernel density estimate

This method is used to estimate the probability density function 
by smoothening the data of a random variable, which in our case is 
the steady state levels for each node. We used the function kdeplot 
under the library seaborn in Python 3.9.5 to generate the plots. 
Histograms were generated to show the discrete probability density 
function, with number of bins fixed at 24. Bimodality coefficients 
were calculated for each distribution using Sarle’s bimodality index 
(described later).

4.5. Correlation plots

To calculate correlations, we used Spearman correlation coeffi-
cients and the corresponding p-values to assess the statistical sig-
nificance of these correlations. For the correlation between Snail and 
PD-L1 from The Cancer Genome Atlas prostate cancer (PRAD) data 
set, the correlation between Snail expression and PD-L1 expression 
from prostate cancer patients was analyzed using the Kruskal 
Wallis test.

4.6. Finding boundary conditions for determination of phenotypes

To classify the steady state solutions into biologically meaningful 
cell states, we calculated the Epithelial-Mesenchymal (EM) scores 
and AR Resistance scores for each sample in the simulated dataset, 
which help us determine quantitatively the phenotype to which a 
specific steady state corresponds. The difference between the Z- 
normalized steady state values of ZEB1 and miR200 was used to 
calculate the EM score while the sum of the Z-normalized steady 
state values of AR and AR-v7 were used to define the Resistance 
score. Both EM and Resistance scores were z-normalized across all 

simulated samples. On plotting the kernel density estimates of these 
scores, we found EM and resistance to be bimodal (Fig. C(i), D(i)). 
Thus, each score corresponded to two phenotypes – epithelial and 
mesenchymal for EM score and sensitive and resistant for Resistance 
score. To define the boundary score between two phenotypes, we 
calculated the central minima between the two peaks of the kernel 
density estimate for the scores determined from the biological 
network.

4.7. Uniform manifold approximation and projection (UMAP)

UMAP is a dimensionality reduction method which is based on 
topological analysis of the data. The n-dimensional data is reduced 
to 2 dimensional UMAP coordinates. For Fig. 1C(ii) and 1D(ii) each 
point is colored based on Resistance scores and EM scores, respec-
tively. We used the umap-learn library in Python to generate this 
plot. The n_neighbors parameter which determines the number of 
nearest neighbours to consider while the clustering was set to 100. 
The min_dist parameter which determines the region to look at for 
clustering was set to 0.8.

4.8. Principal component analysis

PCA is a dimensionality reduction tool which gives us an idea of 
the multidimensional network. To analyse the degree to which di-
mensionality of the system could be reduced, we looked at the Scree 
plot which showed that PCA1 and PCA2 could explain the major 
features of the network (Fig. 2C (i)).

4.9. Generation of random networks

To generate unique randomized networks for the ‘wild type’ 
network, the directed edge topology of the biological network was 
kept intact. Hence, the source and target of each edge remained the 
same. However, each edge was assigned as activating or inhibiting 
randomly such that the overall number of activating edges and in-
hibiting edges remained the same as that in the ‘wild type’ network. 
We generated an ensemble of 100 of such randomized networks for 
the analysis.

4.10. Bimodality coefficient (BC)

BC assumes that the distribution is unimodal as its null hy-
pothesis. For values more than 0.555, we interpret that the null 
hypothesis has failed, and the distribution is not unimodal. The bi-
modality coefficient was calculated using the formula given below:

= +

+ ( )
BC

s 1

k 3

2

(n 1)
(n 2)(n 3)

2

=s skew of the data

=k kurtosis of the data

=n number of data points in the sample

4.11. Hartigan’s dip test (HDT)

The HDT assumes that the unimodal hypothesis as the null hy-
pothesis [75]. Tests with a p-value <  0.05 confirmed that the dis-
tribution is not unimodal. The diptest package in R was used to test 
for bimodality.
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4.12. Influence matrix and team strength

The influence matrix was calculated as defined previously in our 
work [38]. It quantifies the effect each node has on another node 
solely based on the topology of the network. For a given pair of 
nodes, it defines a path as the collection of serially connected edges 
that start from one of the nodes and ends at the others and defines 
the pathlength as the number of edges in the path.

Team strength is a metric which quantifies the strength of the 
two teams seen in the influence matrix, in other words, how strongly 
the members within a team support each other and those across 
teams inhibit each other. It is defined on a scale of [0,1]; the higher 
the value, the more well-defined the two teams. This is calculated by 
the formula defined in [37].

4.13. Datasets analyses

For bioinformatic analysis publicly available datasets CCLE [76], 
TCGA (https://www.cancer.gov/tcga.), GSE54460[77], GSE74685 
[25], GSE707768, GSE70769 [78], GSE77959 [52], GSE80042 [45], 
GSE67681 [53], GSE22010 [79], GSE 168668 and GSE130402 were 
used. The results published here are in part based upon data gen-
erated by The Cancer Genome Atlas (TCGA) Research Network: 
http://cancergenome.nih.gov.

4.14. Gene signatures

To calculate gene signatures for each sample, we used single 
sample GSEA (ssGSEA) [80] scores for a given gene set. To calculate 
gene signatures for each sample, we used single sample GSEA 
(ssGSEA) [80] scores for a given gene set. AR signature scores were 
calculated based on the WANG_PROSTATE_CANCER_ANDRO-
GEN_INDEPENDENT geneset [28] and EMT signature scores were 
calculated using HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSI-
TION geneset available on MsigDB. EMT scores KS and 76GS were 
calculated based on previous reports [81,82]. PD-L1 signature was 
calculated based on ssGSEA scores of 15 genes defined previously in 
literature [65,81,82].

4.15. Stochastic simulations

We simulated network in described in Fig. 1 A(i) using Eu-
ler–Maruyama method for some representative parameter sets 
(which were taken from RACIPE) that corresponded to coexistence of 
two states high EM score-low sensitivity score (mesenchymal re-
sistant) and low EM score-high sensitivity score (epithelial sensi-
tive). The corresponding equations take the following form:

N

+ = +

+

X t X t t g H X t X n k X t t

t

( 1) ( ) * * ( ( ), , , ) * ( )*

* (0, 1)

i i x j
s

j ij ji ji xi i
0

i

The equation used for stochastic simulations here are similar to 
ODEs used by RACIPE but with noise terms: Nt * (0,1),where t is 
the time step and N (0,1) is a normal random variable with mean 0 
and standard deviation 1. For the parameter set, we simulated the 
network for 100 different initial conditions sampled uniformly from 
the range [0,1.5 * (

g

k
xi

xi
)]. We then normalized the trajectories using the 

mean and standard deviation of each node expression obtained from 
RACIPE and converted the trajectories to EM scores and PD-L1 levels 
in order to classify them into the observed phenotypes. Using these 
trajectories, we constructed obtained a probability density (P) of the 
EM-Sensitivity score pairs and constructed a log (likelihood) land-
scape [65,83].

4.16. Cell culture

LNCaP95-Snail inducible cells were cultured in RPMI containing 
10% charcoal-stripped fetal bovine serum and 1% penicillin/strepto-
mycin and maintained at 37 °C in a humidified incubator with 5% 
CO2. Induction of Snail nuclear translocation was mediated by the 
addition of 4-hydroxy-tamoxifen (4OHT) at a concentration of 
20 nM. Ethanol (EtOH) was used as a vehicle control. All cells were 
authenticated by the Duke DNA Analysis Facility using analysis of 
short tandem repeats and were verified to be mycoplasma-free.

4.17. Real-time quantitative RT-PCR

For qPCR, total RNA was reverse transcribed using the High- 
Capacity cDNA Reverse Transcription Kit (Life Technologies). 
Aliquots of 5-fold diluted reverse transcription reactions were sub-
jected to quantitative (q)PCR with KAPA SYBR FAST master mix using 
the Vii7 real time-PCR detection system (Applied Biosystems). 
GAPDH mRNA levels were measured for normalization, and the data 
are presented as “Relative Expression”.

4.18. Immunofluorescence staining

For cells expressing inducible Snail, cells were pretreated with 
ethanol (EtOH) or 4OHT. For immunofluorescence (IF) staining, cells 
were fixed in 4% PFA, permeabilized with 0.2% Triton X-100, and 
stained with Hoechst. Cells were blocked with 5% bovine serum al-
bumin (BSA, Sigma) prior to incubation with primary antibodies. 
Cells were incubated in Alexa Fluor secondary antibodies (Life 
Technologies) and then imaged on an inverted Olympus IX 73 epi-
fluorescence microscope.

4.19. Reverse phase protein array

Cells were seeded (300,000/well) in 6-well plates and allowed to 
incubate for 5 days. Cells were then rinsed with PBS, flash frozen, 
and analyzed as previously described [84,85].

4.20. Immunoblot analyses

For immunoblot analysis cells extracts were mixed with SDS 
sample buffer and submitted to SDS-PAGE. Following electrophoretic 
transfer onto nitrocellulose, the filters were blocked in Starting Block 
(Thermo), incubated with primary and secondary antibodies, and 
developed using the Odyssey-FC imager (LI-COR).
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