
Circumventing the challenges in the choice of the nonconformal coupling
function in inflationary magnetogenesis

Sagarika Tripathy ,1,* Debika Chowdhury ,2,† H. V. Ragavendra ,3,‡ Rajeev Kumar Jain ,4,§ and L. Sriramkumar 1,∥
1Centre for Strings, Gravitation and Cosmology, Department of Physics,

Indian Institute of Technology Madras, Chennai 600036, India
2Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom

3Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata,
Mohanpur, Nadia 741246, India

4Department of Physics, Indian Institute of Science, Bengaluru 560012, India

(Received 22 November 2022; accepted 9 January 2023; published 1 February 2023)

As is well known, in order to generate magnetic fields of observed amplitudes during inflation, the
conformal invariance of the electromagnetic field has to be broken by coupling it either to the inflaton or to
the scalar curvature. Couplings to scalar curvature pose certain challenges even in slow roll inflation and it
seems desirable to consider couplings to the inflaton. It can be shown that, in slow roll inflation, to generate
nearly scale invariant magnetic fields of adequate strengths, the nonconformal coupling to the inflaton has
to be chosen specifically depending on the inflationary model at hand. In a recent work, we had found that,
when there arise sharp departures from slow roll inflation leading to strong features in the scalar power
spectra, there inevitably arise sharp features in the spectra of the electromagnetic fields, unless the
nonconformal coupling functions are extremely fine tuned. In particular, we had found that, if there occurs
an epoch of ultra slow roll inflation (that is often required either to lower scalar power on large scales or to
enhance power on small scales), then the strength of the magnetic field over large scales can be severely
suppressed. In this work, we examine whether these challenges can be circumvented in models of inflation
involving two fields. We show that the presence of the additional scalar field allows us to construct coupling
functions that lead to magnetic fields of required strengths even when there arise intermediate epochs of
ultra slow roll inflation. However, we find that the features in the spectra of the magnetic fields that are
induced due to the departures from slow roll inflation cannot be completely ironed out. We make use of the
code MagCAMB to calculate the effects of the magnetic fields on the anisotropies in the cosmic microwave
background and investigate if the spectra with features are broadly consistent with the current constraints.
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I. INTRODUCTION

Magnetic fields are ubiquitous in the universe. They are
observed at different strengths over a wide range of scales,
ranging from planets [Oð0.5 GÞ] and stars [Oð1 GÞ] to
galaxies and clusters of galaxies [Oð10−6 GÞ] (for reviews
on magnetic fields, see Refs. [1–10]). The Fermi/LAT,
HESS and MAGIC observations of TeV blazars over the
last decade indicate that even the voids in the intergalactic
mediummay contain magnetic fields [Oð10−15 GÞ] [11–18].
While astrophysical processes involving the battery mecha-
nism may be sufficient to explain the origin of magnetic
fields in galaxies and clusters of galaxies (in this regard,
see, for example, Refs. [3,4]), one may have to turn to a

cosmological phenomenon to explain the magnetic fields
observed in voids (in this context, see the reviews
[5,6,8–10]).
Without any doubt, the inflationary scenario is presently

the most attractive paradigm to explain the origin of
perturbations in the early universe. Hence, it seems natural
to turn to inflation for the generation of the primordial
magnetic fields (PMFs). However, since the standard
electromagnetic action is conformally invariant and the
Friedmann-Lemaître-Robertson-Walker (FLRW) universe
is conformally flat, the strengths of minimally coupled
electromagnetic fields are diluted considerably by the end
of inflation. Therefore, it becomes necessary to break the
conformal invariance of the action governing the electro-
magnetic field in order to generate magnetic fields of
observed strengths today.
The conformal invariance of the electromagnetic action

is typically broken by coupling the electromagnetic field
to either the scalar curvature or the scalar field driving
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inflation (see, for example, Refs. [19–33]; for discussions
on effects due to the addition of a parity violating term, see
Refs. [34–43]). It can be easily established that, if the
nonconformal coupling function, say J, behaves as e2N ,
where N denotes the number of e-folds, then one can arrive
at a nearly scale invariant spectrum for the magnetic field
with a strength that is dependent on the fourth power of the
Hubble scale during inflation. In a recent work, we had
argued that while the coupling to the scalar curvature, say
R, works satisfactorily in power law inflation, it poses a
problem in slow roll inflation [44]. The reason being that,
since the scalar curvature hardly varies during slow roll
inflation, one has to raise R to a very high power in order to
achieve the desired variation in the coupling function which
leads to magnetic fields with nearly scale invariant spectra.
In contrast, it is relatively easy to achieve the desired
evolution of the coupling function (i.e., J ∝ e2N) when the
electromagnetic field is coupled to the inflaton. However,
there exists no universal form for the coupling function
(in terms of the dependence on the inflaton) and its form
has to be chosen depending on the inflationary model being
considered.
There has been a constant interest in the literature toward

examining whether specific features in the inflationary
scalar power spectrum improve the fit to the cosmic
microwave background (CMB) and the large scale structure
data (in this context, see, for instance, Refs. [45–58]).
Moreover, over the last few years, there has been an interest
in investigating the nontrivial signatures of strong features
at small scales which can lead to enhanced levels of
formation of primordial black holes (PBHs) and also
generate secondary gravitational waves of possibly detect-
able amplitudes (for a short list of efforts in this regard,
see Refs. [59–66]). Such features are often achieved by
considering inflationary potentials that lead to departures
from slow roll inflation. In our recent work [44], we had
shown that, unless the form of the nonconformal coupling
function is extremely fine tuned, the deviations from slow
roll inflation that lead to features in the scalar power
spectrum inevitably lead to features in the spectra of the
electromagnetic fields as well. For instance, in the case of
single field models of inflation that permit a brief phase of
ultra slow roll, the spectrum of the magnetic field has a
strong scale dependence on small scales. Moreover, the
amplitude of the magnetic fields is strongly suppressed on
large scales depending on the time of onset of the ultra slow
roll epoch.
In this work, we shall examine whether these challenges

can be circumvented in two field models of inflation (for
some recent discussions on generating features in two
field models at large and small scales, see, for example,
Refs. [67–72]). The presence of the additional field permits
a richer dynamics in two field models, and one can possibly
utilize the second field to overcome the challenges faced in
single field models. As we shall see, with suitable choices

for the nonconformal coupling function, we are able to
generate magnetic fields of desired strengths even in
situations wherein there arises an intermediate period of
ultra slow roll. However, it seems difficult to avoid the
presence of features in the spectra of the electromagnetic
fields. In order to understand the viability of such electro-
magnetic spectra, we shall consider two specific infla-
tionary models with suitable couplings, and roughly
compare the smoothed strengths of the generated magnetic
fields with the constraints from the CMB data [73].
Moreover, for one of the two models that we consider,
we shall also evaluate the imprints of the PMFs on the
angular power spectra of the CMB using the publicly
available codes CAMB [74] and MagCAMB [75].
This paper is organized as follows. In Sec. II, we shall

briefly review the challenges that arise in single field
inflationary models and explore possible nonconformal
coupling functions that can help us overcome the chal-
lenges. In Sec. III, we introduce the two field models of
inflation that we shall consider. We shall focus on two
models that lead either to a suppression in power on large
scales or to an enhancement in power on small scales.
Thereafter, we shall go on to construct suitable noncon-
formal coupling functions that allow us to arrive at
magnetic fields of desired strengths over the CMB scales.
We shall discuss the cases of nonhelical as well as helical
magnetic fields. As we shall illustrate, despite the presence
of the additional field, it seems impossible to completely
iron out the features that arise in the spectra of the
electromagnetic fields. In Sec. IV, we shall first examine
if the amplitudes of the magnetic fields that we obtain in
the two inflationary models are broadly consistent with
the constraints on the PMFs from the CMB data. Then,
focusing on the nonhelical case, using MagCAMB, we shall
compute the angular power spectra of the CMB generated
by the so-called passive and compensated magnetic modes
[75]. We shall carry out such an exercise for one of the two
models which leads to a nearly scale invariant spectrum for
the magnetic field over large scales. We shall also approx-
imately calculate the spectrum of the curvature perturba-
tions induced by the magnetic field during inflation
[76,77], and compute the corresponding angular power
spectra of the CMB using CAMB [74]. We shall compare
these quantities with the contributions due to the primary
scalar and tensor power spectra generated from the Bunch-
Davies vacuum. We shall conclude in Sec. V with a
summary of the results obtained. We shall relegate some
of the related discussions to three appendices.
At this stage of our discussion, let us clarify a few points

regarding our conventions and notations. We shall work
with natural units such that ℏ ¼ c ¼ 1, and set the reduced
Planck mass to be MPl ¼ ð8πGÞ−1=2. We adopt the sig-
nature of the metric to be ð−;þ;þ;þÞ. Note that Latin
indices will represent the spatial coordinates, except for k
which will be reserved for denoting the wave number.
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We assume the background to be the spatially flat FLRW
universe described by the following line element:

ds2 ¼ −dt2 þ a2ðtÞdx2 ¼ a2ðηÞð−dη2 þ dx2Þ; ð1Þ

where t and η the denote cosmic time and conformal time
coordinates, while a represents the scale factor. Also, an
overdot and an overprime will denote differentiation with
respect to the cosmic and conformal time coordinates,
respectively. Moreover, as mentioned before, N represents
the number of e-folds. Lastly, H ¼ _a=a and H ¼ aH ¼
a0=a shall represent the Hubble and the conformal Hubble
parameters, respectively.

II. CHALLENGES IN SINGLE FIELD MODELS

In this section, we shall briefly highlight the challenges one
faces in certain single field inflationary modes to generate
magnetic fields of the desired amplitudes and spectral shapes.
Before we go on to describe these challenges, in order for this
paper to be self-contained, let us quickly recall a few essential
points that we will require later for our discussion.

A. Electromagnetic modes and power spectra

We shall consider electromagnetic fields described by
the action [21,23,25,26,31,34–36,38–43]

S½Aμ� ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
J2ðϕÞ

�
FμνFμν −

γ

2
FμνF̃μν

�
; ð2Þ

where JðϕÞ denotes the nonconformal coupling function
and γ is a constant. As usual, the field tensor Fμν is
expressed in terms of the vector potential Aμ as Fμν ¼
ð∂μAν − ∂νAμÞ, while the dual field tensor F̃μν is defined as
F̃μν ¼ ðϵμναβ= ffiffiffiffiffiffi−gp ÞFαβ, with ϵμναβ being the completely
anti-symmetric Levi-Civita tensor. The second term in the
above action leads to violation of parity and, during
inflation, this term amplifies the electromagnetic modes
associated with one of the two states of polarization
compared to the other [34–36,38–43].
In the spatially flat FLRW background of our interest,

to arrive at the solutions describing the electromagnetic field,
it proves to be convenient to work in the Coulomb gauge
wherein Aη ¼ 0 and ∂iAi ¼ 0. We shall denote the Fourier
modes of the three-vector potential Ai as Āk, where the
subscript k represents the wave number. If we write Āk ¼
Ak=J, then, in the Coulomb gauge, the mode functions Ak
are found to satisfy the differential equation [34–36,38–43]

Aσ00
k þ

�
k2 þ 2σγkJ0

J
−
J00

J

�
Aσ

k ¼ 0; ð3Þ

where σ ¼ � corresponds to the two helicities. The power
spectra of the magnetic and electric fields, viz. PBðkÞ and
PEðkÞ, are defined as (see, for example, Refs. [5,23])

PBðkÞ ¼
dhρ̂Bi
d ln k

; PEðkÞ ¼
dhρ̂Ei
d ln k

; ð4Þ

where ρB and ρE are the energy densities associated with the
magnetic and electric fields, respectively, while the expect-
ation values are to be evaluated in the Bunch-Davies
vacuum. It is also useful to note here that we shall define
the spectral index nB of the magnetic field as nB ¼
ðd ln PBðkÞ=d ln kÞ, and we shall refer to the case wherein
nB ¼ 0 as a scale invariant spectrum. The power spectra
PBðkÞ and PEðkÞ can be expressed in terms of the mode
functions Ak and their time derivatives A0

k as follows
[5,23,44]:

PBðkÞ ¼
k5

4π2a4
½jAþ

k j2 þ jA−
k j2�; ð5aÞ

PEðkÞ ¼
k3

4π2a4

�����Aþ0
k −

J0

J
Aþ

k

����2 þ
����A−0

k −
J0

J
A−

k

����2
�
: ð5bÞ

In a de Sitter universe, one often chooses the non-
conformal coupling function to be of the form JðηÞ ¼
½aðηÞ=aðηeÞ�2, where ηe denotes the conformal time coor-
dinate toward the end of inflation. Such a choice for the
coupling function leads to a scale invariant spectrum for
the magnetic field (in this context, see, for example,
Refs. [5,9,23]). In models allowing slow roll inflation,
there exists no universal or model independent form of
JðϕÞ that leads to the above-mentioned behavior in terms of
the scale factor. However, given a model of inflation that
permits slow roll, based on the evolution of the scalar field,
it is easy to construct a function JðϕÞ that approximates the
desired behavior of J ∝ a2 fairly well. For such a choice of
the nonconformal coupling function, the power spectra of
the electromagnetic fields, evaluated at late times, i.e., as
ðkηeÞ → 0, can be expressed as (see, for instance, Ref. [44])

PBðkÞ
M4

Pl

¼ 9H4
I

4π2
fðγÞ ¼ 9π2

16
ðrAsÞ2fðγÞ; ð6aÞ

PEðkÞ
M4

Pl

¼ PBðkÞ
M4

Pl

�
γ2 −

sinh2ð2πγÞ
3πð1þ γ2ÞfðγÞ ð−kηeÞ

þ 1

9
ð1þ 23γ2 þ 40γ4Þð−kηeÞ2

�
; ð6bÞ

where HI represents the Hubble scale during inflation,
As ¼ 2.1 × 10−9 denotes the observed amplitude of the
scalar power spectrum at the pivot scale, and r represents
the tensor-to-scalar ratio [78,79]. Also, the function fðγÞ is
given by [44]

fðγÞ ¼ sinhð4πγÞ
4πγð1þ 5γ2 þ 4γ4Þ ; ð7Þ
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and we should point out that fðγÞ reduces to unity in the
limit of vanishing γ.
We shall now make a few clarifying remarks regarding

the results we have quoted above. Let us first discuss the
shape of the electromagnetic spectra in slow roll inflation
before we turn to comment on their amplitudes. In the case
of helical fields (i.e., when the parameter γ is nonzero), it is
the first term within the square brackets in the expression
(6b) for PEðkÞ that dominates, and hence one finds that the
power spectra of both the magnetic and electric fields are
scale invariant, with their amplitudes being determined
by the tensor-to-scalar ratio r (or, equivalently, HI) and
the function fðγÞ. When γ vanishes (i.e., in the case of
nonhelical fields), the function fðγÞ reduces to unity and
one finds that the spectrum of the magnetic field PBðkÞ
continues to remain scale invariant. However, in such a
limit, it is the last term within the square brackets in the
expression for PEðkÞ that survives, indicating that the
power spectrum of the electric field behaves as k2.
Let us now understand the amplitudes of the spectra in

slow roll inflation. Clearly, in the helical case, for γ ≃Oð1Þ,
the strengths of the scale invariant spectra of the magnetic
and electric fields are comparable and are primarily
determined by the tensor-to-scalar ratio r. But, in the
nonhelical case, due to the k2 dependence, the spectrum
of the electric field is considerably suppressed over large
scales when compared to the scale invariant amplitude of
the magnetic field. We find that, for 10−12 ≲ r≲ 10−2, upon
assuming instantaneous reheating, inflationary magneto-
genesis leads to nonhelical magnetic fields of strength in
the range of 10−17 ≲ B0 ≲ 10−11 G today. It should be clear
that the function fðγÞ grows exponentially with γ [see
Eq. (7)]. As a result, the amplitude of the helical fields can
be considerably enhanced at late times when compared to
the nonhelical case. It can be shown that, for inflationary
models wherein r ≃ 10−2, if the backreaction due to the
helical electromagnetic fields has to be negligible, then one
has to work with γ ≲ 2.5 [44]. When considering helical
fields, we shall work with γ ¼ 0.25. For γ ¼ 0.25, we find
that fð0.25Þ ≃ 3, which implies that the strengths of the
helical magnetic fields will be higher by such a factor when
compared to the nonhelical case.

B. Difficulty in ultra slow roll inflation

We had mentioned above that, in models permitting slow
roll inflation, based on the evolution of the field arrived at
in the slow roll approximation, it is possible to construct a
function JðϕÞ so that the desired behavior of J ∝ a2 is
achieved. Now, consider situations wherein there arise
deviations from slow roll. In single field models of inflation
involving the canonical scalar field, typically, departures
from slow roll occur because of features in the inflationary
potential, such as a step, a bump, a dip, a burst of

oscillation, or a point of inflection. If the deviations from
slow roll are small, then one can work with the form of
JðϕÞ that is constructed using the slow roll approximation
in the absence of the feature in the potential. Under
such conditions, in our earlier work [44], we had shown
that the departures from slow roll inflation generate features
in the spectra of the electromagnetic fields in much the
same manner as they produce features in the scalar power
spectrum. The small deviations from slow roll induce
brief departures from scale invariance in the spectrum of
the magnetic field. However, we had found that, for a
given choice of the coupling function JðϕÞ, say, chosen
based on the slow roll evolution at early or late times,
strong departures from slow roll inflation generically lead
to prominent features in the spectra of the electromagnetic
fields.
Strong departures from slow roll inflation are usually

considered in two contexts. They are invoked either to
suppress the scalar power over large scales in order to
explain the lack of power observed at the low multipoles
[45,48,49,52,53,56] or to boost the power over small scales
leading to enhanced formation of PBHs [59–66]. These
features are often achieved with the aid of an epoch of ultra
slow roll inflation during which the first slow roll parameter
decreases exponentially [80,81]. While the first slow roll
parameter remains small during this period, the second and
higher order slow roll parameters prove to be large resulting
in a violation of the slow roll conditions. In single field
models of inflation driven by the canonical scalar field, a
period of ultra slow roll, in turn, seems guaranteed, if there
is a point of inflection in the potential. In our earlier work
[44], we had found that, in models which permit a period of
ultra slow roll inflation, the nonconformal coupling func-
tion hardly evolves during the phase of ultra slow roll. Due
to this reason, the spectra of both the magnetic and electric
fields behave as k4 for wave numbers that leave the Hubble
radius after the onset of ultra slow roll inflation. Moreover,
the amplitude of the spectra on large scales are suppressed
by the factor of e−4ðNe−N1Þ, where N1 and Ne represent the
e-folds at the onset of the epoch of ultra slow roll and the
end of inflation, respectively. In arriving at these spectra,
we had considered coupling functions that are based on the
behavior of the scalar field during the initial slow roll
regime. One may wonder if it is possible to arrive at the
desired nonminimal coupling function (i.e., one wherein
JðϕÞ ∝ a2) by fitting for the entire evolution of the scalar
field. As we have illustrated in Fig. 1, we find that this is
indeed difficult to achieve. This primarily occurs due to the
fact that, generically, the scalar field virtually ceases to
evolve once the epoch of ultra slow roll begins, until the
very end of inflation. As we shall discuss in this work, due
to the additional degree of freedom available, it is possible
to circumvent such a challenge in the case of two field
models.
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III. CIRCUMVENTING THE CHALLENGES IN
TWO FIELD MODELS

In this section, we shall illustrate the manner in which the
challenges with the epochs of ultra slow roll inflation can
be circumvented in two field models. We shall begin by
introducing the inflationary models of our interest before
we go on to discuss the choice of the nonconformal
coupling functions and the resulting spectra of electromag-
netic fields.

A. Models of interest

We shall consider a system of two scalar fields, say, ϕ
and χ, that are described by the action [82]

S½ϕ; χ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂

μϕ

−
fðϕÞ
2

∂μχ∂
μχ − Vðϕ; χÞ

�
: ð8Þ

Clearly, while ϕ is a canonical scalar field, χ is a
noncanonical scalar field due to the presence of the
function fðϕÞ in the term describing its kinetic energy.
We shall work with potentials Vðϕ; χÞ that are separable.
As a result, the two fields essentially interact through the
function fðϕÞ, which we shall assume to be of the form
fðϕÞ ¼ e2bðϕÞ.
The equations of motion describing the evolution of the

scalar fields are given by [82]

ϕ̈þ 3H _ϕþ Vϕ ¼ bϕe2b _χ2; ð9aÞ

χ̈ þ ð3H þ 2bϕ _ϕÞ_χ þ e−2bVχ ¼ 0; ð9bÞ

where the subscripts ϕ and χ denote differentiation of the
potential Vðϕ; χÞ and the function bðϕÞ with respect to
the corresponding fields. Also, it is useful to note that the
Hubble parameter and its time derivative are governed by
the following equations:

H2 ¼ 1

3M2
Pl

�
_ϕ2

2
þ e2b

_χ2

2
þ V

�
; ð10Þ

_H ¼ −
1

2M2
Pl

ð _ϕ2 þ e2b _χ2Þ: ð11Þ

Let us now discuss the specific models that we shall
consider.

1. Suppression of power on large scales

The first of the two models that we shall consider leads
to a suppression of power on large scales. In our earlier
work, we had discussed the so-called punctuated infla-
tionary models which result in a suppression of power
over large scales that are comparable to the Hubble radius
today. We had also mentioned that such models can mildly
improve the fit to the CMB data (for early discussions in
this context, see Refs. [45–49,52,53]; for a recent discus-
sion, see Ref. [56]). We had shown that the punctuated

FIG. 1. The evolution of the nonconformal coupling function J (on the left) and the quantity μ2B ¼ J00=ðJa2H2Þ (on the right) in a
model involving a single, canonical scalar field that leads to an epoch of ultra slow roll inflation—the potential (58) in our earlier paper
[44]—have been plotted as functions of e-folds N. These plots illustrate the challenge faced in such scenarios. In our previous paper, we
had worked with a coupling function JðϕÞ that was arrived at by fitting the numerical solution for the scalar field with a fourth order
polynomial until the onset of the ultra slow roll regime (plotted here in cyan). Apart from such a choice for the coupling function, we
have plotted the coupling function JðϕÞ as well as the quantity μ2B wherein the entire evolution of the field (i.e., from the initial time until
the end of inflation) has been fit to fourth, sixth, and eighth order polynomials (in red, blue, and green, respectively). Note that J ∝ e2N

and μ2B ≃ 6 until the onset of the ultra slow roll regime (indicated by the vertical dashed black lines in the two figures), which are required
to lead to a scale invariant spectrum for the magnetic field. However, it seems impossible to achieve such a behavior for J and μ2B after the
onset of ultra slow roll. This can be primarily attributed to the fact that the field hardly evolves during this period.
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inflationary models leave strong imprints on the spectra of
the electromagnetic fields. In particular, we had found that
the strengths of the magnetic fields on large scales are
considerably suppressed and their spectra behave as k4 on
small scales. Our aim in this section is to investigate
whether such challenges can be overcome in inflationary
models involving two fields.
To achieve a suppression in the spectrum of curvature

perturbations on the largest scales, we shall consider a
simple quadratic potential for the field ϕ and a KKLTI-like
potential for the field χ [83], so that the complete potential
is given by [67]

Vðϕ; χÞ ¼ m2
ϕ

2
ϕ2 þ V0

χ2

χ20 þ χ2
: ð12Þ

Moreover, we shall assume that bðϕÞ ¼ b̄ϕ, where b̄ is a
constant. We shall work with the following two sets of
values of the parameters involved: ðmϕ=MPl; V0=M4

Pl; χ0=

MPl; b̄MPlÞ ¼ ð1.672 × 10−5; 2.6 × 10−10;
ffiffiffi
3

p
; 1.0Þ and

ð1.688 × 10−5; 2.65 × 10−10;
ffiffiffi
3

p
; 2.0Þ. We shall choose

the initial values of the fields to be ϕi ¼ 8.8MPl,
χi ¼ 5.76MPl, and set ϵ1i ¼ 2.47 × 10−2, for both these
sets of parameters. In fact, we shall choose a very small
value of _χ so that χ does not evolve at all during the initial
phase. For these choices of the parameters and initial
conditions, there arise two stages of inflation with distinct
values of the first slow roll parameter ϵ1. In Fig. 2, we have
plotted the evolution of the two scalar fields and the first
slow roll parameter in the model for the above sets of
parameters and initial conditions. It should be clear from
the figure that the first stage is driven by the field ϕ with
ϵ1 ≃ 10−2. The second stage begins when the field ϕ has
reached the bottom of the quadratic potential and the field χ
begins to drive the accelerated expansion. In other words,
there arises a turning in field space. During the transition,
the first slow roll parameter falls exponentially in a manner
somewhat similar to the single field models that admit
an epoch of ultra slow roll inflation. The first slow roll
parameter is very small (with ϵ1 ≃ 10−3) during the early
phase of the second stage and it slowly begins to rise
leading to the end of inflation. We find that for the
parameters and initial conditions that we have worked
with, inflation lasts for 78−79 e-folds.

2. Enhancement of power on small scales

The second model we shall consider leads to enhanced
power on small scales. As in the first model, this is achieved
through a turning in field space, which briefly increases
the strength of the coupling between the curvature and the
isocurvature perturbations as well as induces a tachyonic
instability. If the turning occurs at a sufficiently late stage
of inflation, these two effects combine to lead to an

enhancement in the spectrum of curvature perturbations
on smaller scales [67–70].
To obtain a peak in the power spectrum at smaller scales,

we interchange the potentials for the two fields we had
considered earlier [see Eq. (12)]. In other words, we
consider a model of inflation driven by a KKLTI-like
potential for ϕ and a simple quadratic potential for χ, so that
the complete potential is given by [70]

Vðϕ; χÞ ¼ V0

ϕ2

ϕ2
0 þ ϕ2

þm2
χ

2
χ2: ð13Þ

We shall again assume that bðϕÞ ¼ b̄ϕ. We shall work with
the following two sets of values of the parameters:
ðV0=M4

Pl; ϕ0=MPl; mχ=MPl; b̄MPlÞ ¼ ð7.1 × 10−10;
ffiffiffi
6

p
;

1.19164 × 10−6; 7.0Þ and ð7.31×10−10;
ffiffiffi
6

p
;1.209×10−6;

7.8Þ. We assume that ϕi ¼ 7.0MPl, χi ¼ 7.31MPl and
ϵ1i ¼ 4.32 × 10−4. Also, as in the earlier model, we shall
choose a small value of _χ so that χ hardly evolves during
the first phase. With these choices of the parameters,
we obtain about 84−85 e-folds of inflation. In Fig. 2,
we have plotted the evolution of the two fields as well as the
behavior of the first slow roll parameter. Clearly, as in the
previous case, there arise two stages of inflation, with
the first stage again driven by the field ϕ and the second
stage driven by the field χ. Moreover, at the transition,
the first slow roll parameter ϵ1 decreases briefly before
increasing to unity leading to the termination of inflation.
Further, we find that, in contrast to the single field case, the
first slow roll parameter does not decrease to considerably
low values [say, to Oð10−9–10−7Þ] in order to lead to a
significant enhancement in power.

B. Scalar and tensor power spectra

Let us now briefly discuss the spectra of curvature and
isocurvature perturbations that arise in the two models we
discussed above. Let us begin by recalling a few essential
points regarding the scalar perturbations in two field
models. As is well known, in two field models of inflation,
the scalar perturbations can be decomposed into the so-
called adiabatic (say, δσ) and entropy (say, δs) components
[82,84,85]. In field space, while the adiabatic perturbations
are parallel to the background trajectory, the entropy
perturbations are orthogonal to it.
If δϕ and δχ denote the perturbations in the two scalar

fields, the adiabatic and entropic perturbations are defined
as [82,86]

δσ ¼ cos θ δϕþ eb sin θ δχ; ð14aÞ

δs ¼ − sin θ δϕþ eb cos θ δχ; ð14bÞ

where cos θ ¼ _ϕ= _σ, sin θ ¼ _χ= _σ, and _σ2 ¼ _ϕ2 þ e2b _χ2.
Upon using the background equations (9), one can arrive
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at the following equations that govern the adiabatic field σ
and the angle θ:

σ̈ þ 3H _ϕþ Vσ ¼ 0; ð15aÞ

_θ ¼ −
Vs

_σ
− bϕ _σ sin θ; ð15bÞ

where the quantities Vσ and Vs are given by

Vσ ¼ cos θVϕ þ e−b sin θ Vχ ; ð16aÞ

Vs ¼ − sin θVϕ þ e−b cos θVχ : ð16bÞ

In the spatially flat gauge, the Mukhanov-Sasaki
variables associated with the curvature and isocurvature
perturbations are given by vσ ¼ aδσ and vs ¼ aδs.
The equations of motion describing the evolution of the
Mukhanov-Sasaki variables can be obtained to be
[67,70,82,86]

vσ00k þ
�
k2 −

z00

z

�
vσk ¼

1

z
ðzξvskÞ0; ð17aÞ

vs00k þ
�
k2 −

a00

a
þ μ2sa2

�
vsk ¼ −zξ

�
vσk
z

�0
; ð17bÞ

FIG. 2. The evolution of the two scalar fields, viz. ϕ (in solid red and dashed green) and χ (in solid blue and dashed cyan), in the
models described by the potentials (12) and (13) have been plotted (on the left, in the top and bottom panels, respectively) as functions of
e-folds. We have plotted the results for two sets of values of the parameters involved (with the first set in solid lines and the second in
dashed lines). We have also plotted the corresponding evolution of the first slow parameter (in solid red and dashed blue, on the right).
Moreover, we have indicated the e-folds (as vertical black lines) when the transition from the first to the second stage of inflation occurs
in the two models of our interest, viz. around N ≃ 23.7 in the first model (on top) and N ≃ 71 in the second model (at the bottom),
respectively. Note that, for a given potential, the primary difference between the values of the two sets of parameters is the value of b̄.
However, it should be clear from the above plots that the difference in b̄ does not lead to a significant difference in the evolution of the
fields. In the figure, we have also indicated (as dotted curves) the analytical solutions for the fields ϕ (in purple) and χ (in orange) that
can be arrived at in the slow roll approximation (for details, see Appendix A). It should be clear that the analytical solutions are a
reasonably good approximation to the exact numerical results during the two slow roll regimes. As one would expect, the analytical
solutions fail to capture the dynamics around the point of transition from the first to the second stage of inflation.
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where z ¼ a _σ=H, ξ ¼ −2aVs= _σ, while μ2s is given by

μ2s ¼ Vss −
�
Vs

_σ

�
2

þ bϕð1þ sin2θÞ cos θVσ

þ bϕcos2θ sin θ Vs − ðb2ϕ þ bϕϕÞ _σ2; ð18Þ

with Vss being defined as

Vss ¼ sin2θVϕϕ − e−b sin 2θVϕχ þ e−2bcos2θVχχ : ð19Þ

As is done in the case of single field models, the Bunch-
Davies initial conditions are imposed on the Fourier modes
when they are sufficiently inside the Hubble radius, and the
scalar and tensor power spectra are evaluated when the
modes are well outside the Hubble radius. While comput-
ing the scalar power spectra numerically, we impose the
initial conditions when k ≃ 102

ffiffiffiffiffiffiffiffiffi
z00=z

p
and evaluate the

spectra at the end of inflation. To ensure that there are no
correlations between the curvature and the isocurvature
perturbations at early times, when the modes are inside the
Hubble radius, the scalar perturbations are evolved from
two sets of initial conditions [82,84]. In the first set, the
standard Bunch-Davies initial conditions are imposed on
the Mukhanov-Sasaki variable vσk, while the variable v

s
k is

set to be zero. In the second set, the initial conditions on
vσk and vsk are interchanged. The curvature perturbation
Rk and the isocurvature perturbation Sk are related to the
Mukhanov-Sasaki variables as follows: Rk ¼ vσk=z and
Sk ¼ vsk=z [67,70]. Let ðRk1;Sk1Þ and ðRk2;Sk2Þ denote
the curvature and the isocurvature perturbations evolved
from the two sets of initial conditions mentioned above.
The spectra of curvature and isocurvature perturbations
are evaluated from both these sets of solutions and are given
by [67,70,82,86]

PRðkÞ ¼
k3

2π2
ðjRk1j2 þ jRk2j2Þ; ð20aÞ

PSðkÞ ¼
k3

2π2
ðjSk1j2 þ jSk2j2Þ: ð20bÞ

In our discussion below, we shall focus on the spectrum of
curvature perturbations PRðkÞ. Also, we should mention
that the tensor power spectrum is evaluated in the same
manner as in single field inflation.
The evolution of the scalar fields in the two models of

our interest can be obtained by solving the background
equations (9) numerically as discussed in the previous
subsection. Recall that, we had illustrated the behavior
of the scalar fields and the first slow roll parameter as
functions of e-folds in Fig. 2. In the case of the potential
(12), the field ϕ slowly rolls down the potential until it
reaches the bottom of the potential when N ≃ 23.7, while
the field χ remains frozen during this period. At this point
of transition, for the set of parameters we haveworked with,

the values of the fields ϕ and χ are ϕ1 ¼ 6.55 × 10−4 MPl
and χ1 ¼ 5.722MPl, respectively. After the transition,
while ϕ oscillates about the minimum of the potential,
the field χ drives inflation until the end. Also, the first slow
roll parameter ϵ1 decreases exponentially soon after the
transition, giving rise to a brief period of ultra slow roll,
before it eventually rises to unity leading to the end of
inflation. A similar behavior of the fields and the slow roll
parameter are observed in the case of the potential (13) as
well, with the transition point occurring at a much later
time, viz. at the e-fold N ≃ 71. In this case, we choose the
point of transition to be when the oscillations of the field ϕ
have substantially died down. At the transition point, the
values of the fields ϕ and χ are found to be ϕ1 ¼ 1.694 ×
10−2 MPl and χ1 ¼ 6.3 MPl, respectively. In Fig. 3, we
have presented the spectra of the curvature and tensor
perturbations arising in the two models for the two sets of
parameters we have considered. In the case of the potential
(12), we obtain a suppression in power in the spectrum of
curvature perturbations on the largest observable scales,
while over the CMB and smaller scales, the scalar power
spectrum is nearly scale invariant. The imprints of these
scalar and tensor power spectra on the anisotropies in the
CMB have been discussed earlier (in this context, see
Ref. [67]). For the potential (13), we obtain nearly scale
invariant scalar and tensor power spectra over the CMB
scales, whereas there is a significant enhancement in scalar
power on small scales. We find that, at the pivot scale of
k� ¼ 0.05 Mpc−1, the scalar spectral index and the tensor-
to-scalar ratio turn out to be nS ¼ 0.96 and r ¼ 0.02, which
are consistent with the constraints from the CMB data [78].
As has been illustrated earlier in the literature, the turning in
field space briefly increases the strength of the coupling
between the isocurvature and the curvature perturbations.
It also induces a tachyonic instability. These two effects
combine to lead to the increased scalar power on smaller
scales over modes which leave the Hubble radius just prior
to or during the turning in field space [67–70]. Earlier, we
had seen that for a given potential, despite the difference in
the values of the parameter b̄, the evolution of background
scalar fields were very similar (see Fig. 2). However, as
should be clear from Fig. 3, the resulting inflationary scalar
power spectra are considerably different. This can be
attributed to the difference in μ2s [cf. Eq. (18)] that arises
due to the difference in the values of b̄ and the resulting
amplitude of the tachyonic instability that occurs due to the
turning in field space (for a detailed discussion in this
context, see Ref. [67]).

C. Construction of the nonconformal coupling function

Recall that, our main reason for considering two field
models of inflation in this paper is to circumvent the
challenges that we face in single field models, especially
those that permit an epoch of ultra slow roll inflation. Our
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goal is to overcome these hurdles and arrive at electro-
magnetic spectra of desired shapes and strengths. In our
earlier work [44], we had shown that, in slow roll inflation
driven by a single field, say, ϕ, it is possible to construct
analytical forms for the nonconformal coupling function
JðϕÞ that lead to the required time dependence (viz. J ∝ a2)
and therefore generate nearly scale invariant spectra for the
magnetic field. However, when strong departures from
slow roll occur, we had to turn to a numerical approach to
construct the coupling function. Since the dynamics in the
two field models of our interest is fairly nontrivial, we shall
adopt the numerical approach here as well. We shall now
outline the procedure to construct the required Jðϕ; χÞ. We
should mention that, in Appendix A, we have discussed the
construction of an analytical form for the coupling function
Jðϕ; χÞ and the resulting power spectra of the electromag-
netic fields that we obtain in such a case.
In fact, the procedure that needs to be adopted to

construct the desired nonconformal coupling function
Jðϕ; χÞ is fairly straightforward. In the two models of
our interest, we have seen that, at any given time during
inflation, one of the two slowly rolling fields largely
determines the dynamics of the background. Essentially,
we need to make use of the dominant field to construct
the coupling function in a given domain. Thereafter, we can
utilize the step function to stitch together the coupling
functions in the two domains to arrive at the complete
function. Let us first consider the model described by the
potential (12). In the model, during the first domain,
the field ϕ rolls down the potential largely determining

the background dynamics, while the field χ remains frozen.
After having solved the Eq. (9) numerically to arrive at
ϕðNÞ, we assume an ansatz for the functional form of
NðϕÞ. We choose the functional form of NðϕÞ in the first
regime to be given by the following fourth order poly-
nomial:

NðϕÞ ¼ a1
ϕ4

M4
Pl

þ b1
ϕ3

M3
Pl

þ c1
ϕ2

M2
Pl

þ d1
ϕ

MPl
þ e1: ð21Þ

We then determine the values of the constants
ða1; b1; c1; d1; e1Þ by fitting the polynomial to the numeri-
cal solution for ϕðNÞ during the initial regime, thereby
arriving atNðϕÞ. Similarly, after the transition, as the field χ
starts to dominate the background dynamics, we choose
NðχÞ to be a fourth order polynomial of the following form:

NðχÞ ¼ a2
χ4

M4
Pl

þ b2
χ3

M3
Pl

þ c2
χ2

M2
Pl

þ d2
χ

MPl
þ e2: ð22Þ

We fit the polynomial to the solution χðNÞ in the second
regime to determine the constants ða2; b2; c2; d2; e2Þ and
arrive at NðχÞ. We should clarify here that we have chosen
to work with fourth order polynomials for NðϕÞ and NðχÞ
above since they seem sufficient to lead to the desired
behavior of J in the two slow roll regimes on either side of
the transition. With the forms ofNðϕÞ andNðχÞ at hand, we
can combine them to construct the complete nonconformal
coupling function to be

FIG. 3. The spectra of curvature (in solid red and dashed green) and tensor (in solid blue and dashed cyan) perturbations, viz. PRðkÞ
and PT ðkÞ, have been plotted for the two field inflationary models that we have considered. We have plotted the spectra with features
over the CMB scales (on the left) arising in the potential (12) and with a peak in the scalar power at small scales (on the right) occurring
in the potential (13), for the two sets of parameters (as solid and dashed lines) we have mentioned earlier. In arriving at these spectra, we
have assumed that the pivot scale k� ¼ 0.05 Mpc−1 leaves the Hubble radius 50 e-folds before the end of inflation. It is the scalar spectra
with a sharp rise in power on small scales that are often considered to produce significant number of PBHs. Recall that, for a given
potential, the two sets of parameters primarily differed in the value of b̄. As we had seen in the previous figure, there was hardly any
difference in the evolution of the background for the two sets of parameters. However, note that the spectra of curvature perturbations
differ significantly for these two sets. This can be attributed to the tachyonic instability that arises for nonzero values of b̄. It is found that,
even small differences in b̄ can significantly alter the evolution of the curvature perturbations, leading to very different scalar power
spectra.
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Jðϕ; χÞ ¼ J0
2

��
1þ tanh

�
χ − χ1
Δχ

��
exp ½nNðϕÞ�

þ
�
1 − tanh

�
χ − χ1
Δχ

��
exp ½nNðχÞ�

	
; ð23Þ

where χ1 is the value of the field χ at the transition (that we
had mentioned earlier). Note that the quantity within the
square brackets involving the hyperbolic tangent function
in the above form for Jðϕ; χÞ essentially acts as a step
function for a suitably small value of Δχ. Evidently, it is
the first and second terms in the above expression that
contribute prior to and after the field crossing χ1. Lastly, we
should mention that we need to choose J0 suitably so that
Jðϕ; χÞ reduces to unity at the end of inflation. As we shall
soon illustrate, for n ¼ 2, the above coupling function
largely behaves as J ∝ a2.
Recall that, in each of the two models described by the

potentials (12) and (13), we had worked with two sets of the
parameters involved. Since the dynamics of the background
fields for these two sets of parameters are not significantly
different (in this context, see Fig. 2), we find that the
coefficients characterizing the polynomial fitting functions
NðϕÞ and NðχÞ [cf. Eqs. (21) and (22)] largely prove to
be the same. For the model described by the potential (12),
we obtain the values of the fitting parameters to be
ða1;b1;c1;d1;e1Þ¼ ð2.7558×10−3;−0.06;0.227;−1.8556;
23.1717Þ and ða2; b2; c2; d2; e2Þ ¼ ð−0.0421; 5.47 × 10−3;
−0.2443;−0.4516; 78.3998Þ. Similarly, in the case of the
potential (13), we find that the fitting parameters are
given by ða1;b1;c1;d1;e1Þ¼ð−0.01619;−0.1027;0.3857;
−2.0208;69.4198Þ and ða2;b2;c2;d2;e2Þ¼ð2.7745×10−4;

−6.0702×10−3;−0.2810;−0.2805;85.0065Þ. Moreover,
we shall assume that the width of the step described by
the hyperbolic tangent function is given byΔχ ¼ 10−3 MPl.
In Appendix B, we have discussed the effects of modifying
the transition point χ1 and the width Δχ on the spectra of
the electromagnetic fields. We find that the values of χ1 and
Δχ we shall work with are optimal, as they do not introduce
spurious features in the spectra of the magnetic field.
In Fig. 4, we have plotted the evolution of the coupling

function Jðϕ; χÞ as well as the quantity μ2B ¼ J00=ðJa2H2Þ
for the two potentials. In contrast to the single field case,
where the coupling function almost ceased to evolve after
the onset of ultra slow roll (see Fig. 1), we find that the J’s
we have constructed in the two field models grow as a2

even after the transition. Moreover, clearly, μ2B ≃ 6 for most
of the evolution apart from the domain around the tran-
sition. This behavior suggests that the spectrum of the
magnetic field will remain scale invariant apart from the
effects arising due to the transition. In Fig. 5, we have
plotted the resulting spectra of the electromagnetic fields
arising in the two models for the above choices of the
coupling functions. In addition to the nonhelical case, in
Fig. 5, we have plotted the spectra in the helical case. It is
evident that, in the helical case, the spectra of the magnetic
and electric fields are nearly scale invariant and are of the
same amplitude apart from the domain over wave numbers
which leave the Hubble radius around the time of the
turning in the field space. Around these wave numbers, the
spectra exhibit a burst of oscillations. These oscillations
occur over large scales in the first model described by the
potential (12), whereas they occur over small scales in the
second model governed by the potential (13). While we

FIG. 4. The evolution of the nonconformal coupling function Jðϕ; χÞ given by Eq. (23) (on the left) and the quantity μ2B (on the right)
have been plotted as a function of e-folds for the two models described by the potentials (12) (in red) and (13) (in blue). Since the
background evolution is very similar for the two sets of parameters we have worked with, the corresponding JðNÞ prove to be essentially
the same in both the models. The vertical lines (in corresponding colors) represent the points of transition at N ≃ 23.7 and N ≃ 71,
respectively. It is clear from the figures that J ∝ a2 and μ2B ≃ 6 for most of the evolution except for the domain near the transition. Recall
that, in the single field case, it was impossible to achieve such a behavior for J and μ2B after the onset of ultra slow roll. Clearly, the
presence of the additional field in the two field models allows us to circumvent this difficulty.
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have been able to largely iron out very strong features in the
power spectra of the electromagnetic fields, the oscillations
are unavoidable unless we further fine tune the form of
the nonminimal coupling function Jðϕ; χÞ. We shall make
some additional comments on this point in the concluding
section.

IV. IMPRINTS ON THE CMB

In this section, we shall examine the observational
imprints of the PMFs on the anisotropies in the CMB,
which have been extensively discussed in the literature
[8,75–77,87–93]. In what follows, we shall adopt the
approach discussed earlier [76,77] and make use of the
publicly available packages CAMB [74] and MagCAMB [75]
to calculate the angular power spectra of the anisotropies in
the CMB generated by the PMFs.
Cosmological magnetic fields can be constrained via the

measurement of the anisotropies in the temperature (T) and
polarization (E and B modes) of the CMB (see Ref. [94];
for bounds from Planck, see Ref. [73]). We are specifically
interested in the angular spectra of the CMB sourced by the
PMFs in the epochs before and after neutrino decoupling.
Recall that, neutrino decoupling takes place at an energy
scale of about 1 MeV, after which they start streaming
freely. However, before that epoch, neutrinos are strongly
bound to the photons and baryons. During this regime,
the anisotropic stresses in the magnetic fields source the
scalar and tensor perturbations, and these contributions are
referred to as the passive magnetic modes [76,92]. After the

neutrinos decouple from the photons, they begin to stream
freely and, in the process, they can develop a nonzero
anisotropic stress that compensates the anisotropic stress of
the PMFs [93]. During this period, the PMFs generate the
so-called compensated modes which are somewhat similar
to the isocurvature perturbations [76,92]. Apart from the
passive and compensated modes, it has been shown that
there arises a contribution to the angular power spectra of
the CMB due to the curvature perturbations induced by the
magnetic fields generated during inflation (in this context,
see Refs. [31,77]). The spectrum of these secondary
curvature perturbations depend on the model being con-
sidered for the generation of the magnetic field. Also, we
should clarify that the secondary curvature perturbations
are induced in addition to the primary adiabatic perturba-
tions generated during inflation. In our analysis below, we
shall take into account the effects arising from all these
contributions in the calculation of the angular power
spectra of the anisotropies in the CMB. We should stress
that, in this section, we shall confine our discussion to
nonhelical magnetic fields.

A. Contributions due to the passive
and compensated modes

In order to evaluate the contributions due to the passive
and compensated modes of the PMFs to the angular power
spectra of the CMB, we shall make use of the publicly
available package MagCAMB [75], which is a modification
of CAMB [74]. Similar to CAMB, the package computes the

FIG. 5. The power spectra of the magnetic (on the left) and the electric (on the right) fields have been plotted in the cases of the models
described by the potentials (12) (in red) and (13) (in blue) for the coupling function Jðϕ; χÞ given by Eq. (23). Apart from the nonhelical
case (plotted as solid curves), we have also plotted the results for the helical electromagnetic fields (as dashed curves) with γ ¼ 0.25. The
spectra of both the magnetic and electric fields are nearly scale invariant in the helical case. Also, in the nonhelical case, while the spectra
of the magnetic field are nearly scale invariant, the spectra of the electric field behave as k2. Moreover, as expected, all the spectra exhibit
bursts of oscillations over wave numbers which leave the Hubble radius around the time of the turning in the field space. This is because
of the fact that the coupling function Jðϕ; χÞ contains deviations from the behavior J ∝ a2 during the time of the transition. We should
mention that we have worked with γ ¼ 0.25 so that the amplitudes of the present day magnetic field generated in the two models of our
interest are approximately consistent with the current constraints (see our discussion in Sec. IV). Note that, since fð0.25Þ ≃ 3, the scale
invariant nonhelical and helical amplitudes differ by a factor of three.
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multipole moments of the CMB, viz. the Cl’s, arising due
to various contributions of the PMFs, for a given cosmo-
logical model. However, to reduce the computational
complexity in estimating the integrals involved in arriving
at theCl’s, MagCAMB assumes a power law spectrum for the
PMFs. In fact, we find that the power law form for the
spectrum is hardcoded in the package. Note that, among
the two inflationary models we have considered—viz. the
models described by the potentials (12) and (13)—it is only
the second potential which leads to a nearly scale invariant
power law spectrum for the magnetic field over the CMB
scales (see Fig. 5). Therefore, using MagCAMB, we shall
explicitly compute the angular power spectra of the
anisotropies in the CMB generated by the passive and
the compensated modes for the case of the second potential
(13). Moreover, since the potential (13) permits slow roll
inflation during the early stages, as we shall discuss in
the next subsection, it is also possible to approximately
evaluate the angular power spectra of the CMB due to the
curvature perturbations induced by the magnetic field. For
the first model described by the potential (12), we find that
it is challenging to carry out such an analysis, due to the
complicated nature of the power spectrum for the magnetic
field over large scales. Hence, in what follows, we shall
only check if the strength of the magnetic field generated in
this model is roughly compatible with the observational
constraints.
Before going on to compute the angular power spectra of

the CMB generated by the passive and compensated modes
of the PMFs, let us examine if the magnetic fields generated
in the two inflationary models of interest are broadly
consistent with the current constraints. To do so, we need
to evaluate the amplitude of the magnetic field, say Bλ, that
has been smoothed over a coherence scale λ [8,75]. In
practice, the quantity B2

λ is obtained by integrating the
spectral energy density of the PMFs [i.e., the spectrum of
the magnetic field, see Eq. (4)] with a Gaussian window
function of width λ ¼ 1 Mpc, and it is defined as

B2
λ ¼

Z
d3k
4πk3

e−k
2λ2PBðkÞ: ð24Þ

For instantaneous reheating, the smoothed amplitude today,
say B0

λ, is given by

B0
λ ¼ Bλ

�
ae
a0

�
2

; ð25Þ

where Bλ is the smoothed strength of the magnetic field
generated during inflation, while ae and a0 denote the scale
factors at the end of inflation and today, respectively. The
ratio of these scale factors is given by [44]

a0
ae

≃ 2.8 × 1028
�

HI

10−5 MPl

�
1=2

; ð26Þ

where HI is the Hubble parameter during inflation.
Let us now evaluate the quantity B0

λ in the two infla-
tionary models of our interest. In the case of the first
potential (12), upon using the resulting power spectrum for
the magnetic field (as illustrated in Fig. 5) and carrying out
the integral (24) numerically over all scales (viz. 10−5≲
k≲ 1019 Mpc−1), we obtain that B2

λ ¼ 1.079 × 10−20 M4
Pl.

Thereafter, upon using the relation (25), we obtain an
estimate of the smoothed strength of the magnetic field
today to be B0

λ ≃ 2.77 × 10−2 nG, corresponding to
HI ≃ 4.07 × 10−6 MPl. We should mention that, to arrive
at this result, we have used the conversion factors 1MPl ¼
2.43 × 1018 GeV and 1G ¼ 6.91 × 10−20 GeV2. Similarly,
in the case of the second potential (13), for the spectrum of
the magnetic field illustrated in Fig. 5, we obtain that
B2
λ ¼ 9.69 × 10−21 M4

Pl, which leads to the present day
strength of B0

λ ≃ 2.05 × 10−1 nG, corresponding to HI≃
5.26 × 10−7 MPl. These estimates suggest that the spectra
of the magnetic fields from the two inflationary models
are broadly in agreement with the observational bound of
B0
λ ≲ 1 nG on the strength of the magnetic field today (in

this context, see, for instance, Ref. [31]).
Let us now turn to the explicit evaluation of the imprints

of the passive and compensated modes induced by the
PMFs on the CMB using MagCAMB. As we have already
mentioned, in MagCAMB, the primordial power spectrum
of the magnetic field is assumed to be of the power law
form, say, PBðkÞ ∝ kn̄B , where n̄B is the spectral index. We
find that the spectral index nB we have defined [see our
comments following Eq. (4)] is related to the spectral index
n̄B of MagCAMB as n̄B ¼ −3þ nB. The quantities required
to compute Cl’s due to the PMFs using MagCAMB are the
smoothed amplitude B0

λ that we discussed above and the
spectral index n̄B [75]. As mentioned earlier, in the scenario
described by the potential (12), since the magnetic power
spectrum contains strong features over large scales, we
are unable to use MagCAMB. For the model described
by the potential (13), as the magnetic power spectrum is
nearly scale invariant over large scales, we have provided
MagCAMB with the smoothed amplitude B0

λ and the spectral
index n̄B to arrive at the angular spectra of the CMB
corresponding to the passive and compensated modes. We
find that the spectral index over the CMB scales for the
spectrum of the magnetic field illustrated in Fig. 5 is
nB ¼ −0.0112. So, we have supplied the following values
of the parameters to MagCAMB: B0

λ ¼ 2.05 × 10−1 nG,
n̄B ¼ −3.0112, and set the pivot scale to be k� ¼
0.05 Mpc−1. Using these parameters, we have computed
the contributions of the PMFs to the angular power spectra
of the CMB through the passive and compensated modes.
We shall present and discuss the results in Sec. IV C.
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B. Contributions due to the induced curvature
perturbations

Next, we investigate the contributions to the angular
power spectra of the CMB due to the curvature perturba-
tions induced by the magnetic fields generated during
inflation, which are often referred to as the inflationary
magnetic modes [76,77]. These modes are unique to
inflationary magnetogenesis and are absent if the PMFs
are generated after inflation. They remain unaffected by the
behavior of magnetic fields after the termination of infla-
tion. Once again, to examine the imprints on the angular
power spectrum of the CMB due to these modes, we restrict
ourselves to the model described by the potential (13), as
the sharp features in the spectrum arise only over small
scales and we can work with the de Sitter approximation to
compute the observables over the CMB scales.
In the slow roll approximation, the strength of the

curvature perturbation, say Rmag
k , induced by the magnetic

fields during inflation (for the case wherein J ∝ a2) can be
written as [76,77]

k3=2Rmag
k ðηeÞ ¼

2H2
I

3M2
Plϵ1

CEMðkÞ ln
�
k
ke

�
; ð27Þ

where ϵ1 is the first slow roll parameter and ke represents
the wave number that leaves the Hubble radius at the end of
inflation (i.e., at ηe), when the strength of the perturbations
is evaluated. The quantity CEMðkÞ is determined by the
expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PEMðkÞ

ρ2ϕ

s
¼ H2

I

3M2
Pl

CEMðkÞ; ð28Þ

where PEMðkÞ is the power spectrum of the fluctuations in
the energy density of a given mode of the electromagnetic
field which is defined through the relation (C1), and ρϕ
denotes the energy density of the scalar field(s) driving the
inflationary background. In Appendix C, we have initially
arrived at a generic expression for the power spectrum
PEMðkÞ and have then gone on to evaluate the quantity for
the case wherein J ∝ a2, which leads to a scale invariant
spectrum for the magnetic field PBðkÞ. But, evidently, in
the model described by the potential (13), there arise
deviations from slow roll. Also, the resulting spectrum
of the magnetic field is not scale invariant, as should be
clear from Fig. 5. However, note that the departures from
slow roll occur at late times and, due to this reason, the
deviations from the nearly scale invariant behavior arise
only over very small scales. Moreover, the deviations from
scale invariance are mostly in the form of oscillations.
Therefore, over the CMB scales, we believe that the slow
roll approximation leads to a reasonable estimate of the
power spectrum of the curvature perturbations induced by
the magnetic field. We can arrive at the strength of the

induced curvature perturbation at late times, i.e., Rmag
k ðηeÞ,

by using the result (C4) for PEMðkÞ in Eqs. (27) and (28)
and the fact that ρϕ ¼ 3H2M2

Pl. The scalar power spectrum
associated with the inflationary magnetic mode can be
obtained to be

Pmag
R ðkÞ ≃ 24

π3
ðPS

0Þ2 ln
�

k
kmin

��
ln

�
k
ke

��
2

; ð29Þ

where P0
S ¼ H2

I =ð8π2ϵ1Þ is the standard scalar power
spectrum evaluated in the slow roll approximation.
Having obtained the spectrum of curvature perturbations

induced by the magnetic field, we proceed to compute the
corresponding contributions to the angular power spectrum
of the CMB. We should stress that the contributions due to
the inflationary magnetic mode arise in addition to the
contributions due to the primary curvature perturbations
generated from the quantum vacuum during inflation. This
enables us to treat it in the same manner as the primary
curvature perturbations and use the standard apparatus of
CAMB to compute the corresponding angular power spectra.
To evaluate the Cl’s, we make use of the scalar power
spectrum obtained in Eq. (29). Since we are working with
the de Sitter approximation over the CMB scales, the
parameters that we require to compute the amplitude PS

0

are HI and ϵ1, evaluated at the e-fold when the pivot scale
exits the Hubble radius. Moreover, to obtain Pmag

R ðkÞ, we
require kmin and ke. We assume kmin to be 10−7 Mpc−1. In
the model of our interest [viz. the potential (13)], for the
values of parameters we have worked with, we find that
ke ≃ 1019 Mpc−1. We should further note that, since the
electromagnetic field possesses anisotropic stress, apart
from inducing secondary scalar perturbations, they will
also generate secondary tensor perturbations (in this con-
text, see, for example, Refs. [36,95–100]). Such a tensor
mode will also contribute to the B-mode polarization of the
CMB, apart from the contributions to the temperature and
E-mode polarizations. In this work, we have not calculated
these contributions due to the induced tensor perturbations.

C. Angular power spectra of the CMB

In Fig. 6, we have illustrated all the contributions to the
CMB angular spectra arising due to the PMFs for the model
described by the potential (13) which generates enhanced
scalar power on small scales. For reference, we have also
plotted the standard CMB spectra obtained from CAMB,
where there are no contributions from the PMFs. We should
mention that these standard spectra of TT, TE, EE, and BB
are obtained by supplying the numerically computed scalar
and tensor power spectra from our inflationary model
(illustrated in Fig. 3) to CAMB. In arriving at these spectra,
we have included the effects due to nonlinear lensing. We
have then presented the contributions due to the scalar
inflationary magnetic mode, obtained using our modified
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setup of CAMB as described above. This mode contributes
only to the CMB temperature and E-mode polarization
spectra. We should clarify that, in computing these spectra,
we have ignored the effects due to nonlinear lensing.
As is evident from the plots, this contribution is lower in
amplitude when compared to the standard CMB spectra by
Oð104Þ. We have further illustrated the contributions due to
the passive and compensated modes to the angular power
spectra of the CMB, which have been computed using
MagCAMB. We have computed these contributions using the
parameters obtained from the power spectrum of magnetic
field arising in the model, viz. B0

λ ¼ 7.25 × 10−1 nG and

n̄B ¼ −3.0112. As can be seen clearly, although the spectra
due to the passive and compensated modes have different
amplitudes, their shape is roughly similar to the standard
CMB spectra. It is evident from the figure that the
contributions to the CMB angular spectra due to the
PMFs are substantially smaller in magnitude for the model
we have considered. The largest contribution arises from
the inflationary magnetic mode and it is still at leastOð104Þ
lesser in magnitude than the standard spectra.
Though we could not carry out a similar exercise for the

model described by the potential (12), which leads to a
suppression in the scalar power spectrum over large scales,

FIG. 6. We have illustrated the contributions of the magnetic modes to the temperature and polarization angular power spectra of the
CMB due to the total (i.e., scalar plus tensor) passive (in green) and the total compensated (in cyan) modes. We have arrived at these
quantities using MagCAMB corresponding to a magnetic field with smoothed strength of B0

1 Mpc ¼ 2.05 × 10−1 nG today and a spectral
index of n̄B ¼ −3.0112. In addition, using CAMB, we have plotted the standard angular power spectra of the CMB (in red) induced by the
primary scalar and tensor perturbations. Moreover, we have also presented the contribution due to the curvature perturbation induced by
the magnetic field during inflation (in blue), which we have computed using CAMB. Note that, apart from the contributions due to the
primary tensor perturbations to the angular power spectrum of the CMB (in particular, to the B-mode polarization, which we have
illustrated in red in the plot on the bottom right corner), there will also arise a contribution due to the tensor perturbations induced by the
magnetic field during inflation. We should mention that we have not calculated this additional contribution in this work.
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the estimate of B0
λ in that case suggests that the corre-

sponding contributions to Cl’s would be of amplitudes
lesser than the case that we have discussed. Recall that, for
these additional contributions, Cl ∝ ðB0

λÞ4 and hence the
overall amplitude of the passive and compensated contri-
butions can be expected to be of lesser magnitude for the
model (12) than in the model (13) wherein we have
explicitly have computed these contributions. However,
there can arise a difference in the shape of Cl ’s at the lower
multipoles due to the sharp features in PBðkÞ over large
scales. In particular, the scalar power spectrum associated
with the inflationary magnetic mode in this case can have
interesting features, and being the largest of the contribu-
tions, it may leave discernible imprints on the total angular
power spectrum of the CMB. But it is challenging to
compute these contributions induced by the magnetic field
using analytical methods for spectra with strong features.
We would have to employ numerical procedures to com-
pute the induced scalar spectra over large scales. This is a
nontrivial exercise and we believe that it is beyond the
scope of the current work.

V. CONCLUSIONS

In our earlier work [44], we had shown that, in the case
of single field models involving strong deviations from
slow roll, there arise certain challenges in obtaining nearly
scale invariant power spectra for the magnetic field. We had
shown that even finely tuned nonconformal coupling
functions may not help us avoid strong features generated
in scenarios involving an epoch of ultra slow roll inflation.
To overcome such challenges, in this work, we have
examined two field models of inflation where a turning
in the background trajectory in the field space gives rise to
departures from slow roll. We have considered two field
models where such deviations from slow roll lead to either
a suppression in the scalar power over large scales or to an
enhancement over small scales.
We have constructed model dependent coupling func-

tions numerically using the background dynamics of the
two fields in these models. Using these coupling functions,
we have been able to obtain the desired amplitude and a
nearly scale invariant form for the power spectra of
magnetic fields in the models of interest. While we have
been able to mostly circumvent the challenges faced in
single field models, we find that it is not entirely possible to
remove the strong features over the range of scales that
leave the Hubble radius during deviations from slow roll.
For the potential that gives rise to an enhancement in scalar
power over small scales, we obtain a power spectrum for
the magnetic field which is nearly scale invariant over large
scales, but contains a rapid burst of oscillations over small
scales. Similarly, for the potential that generates a sup-
pression in the scalar power over large scales, the power
spectrum of the magnetic field exhibits strong oscillations
over very large scales and turns scale invariant over smaller

scales. In the first model, the oscillations have higher
amplitude than the scale invariant part, whereas they have
same amplitude in the second model. In both these models,
we obtain amplitudes of the smoothed magnetic fields,
which lie in the current range of observations,
i.e., 10−16–10−9 G.
Further, for the model that generates enhancement in

scalar power over small scales, we have also computed the
contributions of the PMFs to the anisotropies in the CMB
using MagCAMB. Apart from calculating the contributions
due to the passive and compensated modes, using CAMB,
we have also evaluated the contribution due to the curvature
perturbation induced by the magnetic field during inflation.
These contributions to the angular power spectra of the
CMB are of roughly similar shape as the standard spec-
trum, but are of lower amplitudes. Moreover, we find that,
the corresponding value of the smoothed amplitude B0

λ is
well within the upper bound on the parameter obtained
earlier (in this context, see Ref. [75]).
To summarize, using two field models, along with

suitable choices of coupling functions, we have been able
to largely overcome the challenges faced in the generation
of PMFs in single field models of inflation permitting an
epoch of ultra slow roll. Also, we have been able to
approximately evaluate the imprints of the PMFs on the
CMB in the second model that leads to a scale invariant
spectrum for the magnetic field over large scales. But,
clearly, there are some limitations to the approach we have
adopted. For instance, it seems fair to assume that the small
scale features in the power spectrum of the magnetic field
are unlikely to affect the angular power spectra of the CMB.
However, since there arise departures from slow roll at late
times in the second model, the de Sitter approximation
we have worked with to estimate the induced spectrum
of curvature perturbations is likely to be inadequate.
Moreover, as we mentioned, the first model which leads
to features in the spectrum of the magnetic field over the
CMB scales needs to be analyzed numerically to evaluate
the induced spectrum of curvature perturbations and the
corresponding imprints on the CMB. In addition, to
compute the signatures of the passive and compensated
modes in such models, MagCAMB needs to be suitably
modified to take into account features in the power spectra
of the electromagnetic fields. We are presently investigating
such issues.
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APPENDIX A: ANALYTICAL CONSTRUCTION
OF THE NONCONFORMAL COUPLING

In this appendix, using the solutions for the fields ϕ and
χ that can be arrived at in the slow roll approximation, we
shall construct analytical forms for the nonconformal
coupling function Jðϕ; χÞ in the two inflationary models
we have considered. We shall then make use of the
analytical forms for Jðϕ; χÞ to numerically compute the
resulting spectra of the magnetic field and compare them
with the spectra we have obtained earlier.
Let us first discuss the model described by the potential

(12). As we have seen, in the two field models of our
interest, there arise two stages of inflation, with each
regime being driven by one of the two fields. In the case
of inflation driven by the potential (12), during the first
stage, the field ϕ rolls down the potential, while the field χ
remains frozen. During this phase, the evolution of the field
ϕ in the slow roll approximation can be expressed as [70]

ϕ2ðNÞ ¼ ϕ2
i − 4M2

PlN; ðA1Þ

where we have assumed that ϕ ¼ ϕi at N ¼ 0. To achieve
the desired behavior of J ∝ a2, in the first stage, we can
assume that

JðϕÞ ∝ exp

�
−
1

2

�
ϕ2

M2
Pl

−
ϕ2
i

M2
Pl

��
: ðA2Þ

The first stage dominated by the field ϕ eventually ends
and, after a few damped oscillations, the field settles down
at the value

ϕmin ≃
1

2b̄
W

�
8V0b̄2M2

Plχ
4
0

3m2
ϕχ

6
i

�
; ðA3Þ

where WðzÞ is the so-called Lambert or the product
logarithmic function [101]. The field χ drives the second
stage of inflation and, during this period, the solution for
the field in the slow roll approximation can be written as

χ2ðNÞ ¼ ½ðχ20 þ χ2i Þ2 − 8M2
Plχ

2
0e

−2b̄ϕminðN − N1Þ�1=2 − χ20;

ðA4Þ

where N1 is the e-fold when ϕ ¼ ϕmin. In a fashion similar
to the first phase, to achieve J ∝ a2, we can choose the
coupling function during the second stage of slow roll
inflation to be

JðχÞ ¼ exp

�
2N1 −

e2b̄ϕmin

4M2
Plχ

2
0

�
ðχ2 þ χ20Þ2 − ðχ2i þ χ20Þ2

�	
:

ðA5Þ

Let us now turn to the second model described by the
potential (13). During the first stage driven by the field ϕ, in
the slow roll approximation, the evolution of the field can
be expressed as

ϕ2ðNÞ ¼ ½ðϕ2
i þ ϕ2

0Þ2 − 8M2
Plϕ

2
0N�1=2 − ϕ2

0; ðA6Þ

where we have assumed that the field is at ϕi when N ¼ 0.
To achieve J ∝ a2, the coupling function can be chosen
to be

JðϕÞ ∝ exp

�
−

1

4M2
Plϕ

2
0

½ðϕ2 þ ϕ2
0Þ2 − ðϕ2

i − ϕ0Þ2�
	
: ðA7Þ

In between the two stages of inflation, ϕ behaves like a
massive scalar field and undergoes damped oscillations
around the minimum [70]. It seems difficult to obtain an
analytical solution during this period since the Hubble
parameterH and the field χ experience a jump. We find that
ϕ eventually approaches a constant value ϕmin, given by the
minimum of its effective potential. The value of χ at the
onset of this period can be written as χ1i ¼ χi − Δχ, where
Δχ is the jump in χ. During the second stage of slow roll
inflation, the solution for χ can be written as

χ2ðNÞ ¼ χ2i − 4e−2b̄½ϕminþΔϕðNÞ�M2
PlðN − N1Þ; ðA8Þ

where ϕmin ¼ b̄M2
Plm

2
χϕ

2
0=ð3V0Þ and the quantity Δϕ is

governed by the equation

d2Δϕ
dN2

þ ð3 − ϵ1Þ
dΔϕ
dN

þm2
Δϕ

H2
Δϕ ¼ 0 ðA9Þ

with m2
Δϕ being given by

m2
Δϕ ¼ 2V0

ϕ2
0

þ 4

3
b̄2m2

χϕ
2
0: ðA10Þ

Therefore, the coupling function during the second stage
can be chosen to be

JðχÞ ¼ exp

�
2N1 −

1

2
e2b̄½ϕminþΔϕðNÞ�

�
χ2

M2
Pl

−
χ2i
M2

Pl

�	
:

ðA11Þ

SAGARIKA TRIPATHY et al. PHYS. REV. D 107, 043501 (2023)

043501-16



With the solutions of the coupling functions in the two
stages at hand, we can combine them [in a manner similar
to Eq. (23)] to arrive at the following coupling function:

Jðϕ; χÞ ¼ J0

�
1

2

�
1þ tanh

�
χ − χ1
Δχ

��
JðϕÞ

þ 1

2

�
1 − tanh

�
χ − χ1
Δχ

��
JðχÞ

	
; ðA12Þ

where χ1 is the value of χ around the e-fold when the
transition from the first stage of slow roll region to the
second stage occurs. Since we require J to reduce to unity
at the end of inflation, we have

J0 ¼
�
1

2

�
1þ tanh

�
χe − χ1
Δχ

��
JðϕeÞ

þ 1

2

�
1 − tanh

�
χe − χ1
Δχ

��
JðχeÞ

	
−1
; ðA13Þ

where ϕe and χe denote the values of the fields at the end of
inflation.
Earlier, in Fig. 2, we had compared the analytical

solutions for the background scalar fields we have obtained
above with the exact numerical results. Clearly, while the
analytical solutions are a good approximation to the exact

numerical results in the two domains involving slow roll,
they perform poorly around the transition. In Fig. 7, we
have plotted the nonconformal coupling function J we have
arrived at analytically using the expression (A12) for the
two models of our interest. In the figure, we have also
plotted the quantity μ2B ¼ J00=ðJa2H2Þ and the resulting
power spectra of magnetic fields PBðkÞ for the two models.
As should be evident, though the strengths of magnetic
field roughly match the numerical results we had obtained
earlier (plotted in Fig. 5), the shapes of the power spectra
are fairly different. This can be attributed to the discon-
tinuous behavior of the fields around the point of transition
in the analytical case.

APPENDIX B: IMPACT OF THE CHOICE OF
THE PARAMETERS IN THE NONCONFORMAL

COUPLING FUNCTION

Recall that, the nonconformal coupling function Jðϕ; χÞ
in Eq. (23) was constructed so that its evolution was
determined by the field driving the background expansion
at any given time. Such a construction had ensured that the
function largely behaves in the manner that we desire, i.e.,
as Jðϕ; χÞ ∝ a2 (see Fig. 4). The point at which Jðϕ; χÞ
switches its dependence on the evolution of ϕ to that of χ is
determined by χ1. Also, the range over which this switch
happens is determined by Δχ. Earlier, while arriving at the

FIG. 7. The coupling functions JðNÞ constructed analytically using Eq. (A12) (on the left), along with the corresponding μ2BðNÞ (in the
middle), and the resulting spectra of the magnetic field (on the right) have been plotted for the models described by the potentials (12)
(on top) and (13) (at the bottom). We have indicated the point of transition in the plots of JðNÞ and μ2BðNÞ (as vertical black lines). Note
that the above spectra of the magnetic field differ from the spectra we had arrived at earlier in Fig. 5. The differences can be attributed to
the inability of the analytical solutions to capture the dynamics of the fields around the point of transition from the first stage to the
second stage of slow roll inflation.
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power spectra of the electromagnetic fields due to such a
coupling function, we had worked with specific values of
these two parameters. In this appendix, we shall discuss the
impact of the choice of these parameters on the power
spectrum of the magnetic field.
It seems natural to choose the value of χ1 to be the point

at which the turn in the trajectory in the field space occurs
(as marked in Fig. 2). The value of Δχ can be chosen to be
that it roughly corresponds to the duration of the transition.
However, we ought to consider the effects that may occur
due to variation of these parameters and quantify the
dependence of the features in the spectrum of the magnetic
field on such variations. Evidently, we should be cautious
so that, even as we try to capture the features that arise from
the intrinsic dynamics of the fields, we do not end up
introducing features from the very construction and para-
metrization of the coupling function.
We have analyzed the effects of the parameters χ1 and

Δχ on the spectrum of the magnetic field in the case of
the first model described by the potential (12). We have
presented the results of the exercise in Fig. 8. Note that, in
our analysis, while we vary χ1 andΔχ, we have retained the
original values for parameters of the model and of the
fitting functions NðϕÞ and NðχÞ [cf. Eqs. (21) and (22)]. To
begin with, we shall discuss the effects due to variation of
Δχ. The value of Δχ ¼ 10−3MPl which we have used
earlier, seems to be an appropriate choice since, for such a
value, we are able to achieve the desired behavior of
Jðϕ; χÞ ∝ a2 without considerable deviations during the
transition. However, for larger values of the parameter, say
that lie in the range 10−3MPl ≤ Δχ < 10−1MPl, we observe
that, prior to the transition, the coupling function Jðϕ; χÞ
turns to be a constant. This essentially arises due to the
smoothing of the hyperbolic tangent function that we had
introduced to effect the transition between the two parts of
Jðϕ; χÞ. A smoother hyperbolic tangent function sup-
presses the contribution due to the evolution of ϕ before
transition and that of χ after the transition. Because of this
reason, Jðϕ; χÞ settles to a constant over the smoothed
regime. Such a behavior of Jðϕ; χÞ leads to extremely small
values of J00=J, which invariably results in the spectrum of
the magnetic field PBðkÞ behaving as k4 over large scales
(as can seen in the plots in left column of Fig. 8). Moreover,
if we make the transition sharper, i.e., if we choose
Δχ < 10−3MPl, though the spectrum of the magnetic
field largely retains its shape, there arise oscillations
over a wider window of wave numbers between the two
domains of scale invariance. This is expected since a faster
transition leads to sharp peak in J00=J between the two
regimes. Hence, we can conclude that, to avoid any
artificial features such as either a suppressed power over
large scales or a prolonged burst of oscillations in the
spectrum of the magnetic field, the choice of Δχ ¼
10−3MPl seems optimal.

Let us now turn to understanding the effects due to the
variation in χ1. Upon choosing the value of χ1 to be greater
than 5.722 MPl, we observe that the nonconformal cou-
pling function Jðϕ; χÞ again turns constant during the initial
epoch, and hence the spectrum of the magnetic field PBðkÞ
behaves as k4 over large scales. This is due to the coupling
function switching its dependence from ϕ to χ at an earlier
time, before the turn in the trajectory in the field space
occurs. Such a choice suppresses the dependence of Jðϕ; χÞ
on ϕ during the initial regime and makes it follow the
behavior of χ which is frozen during this epoch. As a result,
J00=J drops to very small values and, as we have already
discussed, it leads to the k4 behavior of the spectrum of the
magnetic field over large scales. For χ1 ≤ 5.722MPl, we
find that the spectrum regains its near scale invariance in the
two asymptotic domains, but the amplitude of oscillations
over the intermediate domain in wave numbers prove to be
larger. Therefore, the ideal value of χ1 proves to be around
5.722MPl, where the turn occurs in the trajectory in the
field space. Otherwise, one may introduce either a sup-
pression or oscillations with large amplitudes, which are
clearly artifacts induced by a nonoptimal value of χ1.

APPENDIX C: POWER SPECTRUM OF
FLUCTUATIONS IN THE ENERGY DENSITY

OF THE ELECTROMAGNETIC FIELD

Let ρ̂kEMðηÞ denote the operator associated with the
energy density corresponding to a given wave vector k
of the electromagnetic field. The power spectrum of
fluctuations in the energy density of the electromagnetic
field for a given mode, say, PEMðkÞ, is defined through the
relation [76,77]

hρ̂k†EMðηeÞρ̂k
0
EMðηeÞi − hρ̂k†EMðηeÞihρ̂k

0
EMðηeÞi

¼ ð2πÞ3PEMðkÞδð3Þðk − k0Þ; ðC1Þ

where, as mentioned earlier, ηe denotes the conformal time
coordinate close to the end of inflation. Note that the
expectation values in the above expression are to be
evaluated in the Bunch-Davies vacuum.
Recall that, in the nonhelical case, for J ∝ a2, the energy

density of the electric field is negligible at late times.
Therefore, the total energy density of the electromagnetic
field for a given mode can be expressed in terms of
the Fourier modes of the magnetic field, say, Bik, as
follows:

ρkEMðηÞ ¼
J2ðηÞ
8π

Z
d3q

ð2πÞ3=2 BiqðηÞBi
ðk−qÞðηÞ; ðC2Þ

where Bi ¼ ϵijlð∂jAlÞ=a, Bi ¼ gijBj, and Bik denotes the
Fourier modes associated with the magnetic field. For the
case wherein the spectrum of the magnetic field is scale
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invariant [i.e., PBðkÞ ¼ 9H4
I =ð4π2Þ, see Eq. (6)], upon substituting Eq. (C2) in Eq. (C1) and using Wick’s theorem, we find

that the power spectrum PEMðkÞ can be expressed as

PEMðkÞ ¼
1

2π2

�
3H2

I

4π

�
4
�Z

d3q
q3jk − qj3 þ

Z
d3q

q5jk − qj5 ½q · ðk − qÞ�2
�
: ðC3Þ

FIG. 8. We have presented the behavior of Jðϕ; χÞ, μ2BðNÞ, and the corresponding power spectrum of the magnetic field PBðkÞ (on top,
in the middle, and bottom rows, respectively) that arise due to the variation of the parametersΔχ (on the left column) and χ1 (on the right
column) in the case of the first model described by the potential (12). The parameters have been varied around the values of Δχ ¼
10−3 MPl and χ1 ¼ 5.722 MPl that we had considered earlier. We should mention that we have retained the original values of the other
parameters in arriving at these results. For larger values of Δχ, which lead to a smoother transition of Jðϕ; χÞ, we find that PBðkÞ ∝ k4

over large scales, whereas for smaller values of Δχ, effecting a sharper transition, we obtain a nearly scale invariant spectrum in the
asymptotic domains (in wave number) with oscillations that extend over a wider range of wave numbers. Moreover, while larger values
of χ1 lead to the PBðkÞ ∝ k4 behavior over large scales, smaller values result in asymptotically (i.e., in wave numbers) scale invariant
spectra with oscillations that are of higher amplitude over the intermediate domain.
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Upon carrying out the integrals over q, we obtain that

k3PEMðkÞ ¼
16

3π

�
3H2

I

4π

�
4

ln

�
k

kmin

�
; ðC4Þ

where we have introduced the infrared cutoff kmin to
regulate the integral. It is this result for PEMðkÞ that we
have utilized to arrive at the power spectrum for the
curvature perturbations induced by the magnetic field,
viz. Pmag

R ðkÞ, in Eq. (29).
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