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Abstract

Summary: Radiographic imaging techniques provide insight into the imaging features of tumor regions of interest,
while immunohistochemistry and sequencing techniques performed on biopsy samples yield omics data.
Relationships between tumor genotype and phenotype can be identified from these data through traditional correl-
ation analyses and artificial intelligence (AI) models. However, the radiogenomics community lacks a unified soft-
ware platform with which to conduct such analyses in a reproducible manner. To address this gap, we developed
ImaGene, a web-based platform that takes tumor omics and imaging datasets as inputs, performs correlation ana-
lysis between them, and constructs AI models. ImaGene has several modifiable configuration parameters and pro-
duces a report displaying model diagnostics. To demonstrate the utility of ImaGene, we utilized data for invasive
breast carcinoma (IBC) and head and neck squamous cell carcinoma (HNSCC) and identified potential associations
between imaging features and nine genes (WT1, LGI3, SP7, DSG1, ORM1, CLDN10, CST1, SMTNL2, and SLC22A31)
for IBC and eight genes (NR0B1, PLA2G2A, MAL, CLDN16, PRDM14, VRTN, LRRN1, and MECOM) for HNSCC.
ImaGene has the potential to become a standard platform for radiogenomic tumor analyses due to its ease of use,
flexibility, and reproducibility, playing a central role in the establishment of an emerging radiogenomic knowledge
base.

Availability and implementation: www.ImaGene.pgxguide.org, https://github.com/skr1/Imagene.git.

Contact: shiv.nagaraj@qut.edu.au or ogevaert@stanford.edu

Supplementary information: Supplementary data are available at https://github.com/skr1/Imagene.git.

1 Introduction

Diagnostic imaging techniques are routinely used in clinics and labo-
ratories for the identification of tumor severity and progression
(Bodalal et al., 2019). Common diagnostic techniques include com-
puted tomography (CT), magnetic resonance imaging (MRI) and
positron emission tomography (PET). These techniques yield high-
quality digital images for tumor assessment that are also suitable for
building databases that curate patient data for the purposes of re-
search reproducibility and reuse (Diaz et al., 2021; Freymann et al.,
2012; Gillies et al., 2016; Prior et al., 2017).

When used to assess tumors, diagnostic imaging techniques pro-
duce images that are examined by radiologists to segment (or select)
tumor regions of interest (ROIs) that are believed to represent core
sections of tumor on images. Measurements such as spatial, volu-
metric, textural and intensity-based are extracted from image-based
ROIs and analyzed using several techniques in correlation analysis
and artificial intelligence (AI) (Pfaehler et al., 2019; van Griethuysen
et al., 2017). In parallel, a portion of the corresponding tissue mater-
ial is biopsied from patient’s body and subjected to histopathologic-
al examination (Lee et al., 2013; Rice et al., 2017) and often also
omics-based assessment (González-Reymúndez and Vázquez, 2020;
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Liu et al., 2018; Nasrallah et al., 2019; Peng et al., 2015; Wang
et al., 2018). Omics-based investigations yield information such as
gene expression, copy number variations (CNVs) or other structural
variants (SVs), single-nucleotide variations (SNVs) and DNA methy-
lation scores for genes that regulate biological processes within the
biopsied tissue material (Anker et al., 2015; Balassiano et al., 2011;
Chen et al., 2013; Park et al., 2010).

Despite the widespread use of tumor biopsies as a means of
establishing important diagnostic information pertaining to specific
ROIs, several studies have reported an underestimation of adverse
pathologies in up to 23% of the samples due to spatial sampling
bias (Aihara et al., 1994; Kvale, 2009; Martin-Gonzalez et al., 2020;
Siddiqui et al., 2015; Smith et al., 2019). This may be attributed to
the spatial heterogeneity of morphological growth patterns (Aihara
et al., 1994; Bosaily and El-Shater, 2016; Boutros et al., 2015) as
well as genetic heterogeneity within the cancerous lesions and may
result in the underestimation of tumor severity, leading to an in-
crease in the potential for tumor-related adverse events in these
patients (Aihara et al., 1994; Incoronato et al., 2020; Martin-
Gonzalez et al., 2020; Sottoriva et al., 2013). Therefore, combining
imaging information of tumors with their omics profile could ex-
plain the tumor heterogeneity better than just with imaging alone.
One such method would be to correlate data from image-based tests
and omics-based investigations to improve the quality of diagnosis
(Bakr et al., 2018; Gevaert et al., 2012, 2014; Lo Gullo et al., 2020;
Martin-Gonzalez et al., 2020; Zhou et al., 2018) and to provide
more reliable tumor ROIs that can be used for tissue sampling when
performing biopsies (Gillies et al., 2016; Martin-Gonzalez et al.,
2020). Furthermore, AI models built with flexibility in performing
prior filtering of features using statistical correlation analysis may
allude crucial associations that may lead to improved tissue biopsies
in patients (Ashraf et al., 2014; Bodalal et al., 2019; Chitalia et al.,
2020). Such models may also reduce or obviate the need for tissue
biopsy for tumor assessment in near future (Bodalal et al., 2019).

The field of imaging genomics or radiogenomics focuses on find-
ing associations between radiomic characteristics of tissue ROIs and
molecular characteristics such as genomic, transcriptomic and prote-
omic profiles of tumor cells. Using data from The Cancer Imaging
Archive (TCIA), a group recently conducted a locoregional study
using MRI images of glioblastoma tissues by generating heat maps
corresponding to both core and boundary regions of specific tumor
ROIs, revealing substantial genetic heterogeneity (Depeursinge
et al., 2018). The gene expression profiles of each of the sampled
regions were correlated with known information regarding the genes
involved in multiple pathways potentially leading to oncogenesis
(Depeursinge et al., 2018). Another recent study investigated gene
expression profiles of pancreatic ductal adenocarcinoma (PDAC)
ROIs using CT images by comparing the radiomic features of these
ROIs with their genotypes and stromal content (Attiyeh et al.,
2019). This investigation yielded a radiogenomic model that pro-
vided important information regarding the number of altered genes
in the ROIs and SMAD4 gene expression status in association with
radiomic features. Stromal content was also correlated with radio-
mic and genomic features of the ROIs, thereby indicating that stro-
mal information can guide decision-making for PDAC samples
(Attiyeh et al., 2019).

Currently, the field of tumor diagnostics relies on the biopsy of
tissue samples followed by molecular analyses to identify the genom-
ic characteristics of a given tumor (Kamel and Al-Amodi, 2017).
This approach is limited to providing information restricted to the
biopsied tissues and does not reveal the heterogeneity of the tumor
or the underlying changes that take place at the cellular and tissue
levels (Kamel and Al-Amodi, 2017). The assessment of radiomic fea-
tures derived from radiographic scans such as CT and MRI can pro-
vide a noninvasive means of gauging overall survival of tumor
patients (Shukla et al., 2017). Radiomic features, in combination
with clinical and genomic information, can aid clinicians in deciding
the best course of therapy for these patients (Shukla et al., 2017). To
overcome the limitations of histopathological analysis and to facili-
tate the acquisition of in-depth insights into tumor molecular char-
acteristics, there is a pressing need for the development of tools that

can perform advanced statistical and correlational analyses using
data derived from both histological as well as diagnostic imaging
approaches (Mobadersany et al., 2018).

Radiogenomic investigations typically use a combination of ma-
chine learning and statistical methods to detect correlations between
the radiomic and genomic features of tumor regions. These methods
are unique for each study and most studies do not provide the details
of the codes and parameters used for these investigations, thereby
limiting their reproducibility (Brito et al., 2020; Colenet al., 2014).
In addition, they do not offer users with enough algorithmic flexibil-
ity, for example, using AI modeling with or without prior correla-
tions filtering of the features, the approaches practiced commonly in
the field so far (Ashraf et al., 2014; Chitalia et al., 2020; Trivizakis
et al., 2020). There is currently a need for the development of a
sophisticated, user-friendly, web-based software platform that can
perform both correlation analysis and modeling operations using AI
methods and provide trained models that could be used for rigorous
testing of associations of imaging features with the omics profiles of
tumor ROIs (Bodalal et al., 2019; Colen et al., 2014). There is also a
need for a transparent algorithm, the parameters of which can be
substantially exposed and altered to obtain comprehensive and self-
explanatory reports that can be used for radiogenomics research and
hopefully cancer diagnosis post sufficient validations through an
unified software platform.

At present, there are several software tools available that can de-
tect associations between imaging characteristics and gene regula-
tory networks in tissue samples, including Imaging-Amaretto and
Imaging-Community Amaretto (Gevaert et al., 2020). However,
these tools neither have a sophisticated, user-friendly, web-based
platform that can allow for the straightforward manipulation of ex-
perimental parameters, nor do they provide comprehensive reports
that describe statistical correlations between imaging and omics fea-
tures using clustered heat maps, and the AI-based prediction and/or
classification of labeled data along with the metrices such as root
mean square error (RMSE):standard deviation (STDEV) ratio, R2

and area under the receiver operating curve (AUC) that explain the
performance of models in predicting and/or classifying either omics
or imaging data from either imaging or omics data, respectively
(Gevaert et al., 2020). In addition, users require a flexibility to select
from a variety of AI model types (mainly regression based popular
in radiogenomic domain; Attiyeh et al., 2019; Depeursinge et al.,
2018) for training and testing, and consequently postanalyzing or
comparing results using quality control metrices such as RMSE,
STDEV, R2 and AUC to arrive at reliable imaging-omics associa-
tions (Gevaert et al., 2020). Multiomics Statistical Approaches is an-
other tool used for radiogenomic studies that provides correlation
heat maps and principal component analysis plots (Zanfardino
et al., 2021). However, it lacks a feature prediction ability imparted
by AI-based methods (Zanfardino et al., 2021). All these tools also
fail to adhere to the Findability, Accessibility, Interoperability, and
Reusability (FAIR) principles that allow users to store, track and
analyze their data through both individual steps and the entire ex-
periment (Wilkinson et al., 2016).

To address this need for a universal platform that can conduct
correlation analysis between imaging and omics-based features of
tumor ROIs and build AI models based on or off such correlated fea-
tures, we developed ImaGene. ImaGene is a web-based software
platform that integrates statistical and AI techniques to facilitate
tumor radiogenomic analyses. ImaGene facilitates systematic radio-
genomic analysis using various statistical and AI parameters that
allow users to configure their experiments and perform appropriate
iterations thereof. The end result of this platform is an HTML docu-
ment that describes how the experiment was executed, the parame-
ters that were used, and the resulting associations in the form of
correlation plots and performance metrics of AI models including
RMSE and the RMSE-to-STDEV ratio. The AI piece consists of re-
gression models such as linear, regularized regression (LASSO and
elastic net along with their respective multi-task versions) and deci-
sion trees (DT). It further conducts classification of predicted labels
at various decision thresholds (dts) yielding AUC values at such
thresholds. Through these outputs, ImaGene allows users to perform
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their radiogenomic experiments more intuitively and helps them es-
tablish unambiguous conclusions that can highlight data-driven
directions for future research. ImaGene provides an integrative plat-
form that can be used with data from both histological as well as
diagnostic imaging to reveal tumor-related spatial and temporal
details that cannot be established through histopathology alone.

2 Methods

2.1 Features of ImaGene
ImaGene has been deployed as a Graphical User Interface (GUI) on
the Amazon Web Service (AWS) servers of Queensland University of
Technology (QUT) and is also available as an open-access website
‘www.ImaGene.pgxguide.org’ (Fig. 3). Users can register to the
website for a free account. Alternatively, users can download
ImaGene from GitHub (https://github.com/skr1/Imagene.git) and
operate it on a Linux Operating System (OS) using a Command-
Line Interface (CLI). Once downloaded, users can set various config-
uration parameters available on the platform and run their experi-
ments (Fig. 3). ImaGene comprises of four modules: (i) data
preprocessing, (ii) correlation analysis, (iii) machine learning (ML)
and (iv) reporting (Fig. 1). The code for the software has been writ-
ten in Python, and it utilizes several libraries such as scikit-learn
(Pedregosa et al., 2011), matplotlib, seaborn and importr along with
custom functions written to follow a systematic approach to analyze
and pin point meaningful associations between imaging and omics
features.

For analytical operations, ImaGene requires two input files, each
in Comma-Separated Value (CSV) format—one containing imaging
features (and their measurements) and another containing omics fea-
tures for a set of tumor samples. The imaging features can be
acquired from feature extraction software such as PyRadiomics,
LIFEx or RaCaT by processing the tumor images using the respect-
ive segmentation labels (van Griethuysen et al., 2017; Koçak et al.,
2019; Pfaehler et al., 2019). The omics features can be acquired
from studies conducted on tumor ROIs in biopsy samples processed
in pathological laboratories and may consist of data pertaining to
gene expression, SV (including CNV), SNV or DNA methylation
scores.

Once the imaging and omics feature files are uploaded in the
software, the names and order of samples therein are matched.
Following this, the feature files are analyzed for different configur-
ation parameters based on values specified by the user in the data
preprocessing module (Table 1 and Fig. 1). The imaging and omics
features undergo normalization or scaling based on the normaliza-
tion method set by the user such as Standard Scaler, Max Absolute
Scaler and MinMax Scaler (Table 1). Normalization occurs inde-
pendently for training and test datasets using the same normaliza-
tion technique to prevent the leak of test data into train data.

The data is then transferred to the correlation analysis module
where either Pearson or Spearman test is conducted for imaging and
omics features per user’s selection of the correlation method
(Table 1). The outcome of the correlation test is a subset of imaging
and omics features that are highly correlated with one another (cor-
relation coefficient >0.5). The correlation threshold configuration
parameter allows users to specify this minimum correlation coeffi-
cient threshold (Table 1). For strong correlations found in the imag-
ing and omics feature files, the default Benjamin–Hochberg (BH) P-
value correction method (Table 1) is used to measure and adjust the
P-values for false discovery rates. Features having significant corre-
lations are presented as hierarchically clustered heat maps depicting
three types of relationships between imaging and omics features—(i)
two-way univariate, (ii) univariate to multivariate and (iii) two-way
multivariate. These features (P-adjust < 0.05) are then transferred
to the ML module for further processing. Setting the correlation
threshold to �1.0 disables correlation threshold-based filtering of
imaging and omics features and transfers all features to the ML
module.

In the ML module, the statistically correlated features are used
to construct a definitive ML model based on the model type specified

in the parameter settings (Table 1). Currently, the model types avail-
able in the platform are linear, regularized regression (LASSO and
elastic net along with their respective multi-task versions) and DT.
Users may specify their preferred model parameters (Table 1) depend-
ing on the options available in the scikit-learn library (Pedregosa et
al., 2011). Alternatively, if users are unsure of these parameters, they
may leave this section empty or specify only a subset of parameters,
in which case, default values for unspecified parameters will be used
(Fig. 3b). Users also have the flexibility to specify omics and imaging
features as either data, which is the independent variable set (X)
where, fX ¼ fx1;x2 . . . xngg or label, which is the dependent variable
set (Y) where fY ¼ fy1; y2 . . . yngg and which is predicted based on
the independent variable set (X). ImaGene also provides users with an
option to specify grid parameters for their experiments based on the
options available in the scikit-learn library, which can be achieved by
setting the ‘grid search’ parameter to ‘True’ (Fig. 3b), and by either
mentioning the list of grid search parameters in the ‘Model
Parameters’ section (Fig. 3b) or by using the default options.
Specifying grid search parameters allows users to train models using
different settings for model parameters, finalizing a model with the
best performing parameter settings.

The ML module uses either user-defined settings or default set-
tings to construct an AI model that is trained using a training data-
set. Following this, a K-fold cross-validation is performed to reduce
data overfitting based on the value specified in the ‘Cross-Validation
Splitter’ parameter (cv, default value¼2) (Table 1). Users can also
specify the fraction of the total number of test samples that should
be used for testing the model by entering their desired value in the
‘Test Size’ parameter (default value¼0.1) (Table 1 and Fig. 3b).
Based on this setting, the test dataset is used for testing the model.

The test dataset is scored by calculating the negative mean
square error (MSE) and the RMSE. RMSE is calculated for each
label (y) in the dataset, and the ratio of RMSE ‘RMSE(y)’ and stand-
ard deviation of the originally observed values ‘STDEV(y)’
(RMSE:STDEV) represents the prediction error of the model for
each label as a function of the standard error (standard deviation) in
the distribution of the observed label values (yobserved). Furthermore,
users can utilize the identity (1) below depicting the relationship be-
tween R2 and RMSE:STDEV ratio (vÞ to compute the R2. The R2

along with v provides users with two metrics that aid in assessing
the reliability of various regression models in the context of residual
variance for ypredict (i.e. SSL) and the total variance that exists in
yobserved (i.e. SST).

v ¼ RMSEðyÞ
stdðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðyÞ
VarðyÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ky� ŷk2

1
n ky� yk2

 !vuut ¼
ffiffiffiffiffiffiffiffiffi
SSL

SST

r

By definition; R2 ¼ 1� SSL

SST

Therefore, from the above, it is derived that

R2 ¼ 1� ðvÞ2 (1)

In addition, ImaGene also calculates R2 using the r2-score module
in scikit-learn library (Pedregosa et al., 2011). Interestingly, these
R2s were found to match the R2s calculated using the identity (1)
(Tables 2 and 3).

In order to evaluate the performance of a regression model when
used to classify omics labels (such as genes) into groups of their high
and low measures (for instance, high and low normalized gene
expressions which are in continuous form), such measures are first
binarized for yobserved at various dts (aka normalized gene expression
cutoffs) for each and every gene label (y). Thus, if a normalized ex-
pression value belongs to a range of [0,1] increasing in steps of 0.1
(i.e. dt ¼ f0:1; 0:2 . . . 1:0gÞ, and if the value of the dt is set to 0.5 (as
an example), all the expression values (yobserved) falling below 0.5
will be set to 0 and the ones rising above 0.5 will be set to 1 for every
gene label (y). The ypredict however would be retained as they are,
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i.e. in continuous form. Such a binarization of yobserved allows
ImaGene to calculate AUCs for each label (gene) at various measure-
ment cutoffs (i.e. dts) ultimately aiding users deem the best dt (or
range of dts) at which a model is able to classify a label (gene) as
high or low measured (i.e. expressed) for the given spectrum of
imaging features (Depeursinge et al., 2018). A plot of the AUC val-
ues versus dts is generated for all gene labels providing users with a

visualized overview (along with the respective output data files) in-
dicative of a regression model’s classification performance. This is
very beneficial from biological perspective as users can determine
expression cutoffs for a gene at which a regression model in radioge-
nomics can be relied upon for predicting that gene as high or low
expressed using imaging features from a tumor ROI on the radio-
graphic image.

Fig. 1. ImaGene’s Schema depicting its components
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ImaGene performs permutation tests for the genes predicted at
AUC > 0.9 and R2 > 0.25 during the test phase such that their sig-
nificance can be estimated. The results from these tests are text files
labeled as ‘validation permuts’, so that users can calculate P-values.

The P-values can be calculated as no. of times AUCpermut � AUCtest

and R2
permut � R2

test for AUC and R2 (respectively) for each gene
called with AUCtest > 0.9 and R2

test > 0.25 during the test phase.
These thresholds were kept high to eliminate the permutation runs

Table 1. Configuration parameters for ImaGene

Configuration parameters Values

Correlation method Default: Spearman (options: Pearson)

Correlation coefficient threshold Default: 0.5 (Set ‘�1.0’ to disable correlation-coefficient-threshold-based

filtering of features)

P-Value correction method Default: BH (options: Holm, Hochberg, Hommel, Bonferroni, BH, BY

and FDR)

Data feature type Default: Imaging (option: Gene)

Label feature type Gene (option: Imaging)

Train size 0.9 (flexible)

Test size 0.1 (flexible)

Normalization method Default: Stand_scaler (options: min_max, Stand_scaler and

MaxAbsScaler)

Mode Default: Train (options: Train, Validate and Predict)

Model type Default: Decision Tree (options: Linear Regression, Linear Model aka

Elastic-Net, LASSO, Multi-Task LASSO and Multi-Task Elastic Net)

Grid search default: False (options: True and False)

Cross-validation splitter cv: 2 (flexible)

<Section for other model parameters for each model type> Accepts as many model parameters as possible per scikit-learn library.

Can be empty

<Section for Grid Search parameters for each model type> Accepts as many grid search parameters as possible per scikit-learn li-

brary. Can be empty

Table 2. Significant and explainable gene predictions at different normalized FPKM thresholds using various radiogenomic models in the in-

vasive breast carcinoma case study

Model Genes Normalized

FPKM

thresholds

AUC R2 R2a AUC P-value R2 P-value Biological

significance

DT WT1 [0.5, 0.9] 1.0 0.48 0.48 0 0 Yes

LGI3 [0.6, 0.9] 0.94 0.36 0.36 0 0 Yes

SP7 [0.4, 0.9] 1.0 0.33 0.33 0 0 Yes

MTEN SLC22A31 [0.3, 0.9] 1.0 0.75 0.75 0 0 Yes

SMTNL2 [0.3, 0.9] 1.0 0.33 0.33 0 0 Yes

DSG1 [0.4, 0.7] 0.94 0.35 0.35 0 0 Yes

MTL ORM1 [0.7, 0.9] 1.0 0.33 0.33 0 0 Yes

CLDN10 0.9 1.0 0.37 0.37 0 0 Yes

CST1 [0.6, 0.9] 1.0 0.28 0.28 0 0 Yes

LR SLC22A31 [0.3, 0.9] 1.0 0.72 0.72 0 0 Yes

aCalculated using identity (1).

Table 3. Significant and explainable gene predictions at different FPKM thresholds using various radiogenomic models in the HNSCC case

study

Model Genes Normalized FPKM

thresholds

AUC R2 R2a AUC P-value R2 P-value Biological

significance

DT NR0B1 [0.3, 0.9] 1.0 0.99 0.99 0 0 Yes

PLA2G2A 0.9 1.0 0.4 0.4 0 0 Yes

LR (corr_threshold ¼ 0.7,

P-adjust <0.05)

MAL [0.8, 0.9] 0.9 0.41 0.41 0 0 Yes

MTL CLDN16 0.9 0.93 0.3 0.3 0 0 Yes

MTEN PRDM14 [0.3, 0.9] 1.0 0.3 0.3 0 0 Yes

VRTN 0.2 and [0.6–0.8]; 0.9 0.93; 1.0 0.46 0.46 0 0 Yes

LRRN1 [0.6–0.9] 0.93 0.32 0.32 0 0 Yes

MECOM [0.6, 0.9] 1.0 0.32 0.32 0 0 Yes

aCalculated using identity (1).
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(tests) on genes showing low R2
test and AUCtest values and to focus

on confidently predicted genes only. This also helps keep the run-
time of ImaGene optimal. These two features contribute to
ImaGene’s robustness and reliability. In addition, ImaGene reports
feature importances results as text files depicting how each radiomic
feature weighted in prediction of a gene. These weights are either in
the form of feature importances called from a Decision Tree
Regressor or are model coefficients in case of other regression mod-
els, both calculated using respective modules in scikit-learn library
(Pedregosa et al., 2011).

In addition, ImaGene executes a second round of radiogenomic
analysis using features purely selected by the model using either feature
importances or model coefficients from the training of the respective
model type using a normalized Train Set using ‘SelectFromModel’
functionality from scikit-learn library (Pedregosa et al., 2011), and fur-
ther training model based on such selected features only (Fig. 2). The
correlation module is completely bypassed in this round and the results
from the feature selection and the reports from model’s training, testing
and permutation tests thereof are stored in a sub directory prefixed as
‘FeaturesSelFromModel’ within the downloadable results directory.

Validation of the model can be conducted using multiple test data-
sets in the validation mode (Fig. 3c). The prediction mode of the plat-
form can be used to perform omics predictions on new imaging
datasets (Fig. 3c). The ‘job tracking’ feature of ImaGene allows users to
track the status of their experiments and to download the reports and
the supporting result files (along with intermediate calculated tables) of
completed experiments using the provided download links (Fig. 3e) on
the ‘jobs’ page on the web platform.

2.2 Radiogenomics report
Once an experimental run is completed, users can use the job tracking
page to download a detailed HTML report. This report represents the
alterations made to the imaging and omics data in each module of
ImaGene in the form of scores and plots which help users acquire an
overview of the process and deduce meaningful outcomes from the
features data (Supplementary Report BC 2). The first section of the
report provides details regarding the type of input data (i.e. imaging
and omics features files), the number of sample entries common to
both files and the type of normalization method used for the input
data. The second section provides hierarchically clustered heat maps
depicting statistical correlations between the imaging and omics fea-
tures. Features having a correlation coefficient greater than the de-
fault threshold of 0.5 and an false discovery rate (FDR)-adjusted P-
value greater than the cutoff value of 0.05 are used to train user-
defined AI models and set hyperparameters including the K-fold
cross-validation splitter (i.e. the ‘cv’ parameter). The next section
describes the imaging and omics features that exhibited significant
correlations and that were used to train the model along with the
parameters that were used for training and testing the model. The
next section is the ‘model interpretation’ section which provides met-
rics such as MSE, RMSE and K-fold cross-validation scores of the
model, and various plots such as a bar plot representing the
RMSE:STDEV ratio for each label feature, a scatter plot representing
true versus predicted values of labels having RMSE:STDEV � 1, and
a two-dimensional plot representing dt values on the x-axis and AUC
values on the y-axis to indicate the performance of the model in classi-
fying labels (genes) into categories (high or low expression) at differ-
ent cutoff values (normalized gene expressions—FPKMs) from 0 to 1.
These metrices aid users determine the model’s reliability in predicting
and/or classifying labels. Furthermore, the reports also include similar
metrices and plots from permutation tests on gene labels in the ‘valid-
ation permuts’ sections therein.

3 Results

To demonstrate the performance and capabilities of ImaGene, we
conducted two case study analyses of tumor imaging features al-
ready published in TCIA and corresponding gene expression data
from TCGA pertaining to two major types of cancer—invasive
breast carcinoma (IBC) and head and neck squamous cell carcinoma

(HNSCC) (Burnside et al., 2016; Clark et al., 2013; Li et al., 2016a,
b; Zhu et al., 2015). To clarify further, these cases do not necessarily
obligate the user to use ImaGene’s parameters similar to ours, and
users have the flexibility to operate on the same datasets using
parameters of their choice. The imaging (or radiomic) and gene expres-
sion datasets are provided as supplementary tables for IBC and HNSCC
(Supplementary Table BC Gene, Supplementary Table BC Radiomic fea-
tures, Supplementary Table HNSCC Gene and Supplementary Table
HNSCC Radiomic features).

3.1 Case study 1: IBC
The TCGA Breast Phenotype Research Group datasets available on
the TCIA platform were accessed to download 36 imaging features
of tumor ROIs in MRI scans of 89 IBC patients already published
by expert group of radiologists on the TCIA platform (Burnside
et al., 2016; Clark et al., 2013; Li et al., 2016a, b; Zhu et al., 2015).
A gene expression dataset comprised of FPKM (Fragments Per
Kilobase of transcript per Million mapped reads) data was down-
loaded from the main TCGA-BRCA sample set of which the 89 pa-
tient samples formed a subset. FPKM data was screened for genes
that had an FPKM value greater than or equal to 5 for at least 30
patients in the TCGA-BRCA cohort. In total, 976 genes were
obtained that met with these criteria. This type of screening ensures
reliable correlation-detection between imaging and omics data
(gene-FPKM data in this case study) such that these results can be
leveraged for the generation of high-quality AI models capable of
generating predictions or classifying gene expression levels based
upon tumor ROI imaging features.

Once the initial screening of the downloaded dataset was com-
plete, the imaging and gene-FPKM features were processed based
upon user-defined ImaGene parameter settings. For example, the ab-
solute Pearson-based correlation coefficient threshold was set to 0.7
for linear regression (LR) modeling downstream and 0.6 for other
model types depending on number of features required for the
satisfactory training of different types of AI models, the P-value
correction method for correlations was set to BH with the corrected
P-value threshold set to 0.05 by default. Furthermore, the imaging
features were set as data and gene-FPKM values were set as labels.
For both data and labels, the normalization method was set to
StandScaler, the test size was set to 0.2 (i.e. 20% of the dataset) and
the K-fold cross-validation splitter (cv) was set to 2 for LR and DT
models, and 3 for other model types.

At the end of the experimental run using the above mentioned
parameters, a comprehensive radiogenomics report was obtained for
each model type that reported LR, DT, Multi-Task LASSO (MTL) and
Multi-Task Elastic Net (MTEN) models (Supplementary Reports BC
1-5) that yielded the best results for the test dataset. Each model was
generated twice in a fully automated fashion, i.e. executing two scen-
arios: one with and another without a prior correlation-threshold-
based filtering of features in a single run attempt, with the latter includ-
ing an additional feature selection step (i.e. filtering features based on
feature importances or correlation weights yield by the respective
model type, i.e. DT or purely regression models) prior to training and
testing of the models to ultimately improve gene predictions by them.
Note that the correlation filtering in the first scenario occurred on a
nonnormalized dataset. Normalization occurred for the train and test
datasets independent of each other, i.e. post-train-test split, depending
on the normalization method selected by the user (Table 1). The radio-
genomic reports from these runs highlighted four radiomics features—
(i) signal enhancement ratio (K7), (ii) size of the lesion/volume (S1), (iii)
surface area (S3) and (iv) volume of the most enhancing voxels (S4)—
that were first significantly correlated (FDR-adjusted P-value, aka P-
adjust <0.05) with the FPKM values of a total of 17 genes as depicted
in the reports (Supplementary Report LR CorrF BC1), i.e. when the
correlation coefficient threshold was set to 0.7. Second, when the cor-
relation coefficient threshold was relaxed to 0.6, an additional radio-
mics feature (Washout rate (K4)) and 15 additional genes appeared on
the list of features exhibiting significant correlations (Supplementary
Report DT CorrF BC2). Using this threshold and the expanded feature
set, the training of the DT, MTL and MTEN models was found to be
enhanced but none identified significant genes (P<0.05) posttest with
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the test dataset. LR identified one significant gene posttest-SLC22A31
(Table 2). On contrary, when these models got trained with the fea-
tures selected from the feature selection module (using feature impor-
tances or correlation weights yield by the respective model type) rather
than correlation coefficient threshold-based feature-filtering, they iden-
tified eight more significant genes (P<0.05) with at least one gene

predicted by each model type (Supplementary Report LR FS BC3,
Supplementary Report DT FS BC4, Supplementary Report MTL FS
BC5, Supplementary Report MTEN FS BC6, and Table 2). Note that
in order to establish significance of the predicted genes, ImaGene con-
ducts permutation tests for all the genes detected at AUC > 0.9 and R2

> 0.25 during the test phase and the P-values are calculated using the

Fig. 2. ImaGene Workflow: calculating correlations, conducting feature selections and training and testing of radiogenomic machine learning models

ImaGene for tumor radiogenomic evaluation and reporting 7
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results thereof which ultimately helps reduce the list of genes to the sig-
nificant ones only (i.e. n¼9 in this case).

The biological significances of the identified genes were ascer-
tained using existing literature. Wilm’s tumor gene 1 (WT1) is onco-
genic as well as a tumor suppressor in breast cancer. The high
expression of WT1 regulates proliferation, migration and apoptosis
of breast cancer cells by interacting with molecules or signaling
pathways such as the Caspase family, EphA2, p53, HER2, TP-alpha
and ER-alpha (Zhang et al., 2020). WT1 vaccines against breast
cancer and other types of cancer such as lung, leukemia and pancre-
atic cancer are currently under phase I or phase II clinical trials high-
lighting its value in precision medicine (Zhang et al., 2020).
Leucine-rich glioma inactivated 3 (LGI3) transduces signals through
proteins implicated in cancer and its higher expression correlates
with higher survival rates indicating its tumor suppressive nature in
cancer (Kwon et al., 2018). Orosomucoid 1 (ORM1) upregulates
the expression of matrix metalloproteinases (MMP-2 and MMP-9)
consequently promoting epirubicin resistance in breast cancer
(Qiong and Yin, 2021). A loss of expression of DSG1 has been sig-
nificantly associated with better cancer-specific survival in anal
squamous cell carcinoma (SCC) which encourages us to study the
role of DSG1 in breast cancer given its wide range of fpkm expres-
sion, i.e. 0.4–0.7 (low to high) detected at AUC of 0.94 by ImaGene
(Myklebust et al., 2012). Claudin 10 (CLDN10) has been found to
be associated with ovarian cancer progression via TGF-beta or
WNT/Beta-catenin induced epithelial to mesenchymal transition (Li
et al., 2020). Smoothen Like 2 (SMTNL2) is downregulated in
breast cancer (Gálvez-Santisteban et al., 2012). Cystatin-SN’s
(CST1) high expression promotes breast cancer and predicts poor
prognosis in patients (Dai et al., 2017). Solute Carrier Family 22
Member 31 (SLC22A31) was identified as one of the prognostic
genes in right-sided colon cancer (Liang et al., 2018), which war-
rants exploration of its significance in other cancer types as well,
including the breast cancer. Such biological evidence from the litera-
ture that matches with the evidence from ImaGene encourages us to

explore the role of these 9 genes as targetable, therapeutic and
monitoring radiogenomic biomarkers in IBC.

In summary, ImaGene facilitates the systematic and user-
controlled imaging-based prediction and classification of gene ex-
pression in IBC, demonstrating the capability of this platform to
identify significant associations between imaging and omics features
using correlation analysis as well as AI models in an algorithmic
manner. It also allows complete control over multiple operational
parameters, ultimately producing a transparent radiogenomics re-
port along with all supporting information outcomes necessary for
user interpretation.

3.2 Case study 2: HNSCC
The TCGA HNSCC cohort was accessed to download 540 radio-
mics features from CT scans of 106 HNSCC patients from a previ-
ous imaging study conducted at Stanford University (Mukherjee et
al., 2020). Consistent with the results of case study 1, the gene ex-
pression data (FPKM files) for the entire cohort were downloaded
and genes that exhibited FPKM values of greater than or equal to 5
in at least 30 patients were selected for further processing.

The radiomics and gene-FPKM features from 106 samples were
used for the experimental run along with the following parameter
settings: (i) the absolute Pearson-based correlation coefficient
threshold was set to 0.7 for LR modeling and 0.6 for other model
types and (ii) the P-value correction method was set to BH with the
corrected P-value threshold set to 0.05 by default. Radiomics fea-
tures were set as data and gene-FPKM values were set as labels. The
feature normalization method was set to StandScaler for both
inputs, the test size was set to 0.2 (i.e. 20% of the dataset), and the
K-fold cross-validation splitter (cv) was set to 3.

At the end of the experimental run, a comprehensive radioge-
nomics report was obtained for each model type (Supplementary
Report HNSCC 1-6). These reports presented significant correla-
tions between 12 radiomics features (pertaining to texture, shape,
size and wavelet category) and FPKM values for 21 genes

Fig. 3. (a) Welcome page for ImaGene, (b and c) parameter selection for ImaGene, (d) selectingradiomic and genomic files, and model file depending on the mode of operation,

and (e) job tracking and results download page
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(Supplementary Report LR CorrF HNSCC1). When the correlation
coefficient threshold was relaxed to 0.6, 29 additional radiomics
features in the wavelet category and 33 additional genes appeared
on the list of significant correlations. This expanded feature set was
found to improve the training of the DT model (Supplementary
Report DT CorrF HNSCC2), although it did not yield any signifi-
cant (P<0.05) genes posttest unlike LR that did yield a significant
(P<0.05) gene: MAL posttest (Table 3). On contrary, all the models
(i.e. LR, DT, MTL and MTEN) were trained with the features
selected from the feature selection module (using feature importan-
ces or correlation weights yield by the respective model type) rather
than correlation coefficient threshold-based feature-filtering, they
identified seven more significant genes (P<0.05) with at least one
gene predicted by three model types (i.e. DT, MTL and MTEN),
none predicted by LR (Supplementary Report DT FS HNSCC4,
Supplementary Report MTL FS HNSCC5, Supplementary Report
MTEN FS HNSCC6 and Supplementary Report LR FS HNSCC3,
and Table 3).

The biological significances of the identified genes were explored
within existing literature. Nuclear Receptor Subfamily 0 Group B
Member 1 (NR0B1) was involved in the resistance against anti-
cancer drugs and invasion of lung adenocarcinoma cell lines (Oda
et al., 2009). A high expression of NR0B1 has shown high levels of
tumor metastasis (Oda et al., 2009). Augmented with the strong evi-
dence from ImaGene (Table 3), and as evidence by literature, inves-
tigating the role of NR0B1 in HNSCC and other cancer types
further will be important. An overexpression of the group A
phospholipase A2 (PLA2G2A) dictates poor prognostic outcomes in
rectal cancer (He et al., 2015). Increased expression of PL2G2A was
cited in human oral squamous cell carcinoma (OSCC) and mouse
skin cancer tissues (Chovatiya et al., 2019). PL2G2A knockdowns
in OSCC and skin SCC showed a coreduction of tumor volume in
nonobese diabetic/severe combined immunodeficient mice, and in
the signaling of c-Jun N-terminal Kinase (Chovatiya et al., 2019).
All these findings combined with strong evidence from ImaGene
warrant the exploration of PL2G2A’s impact in other SCCs includ-
ing HNSCC type. The epigenetic inactivation MAL, a tumor sup-
pressor, is also a crucial biomarker in HNSCC (Cao et al., 2010).
The exogenous overexpression and cell-death induction by MAL
gene transfer (Cao et al., 2010) highlight its therapeutic capabilities
in HNSCC. Such findings of the strong association of MAL overex-
pression, along with radiology imaging features from ImaGene,
highlight the strength of ImaGene to conduct noninvasive radioge-
nomic studies in HNSCC.

Claudin-16 (CLDN16) is a part of the seven-gene signature that
predicts prognosis in OSCC (Ribeiro et al., 2021). Elevated levels of
PRDM14 in human primordial germ-like cells (PGCLCs) are known
to impart defects at proliferation and differentiation stages in germ-
line (Gell et al., 2018). Vertnin (VRTN) is a vital transcription factor
in the development of thorax, i.e. neck-to-abdomen anatomy in
mammals (Duan et al., 2018). VRTN could modulate somite seg-
mentation interacting with notch signaling pathways (Duan et al.,
2018). ImaGene does show significant oscillating levels of VRTN
expressions in HNSCC patients (Table 3) which could be indicative
of VRTN’s role in modulating HNSCC consequently making VRTN
a good candidate for further research in HNSCC. Leucine-rich
Repeat Neuronal 1 (LRRN1) was studied in neuroepithelial cells in
chicks and found to be regulating components involved in cell-cell
recognition pathways (Andreae et al., 2007). LRRN’s protein
domains were found to be conserved across chick, mouse and
human proteome—indicative of their similar regulatory role in
humans (Andreae et al., 2007). A significant detection of LRNN’s
high expression levels in HNSCC patients by ImaGene (Table 3)
combined with the citations in literature does warrant an investiga-
tion of LRNN’s role in HNSCC. MDS1 and EVI1 complex locus
(MECOM) serves as one of the crucial prognostic markers handling
immune cell responses in lung adenocarcinoma (Li et al., 2022).
EV1 has been shown to promote cellular proliferation and invasive-
ness in HNSCC (Grandits et al., 2022). The strong evidence from lit-
erature, along with a significant detection of MECOM’s high

expression levels by ImaGene, warrants further investigation of
MECOM in HNSCC.

Overall, these two case studies highlight many important genes
that may contribute to IBC and HNSCC incidence and/or progres-
sion, thus illustrating the capability of ImaGene as a tool for identi-
fying meaningful associations between imaging features and gene
expression data in tumor patients using correlation analysis or fea-
ture selections. When used in conjunction with AI modeling techni-
ques, ImaGene is a meaningful resource that can enable valuable
tumor radiogenomic evaluation and reporting.

4 Discussion

ImaGene is a web-based platform that offers a comprehensive radio-
genomic framework to perform statistical correlations and AI mod-
eling techniques as a means of linking molecular and tumor imaging
data. It enables the rapid screening of significantly correlated radio-
graphic and omics features for particular tumors, as well as the con-
struction and testing of different types of AI models using these
features as a means of aiding in the prediction of biologically rele-
vant omics features based upon imaging findings. This platform pro-
vides control over radiogenomic experiments by hosting multiple
configuration parameters that can be defined by end users or left at
default values. It also obeys FAIR principles (Wilkinson et al.,
2016), allowing users to safely store and track their experimental
data files and to download reports using links available on the job
tracking page. The reports are comprehensive HTML documents
that provide output from each step of the algorithm, making it easy
for users to track the processing of the imaging and omics features
through statistical tests and AI modeling. These reports highlight the
transparency and easy interpretability of the AI models. The hier-
archically clustered heat maps given in these reports represent uni-
variate, bivariate and multivariate statistical correlations between
the imaging and omics features, and the MSE, RMSE:STDEV and
AUC values reflect the reliability of the AI models when predicting
and classifying omics labels from imaging data. Thus, these reports
prepared by the platform provide a comprehensive overview of the
entire analytical process and permit users to interpret their datasets
while providing with the experimental parameters necessary to ar-
rive at meaningful conclusions.

ImaGene aims to advance current AI modeling techniques
through its flexibility, ease of interpretation and user-friendly de-
sign, ensuring that users can confidently design and interpret the
radiogenomic experiments in their omic research laboratories with
accessible data from their partner radiological laboratories (or vice
versa). Relative to other radiogenomic applications such as Imaging-
Amaretto, Imaging-Community Amaretto and Musa, ImaGene’s
features have the potential to make it widely adoptable in clinical
settings and laboratories worldwide as a tool for testing associations
between imaging and omics data for all tumor types, paving the way
for significant discoveries in the fields of radiogenomics and onco-
logical research.

As a proof of concept, we tested the performance of ImaGene for
the prediction and classification of omics profiles from imaging fea-
tures using the IBC and HNSCC datasets. We identified strong asso-
ciations between the expression of genes WT1, LGI3, SP7, DSG1,
ORM1, CLDN10, CST1, SMTNL2 and SLC22A31, and their imag-
ing features such as tumor size, shape, enhancement and kinetic
curve assessments in the IBC dataset (Supplementary Report LR
CorrF BC1, Supplementary Report DT CorrF BC2, Supplementary
Report LR FS BC3, Supplementary Report MTL FS BC5,
Supplementary Report MTEN FS BC6, and Table 2). Further re-
search into the roles of these genes in cancer revealed that they either
have considerable evidence or a strong basis for playing an indirect
or direct role in shaping IBC tumorigenesis. These findings illustrate
the need for further research in IBC cancer type. In our HNSCC case
study, ImaGene further detected strong associations between the ex-
pression of eight genes (i.e. NR0B1, PLA2G2A, MAL, CLDN16,
PRDM14, VRTN, LRRN1 and MECOM) and imaging attributes
such as tumor texture, shape, size and wavelet features
(Supplementary Report LR CorrF HNSCC1, Supplementary Report
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DT CorrF HNSCC2, Supplementary Report LR FS HNSCC3,
Supplementary Report DT FS HNSCC4, Supplementary Report
MTL FS HNSCC5, Supplementary Report MTEN FS HNSCC6,
and Table 3). Further research into the roles of these genes in cancer
revealed that they either have considerable evidence or a strong basis
of playing an indirect or direct role in shaping HNSCC tumorigen-
esis, thus warranting further research in HNSCC cancer type.

ImaGene can facilitate collaborations between researchers, mak-
ing the sharing of radiogenomics reports more convenient and ultim-
ately leading to the advancement of research in the cancer and
precision medicine space. Our case studies have sought to provide a
basis for the radiogenomic analysis through the processing of imag-
ing and omics feature data in two tumor types while permitting ro-
bust control over experimental parameters. We have successfully
demonstrated the configuration and usage of statistical correlations
and AI modeling on our platform, leading to the construction of reli-
able AI models that can predict biologically relevant omic features
from imaging data. Analysis of multiple datasets of different types
and subtypes of tumors in ImaGene can contribute to the develop-
ment of a radiogenomic knowledge base that can be used in cancer
research, drug discovery and precision medicine, allowing the out-
comes of this platform to undergo translation for clinical use in the
near future.
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