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Abstract: Recent sky surveys have discovered a large number of stellar substructures. It
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We examine the implications of DM substructures for electron recoil (ER) direct detection
(DD) rates in dual phase xenon experiments. We have utilized the results of the LAMOST
survey and considered a few benchmark substructures in our analysis. Assuming that these
substructures constitute ∼ 10% of the local DM density, we study the discovery limits of
DM-electron scattering cross sections considering one kg-year exposure and 1, 2, and 3
electron thresholds. With this exposure and threshold, it is possible to observe the effect of
the considered DM substructure for the currently allowed parameter space. We also explore
the sensitivity of these experiments in resolving the DM substructure fraction. For all the
considered cases, we observe that DM having mass O(10)MeV has a better prospect in
resolving substructure fraction as compared to O(100)MeV scale DM. We also find that
within the currently allowed DM-electron scattering cross-section; these experiments can
resolve the substructure fraction (provided it has a non-negligible contribution to the local
DM density) with good accuracy for O(10)MeV DM mass with one electron threshold.
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1 Introduction

It is important to leave no stone unturned in the search for the DM identity. Numerous
astrophysical and cosmological observations infer the irrefutable evidence of DM [1–4].
Despite these insurmountable evidences of the gravitational interaction of DM, we do not
yet know if the DM candidate interacts via other forces. Numerous experiments have
been performed to discover the non-gravitational signature of DM, but none of them have
revealed a positive result. The DD experiments have been playing a pivotal role in their
quest for the DM identity. The typical nuclear recoil (NR) DD experiments, searching for
weak-scale DM, have made extraordinary progress [5–21]. Typical NR DD experiments lose
their sensitivity due to kinematic mismatch for an incident non-relativistic ambient sub-GeV
DM (see for instance [22–25]).1 In order to fully characterize particle DM properties, it is
important to probe DM-electron coupling too. A promising strategy to search for such DM
interactions is to consider its scattering with electrons of the target materials [49–62]. In
contrast with nuclear scattering, the maximum sensitivity to DM-electron interaction is

1Alternatively, one can boost non-relativistic light DM through scattering with energetic particles to
overcome the threshold barrier, see for e.g., [26–34] or by utilizing the Migdal effect [35–45] or by absorption
of fermionic DM (both for NR and ER) [46–48].
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typically achieved at a lower DM mass. For e.g., assuming a xenon target and momentum
independent scattering cross-section, the maximum sensitivity is achieved at ∼ 30GeV for
DM-nuclear scattering and ∼ 200MeV for DM-electron scattering.

An ambient DM of mass O(10)MeV will have a kinetic energy of the O(10) eV, which
is in the ball-park of the atomic ionization energy or the band gap energy of semiconductor.
This indicates that a sub-GeV DM can ionize an electron from an atomic shell or facilitate
an electron’s transition from the valance band to the conduction band. Many experiments
like XENON [63], SuperCDMS [64], DarkSide-50 [65, 66], DAMIC [67], EDELWEISS [68],
SENSEI [69, 70], PandaX-II [71] etc. are searching for the signatures of such a phenomenon.

The boundedness of electrons in the target material makes DM-electron scattering
events inelastic. The DM velocity required to have a measurable recoil is rather high,
which can be found near the tail of the DM velocity distribution (assuming that it has a
Maxwell-Boltzmann form). These tails are quite sensitive to the choice of the DM velocity
distribution [72–75]. The present DM velocity distribution depends on the galactic structure
formation history. In the well-known paradigm of ΛCDM (Lambda Cold Dark Matter),
bottom-up hierarchical structure formation is a generic feature [76–82]. Larger galaxies are
formed from the merger of smaller galaxies (although the merger of similar mass galaxies
may also lead to a bigger galaxy [83, 84]). The gravitational field of the Milky Way (MW) is
non-uniform, and this non-uniformity gives rise to strong tidal forces. When smaller galaxies
accrete into the MW galaxy, the gravitational force disrupts these galaxies resulting in tidal
stripping of various components (including DM) of these infalling galaxies. For an ancient
merger, the DM component will have time to virialize within the MW, which may lead to
an isotropic, isothermal DM halo. This scenario is often referred to as the Standard Halo
Model (SHM), with the Maxwell-Boltzmann distribution representing the DM distribution.
However, for relatively recent mergers, there will not be sufficient time for virialization,
resulting in plenty of substructures both in the stellar and in the DM component [85–97].
The presence of such additional stellar substructures (beyond the MW stars) have been
detected by different sky-surveys like Gaia [83, 90, 97–100], SDSS [90], LAMOST [101, 102],
etc., and have also been predicted in various N-body simulations [103–111].

Since these stellar substructures arise from merged galaxies, a DM counterpart must be
associated with them too (because the DM is also present in the accreted galaxies before
their merger). Whether DM would follow stellar distribution or not is a matter of debate.
For example, the celestial part of the Sagittarius stream might not substantially overlap with
the Solar neighborhood. However, the extended DM counterpart may overlap with our local
position [112]. The similarities between DM and stellar distributions in debris flow have
been pointed out in refs. [89, 113]. The dwarf spheroidals, which give rise to the S2-stream,
are believed to have similar DM and stellar shape [114] before they merged with MW.
Therefore the resemblance between stellar and DM substructures is not settled yet; more
dedicated studies are needed to understand this. However, the presence of this DM might
manifest in the local DM density and velocity distribution: this will result in a difference of
the velocity distribution from the normal MB distribution with cut off at the galactic escape
velocity [115, 116]. DM DD rate is strongly dependent on the local velocity distribution
of DM [117–146], and a different DM velocity distribution can result in a large change
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in our theoretical expectations. The effects of these substructures have been extensively
studied in the literature in the context of typical NR DD experiments [114, 147–160]. This
paper aims to study the effect of these DM substructures in the ER DM DD experiments
assuming xenon-based detectors. Such a study has been conducted for semiconductor
target material in ref. [73]. It was shown in ref. [75] that the effect of such astrophysical
uncertainties is quite prominent for xenon targets. Further, in large regions of the DM
parameter space, the sensitivity of xenon targets is a few orders of magnitude stronger than
those from semiconductor-based experiments [63, 69–71] implying that xenon detectors will
probably play a big role in discovering DM-electron scattering. These facts motivate our
detailed study in this manuscript, where we highlight the importance of considering DM
substructures while searching for DM-electron scattering.

It has been argued in refs. [83, 90, 92–94, 98, 99, 161] that there are plenty of stellar
substructures in the local halo. We utilize the results of the LAMOST survey [101] to
present the effect of the DM substructure [94] in DM ER experiments. Without a loss of
generality, we demonstrate our results by choosing a few benchmark substructures. We
expect broadly similar results for other relevant substructures. In addition, our formalism
will be useful for future analysis of DM ER experiments for xenon-based targets. Currently
we do not understand how much of these substructures contributes to the local DM density.
We have chosen a few benchmark values of DM substructure contributions to the local DM
density, namely 100%, 20%, and 10% and presented our results. Our choices are motivated
by ref. [96] which states that stellar substructures near the Sun may constitute & 20% of
the stellar halo. We also consider the forecast of xenon targets in resolving the fraction of
DM substructures components for a few benchmark choices of the DM parameter space.

The rest of the paper is organized as follows. In section 2, we briefly review the DM-
electron scattering in xenon-based detectors. In section 3, we describe DM substructures
that we have considered in our analysis. In section 4, we present our results along with the
statistical methodology, and conclude in section 5.

2 DM-electron scattering at xenon

If the ambient DM particle scatters off an electron of xenon, DM may transfer its kinetic
energy to the electrons, leading to free electrons. For example, a non-relativistically moving
ambient DM of mass ∼ 100MeV will have kinetic energy ∼ 50 eV (in the Solar system),
which is in the ballpark of the electron ionization energy of xenon.

In a two-phase xenon time projection chamber, DM particles interact with the liquid
Xe target material, and depending on interaction type (electronic or nuclear), the signal
topologies are different. For DM-nuclear interaction, the deposited DM energy produces
excited atoms, electron-ion pairs, and some non-observable heat. Some free electrons
recombine with ionized atoms to generate more excited atoms. Essentially both the direct
and excited states produced by electron-ion recombination make a characteristic scintillation
light. This prompt scintillation light, known as S1, is detected in photomultiplier tubes
(PMTs) immersed in the liquid Xe at the bottom. Due to an external electric field, the
remaining electrons drift through liquid xenon and cross the liquid and gaseous interface,
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producing proportional scintillation in the upper PMTs. This signal is known as S2. For the
ER interactions, almost all the ionized electrons are collected at the upper PMTs through
scintillation, producing a dominant S2 signal with a subdominant S1 signal. Hence ER
interactions manifest through a large S2/S1 ratio compared to the NR case [162].

Let us consider a DM particle of mass mχ and velocity v scattering off an electron in
the xenon atom. Energy conservation implies [60]

vmin = q

2mχ
+ ∆Ee

q
, (2.1)

where vmin is the minimum DM velocity required to get an ER of ∆Ee, and q is the
momentum transfer to the electron. Note that ∆Ee must be greater than the ionization
energy of the corresponding shell En,l to have an observable recoil Ee, i.e., ∆Ee = En,l +Ee.
The differential DM-electron scattering event rate can be written as [57]

dR

d lnEe
= NT

ρχ
mχ

∑
nl

σ̄e
8µ2

χe

∫
qdq FDM(q)2 |fn,lion(k′, q)|2 η

(
vmin(k′, q), t

)
, (2.2)

where NT is the number of electrons in the target, ρχ denotes the local DM density, and
DM-electron reduced mass is represented by µχe. DM-electron scattering cross section for a
reference momentum transfer, namely q = αme, is indicated by σ̄e. The DM form factor,
FDM(q), takes care of the momentum dependency in the cross-section. The ionization
form factor is represented by fn,lion with n and l being the principal and angular momentum
quantum number, respectively. The recoil momentum is denoted by k′ =

√
2meEe. The

time dependency of the recoil signal is described through t. The quantity η, also called the
mean inverse speed, depends on the ith DM velocity distribution as

ηi(vmin, t) =
∫ ∞
vmin

f ilab(v, t)
v

d3v, (2.3)

where f ilab is the DM velocity distribution at the detector’s rest frame in the location of the
Earth for the ith DM component (which contributes to the DM velocity distribution). The
latter can be obtained by boosting the galactic rest frame DM velocity distribution (fgal)

f ilab(v, t) = f igal(v + vE(t)), (2.4)

where vE is the Earth’s velocity in the galactic rest frame:

vE(t) = vLSR + vpec + uE(t). (2.5)

Here vLSR is the velocity of the local standard of rest (LSR), vpec is the peculiar velocity of
the Sun with respect to the LSR. Conventionally these are expressed in galactic rectangular
co-ordinate and expressed as vLSR = (0, v0, 0), vpec = (11.1±1.5, 12.2±2, 7.3±1) km/s [163].
Following refs. [75, 156], throughout the paper we fix v0 = 233 km/s. The uncertainties
associated with v0 and other astrophysical parameters have been studied in refs. [72, 74, 75]
in the context of ER (see ref. [164] for halo independent analysis). The time-dependent
Earth’s velocity is represented by uE(t) which leads to the well-known annual modulation
of the signal. The expression for uE(t) can be found in [165].
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The differential event rate given in eq. (2.2) can be divided into three parts. The
particle physics input is indicated by σ̄e and FDM. Throughout our analysis, we will do a
model-independent analysis with two choices of FDM: 1 and 1/q2, which appears in large
classes of particle physics model [166–173]. We will present the results of FDM = 1 in the
main text and that of FDM = 1/q2 in the appendix. The atomic physics part symbolized
by fn,l

ion signify ionization probability. The numerical values of the fn,lion is adopted from
QEdark [55, 57, 174]. The local DM density and η constitute the astrophysical inputs.

The galactic DM velocity distribution is traditionally assumed to be a Maxwell-
Boltzmann (MB) distribution truncated at the galactic escape velocity (vesc)

fMB
gal (v) = 1

(2πσ2
v)3/2NMB

esc
exp

(
−|v|

2

2σ2
v

)
Θ(vesc − |v|) . (2.6)

The isotropic velocity dispersion σv is related to v0: v0 =
√

2σv. The normalization constant
NMB

esc = erf(z)− 2π−1/2ze−z
2 with z = vesc/v0 and erf is the error function. Throughout the

discussion the galactic escape velocity (vesc) has been fixed to 528 km/s [156, 175]. While
the MB distribution may describe the DM velocity distribution which is in equilibrium
(hydrodynamical simulations indicate that MB distributions may not adequately describe
the velocity distribution of the smooth DM halo component), the equilibration condition
will not be met for relatively recent mergers of the MW with other galaxies. These recent
mergers will have unique signatures, both in velocity and position space, called substructures.
The existence of these substructures is also observed in various N-body simulations. When
a galaxy accretes into the Milky Way, the stellar component of the accreted galaxy carries
several tell-tale signatures: stellar streams, stellar shards, and stellar debris flow [85–97].

The recent results of various surveys like Gaia, SDSS, and LAMOST indeed indicate
the presence of these stellar substructures. Combining the effect of the substructure with
the SHM, we get total average inverse speed as

η(vmin, t) =
∫ ∞
vmin

1
v

[
(1− δ)fMB

lab (v, t) + δf ζilab(v, t)
]
d3v, (2.7)

where f ζilab(v, t) refers to the substructure velocity distribution (discussed in section 3) and
δ represents the fractional contribution that the corresponding component constitutes to
the local density of DM.2 In what follows, we will consider the effect of these substructures
in DM velocity distribution and the ER DD rate in liquid xenon experiments.

3 DM substructures

This section discusses the benchmark DM substructures that we have studied in this work.
We have utilized the results of ref. [94] where the stellar substructure is obtained using the
star catalog of LAMOST DR3 [101]. We choose a few representative substructures to present
our results. For clarity, we also mention the name of the associated dynamically tagged

2If each of the substructures contributes different fractions then instead of one δ there will be a set of
such δ’s. For simplicity, we have ignored the effect of multiple substructures.
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Substructure Mean velocity (km/s) Velocity dispersion (km/s)
µR µφ µz σR σφ σz

HelmiDTG1 4.5 197.2 244.3 146.0 62.6 42.4
HelmiDTG3 26.2 157.1 -241.3 78.9 28.8 27.2
PolarDTG11 -47.9 21.8 229.2 75.4 19.2 21.5
PgDTG2 221.2 155.7 139.7 26.2 33.8 52.3
Sausage 2.1 -0.3 -8.7 136.6 35.0 72.3

RgDTG28 -4.0 -106.1 -143.2 115.8 29.3 30.3
Sequoia -36.9 -273.9 -87.0 138.2 36.7 65.0

Table 1. The details of the substructures are used in this paper. The numerical values of the mean
velocities and diagonal values of the velocity dispersions are adapted from tables 2 and 3 of [94].
The DTG from which substructures are identified has also been specified.

groups (DTG) with the relevant substructures [94]. The details of these substructures are
summarised in table 1. We emphasize that the chosen substructures are for illustrative
purposes only. Further research is required in order to understand the DM content of various
substructures and whether the substructure DM profile coincides with the Solar circle.
Whether the corresponding DM substructure will follow the same velocity distribution
as the stellar substructure or not is currently not understood. Using Via Lactea II high-
resolution N -body simulation, it has been shown that DM debris flows closely follows their
stellar counterpart [89, 113]. However, the same is not valid for Sagittarius stream [112].
Nevertheless, we will assume that the velocity distributions of the substructures follow that
of the corresponding stellar components. This assumption can be confirmed or refuted
by future research. However, the broad conclusion (like the change in the event rate and
subsequently in the discovery limit due to DM substructures) of this study will hold.

We note that the substructures we have considered in this paper have similarities
with previous considerations [73, 114]. For instance, the Helmi substructure is analogous
to S2-substructure [109]. The velocity properties of the Nyx substructure are somewhat
similar to the prograde (Pg) stream and are expected to arise from the same Splashed Disk
event [94].3 Some of the considered substructures are also found in Gaia DR3 data at the
Solar neighborhood [95, 96, 161].

The mean stellar velocities and the diagonal values of the stellar velocity dispersions
are given in table 1. In general, DM substructures will have a different velocity distribution
than the virialized component (SHM), which will dramatically impact the ER distribution.
The galactic velocity distribution for each of the substructures (referred to by ζi) can be
written as [73, 114]

f ζigal(v) = 1
(8π3 detσζi)1/2N ζiesc

exp
(
−(v− µζi)T 1

2(σζi)2 (v− µζi)
)

Θ(vesc − |v|), (3.1)

where σζi is the velocity dispersion matrix, assumed to be diagonal with the values given
in table 1 and detσζi is the determinant of the dispersion matrix. The mean velocities of

3Ref. [176] has argued that Nyx is a part of thick disk.
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Figure 1. We show the lab frame DM speed distributions for all the considered astrophysical
components. The red, brown, orange, olive, blue, purple, and pink solid lines represent the
HelmiDTG1, HelmiDTG3, PolarDTG11, PgDTG2, Sausage, RgDTG28, and Sequoia, respectively.
We also display the same for SHM by the solid black line. The vertical dashed line shows required
vmin for mχ = 100MeV with Ee = 20 eV, q = 25 keV, and 5p6 shell.

the substructures in the galactic frame are expressed by µζi which are non-zero in contrast
to the SHM case, as indicated in table 1. The normalization constant N ζiesc is calculated
numerically. The step function represents the cut-off at the galactic escape velocity, although
the substructures’ velocity distributions are likely to peak at smaller velocities. Therefore
this cut-off will have a numerically insignificant effect. The index ζi refers only to the
substructure, whereas i includes both the substructures and SHM.

Assuming eq. (3.1) as the galactic velocity distributions for the DM substructures, we
display the corresponding lab frame speed distributions, f ilab(v) = v2 ∫ dΩf ilab(v), using
eq. (2.4) in figure 1. Except for the modulation signature (discussed in section 4.3), we fix
the Earth’s velocity to vE = (39.7, 243.2, 16.4) km/s to economize the computation. This
value of vE is attained during first week of March when the Earth’s velocity is roughly
equal to its average velocity. For Sequoia we have explicitly checked that taking the exact
yearly average rate would lead to less than ∼ 6% change in the discovery limit. Given the
poor knowledge of DM substructure fraction, we ignored this . 10% effect. The general
trend we observe is that the substructures which peak at larger values of v have negative
µφ. Since the Earth moves with high positive rotational velocity ∼ 250 km/s, substructures
with negative µφ, will hit the Solar system with larger velocities. On the other hand,
substructures having large positive µφ co-rotate with the Earth, leading to f ilab(v) peaking
at smaller velocities. This has been displayed in figure 1, where the Helmi streams having
larger values of µφ peak at relatively smaller velocities, whereas Sequoia having a negative
µφ peaks at the higher velocity. We also display the velocity distribution of SHM by the
solid black line. For reference we show the required vmin = 428.7 km/s to obtain a recoil of
20 eV with momentum transfer 25 keV and 5p6 shell for DM mass 100MeV by the vertical
black dashed line.
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Figure 2. The mean inverse speed (ηi(vmin)) for the considered substructures and the SHM. The
color coding and other relevant details are same as figure 1.

Given these velocity distributions, we turn to the discussion of the mean inverse speed
ηi(vmin) (using eq. (2.3)) of each of the astrophysical components. The values of ηi(vmin) as
a function of vmin are depicted in figure 2. The vertical black dashed line indicates values of
ηi(vmin) for vmin = 428.7 km/s. Expectedly, ηi(vmin) are monotonically decreasing function
of vmin, which can be understood from the integration over velocity starting from vmin. The
maximum values of ηi(vmin), i.e., ηi(0) is larger for the distributions which peak at lower
velocities because the mean inverse speed is inversely proportional to the most probable
speed (the speed at which velocity distribution attains maximum value) of the distribution.
Hence in figure 2, we observe maximum and minimum ηi(0) for HelmiDTG3 and Sequoia
respectively. For the other distributions, ηi(0) lie within the same of HelmiDTG3 and
Sequoia. The flatness of ηi(vmin) for Sequoia up to a large value of vmin as compared to
other distributions is also a manifestation of the higher most probable speed of Sequoia.
This indicates the extent to which vmin is supported by the distribution. It should also be
noted that the flatness of ηi(vmin) is also sensitive to the choice of the velocity dispersion.

4 DM-electron scattering at xenon: effect of substructure

In this section, we discuss the effect of the substructures on the DM-electron scattering
rate for liquid xenon experiments. For FDM(q) = 1, the constraint on the DM-electron
scattering cross-section from the xenon detectors dominate when DM mass is & 50MeV.
Xenon experiments may have a better prospect of discovering DM-electron scattering, and
it is essential that we study this prospect thoroughly. Our work outlines the theory effort
toward answering this important question.

Following ref. [57], we convert the ER energy (Ee) to number of electrons (ne). DM-
electron scattering would produce ne number of observable electrons, unobservable photons,
and heat. Some primary electrons would recombine with secondary ions with probability
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Figure 3. Differential event rate as a function of number of electron ne with exposure of 1 kg-year,
for mχ = 100MeV, and σ̄e = 10−40 cm2 assuming each of the labelled astrophysical component
contribute 100% to the local DM density. The neutrino-induced event rates are illustrated by the
grey dashed lines, and the grey shaded regions represent the variation in the event rates for different
ionization models.

fR. Further, each recoiling electron of energy Ee will give rise to additional secondary
n

(1)
e = Floor[Ee/W ] quanta (photon or electron). The average energy required to create

a single quanta is W . Moreover, the scattering process can also lead to the ionization of
electrons from the inner shell, which would de-excite by releasing a photon. These photons
may also create secondary quanta, n(2)

e = Floor[∆Ei,j/W ], ∆Ei,j is the difference between
binding energies between the relevant inner and outer shells. The number of secondary
electrons produced is calculated using a binomial distribution with n(1)

e + n
(2)
e trials, having

success probability fe. We have chosen fiducial values (i.e., W = 13.6 eV, fe = 0.83, fR = 0)
of the relevant parameters to convolute eq. (2.2) which will give the differential event rate
as a function of number of produced electrons. Our paper does not consider uncertainties
associated with W, fe, and fR.

In figure 3, we show the differential event rate as a function of ne for mχ = 100MeV,
σ̄e = 10−40 cm2, and 1 kg-year exposure. For each event rate, we have assumed that the
corresponding astrophysical component (SHM or substructures) constitutes 100% of the local
DM density. For mχ = 100MeV with typical momentum transfer of O(10) keV, to obtain a
measurable recoil the required minimum DM velocity should be around 500 km/s. Hence,
the tail of ηi(vmin) dominantly contributes to the recoil rate. Evidently the substructures
having the largest value of ηi(vmin) near vmin ∼ 500 km/s give rise to a larger event rate.

4.1 Neutrino background

The scattering of neutrinos with electron/ nucleon may also give rise to ionization signals
in low-threshold DD experiments. Other background sources like radioactive background,
Cherenkov radiation, etc. which can potentially mimic a DM signal [177]. The experimental
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collaborations confront and beat these non-neutrino backgrounds using various experimental
techniques to isolate a potential DM signal. However, the neutrinos are an irreducible
background that can not be removed by using shielding, purified detector material, and
other experimental techniques. Because of this, we have taken neutrinos as the only source
of background in our analysis. If other non-neutrino backgrounds are found in the data-set,
then our results will degrade proportionally.

It has been argued in refs. [178, 179] that Solar neutrinos are the main source of
background for sub-GeV DM-electron scattering.4 Neutrino-electron elastic scattering is
the dominant contribution of background events for rather large recoil energy (∼ 105 eV).
Instead, coherent neutrino-nucleon scattering may produce small ionization, which would be
the dominant source of background in our consideration. The neutrino-nucleon scattering
event rate is [178, 181]

dR

dENR
= NTMT

∫
Emin
ν

dσ

dENR

dφν
dEν

dEν , (4.1)

where NT , M , and T are the number of target nuclei per unit mass, total mass, and
time respectively. The minimum neutrino energy to produce a nuclear recoil of energy
ENR is expressed by Emin

ν =
√
mNER/2. The differential coherent neutrino nucleon

cross section and the differential neutrino flux are denoted by dσ/dENR and dφν/dEν
respectively [178, 182]. We have utilized low, fiducial, and high ionization models given
in ref. [178] to obtain number of electron ne for a particular nuclear recoil energy. The
corresponding neutrino-induced event rate for fiducial model is displayed in figure 3 by the
grey dashed lines.5 The grey shaded regions represent variation in the event rate for high
and low ionization models of ne [178]. Since there is a difference between three ionization
models in the low ne/energy bins, hence we observe a large change in the differential event
rates at those bins. The discovery limits for low and high ionization models is given in
appendix C. For one electron threshold, the impact of the ionization model uncertainty
leads to less than a factor of 3 change in the discovery limits.

4.2 Statistical methodology

In this section, we discuss the statistical procedure to obtain the discovery limit for DM-
electron scattering in the presence of substructures for liquid xenon experiments. We have
employed the profile likelihood ratio test [183] with σ̄e and substructure fraction (δ) as the
signal parameters of interest. In the following, we briefly discuss this procedure.

The binned likelihood for the background and signal model (M), is given by

L(D(θ)|M(θ)) =
nbins∏
i=1

P(N i
obs|N i

χ +
nν∑
j=1

niν(Φj))

 nν∏
j=1
G(Φj) (4.2)

Here θ = (mχ, σ̄e, δ,Φ) and D(θ) is the Asimov data set. The number of energy bin is
represented by nbins. The Poisson probability (P) at the i-th bin is calculated using observed

4See refs. [178, 180] or discussion related to the prospect of these detectors in probing beyond SM
interactions of neutrino.

5We note that there is a factor ∼ 3 difference in the event rate between our result and ref. [178].
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N i
obs and the expected number of events. The expected number of events is the addition

of DM events (N i
χ) and the sum of neutrino events (niν) for all the neutrino components

(nν). The Gaussian function (G(Φj)) takes care of the uncertainty in the neutrino fluxes
(Φj) with mean values and standard deviation given in [178, 182].

Depending on the choice of the analysis, we vary one of the signal parameters (either σ̄e
or δ), treating the other one as a nuisance parameter. We treat σ̄e as the signal parameter
for the discovery reach. Therefore, the profile likelihood ratio test statistic, which compares
the background-only hypothesis (M0) with the background and signal model (M), is given
by [73, 183, 184]

q0 = −2 ln
(L(σ̄e = 0,λ|M0)
L (σ̄e,λ|M)

)
∼ χ2

1, (4.3)

where λ contains the nuisance parameters, i.e., δ and Φj in this case. Using Wilks’ theorem,
it can be shown that the ratio in eq. (4.3) follows a χ2 distribution with one degree of
freedom [73, 183]. Thus, the significance of rejecting the background-only hypothesis is given
by √q0-σ. In this paper, we present all the discovery limits at the 90% confidence level (CL).
We obtain the discovery limits utilizing Asimov data set which assumes that the number of
observed events is same as the expected events. However in a real experimental data-set,
this will not be true and in that case one should treat experimental data as the observed
events. Then it would be possible to constrain σ̄e assuming a value of substructure fraction.

We consider δ as the signal parameter for the prospective detection of DM substructure
fraction. The corresponding profile likelihood ratio test to distinguish two neighboring
points δ1 and δ2 can be written as [73]

q0 = −2 ln
(L(δ2,λ|Mδ1)
L (δ2,λ|Mδ2)

)
∼ χ2

1. (4.4)

This profile likelihood ratio is employed to reject the null hypothesis, which is that two
neighboring points δ1 and δ2 are indistinguishable at 68% CL. Both for eqs. (4.3) and (4.4)
we utilized Asimov data set [183] to obtain the likelihood ratio test. In this scenario, artificial
data is generated using the model’s parameters (in our caseM). Then the expectation is
that the number of observed events (Nobs) should be equal to the number of the expected
event (Nexp). For a sufficiently large number of observations, the value of the profile
likelihood ratio test approaches the median value. Compared to the Monte Carlo simulation,
the Asimov data set scenario is computationally more economical while acquiring accurate
results. For the 68% and 90% CL limit the required q0’s are 0.99 and 2.71 respectively. For
a fixed mχ and δ, the 90% CL discovery limit is obtained by changing σ̄e in eq. (4.3) until
the required q0 (2.71) is achieved. The 68% CL contours in resolving substructure fraction
are estimated using eq. (4.4). In this case for a fixed values of mχ, σe, and δ1, we iterate
over δ2 until the required q0 (= 0.99) is attained.

4.3 Results

Here we will present the results using the statistical analysis discussed in the previous
subsection. The three parameters of interest are DM mass (mχ), DM-electron cross section
(σ̄e), and the DM substructure fraction (δ). Given that DM has to be massive, we present
our results through two possible choices, keeping one of the other two parameters to a
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Figure 4. Discovery limits at the 90% CL for different DM substructures considered in this paper,
assuming that each astrophysical component accounts for 100% of the local DM density. The
discovery limits are obtained using one kg-year exposure, one electron threshold, and FDM = 1.

fixed value. In the first part, the results are presented through the discovery limit, which is
depicted in DM mass and DM-electron cross-section plane keeping a fixed DM substructure
fraction. In the other case, considering a fixed DM-electron cross-section, we present the
forecast of the xenon experiments to resolve the substructure fraction for a few benchmark
choices of DM particle masses.

In figure 4, we present the sensitivity to DM-electron cross-sections for each of the
substructures considered in this paper, assuming that the corresponding substructure
constitutes 100% of the local DM density. In figure 4, each line represents the minimum
DM-electron cross section required to observe the effect of the corresponding substructure in
a liquid xenon detector with 1 kg-year exposure and one electron threshold. The discovery
limits for two and three electron thresholds are given in appendix B. The different discovery
limits for different substructures are the implication of non-identical most probable speed.
The tail of the DM velocity distribution will be more populous for the substructure having
a relatively larger most probable speed. Therefore a sizable number of DM particles will be
available to interact with the target electrons. This leads to a larger event rate, as has been
depicted in figure 3, where for a fixed DM-electron cross section among the considered DM
substructures, we obtain the minimum and the maximum number of events for HelmiDTG3
(lowest most probable speed, see figure 1a) and Sequoia (highest most probable speed, see
figure 1b) respectively. Owing to this, the DM-electron cross-section that can be probed
for HelmiDTG3 is the largest, whereas the same for Sequoia is the lowest. The event rates
and subsequently the discovery limits lie between HelmiDTG3 and Sequoia for the other
considered substructures. The light grey shaded region demonstrates the constraint from
the ionization signals in the XENON1T experiment [63], which is the most stringent current
DD constraint for the parameter space shown in the plot. For reference, we have also shown
the discovery limit for the SHM with the solid black line.
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Figure 5. Discovery reach of the DM-electron cross-section at the 90% CL with combined velocity
distributions. SHM combined with HelmiDTG3 and Sequoia are shown by the brown and pink solid
lines, respectively. The solid black line demonstrates the pure SHM. The discovery limit presented
here is for one kg-year exposure, FDM = 1, and one electron threshold. In the left and right panel
we show the results for δ = 0.1 and δ = 0.2, respectively.

In reality, these substructures may not contribute 100% to the local DM density.
Therefore, we choose two benchmark values of δ, namely δ = 0.1 and δ = 0.2 (shown
in figure 5). Further, as mentioned above, we have only considered two substructures,
HelmiDTG3 and Sequoia, which lie at two extreme ends. SHM constitutes the rest of the
local DM density for the combined DM distribution. If the discovery limit for a particular
substructure (with δ = 1) is larger compared to SHM, then the same for the combined
DM distribution will lie above the SHM limit. This effect would be more pronounced
upon increasing δ. In figure 5, the combined discovery limit for HelmiDTG3 and Sequoia
is displayed by brown and purple lines, respectively. Notably, brown and purple lines lie
above and below the SHM scenario. Upon increasing the δ, we observe more deviation
from SHM. Importantly, it is still possible to see the effect of these substructures in liquid
xenon experiments with this kind of realistic choice of δ. Next, we turn into the discussion
of resolving substructure fractions in liquid xenon experiments. Again, we have restricted
ourselves to HelmiDTG3 and Sequoia among the considered substructures as these two
reside in the extreme ends. The sensitivity in resolving DM substructure at 68% CL is
displayed in figure 6 for 1 kg-year exposure, one electron threshold, and σ̄e = 10−40 cm2,
with a few benchmark points. Generically, we observe a better resolution for low DM mass.
Comparing figures 6a and 6b one can see that we will determine the substructure fraction
more accurately for Sequoia compared to HelmiDTG3. This is due to Sequoia’s large most
probable velocity, which leads to a substantial number of DM-electron scattering events.
Generically, it is possible to measure the substructure fraction more accurately, which is
moving with a higher most probable speed. For δ = 0.1, with the considered exposure,
threshold, and σ̄e, it is difficult to conclude whether the substructure is contributing to
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Figure 6. 68% CL contours in mχ − δ plane, representing forecast in resolving DM substructure
fraction for a few benchmark points. We have assumed 1 kg-year exposure, one electron threshold,
σ̄e = 10−40cm2, and FDM = 1. In the left and right panels, we show the results for HelmiDTG3 and
Sequoia, respectively.

local DM density. Interestingly, for DM mass ∼ 50MeV, and δ = 0.4, xenon target electron
scattering experiments can resolve the substructure fraction with ∼ 50% accuracy. Moreover,
the structures of the contours can be understood from eq. (2.1) and from figure 2. Both for
the lower and higher DM masses, the inclination of the contours is reversed as we compare
HelmiDTG3 with Sequoia. For low DM masses, vmin is larger (for fixed q and Ee from
eq. (2.1)), therefore it is the tail of the distribution which is contributing to ηi. Thus for
HelmiDTG3 with low mass DM, an increment in δ will reduce the combined value of η.
This reduction could be compensated by increasing DM mass for a fixed number of observed
events. This results in a slightly tilted contour towards a higher DM mass. Whereas for
higher DM mass (thus smaller vmin), the maximum value of η determines the orientation of
contours. For Sequoia, the maximum value of ηi is less than that of HelmiDTG3. Hence
increasing δ for the former will reduce combined η, which can be elevated by reducing vmin,
i.e., by increasing DM mass.

We have not discussed a distinctive feature of the DM DD signal: annual modulation [54],
where the signal event rates vary with the time of the year in a specified manner. Due to the
rotation of the Sun around the MW, there will be DM wind in the Solar rest frame. Due to
the Earth’s rotational motion around the Sun, the event rate will vary with time. For the
SHM, the event rate will be larger (smaller) when the Sun and the Earth travel in opposite
(same) directions, respectively. Due to this distinctive feature, which the background cannot
mimic, annual modulation events are expected to be less dependent on the background
reductions and identifications.

Unlike non-modulation case here we take into account variation of vE over time. The
main task for the modulation discovery limit would be to evaluate the event rate against
both time and energy (Ntim). For a particular energy bin, we obtain modulation events
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(Nmod), by subtracting each time bin events from average time bin events (Navg). We do
the same exercise for all the energy bins. The corresponding likelihood can be obtained by
taking the difference of their individual Poisson distributions, referred to as the Skellam
distribution [185]

L(D(θ)|M(θ)) ≡
nt∏
j=1

nbins∏
i=1

e−(Ntim(i,j)+Navg(i))
(
Ntim(i, j)
Navg(i)

)Nmod(i,j)/2

INmod(i,j)

(
2
√
Nmod(i, j)Navg(i)

)
, (4.5)

where, i and j represent each time and energy bin and nt is the total number of time
bins. The modified Bessel function of the first kind is denoted by INmod . We utilized
eq. (4.5) to obtain test statistics (given in eq. (4.3)) and subsequently the discovery limit.
Following this prescription [73], we find that the modulation discovery limit is weaker than
the non-modulation counterpart. For example, with SHM or Sequoia, we observed that the
modulation discovery reaches are weaker by a factor ∼ 10− 100.

5 Conclusions

The presence of DM in the Universe is well established. Many attempts have been made
to discover the connection between DM and SM states. Among them, DD experiments
look for the scattering signatures of DM and visible states. There has been a growing
interest in the search for light DM (masses . 1GeV) through DD. Ambient non-relativistic
DM having mass in the sub-GeV range can not impart sufficient energy to produce a
measurable recoil in the typical nuclear recoil DD experiments. Electron, being a light
particle, can be an excellent target in detecting such light DM. Many target materials have
been considered to identify electronic excitation by the scattering of ambient DM. DM
velocity distribution is an integral part of calculating the event rate or the exclusion limit
of the DD experiments. DM is also an intrinsic part of structure formation; the history
of galaxy formation influences its velocity distribution. While it is difficult to track the
velocity distribution of DM, however, it may be manifested through stellar distribution.
Surveys like Gaia, SDSS, LAMOST, etc., have made unprecedented progress mapping these
stellar distributions. These data reveal the presence of stellar clumps and substructures. It
is highly likely that there is a DM counterpart to these stellar substructures, called DM
substructure. This paper investigates the prospects of detecting these substructures in low
threshold DM DD experiments through elastic DM-electron scattering. Specifically, we have
explored the prospect of xenon targets experiments in deciphering this. Note that compared
to semiconductor targets experiments (like SENSEI), the xenon targets experiments have
better sensitivity in the DM mass range of O(100) MeV.

We utilize the results of the LAMOST survey and choose a few benchmark DM
substructures. We emphasize that there is no definite proof of the existence of the DM
counterpart to the detected stellar substructures. However, it is likely that they exist. If
these DM substructures overlap with the Earth’s position, then we can observe the imprint
of the same in xenon targets experiments through DM-electron scattering. We find that
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if the substructure constitutes & 10% of the local DM density, then there is a possibility
to observe the effect of the substructures in xenon target experiments with the currently
allowed DM particle properties. We have also explored the forecast of xenon experiments
in resolving the DM substructure fraction. We find that the uncertainty in resolving DM
substructure fraction is considerable for higher DM mass compared to lower DM mass.
For example, with mχ = 50MeV, σ̄e = 10−40 cm2, and one electron threshold in xenon
experiments, we can resolve the substructure fraction to ∼ 50% accuracy provided δ ∼ 0.4.
The discovery limit and resolving DM substructure fraction are mainly regulated by the most
probable velocity of the corresponding velocity distribution. Given this correlation between
DD rates and DM velocity distributions, a more detailed understanding of DM substructure
is required. High-resolution cosmological simulations and near-future observations will play
a crucial role in understanding this. We encourage the experimentalists to continue their
excellent work in improving their detector sensitivity so that we are sensitive to such a
signal. Our work shows that by pursuing this technique, we will be able to know more
about the particle physics and astrophysics of DM and maybe even discover it.
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A Event rate

In this appendix we provide event rate for DM mass 50MeV. This is displayed in figure 7.

B Discovery limits for two and three electron threshold

Throughout the main text, we have considered the reach of the xenon experiments for
one kg-year exposure and one electron threshold with FDM = 1. Here we present the
discovery limit with two and three electron thresholds for δ = 0.1. The results are depicted
in figures 8a and 8b. With higher thresholds, the expected event numbers decrease; thus,
the required cross-section to see the possible effect of the substructure increases. Further,
the lowest possible DM mass that can be probed also increases.

C Variation in the discovery limits

As discussed in section 4.1, background event rate from neutrino may change depending
on the ionization model. In this appendix, we present the discovery limit for high and low
ionization efficiencies models for ne [178]. We display the result in figure 9. For each of the
substructures, solid lines represent discovery limits for fiducial ionization model and shaded
bands show the corresponding uncertainties associated with the ionization models.
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Figure 7. Differential event rate as a function of number of electron ne for mχ = 50MeV. Other
relevant details are same as figure 3.
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Figure 8. Discovery limits at the 90% CL for the considered DM distribution with FDM = 1, one
kg-year exposure. Each of the considered substructures contributes 10% to the DM density. (a) For
two electron threshold. (b) For three electron threshold.

D Momentum dependent DM-electron scattering

In this appendix, we present the discovery limits of the momentum-dependent DM-electron
scattering, namely FDM = α2m2

e/q
2 for the considered DM substructures. In this case,

we also observe a similar tendency, except that the minimum required DM-electron cross
section for the discovery of the substructures is larger than the same of FDM = 1. This is
displayed in figure 10.
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Figure 9. Variation in the discovery limits due to high and low ionization efficiency models for
ne [178] assuming one electron threshold. For each of the substructures the corresponding light
shaded bands represent the uncertainties that may arise from different ionization models of ne. Each
of the substructures contribute to 100% to local DM density.
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Figure 10. Discovery limits at the 90% CL for the considered DM distribution with FDM = α2m2
e/q

2.
We have assumed one kg-year exposure and one electron threshold to obtain the discovery limit.
The Xenon10 [57] and SENSEI@MINOS [70] limit has also been shown by the grey and blue
shaded regions.
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