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Quantum direct communication protocol using recurrence in k-cycle quantum walks
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The ability of quantum walks to evolve in a superposition of distinct quantum states has been used as a resource
in quantum communication protocols. Under certain settings, the k-cycle discrete-time quantum walks (DTQW)
are known to recur to its initial state after every tr steps. We first present a scheme to optically realize any k-cycle
DTQW using J-plate, orbital angular momentum (OAM) sorters, optical switch, and optical delay line. This
entangles the polarization and OAM degrees of freedom (DoF) of a single photon. Making use of this recurrence
phenomena of k-cycle DTQW and the entanglement generated during the evolution, we present an alternate
quantum direct communication protocol. The recurrence and entanglement in the k-cycle walk are effectively
used to retrieve and secure the information, respectively, in the proposed protocol. We investigate the security
of the protocol against intercept and the resend attack. We also quantify the effect of amplitude damping and
depolarizing noises on recurrence and mutual information between polarization and the OAM DoF of a single
photon. Finally, we indicated an optimal attack strategy by which an Eavesdropper can tamper part of the message
without revealing her presence. However, when the quantum communication channel is less noisy, any attempt
by the Eavesdropper to tamper the message would end up in exposing her to the receiver.
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I. INTRODUCTION

Shor’s algorithm for the factorization of prime numbers in
polynomial time using quantum computers [1] posed a threat
to Rivest-Shamir-Adleman (RSA) cryptography for secured
communications. Although quantum secure communications
started with the BB84 protocol [2] to exchange quantum keys,
it became important after the discovery of Shor’s algorithm.
Even though practical implementation of Shor’s algorithm is
still a long way off, the quantum communication schemes
have been developing since then [3].

The quantum communication protocols are broadly clas-
sified into three types: quantum key distribution (QKD),
quantum secure direct communication (QSDC), and quan-
tum dialogue (QD). A secret key is initially supplied to the
recipient in a QKD protocol, then the message is encoded
so that it can be decoded by simply adding the secret key.
The first quantum communication protocol that was proposed,
BB84, which employed two sets of orthogonal basis states,
was a QKD protocol [2]. The QKD protocol using nonorthog-
onal basis was also developed later on [4]. Subsequently,
entanglement-based QKD protocol was also proposed us-
ing Bell’s state [5]. The second form of communication is
QSDC, in which the messages were conveyed directly from
one side to the other using quantum channels [6–10]. The
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advantage of this method over the previous one is that we
do not need a secret key. Various forms of QSDC were im-
plemented which include one-step [11], two-step [12], and
three-step–three-party [13] QSDC. Experimentally, QSDC
has been demonstrated with the aid of quantum memory [14].
The third type of protocol is the QD [15,16]. In QD, both par-
ties engage in a conversation via quantum channels [15–18].
The single-photon-based QD protocol has also been imple-
mented [19,20]. The primary advantage of this protocol is that
it enables two-way communication in the quantum channel.

Quantum walks (QW) have also been considered as
a potential candidate for quantum communication proto-
cols [7,21–23]. The evolution of QW is inspired by the
classical random walk by embedding the quantum features
like superposition into the dynamics [24]. The feature of the
QW to evolve in superposition of position space has been
used in designing various quantum search algorithms [25]
and portfolio optimization algorithms [26]. Recently, the
QW was exploited for various machine learning applications
and page ranking applications [27,28], where the QW-based
search algorithm is used to find the optimized weights. Due
to the recent implementation of QW in two dimensions
on a chip, it has now become possible to work with and
design practically implementable quantum communication
protocols [29]. Implementation of QW has been theoretically
proposed and experimentally demonstrated in orbital angu-
lar momentum (OAM) degree of freedom (DoF) of a single
photon [30–33].

While the position space in one-dimensional discrete-time
QW (DTQW) is infinite dimensional, we can as well define

2469-9926/2023/107(2)/022611(10) 022611-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3419-7150
https://orcid.org/0000-0002-6005-185X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.022611&domain=pdf&date_stamp=2023-02-13
https://doi.org/10.1103/PhysRevA.107.022611


PANDA, YASIR, AND CHANDRASHEKAR PHYSICAL REVIEW A 107, 022611 (2023)

k-cycle DTQW with k-dimensional position space. For k-
cycle DTQW, complete state revival (the walker returning to
the initial position once after every tr steps) with a particular
choice of coin parameters has been shown for different k
values such as 2, 3, 4, 5, 6, 8, and 10 [34–37]. This revival can
be attributed to the quantum recurrence theorem [38], which
states that any closed quantum system with discrete energy
eigenvalues, when it evolves in time, it will repeat itself as
accurately as possible after a specific finite time.

Previously, OAM beam-based communication methods
were developed [39]. In this paper, we shall discuss a type of
QSDC protocol that is practically implementable using QW
on OAM states. We first propose an optical setup to perform
k-cycle DTQW using polarization and OAM DoF of a single
photon. Based on the optical setup, we also propose a QSDC
protocol. Further, we discuss the possibility of an intercept
and resend attack. We then demonstrate how recurrence and
mutual information between the polarization and the OAM
DoF of a single photon are affected with the inclusion of
amplitude damping and depolarizing noises. Additionally, we
present an optimal attack strategy, where an Eavesdropper can
tamper the message without getting detected by the receiver.
Nevertheless, any attempt by the Eavesdropper to tamper the
message in the presence of less noisy quantum communica-
tion channel would just reveal her presence.

The content of rest of this paper is organized as follows.
In Sec. II, we describe the k-cycle DTQW and how it can
be realized in polarization and OAM DoF using an optical
setup. In Sec. III we explain our direct communication pro-
tocol based on k-cycle DTQW recurrence. We also propose
an implementation scheme in polarization and OAM DoF of
a single photon. In Sec. IV we discuss the protocol’s security
and demonstrate how it is resilient against attacks. Finally, in
Sec. V we conclude with remarks.

II. k-CYCLE DTQW AND ITS REALIZATION

In this Ssection, we introduce k-cycle DTQW and pro-
pose an optical setup to realize the same in polarization and
OAM DoF of the single photon. DTQW in one dimension
essentially consists of two operations: coin operation and shift
operation. The coin space is spanned by vectors {|0〉, |1〉}
in the two-dimensional Hilbert space, whereas the position
space is spanned by vectors {|x〉} in the infinite-dimensional
Hilbert space, where x can assume any integer values. The
coin operator we are interested in our paper is

Ĉ(�) =
[ √

�
√

1 − �√
1 − � −√

�

]
⊗ 1p, (1)

where 1p is the identity operator in the position space and
0 � � � 1 [36]. The shift operator is defined as

Ŝ =
∑

x

(|0〉〈0| ⊗ |x − 1〉〈x| + |1〉〈1| ⊗ |x + 1〉〈x|). (2)

With these, we can write the evolution of one-dimensional
DTQW after t steps as

|�t 〉 = [ŜĈ(�)]t |�0〉, (3)

where |�0〉 represents the initial state represented by
[cos χ, i sin χ ]T ⊗ [1, 0, . . . , 0]T

k×1.

FIG. 1. Probability of walker returning to the initial position
(x = 1), P1(t ), is plotted as a function of steps (t) for a five-cycle
DTQW. The walker returns to the initial position once after every
60 steps.

In the case of k-cycle DTQW, the position space is a Hilbert
space spanned by k vectors, {|x〉}, with x running from 0
through k − 1. The shift operator pertaining to this type of
DTQW is

Ŝk =
k−1∑
x=0

(|0〉〈0| ⊗ |(x − 1) (mod k)〉〈x|

+ |1〉〈1| ⊗ |(x + 1) (mod k)〉〈x|). (4)

After t steps, the evolved state can be written as

|�t 〉 = [ŜkĈ(�)]t |�0〉 =
k∑

x=0

(ax,t |0〉 + bx,t |1〉) ⊗ |x〉. (5)

Here, ax,t and bx,t are normalized complex coefficients. It is
known that the position space probability distribution recurs
completely after tr steps for specific choices of k and ρ. For
example, in a k-cycle DTQW with k assuming 4, 5, and 6,
the position space probability distribution recurs completely
after tr = 20, 60, and 28 steps, provided � = (3 − √

5)/8,
(5 − √

5)/10, and 2[1 − cos(π/7)]/3, respectively [36]. This
is shown in Fig. 1, where the probability of finding the walker
at the initial position (x = 1), denoted by P1(t ), is plotted
against the walk steps. Evidently, the walker returns to the
initial position after every 60 steps. We use the recurrence
as a tool to encode and decode the messages for the QSDC
protocol discussed below. As we require the same optical
configuration for each step of the k-cycle DTQW, the benefits
of recurrence may be seen as the optimization of the optical
setup.

Having defined k-cycle DTQW, we shall now discuss the
optical realization of the same in the remainder of this section.
While the coin operator Ĉ(�) [Eq. (1)] is realized using a
half-wave-plate (HWP) rotated through an angle β/2, with
β = tan−1(

√
(1 − �)/�) [40], the k-cycle DTQW shift op-

erator Ŝk makes use of a J-plate, two OAM sorters [41,42],
two thin lenses, two spiral phase plates (SPP), and two fiber
couplers (FC). Before explaining our setup in detail, we first
briefly introduce J-plates.
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FIG. 2. (a) Shown here is the optical realization of k-cycle DTQW. An incoming single photon (ISP) with OAM value (�) between �min

and �max is first sent to the coin operator Ĉ(ρ ) [see Eq. (1)], which is a half-wave-plate (HWP) rotated through an angle β/2, with β =
tan−1(

√
(1 − �)/�). The shift operator Ŝk is realized using a J-plate, represented by J(−φ, φ, 0) [see Eq. (6)], two OAM sorters (OAM-S),

thin lenses L1 and L2, two spiral phase plates (SPP) with � = ±k, and two fiber couplers (FC). Having realized both coin and shift operations,
the photon is now sent through an optical switch (OS) and optical delay line (ODL) before being passed through the HWP once again for
the next step. Upon performing the desired number of steps, the photon is finally sent to the quantum channel (QC) through the use of OS.
(b) Shown here is the Mach-Zehnder (MZ) + SPP setup which sorts the incoming OAM modes. When an ISP, represented by |ψ〉 [see Eq. (10)]
passes through a HWP, a J-plate, and the MZ + SPP setup, one-step in the five-cycle DTQW is performed by the ISP. First MZ setup sorts odd
and even OAM modes. The SPP with � = −1 converts all odd OAM modes to even OAM modes. Subsequently, the remaining 3 MZ setups
and 4 SPPs with appropriate � values ensure the modulo five-addition of the five-cycle DTQW. Now the states |ψ2〉, |ψ5〉, |ψ6〉, |ψ7〉, and |ψ8〉
are fiber-coupled together and sent to OS.

J-plates

J-plates are used to convert spin angular momentum of the
incoming photon into OAM of the same [43,44]. The Jones
matrix of the J-plate can be given as

J(δx, δy, ϑ ) = Rϑ

[
eiδx 0
0 eiδy

]
R−ϑ , (6)

where Rϑ =
[

cos ϑ − sin ϑ

sin ϑ cos ϑ

]
. (7)

At every point in the transverse plane in which the J-plate
is kept, we can independently provide phase shifts, eiδx and
eiδy , in the x and y directions, respectively. In other words,
every point acts as a tiny variable wave plate. Also, every one
of these variable wave plates can be independently rotated
through an angle ϑ about the z axis. Suppose we consider
a single photon such that its polarization DoF is mapped
to the coin Hilbert space and OAM DoF is mapped to the
position Hilbert space. We now observe that the shift operator
corresponding to the DTQW can readily be realized using the
J-plate as

J(−φ, φ, 0) = e−iφ |H〉〈H | + eiφ |V 〉〈V |, (8)

where φ = tan−1(y/x), with (x, y) being the coordinates of the
transverse plane in which the J-plate is kept. In addition, |H〉
and |V 〉 are Jones vectors pertaining to horizontal and vertical
polarization states, respectively.

Now we shall explain the proposed optical setup, which
lets a single photon perform k-cycle DTQW for the desired
number of steps, as shown in Fig. 2(a). In the optical setup, an
incoming single photon (ISP) whose OAM value (�) lying be-
tween �min and �max is sent through the HWP rotated through
an angle tan−1(

√
(1 − �)/�)/2 and the J-plate, J(−φ, φ, 0).

We define �min as �max as follows:

(�min, �max) =
{

(−�k/2� + 1, �k/2�), for even k,

(−�k/2�, �k/2�), for odd k,
(9)

where � � denotes the floor function. Now the photons with
different � values are spatially separated by the first OAM
sorter (OAM-S). Those photons with � values lying between
�min and �max pass through the thin lenses L1 and L2 and are
recombined into a single beam through the use of the second
OAM-S. Note that the second OAM-S is operated in the re-
verse direction [45]. Meanwhile, the photons with � = �max +
1 (� = �min − 1) pass through a SPP with � = −k (� = +k)
such that their resultant OAM value is � = �min (� = �max).
By fiber coupling (FC) these photons [whose OAM value
is � = �min (� = �max)] with those spatially separated by the
first OAM-S and L1, we can effectively implement one shift
operation for the k-cycle QW, Ŝk . Along with the coin operator
Ĉ(�), this just constitutes one step of the k-cycle DTQW.
Through the use of an optical switch (OS) [46,47] and an
optical delay line (ODL), which provides the desired time
delay necessary for the single photon, we can once again send
the single photon to both coin and step operators such that
another step of walk in the k-cycle DTQW is performed. After
performing t-such steps, the OS sends the single photon to a
quantum channel (QC) for further processing. The OAM-S
presented here has been reported to have a sorter efficiency
of 92% [42]. However, there has also been reports of a sorter
with much higher efficiencies [48–50].

We can also make use of the Mach-Zehnder (MZ) interfer-
ometric setup, which has 100% theoretical efficiency [51] to
sort the OAM modes of the ISP. We would require a HWP,
a J-plate, MZ setups to sort the constituent OAM modes, an
OS, and an ODL to perform k-cycle DTQW. The MZ setup
consists of two Dove prisms at one arm such that one of the
Dove prisms is rotated through some angle about the z-axis.
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FIG. 3. (a) Shown here is the schematic outline of the communication protocol. Here, bold arrows denote quantum channel and broken
arrows denote classical channels. (b) Shown here is the optical setup which adds (mod k addition) an OAM value between �min and �max to the
incoming single photon (ISP) through the use of a spatial light modulator (SLM).

In Fig. 2(b) we show how an ISP, on passing through the
HWP and J-plate and before being sent to OS and ODL, will
perform one-step in the five-cycle DTQW using 4 MZ setups
and SPPs. In five-cycle DTQW, the ISP is assumed to be in
the state

|ψ〉 =
3∑

�=−3

c�|�〉. (10)

With the aid of MZ with α = π , odd and even OAM
modes are separated, and the resultant states are |ψ1〉 =
c−3 |−3〉 + c−1 |−1〉 + c1 |1〉 + c3 |3〉 and |ψ2〉 = c−2 |−2〉 +
c0 |0〉 + c2 |2〉. Now |ψ1〉 passes through a SPP with � = −1
and becomes even OAM modes. When this state is passed
through the second MZ with α = π/2, we obtain |ψ3〉 =
c−1 |−2〉 + c3 |2〉 and |ψ4〉 = c−3 |−4〉 + c1 |0〉. When both
|ψ3〉 and |ψ4〉 are sent through two different MZ setups with
α = π/4, the constituent OAM modes will be sorted. Fi-
nally, when these OAM modes pass through the SPPs with
appropriate � values (which ensure modulo five addition) as
shown in the Fig. 2(b), the resultant sorted OAM modes are
|ψ5〉 = c−1| − 1〉, |ψ6〉 = c3| − 2〉, |ψ7〉 = c−3|2〉, and |ψ8〉 =
c1|1〉, respectively. Now |ψ2〉, |ψ5〉, |ψ6〉, |ψ7〉, and |ψ8〉 are
fiber-coupled together and sent to OS. We assume that the
coherence length of the laser used in the optical setup is large
enough such that the fiber coupling of these OAM modes are
possible.

We can conclude this section with an interesting feature
of our experimental setup. Since the k-cycle DTQW re-
vives completely after every tr steps, performing both t steps
as well as (t + t ′) steps, where t ′ is just a multiple of tr ,
will yield the same probability distribution in the position
space.

III. COMMUNICATION PROTOCOL

In this section, we propose a direct communication proto-
col using k-cycle DTQW and an optical setup which encodes
a message in OAM DoF of the single photon. As mentioned
in the Introduction, direct communication protocols do not

require the sharing of a secret key. As opposed to this, the re-
ceiver directly decodes the message once it has been encoded
in a state. For instance, in QSDC, the message is typically
encoded by performing a unitary operation on a given initial
state. The decoding is done by performing another unitary
operation that restores the initial state. Our protocol consists
of six steps as schematically outlined in Fig. 3(a) and we
enumerate them below.

(1) Before beginning the algorithm, both Alice and Bob a
priori decide the OAM value �i of each of n single photons,
where �i can be randomly chosen between �min and �max. First,
Bob generates n single photons (each with an OAM of �i h̄ per
photon) and performs k-cycle DTQW on each one of them
using the optical setup shown in Fig. 2 for t1, . . . , tn steps,
respectively, where each ti = {2, 3, . . . , tr}.

(2) These n single photons are now sent to Alice through
a quantum channel and she selects n/4 single photons ran-
domly.

(3) Alice requests Bob through a classical channel to pro-
vide ti of each of these n/4 states and Bob sends them through
a classical channel. Note that the ti values are communicated
only after Alice confirms that she has received the states.
She immediately closes the quantum channel for any other
recipient.

(4) Alice now performs remaining (tr − ti ) steps on each
of these n/4 single photons and measures OAM of them. If
every single photon possesses an OAM of �i h̄ per photon,
then there was no eavesdropping and they continue with their
protocol; otherwise, they abort and begin all over again. These
four steps constitute the security part of our communication
protocol.

(5) Alice then randomly chooses n/2 out of 3n/4 states
and encodes the intended message in them. Here, the re-
maining n/4 dummy states are used for security purposes as
detailed in the next step. It can be remarked that there is no
specific reason to choose n/4 dummy states out of 3n/4 states
for security purposes. It is just that the more the number of
dummy states would ensure that the security of the protocol is
not compromised.
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(6) Finally, Bob performs the remaining (tr − ti ) steps on
each of these single photons to decode the message sent by
Alice. By receiving the coordinates of the dummy states from
Alice, Bob now compares whether the OAM of these dummy
states match with the ones he initially sent to Alice. With this,
Bob can ensure eavesdropping. Therefore, the last two steps
of our protocol constitute the communication part.

We now remark on the following. Because Alice a priori
knows the distance between her and Bob, she can ensure that
she opens and closes the quantum channel within the time win-
dow. This readily guarantees that the states sent by Eve will
not interfere with those sent by Bob during the postprocessing
stage.

We now explain how Alice encodes the message using the
optical setup shown in Fig. 3(b). We assume that the ISP
possesses � between �min and �max, and we wish to encode the
message �

(M )
i on the ith single photon, where �

(M )
i assumes

integer values between �min and �max. The addition of �
(M )
i to

the single photon can be provided using an SLM [52]. When
� + �

(M )
i falls between �min and �max, the resultant OAM is not

affected by the optical setup followed by the SLM. We note
that the message encoding can also be performed using the
MZI setup [see Fig. 2(b)] as well as instead of the OAM-S.
Otherwise, the two SPPs and the two FCs will suitably add
or subtract an OAM value k and couple the resultant OAM
modes with those falling between �min and �max. Thus, the
optical setup following the SLM ensures that the addition
� + �

(M )
i is indeed a modulo-k addition. Since Bob knows �i as

well as �i + �
(M )
i (mod k) for each of the 3n/4 single photons,

he can easily deduce �
(M )
i . In the Appendix we show that the

message-encoding operation by Alice can be performed after
any number of steps ti with 2 � ti � tr , and consequently, Bob
will unambiguously decode the message.

If we are employing the k-cycle DTQW, we must first
transform the messages to strings of the basis k before encod-
ing them into the OAM states. We know that any message may
be converted into a string of k bases by creating a one-one and
onto function. For example, if we use the k = 8-cycle DTQW
and we wish to encode the message “It is sunny today,” we can
convert it to a string using an ASCII to octal converter. Now the
message will read “111 164 040 151 163 040 163 165 156 156
171 040 164 157 144 141 171.” Likewise, we can use ASCII

to any k-base converter to encode the message in the OAM
state.

IV. SECURITY OF THE PROTOCOL

In this section, we first discuss the intercept and resend
attack and calculate how much information can be eaves-
dropped by a third party for various k-cycle DTQW. We then
explore how various levels of noise in the polarization DoF of
the single photon affect the recurrence and the entanglement
between the polarization and the OAM DoF of the single pho-
ton. In general, quantum communication protocols take into
account attacks like intercept and resend [53], man in the mid-
dle [54], trojan horse [55], and denial of service [56]. Some of
these attacks are discussed for QKD schemes as well [57,58].
The quantum communication protocols are thought to be most
vulnerable to intercept and resend attacks, which include cir-

FIG. 4. Shown here is the joint probability distribution, P(�, t ),
of finding the walker at position � after t steps corresponding to a
five-cycle DTQW with coin parameter � = (5 − √

5)/10. The prob-
ability of finding the walker at a given t over all � values is 1. Because
we want the sum over all possible � and t for P(�, t ) to be 1 [see
Eq. (11)], we divided the probability distribution by (tr − 1).

cumstances where security can be easily breached. We first
begin with the intercept and resend attack.

A. Intercept and resend attack during sending

In this attack, Eve intercepts the states sent by Bob and
resends them to Alice. Because she does not know ti of each
of the n photons, she guesses the same, which we denote as
t (E )
i . Now she performs the remaining (tr − t (E )

i ) steps and
measures the OAM value of the ith photon as �

(E )
i . She then

prepares a single photon with OAM value �
(E )
i , performs

the t (E )
i -step k-cycle DTQW, and sends it to Alice. Since

ti = {2, 3, . . . , tr}, the probability of Eve guessing ti of each
photon is P(t (E )

i ) = 1/(tr − 1). For brevity, we shall just de-
note P(t (E )

i ) as P(ti ). Further, the probability of finding the
walker at any given t is 1, as the walker would be at any
one of the position spaces. In Fig. 4 we show the probability
of finding the walker (performing the five-cycle DTQW) at
various positions for tr = 60 steps. Because this is a joint
probability distribution in � and t , we just divide the distri-
bution by 1/(tr − 1) so that

�max∑
�=�min

tr∑
t=2

P(�, t ) = 1. (11)

Now P(�), namely, the probability of Eve guessing the OAM
value of the single photon, can be easily read off by summing
over the t axis, i.e.,

P(�) =
tr∑

t=2

P(�, t ). (12)

Therefore, when Eve guesses the step number t , the mutual
information [59] gained by her about the OAM value � is

It,�,E =
tr∑

t=2

�max∑
�=�min

P(�, t ) log2

[
P(�, t )

P(�)P(t )

]
. (13)

The mutual information It,�,E quantifies how much infor-
mation we can gain about one random variable (say, �) by
guessing the other random variable (say, t). As is known,
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TABLE I. In this table, we enumerate the probability of measur-
ing the OAM value � = �min, P(� = �min ) [see Eq. (12)], and mutual
information gained by Eve about the OAM value � on guessing t ,
It,�,E [see Eq. (13)], for various k-cycle DTQW. The corresponding
coin parameter � [Eq. (1)] and the number of steps (tr) after which
the given k-cycle DTQW revives completely are also listed out.

Cycles (k) � tr P(� = �min ) It,�,E

3 2/3 8 0.238095 0.174429
4 (3 − √

5)/8 20 0.210526 1.175981
5 (5 − √

5)/10 60 0.186441 0.358934
6 2[1 − cos(π/7)]/3 28 0.220722 1.218855
8 1/2 24 0.108696 1.281487
10 (5 − √

5)/10 60 0.131488 1.317215

a small value of It,�,E indicates that Eve cannot know more
about the OAM value � by guessing the number of steps ti and
vice versa. In Table I we list out the mutual information It,�,E

for some known k-cycle DTQW.

B. Mutual information between coin and OAM DoF

One convenient measure that captures entanglement be-
tween the polarization and OAM DoF of a single photon is
mutual information Imu and is defined as [59]

Imu(t ) = S
(
ρ

(pol)
t

) + S
(
ρ

(OAM)
t

) − S(ρt ). (14)

Here, ρt = |�t 〉〈�t | [see Eq. (5)], ρ
(pol)
t and ρ

(OAM)
t are re-

duced density matrices obtained after tracing out OAM and
the polarization DoF of ρt , respectively, and S(·) computes
the von Neumann entropy of the given density matrix. It can
be noted that zero mutual information indicates that there
is no quantum correlation present between both polarization
and the OAM DoF of a single photon. For instance, in the
case of five-cycle DTQW, we observe that Imu(t ) → 0 when
t = 30 [see Fig. 5(b)]. We confirm zero quantum correlation
at t = 30 by computing the entanglement negativity [60] be-
tween the polarization and OAM DoF of the single photon.
Indeed, at t = 30 steps, the separable single photon state is
given by ([1, i]T /

√
2) ⊗ ([−3, 2, 2, 2, 2]T /5).

C. Amplitude damping and depolarizing noises

Any signal transmitted between two parties in a communi-
cation protocol is susceptible to noise. Two well-known noise
models that are used to study how polarization DoF of a single
photon is affected are amplitude damping noise and depolar-
izing noise [59]. In the first one, the reduced density matrix
ρ

(pol)
t , i.e., the density matrix obtained by partial tracing out

the OAM DoF in ρt = |�t 〉〈�t | [see Eq. (5)], is

ρ
(pol)
t 
→ E0ρ

(pol)
t E†

0 + E1ρ
(pol)
t E†

1 , (15)

where E0 = [1 0
0

√
1 − γa

] and E1 = [0
√

γa

0 0 ] and 0 � γa � 1.

In the second one, ρ
(pol)
t is mapped to

ρ
(pol)
t 
→ (γd/2)12 + (1 − γd )ρ (pol)

t , (16)

FIG. 5. (a) Shown here is the probability of the five-cycle walker returning to the position x = 1, P1(t ), after every step t for various levels
of amplitude damping noise parameter γa [see Eq. (15)]. (b) Shows how the mutual information, Imu(t ) [see Eq. (14)], varies as a function of
t for the same amount of amplitude damping noise parameters. In (c), (d) we plotted P1(t ) and Imu(t ) for various levels of depolarizing noise
parameter γd [see Eq. (16)], respectively.
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with 0 � γd � 1. Figures 5(a) and 5(c) show how the
probability of the five-cycle walker returning to the initial
position (x = 1; see Fig. 1) is affected with the addition of
varying depolarizing and amplitude damping noise levels.
When less amount of noise is inserted (i.e., γa = γd = 0.01),
the probability of the walker returning to the initial position
x = 1 is greater than 0.5 after 60 steps for both amplitude
damping and the depolarizing noise cases. On the other hand,
the probability of the same drops almost to zero after 60 steps
in the presence of more noise (γa = γd = 0.5) for both the
amplitude damping and depolarizing noise cases.

Figures 5(b) and 5(d) plot how the mutual information
between the polarization and OAM DoF of the single photon
Imu(t ) vary as a function of walker steps when different noise
levels are injected. Due to the presence of noise, we observe
that Imu(30) �= 0. When the inserted noise is high (γa = γd =
0.5), the mutual information → 0 for both depolarizing and
amplitude noise cases, and consequently, the entanglement
between the polarization and OAM DoF is lost.

D. Optimal attack strategy

Now we devise a strategy by which Eve can intercept
the message sent by Alice such that Bob is unable to detect
Eve’s presence. Before further analysis, we just estimate the
probability by which Eve can intercept the message sent by
Alice while still not getting detected when Bob checks the
states intended for security purposes. This is possible when
Eve wishes to intercept n/2 states alone in which Alice has
encoded the message [see Fig. 3(a)] and replaces it with her
own message. In this case, Eve has to correctly guess both n/2
out of 3n/4 message states as well as the ti’s of each of those
message states. The probability by which Eve successfully
decrypts the original message sent by Alice completely is then
given by

P(Eve decrypts) = 1
3NC2N

1

(tr − 1)2N
, (17)

where N = n/4. Thus, it is highly unlikely that Eve can de-
crypt the entire message for reasonably large values of n.

Because the above scenario is unlikely, we consider the
following situation in which Eve can tamper part of the mes-
sage sent by Alice without being detected by Bob. We further
assume that the quantum channel used for communication by
Alice and Bob suffers from noise. For brevity, we model this
as an amplitude damping noise with γa = 0.0007. The proba-
bility of the five-cycle walker returning to the initial position
can be found out to be 0.97 for γa = 0.0007. Therefore, on
average, we can expect about 97 out of 100 states to recur
completely in the presence of this noise. Now suppose Eve
decides to randomly select x out of 3N states and modifies
those states. Since x is chosen randomly, we may expect
roughly N/(3N ) = 1/3 states to be selected by Eve as dummy
states. To be precise, the probability of y states among those x
states being dummy states is

P(y|x) =
NCy

2NCx−y

3NCx
. (18)

In Fig. 6 we plot P(y|x) for x = 60 and N = 100. It is clear
that P(y|x) resembles a Gaussian distribution centered about

FIG. 6. This graph plots P(y|x) versus y [see Eq. (18)] for the
choices N = 100 and x = 60. P(y|x) looks like a Gaussian distribu-
tion centered at y = 20.

y = x/3 = 20. This obviously implies that Eve should essen-
tially choose a smaller number of states to tamper with so
that Bob does not detect her presence. However, given that
Eve chooses to tamper just x = 3 states, Bob would detect
about y = 1 dummy states and think that three message states
were tampered due to noise. Hence, in the noiseless case, any
attempt by Eve to tamper the message will reveal her presence
to Bob.

We now demonstrate how noise can alter the intended
message and how it can be overcome. If we assume that 100
states are sent in the presence of the noise level described
above, 97 of them would be recurring completely, while the
remaining three would not. However, by adopting the ma-
jority voting [59] scheme, we could avoid this. Evidently, as
the message is transmitted more frequently, the risk that the
same part of the message will be obstructed diminishes. On
receiving the same message several times, Bob would employ
the majority voting scheme to correctly decode the message.

V. CONCLUDING REMARKS

We proposed a quantum direct communication protocol
making use of the recurrence phenomenon in a k-cycle
DTQW. We analyzed our protocol against the intercept and
resend attack as well as showed how our protocol was ro-
bust against few optimal attack strategies. The realization
of the k-cycle DTQW made use of an optical setup, which
implemented the QW in the polarization and OAM DoF cor-
responding to a single photon. Here, the single photon, which
can be in a superposition of k OAM states, just required one
quantum channel for transmission. Since a k-cycle DTQW can
be realized in polarization and the path DoF of a single photon
also [37], the proposed protocol can also be implemented
using these two DoF. However, this realization scheme will
instead require k quantum channels for transmitting the same
amount of information. Making use of this optical scheme
for realizing the recurrence of probability distribution in the
k-cycle DTQW’s, we devised our protocol to send information
in the OAM DoF of a single photon. An optical setup was
also proposed to encode information in the OAM DoF of a
single photon. We note that 1D DTQW (in polarization and
OAM DoF) has been experimentally demonstrated up to 14
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steps [33]. Therefore, the k-cycle DTQW with a fewer number
of recurrence steps (for example, k = 3 and tr = 8) can be
experimentally implemented. Consequently, our QSDC pro-
tocol can readily be experimentally demonstrated using our
proposed optical setup. These kinds of protocols can also
be applied to various other applications including quantum
e-commerce [61], quantum voting [62,63], and quantum in-
ternet [64,65].
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APPENDIX: MESSAGE ENCODING OPERATION
AND CHOICE OF ti

In Sec. III we mentioned that Bob can perform ti number
of steps in a k-cycle DTQW and send it to Alice. Alice would
then encode the message on the single photon and send it back
to Bob. Finally, Bob would perform the remaining (tr − ti )
steps on the single photon and decode the message. In this
Appendix we prove that the message encoded by Alice on
a single photon does not explicitly depend on the choice of
ti, where ti can be chosen randomly from the set {2, . . . , tr}.
Mathematically, this message encoding operation can be cast
as

T̂ (M )
�i

= 12 ⊗
k−1∑
�=0

∣∣(� + �
(M )
i

)
(mod k)

〉〈�|, (A1)

where 12 is two-dimensional identity operator acting on the
polarization space and 0 � �

(M )
i � (k − 1). We now show that

T̂ (M )
�i

commutes with the k-cycle DTQW evolution operator
mentioned in Eq. (5). This means that the message encoding
operation can be performed after any number of steps ti and
Bob will be able to decode �

(M )
i . It is obvious that T̂ (M )

�i
com-

mutes with the coin operator Ĉ(�) [Eq. (1)] because T̂ (M )
�i

only

acts on the OAM space. To show that T̂ (M )
�i

commutes with the
shift operator Ŝk [Eq. (4)], we find, after a bit of algebra, that

T̂ (M )
�i

Ŝk =
k−1∑
�=0

[|0〉〈0| ⊗ ∣∣(� + �
(M )
i − 1

)
(mod k)

〉

+ |1〉〈1| ⊗ ∣∣(� + �
(M )
i + 1

)
(mod k)

〉]
= ŜkT̂ (M )

�i
. (A2)

Thus, we see that both T̂ (M )
�i

and Ŝk commute. Suppose Bob
performs ti number of steps on a single photon, represented by
the initial state |�0〉, and sends it to Alice. Alice then encodes
the message on the single photon and sends the same back to
Bob. Bob now performs (tr − ti ) steps on the single photon
which he received. With these, and exploiting the fact that
T̂ (M )

�i
commutes with Ŝk , the resulting state |�tr 〉 can be written

as
∣∣�tr

〉 = [ŜkĈ(�)]tr−ti T̂ (M )
�i

[ŜkĈ(�)]ti |�0〉 = T̂ (M )
�i

|�0〉. (A3)

Hence, we conclude that the message encoding by Alice can
be performed after any number of steps in a k-cycle DTQW
so that Bob can unambiguously decode the message sent by
Alice.
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