ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

On the instability of iodides of heavy main group atoms in their higher oxidation state

Parambil, PC and Perumal, SSRR (2023) On the instability of iodides of heavy main group atoms in their higher oxidation state. In: Physical Chemistry Chemical Physics (8).

[img] PDF
phy_che_che_2023.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy
Official URL: https://10.1039/d3cp00014a

Abstract

The inert pair effect—the tendency of the s orbital of heavy atoms to stay unreactive, is a consequence of the relativistic contraction of the s orbitals. While the manifestations of this on the reactivity depend on the nature of the substituents, this aspect is often overlooked. Divalent Pb prefers inorganic substituents, whereas tetravalent Pb prefers organic substituents. Among the inorganic substituents, again there are specific preferences—tetravalent Pb prefers F and Cl more than Br and I. It is as though the relativistic contraction of the s orbital of Pb is more significant with Br and I substituents than with Cl, F, and alkyl substituents. Herein, we address this problem using the molecular orbital approach and support it with quasi-relativistic density functional computations. We explain why typical hypervalent systems, like 12-X-6, and 10-X-5 (X is a heavy atom, the number preceding X is the number of valence electrons surrounding X, and the number after X is the coordination number) with less electronegative substituents carrying a lone pair (such as iodine), and Lewis octet molecules like PbI4 are unstable, but their dianions (14-X-6, 12-X-5, PbI42−) are not. For heavy atoms, the relativistic contraction of the s orbital renders the antibonding combination of s with ligand orbitals (σ1*) very low-lying, making it a good acceptor of electrons. Thus, compounds where σ1* is empty are kinetically unstable when an electron donor with appropriate energy (such as the lone pair on iodine or bromine) is present in the vicinity. Donor-acceptor interaction between σ1* and the lone pair on I or Br (F and Cl lone pairs are energetically far away from σ1*) is responsible for the instability of such compounds. The kinetic stability of tetraalkyl lead compounds is due to the absence of lone pairs on the alkyl substituents. This work illustrates the key factor responsible for the instability of heavy element iodides by taking into consideration the covalent nature of the bonds, while the existing explanations assume a purely ionic bonding, which is an oversimplification. © 2023 The Royal Society of Chemistry.

Item Type: Journal Article
Publication: Physical Chemistry Chemical Physics
Publisher: Royal Society of Chemistry
Additional Information: The copy rights of the article belong to Royal Society of Chemistry.
Keywords: Atoms; Bromine; Chlorine; Iodine; Iodine compounds; Molecular orbitals; Stability; Alkyl substituent; Divalents; Heavy atoms; High oxidation state; Inorganics; Lone pair; Main group; Orbitals; Organic substituents; Relativistics; Lead compounds
Department/Centre: Division of Chemical Sciences > Solid State & Structural Chemistry Unit
Date Deposited: 14 Mar 2023 05:20
Last Modified: 14 Mar 2023 05:20
URI: https://eprints.iisc.ac.in/id/eprint/80901

Actions (login required)

View Item View Item