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ABSTRACT: Intratumoral heterogeneity associates with more maging Analysis
. . . . Histogram Based Texture Based Fractal Based
aggressive disease progression and worse patient outcomes.
Understanding the reasons enabling the emergence of such
heterogeneity remains incomplete, which restricts our ability to ﬁ
Omics Analysis

Spatial
heterogeneity
maps

manage it from a therapeutic perspective. Technological advance-
ments such as high-throughput molecular imaging, single-cell
omics, and spatial transcriptomics allow recording of patterns of
spatiotemporal heterogeneity in a longitudinal manner, thus
offering insights into the multiscale dynamics of its evolution.
Here, we review the latest technological trends and biological

insights from molecular diagnostics as well as spatial tran- il et et Analysis spatial networks
scriptomics, both of which have witnessed burgeoning growth in

the recent past in terms of mapping heterogeneity within tumor cell types as well as the stromal constitution. We also discuss
ongoing challenges, indicating possible ways to integrate insights across these methods to have a systems-level spatiotemporal map of
heterogeneity in each tumor and a more systematic investigation of the implications of heterogeneity for patient outcomes.
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B INTRODUCTION resistance can be largely resolved by accurate analysis and
mechanistic understanding of intratumoral heterogeneity. In
this review, we discuss advances in emerging technologies such
as high-throughput molecular imaging and spatial tran-
scriptomics in assessing this intratumoral heterogeneity, to

The intrinsic heterogeneity in cancer cells can be attributed to
their dynamic evolution in response to various stresses. This
heterogeneity can manifest at many levels such as genomic,
metabolomic, transcriptomic, epigenomic, and proteomic,

exhibiting distinctly different molecular signatures. Clinical enhance ltPe efficacy of personalized and adaptive cancer
implications of this heterogeneity often result in inaccurate therapies.
diagnoses hindering effective treatment and leading to worse Molecular diagnostics with multiple advancements presently
outcomes across cancers. Comprehensive molecular char- is unable to quantify all aspects of intratumor variability within
acterization of tumors through consortia such as The Cancer an in vivo setting. For example, microarray analysis measures
Genome Atlas (TCGA) Research Network have revealed the transcriptome profiles in huge numbers of cells and
specific subtypes in multiple cancers,”® but recent inves- provides an average measure of the bulk mass of cells/tissue,
tigations at a single-cell level have revealed that most, if not all, but it does not capture phenotypic and genotypic variance
tumors contain cells from multiple subtypes, although in across cells, thus limiting its use for precision medicine. Spatial
different proportions.’ ™ transcriptomic methods developed recently offer a better
Tumor heterogeneity does not have a singular cause; it resolution for mapping intratumor heterogeneity by also
accumulates from a multitude of factors such as genetic, classifying stromal signatures.lz
transcriptomic, epigenetic, and microenvironmental variations. Noninvasive molecular imaging methods of analyzing the

Intertumoral heterogeneity, which refers to heterogeneity in
the same cancer between different patients, mainly originates
from genetic and somatic alterations between patients, whereas
intratumoral heterogeneity, which refers to heterogeneity in
tumor cells within the same patient, originates from dynamic
spatial and temporal variations in tumor cells or the tumor
microenvironment within the same tumor.” This spatiotem-
poral variation in the tumor microenvironment causes tumors
to have different resistance mechanisms in the same tumor,
depending on the biopsied tumor’s location.'” This therapeutic

whole tumor volume hold promise for clinical benefit through
the characterization of morphological and functional signatures
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of intratumor heterogeneity.>~"> Molecular imaging technol-
ogies such as computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography
(PET), and particularly recent advances in image analysis
methods have made appreciable headway toward exploring
tumor heterogeneity. The significance of spatial structure in
biological systems has long been established, and the current
clinical unmet need is to support the clinical implications of
spatial heterogeneity through experimental results and the
development and integration of robust analytical, genomic, and
molecular imaging modalities to address this challenge, such
that we can control this heterogeneity and improve oncologic
treatment outcomes in patients. The multiple complex
interactions among diverse intra- and extracellular processes
that lead to spatial and/or temporal heterogeneity enabling
several cell phenotypes and various gene expression archetypes
to emerge from the same lesion (genetic background) have
been well documented in other reviews.'®~'° Here, we wanted
to focus on examples of quantification of heterogeneity
through two complementary recent technological advance-
ments: (a) how intratumor heterogeneity can be assessed from
clinical radiological data to provide meaningful diagnostic and
therapeutic interventions and (b) how spatial transcriptomics
and single-cell data can be leveraged to better identify
therapeutic vulnerabilities and treatment strategies. Correlating
radiological heterogeneity features to spatial transcriptomics
and/or histopathology data can provide insights that may
significantly improve therapeutic outcomes in patients.

B MOLECULAR IMAGING OF INTRATUMOR
HETEROGENEITY

The most commonly used clinical imaging modalities of
computed tomography (CT), magnetic resonance imaging
(MRI), positron emission tomography (PET), and single-
photon emission computed tomography (SPECT) perform
quantitative standard region of interest (ROI) analysis that
generates a mean parameter for all considered voxels and
therefore does not necessarily estimate underlying spatial
distribution. However, sophisticated image analysis methods
have been developed recently to quantify spatial heterogeneity
in these same ima§ing data obtained from CT, MRI, and PET/
SPECT images.”’ These methods can essentially add vital
information about intratumor heterogeneity over assessed
simple biomarkers such as tumor size and function and thus
either quantify overall tumor spatial complexity or identify the
tumor subregions that may drive disease transformation,
progression, and drug resistance.

Histogram Analysis. Histogram analysis is the most
common and popular method of characterization of intratumor
heterogeneity in imaging data. It measures image heterogeneity
using parameters such as standard deviation, nth centile,
interquartile ran%e, kurtosis, and skewness as well as mean and
median value®'*” and calculates the pixel intensity values and
displays the distribution of pixels or “local spatial image
density” in a grayscale mode.

In a study by Emblem et al, the diagnostic accuracies for
grading gliomas in patients were compared using the histogram
analysis of normalized cerebral blood volume (cBV) maps with
the hot-spot method for dynamic contrast-enhanced MRI in
the patients. It was observed that the diagnostic accuracy and
sensitivity of detection with histogram analysis for blood
volume heterogeneity was much higher (~90%) than that for
the hot-spot method (55—76%).”” In another study by Ma et
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al, the authors demonstrated the utility of the histogram
method in delineating the heterogeneous morphological
features of the tumor vasculature for patients with histolog-
ically confirmed glioblastoma (GBM) or lymphoma or solitary
metastatic tumor. Patients underwent dynamic susceptibility
contrast-enhanced MRI (DSCE-MRI) along with conventional
MRI to probe the heterogeneity in tumor vasculature along
with other changes in tumor anatomy. Semiquantitative
histogram analysis, where six histogram parameters were
analyzed from the normalized rCBV, was able to accurately
distinguish different enhancing and perienhancing lesions for
GBMs, lymphoma, and patients with solid metastatic lesions.>*
Since GBM pathology has well-documented demonstrations of
heterogeneous morphological features of tumor capillaries with
varying degrees of permeability within the same tumor, GBM
images were mostly studied for identifying intratumor
heterogeneity with such histogram analysis methods. In other
dynamic MRI studies (DCE-MRI) for monitoring tumor
response to treatment in GBM patients, Peng et al. were able
to quantify, with modified full width at half-maximum
(mFWHM) analysis of wash-in slope histograms, the changes
in tumor heterogeneity in response to radiotherapy. Such
tumor heterogeneity analysis demonstrated for brain tumors
validated how tumor heterogeneity could function as an
independent marker, rather than just tumor size alone, in
predicting intratumor heterogeneity.“""b

Texture Analysis. Tumor heterogeneity analysis as a
prognostic factor can improve the grading of tumors.”> A
limitation of histogram analysis is the inability to retain the
spatial arrangement of the voxels. Other mathematical models,
such as texture analysis and fractal analysis, can account for
intralesional heterogeneity, thus adding significant value to
radiological data in patients. Texture analysis applies
mathematical models and statistics-based methods to measure
the exact pixel position and the relationship between
neighboring pixels. For a particular lesion, texture analysis
involves extraction of spatial information as gray-level intensity
that ultimately generates spatial “texture features”.

Texture analysis has been applied to CT and MRI images
and resulted in improved tumor diagnosis. In the case of CT,
unenhanced, contrast-enhanced, and derived images (such as
perfusion CT) can be analyzed for heterogeneity with texture
analysis. In a study by Huang et al, using statistics-based
texture analysis, the authors correlated the 2D normalized
autocovariance coefficient to interpixel correlations and were
able to differentiate benign (84) from malignant (80) liver
lesions in CT images by inferring differences in spatial
textures.”® Differentiating benign from malignant lesions and
therefore improving clinical diagnosis, based on the difference
in spatial heterogeneity of the lesion without the need for any
external CT contrast agent, is impactful for patient outcomes
as patients often display renal toxicity from the use of iodinated
CT contrast agents. Another study by Ng et al. showed the CT
texture analysis approach to account for spatial heterogeneity
as a diagnostic biomarker in colorectal cancer patients. In this
study, texture features were compared between the largest
cross-sectional area and the entire tumor, and through
measurements of entropy and uniformity the authors reported
how the entire tumor rather than the chosen largest cross-
sectional area was more representative of the tumor
heterogeneity.”” The potential of CT texture analysis in the
assessment and correlation of vascular heterogeneity, which
results in focal areas of hypoxia in the tumor, has been
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Figure 1. Neurooncology radiomics study workflow. (1) Multimodal imaging and biological data acquisition. (2) Data preprocessing and
standardization. (3) Delineation of regions of interest, including manual segmentation and deep learning based segmentation. (4) Radiomics
feature extraction using predefined algorithms or deep learning techniques. (5) Data analysis, feature reduction, and/or selection for further analysis
of machine learning and/or deep neural networks. (6) Multiomics and clinical information integrated model training and testing, guiding
individualized disease diagnosis, treatment evaluation, and prognosis prediction. GB, glioblastoma; OS, overall survival; PES, progression free

survival. Adapted from ref 24b. CC BY 4.0.

demonstrated in patients of both colorectal and primary
nonsmall cell lung cancer (NSCLC).**** In patients with renal
lesions, again CT texture analysis was able to differentiate renal
lesions with excellent sensitivity and specificity.”’

Similarly, texture analysis of MRI data has also been applied
to account for spatial heterogeneity, most significantly in
breast, liver, and brain tumor studies. For example, in breast
cancer, apart from being able to distinguish between just
benign and malignant lesions of breast cancer, texture analysis
using a co-occurrence matrix successfully differentiated
invasive lobular carcinoma (ILC) from invasive ductal
carcinoma (IDC), two common forms of invasive breast
cancer.’’

Apart from improved diagnosis and predicting survival
outcomes in patients, texture analysis of CT images has shown
the potential to assess response to therapy, although only a few
studies have explored this so far. Coarse texture analysis and
uniformity in texture ratios served as significant predictors of
overall survival in colorectal cancer patients (receiving
cytotoxic therapy) independent of the tumor stage or in
renal cell cancer patients on antivascular therapy.*”*” In fact,
texture analysis proved to be a better predictor of treatment
response in renal cell cancer metastases treated with tyrosine
kinase inhibitors compared to the current scale of treatment
assessment, which is response evaluation criteria in solid
tumors (RECIST).>* In another study of ~200 women, Waugh
et al. for the first time used CT texture analysis and mapped
spatial heterogeneity from entropy-based features of the co-
occurrence matrix to classify breast cancer subtypes based on
pixel intensity distributions of CT images. Such a classification
could potentially improve noninvasive monitoring and follow-
up of breast cancer patients on different treatment regimens.*®
Interestingly, only a few studies in MRI have attempted to
assess heterogeneity with treatment response.36 However,
these studies have shown encouraging results that prove that
texture changes in MRI can be a potential biomarker for
treatment responses, such as texture changes observed in T
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and T,, MRI of non-Hodgkin lymphoma patients at staging,
followed by post first and fourth rounds of chemotherapy.’”

Compared to CT and MR], the potential of texture analysis
in PET imaging, especially for diagnosis, has not been widely
explored.”®” One of the reasons for this is the inherent low
spatial resolution of PET images and large variability in
implemented methodology.”” However, a few attempts at
texture analysis of PET images as a predictive marker of
response to chemoradiation have shown that local (homoge-
neity, baseline entropy) and regional (size) texture parameters
were better indicators than standardized uptake value (SUV)
measurements in differentiating responders versus nonres-
ponders.*"** Although texture analysis alone of PET data has
not been useful in the assessment of spatial heterogeneity,
combination of image-derived texture features from both PET
and CT or PET and MRI have been able to predict lung
metastases in soft tissue sarcomas and characterized renal cell
carcinoma®™>** (Figure 1).

Fractal Analysis. Fractal dimensions can be indicative of
surface texture heterogeneity as well and therefore used in
medical imaging where images reveal organs that have
fluctuations in space and time and cannot be differentiated
or characterized using only a spatial or temporal scale.”> The
most useful fractal analysis model is the fractional Brownian
motion model which quantifies the intensity surface of a
medical image as the end result of a random walk*® and
thereby correlates texture heterogeneity to fractal dimensions.
With the use of fractal analysis, images of two textures for
example can be distinguished based on the measure of
lumpiness in them. As in texture-based methods, fractal
analysis has been used also to distinguish as well as characterize
benign and malignant lesions such as by Kido et al. where in
fractal analysis of CT images benign hamartomas displayed a
lower 2D fractal volume compared to malignant bronchogenic
carcinomas, tuberculomas, and pneumonias.47 Other studies
utilized 3D fractal dimensions from regular CT images and
were able to differentiate adenocarcinomas from squamous cell
carcinomas and to correlate greater spatial heterogeneity in
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malignant nodes of colorectal cancer versus benign nodes with
an accuracy of 88%. Fractal analysis was useful in patients with
colorectal cancer where both fractal dimension and abundance
from CT perfusion images were higher in the cancer versus
normal bowel,”® and in repeatability measurements CT
perfusion data of rectal adenocarcinoma patients, 2D and 3D
fractal analysis of regional blood flow showed great correlation
and good reproducibility.’ Application of fractal geometry
analysis to MRI analysis has been mostly for brain tumor MR
images. For example, in a study by Di Ieva et al,, patients with
recurrent malignant brain tumors were imaged with MRI,
where susceptibility weighted MR imaging was used to assess
the changes in tumor vasculature. The qualitative hetero-
geneity patterns from MR images, analyzed by fractal-based
analysis methods, were able to quantify the vascular
heterogeneity and aided in radiology follow-up of brain
tumors.’’ It was first shown by Rose et al. that spatial
heterogeneity in dynamic contrast MRI (DCE-MRI) maps
could be quantified also by fractal analysis and further be
correlated to tumor grade.”" In other studies, fractal analysis of
voxel-based DCE-MRI data of breast cancer patients was able
to deconvolute the texture at various spatial-frequency scales in
a more accurate manner and therefore be a marker for early
prediction in breast cancer.””

Texture-based and fractal-based analyses of radiological data
have been also used for assisting in planning for therapy.
Targeted radiation therapy is an area of cancer therapy where a
statistics-based model of texture analysis on a coregistered
PET/CT image in the clinic could identify abnormal nodes for
radiotherapy by utilizing increased heterogeneity information
in PET images and higher uniformity in CT. Tumor
delineation, which is essential for oncologists before radiation
therapy, was found to correlate better with automated texture-
based segmentation as compared to the traditional thresh-
olding SUV method.

Table 1 summarizes these imaging methods and the spatial
heterogeneity analysis for different types of cancers.

New Imaging Methods Focusing on Spatial Hetero-
geneity Assessment. Metabolic activity in tumor cells is a
well-established therapeutic target and a route for tumor
evasion. Within the same tumor, different spatial distributions
of metabolically distinct cell populations exist which are épartly
driven by hypoxic gradients existing within a tumor.”*~® This
distribution can be quantified based on different drug
responses displayed by them with the appropriate analysis
method applied to the cell-level imaging data. A new analytical
method was able to distinguish cell-level spatial heterogeneity
in optical metabolic imaging data (obtained from two-photon
microscopy experiments) and applying density-based cluster-
ing and spatial principal component analysis (SPA) to relate
the multivariate measurements of cell metabolism®”*® with
spatial trends across models and treatment conditions.>’
Briefly, the optical imaging data quantified the mean lifetimes
({m) of NAD(P)H and FAD, which are markers for
metabolically different cell populations within the same
tumor®~®® both in xenografts and in 3D organoids. Spatial
patterns of cellular drug response were correlated with drug
diffusion to assess the influence of drug accessibility on cellular
metabolic distributions. These methods could be translated to
other nonoptical metabolic imaging data acquired over an
entire organoid volume or a superficial tumor volume to
characterize 3D distributions of metabolism and drug response.
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Table 1. Summary of Imaging Methods and the Various
Analysis Methods Used for Assessment of Spatial
Heterogeneity in Different Cancers

spatial heterogeneity imaging
analysis method modality cancer type ref

histogram analysis CT soft tissue sarcoma 21b
MRI GBM 22
MRI GBM 23
MRI GBM 24

texture analysis CT liver lesions 26
CT colorectal cancer 27, 28,

32
CT NSCLC 29
CT renal 30, 34
CT breast cancer 35
MRI breast cancer 31
MRI limb sarcomas 36
MRI non-Hodgkin lymphoma 37
PET sarcomas 38, 41
PET head and neck 42
PET lung metastases (soft 43
tissue sarcomas)

PET renal cell carcinoma 44

fractal analysis CT bronchogenic 47

hamartomas

CT colorectal cancer 48
CT rectal adenocarcinoma 49
MRI brain tumors 50, 51
MRI breast 52

Optical microscopy methods can provide rich contrast
visualization of the tumor microenvironment; however, due to
the limitation of low-depth penetration only a few micrometers
of tissue depth can be assessed.”* Optoacoustic/photoacoustic
imaging, a relatively new technique that combines the
advantage of rich optical contrast and high spatial resolution
of ultrasound, can image at a larger penetration depth
(approximately centimeter range) and therefore has great
potential for clinical translation.” Li et al. recently developed a
multispectral optoacoustic mesoscope (MSOM) for solid
tumor imaging, a unique investigational tool for assessing the
spatial heterogeneity of tumor vasculature and tumor hypoxia
at resolutions much higher (~50 ym) than what is offered by
the current optoacoustic systems (100—150 pm). Focal
hypoxia is another prognostic biomarker of tumor progression
in solid tumors; therefore, quantifying hypoxia maps in the
overall tumor can provide valuable information for screening
patients for personalized treatments.*®

Yet another imaging modality that has gained momentum in
the past few years for investigating the spatial distribution of a
variety of molecules in the complex biological system is mass
spectrometry imaging (MSI). MSI attempts to provide the
relative abundance of various molecules in a spatially resolved
manner without the need for histological dissection or target-
specific reagents as required in histopathological examinations
of entire tumor tissue. Different ionization methods (MALDI,
DESI, LEASI, SIMS) can be used, resulting in ion density
maps predicting the relative intensity for each m/z value
detected at a particular spatial localization.’”

Together, these newer molecular imaging methods have the
potential to obtain spatially resolved data from entire tumor
regions and with analysis methods such as histogram or
texture- or fractal-based analysis can provide vital information

https://doi.org/10.1021/acsomega.2c06659
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Figure 2. Spatial transcriptomics (ST) study design in prostate cancer. (a) Sample location used in this study and annotations made by a
pathologist. The section annotations are color coded. Prostate size is indicated by the scale bar. (b) The 1007 spatially barcoded spots of the spatial
microarray. The barcoded spots have a diameter of 100 m and have a 200 ym center-to-center distance. Orientation and lack spatial barcodes are
denoted by filled circles. The ST procedure yields matrixes with read counts for every gene in every spot, which are then decomposed by factor
analysis resulting in a set of factors (“cell types”), each comprising one activity map and one expression profile. Adapted from ref 12. CC BY 4.0.

regarding the intratumor spatial heterogeneity of tumors in a
noninvasive manner. In clinical diagnosis, assessment of
treatment responses, grading tumors, and treatment planning,
this information on intratumor heterogeneity will be of critical
value in guiding clinicians and radiologists.

Bl SPATIAL TRANSCRIPTOMICS IN CANCER

Genomic and transcriptomic analyses have revealed multiple
mutations including driver mutations of KRAS, CDKN2A,
TPS3, and SMAD4.%® Most of such characterization has been
at a bulk level, with a few exceptions such as quantifying
epithelial—-mesenchymal heterogeneity at tumor interior versus
invasive edge.ég’70 Traditional transcriptomic methods result in
loss of spatial information. To address this caveat, multiple
spatial transcriptomic (ST) methods have been developed
recently (Figure 2).

In a study involving engrafted human pancreatic ductal
adenocarcinoma (PDAC) in ischemic hind limbs of nude mice,
gene expression was observed to vary spatially depending on
oxygenation of the microenvironment.” In the control group
(normoxic conditions), the subgroups (SGs) identified by
spatial transcriptomics had diverse functions, such as enrich-
ment of genes involved in proliferation in SG2, SG3, SG4, and
SG11, but under hypoxic condition only SG6 showed
properties of proliferation. Also, in the control group, SG10
showed enrichment of genes involved in response to hypoxia
and angiogenesis, but in the hypoxic group, genes related to
angiogenesis and collagen organization were enriched in SG4.
Both ST and immunohistochemical (IHC) analyses revealed
that lactate dehydrogenase A (LDHA) expression was found in
the tumor boundary for both groups, but AKT was only
upregulated in hypoxia. All subgroups under hypoxic condition
showed a high metabolic rate, as revealed by GO and KEGG
analysis. In another study of three PDAC human tumor
samples, microarray-based ST methods were integrated with
single-cell RNA-seq to determine spatial patterns of gene
expression by capturing the transcriptomes of a set of adjacent
cells.”> Multimodal intersection analysis was performed to
annotate the precise cellular composition of distinct tissue
regions. Interestingly, different cell types—ductal cells, macro-
phages, dendritic cells, and cancer cells—had spatially enriched
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zones. Also, inflammatory fibroblasts and cancer cells that
colocalized spatially exhibited stress-response profiles, thus
deciphering the spatial architecture seen in PDAC.

Besides PDAC, spatial and temporal intrapatient hetero-
geneity of metastatic tumors has been investigated in prostate
adenocarcinoma tissue.”” Here, unbiased clustering pinpointed
a subset of samples with enrichment of the small-cell
neuroendocrine prostate cancer (SCNC) signature: low to
absent expression of androgen receptor (AR) signaling;
inactivation of TPS53, PTEN, and RBI genes; elevated
expression of ASCL1 and genes associated with small cell
morphology; and increased levels of E2F1 and CDKN2A,
reminiscent of observations in small cell lung cancer.”* Among
14 patients who underwent therapy, only three of them
evolved to an SCNC phenotype from an adenocarcinoma
phenotype, with varied levels of loss of AR signaling. Further,
analysis of 176 primary and metastatic prostate tumors
revealed that both phenotypes (adenocarcinoma, SCNC)
could coexist for a patient in distinct metastatic lesions,
thereby indicating lineage plasticity.”” In another prostate
cancer study, tissue samples from the patients who underwent
radical prostatectomy were analyzed using an artificial
intelligence (AI) based method.”® Differences between multi-
parametric MRI (mp-MRI) invisible and mp-MRI visible
prostate cancer tumors were visualized at a single-cell
resolution through the annotated pipeline of segmentation,
cell typing, modeling of tumor architecture and spatial
interactions, and the employment of software-generated
masks. The visible mp-MRI tumors did not show specific
boundaries between the stromal and glandular components,
but the invisible ones had a rounded glandular structure and
had less closely spaced glands interspersed with stroma, thus
bearing more similarity to normal prostate tissue.”® Similarly,
spatial transcriptomics on patient samples with adenocarcino-
ma post-radical prostatectomy revealed tissue-wide gene
expression heterogeneity. An expression gradient of genes
such as FOSB, AQP3, and NR4A1 was observed between the
tumor and stroma.'” A novel deconvolution approach analyzed
transcriptomes of nearly 6750 tissue regions comprising
stroma, normal and PIN glands, immune cells, and cancer.
This method showed accuracy in delineating the extent of
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cancer foci, similar to pathologist annotations, without directly
looking at histological changes. Put together, spatial tran-
scriptomic approaches have unraveled how different parts of a
tumor may manifest the different stages of cancer progression,
further indicating genetic and/or nongenetic components of
cancer evolution at play, including those driven by different
therapies. Further, spatial transcriptomics data can be used to
develop spatially resolved metabolic network models of
prostate tumor microenvironment,”’ thus identifying malig-
nant cell-specific metabolic vulnerabilities targetable by small
molecule compounds. For instance, based on the identification
of spatial segregation of regions showing enrichment in fatty
acid synthesis and desaturation, it was predicted that inhibiting
the fatty acid desaturase SCD1 may selectively kill cancer cells.
Thus, spatial transcriptomic data can also help pinpoint
selective drug targets for specific cancer types.

In addition to spatial transcriptomics, digital spatial profiling
(DSP) can decode the underlying heterogeneity patterns in a
tumor. DSP quantifies the abundance of both RNAs and
proteins in spatially distinct regions using multiplexing, which
is counting the uniquely indexed oli§0nucleotides to specific
targets of interest in a fixed tissue.”” These oligonucleotides
can be attached to antibodies or RNA probes though a linker
that is photocleavable; that is, light projecting onto the tissue
sample can release the photocleavable oligonucleotides in each
spatial region. These light patterns can be manipulated to help
profile distinct re%ions or cell type in a tumor or its
microenvironment.”” In a study using DSP to study samples
obtained from 27 patients who died of metastatic castration
resistant prostate cancer,80 141 regions of interest from 53
metastases (from diverse anatomic sites of tumor dissem-
ination) were analyzed. Six phenotypes of metastatic prostate
cancer were identified, based on expression levels of genes
associated with androgen receptor (AR) and a small cell
neuroendocrine (NE) phenotype: AR+/NE—, ARY/NE—,
AR—/NE—, AR—/NE°", AR+/ NE+, and AR—/NE+. The
DSP measurements of AR and NE activity scores—when
averaged across regions of interest for a given sample—
correlated well with bulk RNA-seq measurements done on
corresponding frozen tumor tissue, suggesting a high level of
intrapatient homogeneity. The majority of metastases were
also devoid of significant inflammatory infiltrates, as they
expressed at high levels B7-H3 (CD276), an immune
checkpoint protein similar to PD-L1 (CD274).*" Thus, DSP
can accurately classify tumor phenotype, assess heterogeneity
in tumors and stromal components, and identify aspects of
tumor biology involving the immunological composition of
metastases.

Beyond PDAC and prostate cancer, spatial transcriptomics
has also been applied to breast cancer. Spatial mapping of
samples from eight patients undergoing mastectomies revealed
heterogeneity between sites based on their proximity to the
tumor.”” High copy number aberrations (CNAs) were
identified at the morphologically normal epithelium sites
closer to the tumor, but this variation was unable to explain
diversity in corresponding gene expression profiles or mRINA
abundance. Spectral coclustering was used to identify
biclusters, i.e., coexpressed sets of genes that are commonly
upregulated (or downregulated) in certain samples closer to
the tumor than those that are further away. This
comprehensive spatiall CNA and mRNA characterization of
morphologically normal epithelia from primary tumors of
patients representing different molecular subtypes suggested
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that Wnt signaling may be one of the first ones to change in
breast cancer progression. In another spatial transcriptomic
analysis of microdissected tissues from the triple-negative
breast cancer (TNBC) cell line MDA-MB-231 xenograft
model, three cell-type clusters in primary tumor and axillary
lymph node metastasis were revealed.*> Two of these clusters
were identified to be stem-cell-like (CD44/MYC-high,
HMGA1-high). In scRNA-seq analysis on TNBC patient
samples, two cancer stem-cell-like populations were detected
similar to that observed in the xenograft model, highlighting
potential common principles of heterogeneity in tumors. Given
the complementary information available through spatial
transcriptomics/digital profiling and scRNA-seq/proteomics,
methods integrating insights from these can be powerful tools
for potentially categorizing patients into different therapeutic
regimes, depending on archetypes observed in a given tumor
sample.

B COMPUTATIONAL TOOLS FOR SPATIAL
TRANSCRIPTOMICS DATA ANALYSIS

Many computational tools are being developed to integrate
scRNA-seq and spatial transcriptomics. One such tool is
SPOTIight;84 it uses nonnegative matrix factorization (NMF)
to obtain cell-type specific topic profiles. Its performance was
tested by using synthetic mixtures comprising of two to eight
cells from the peripheral blood mononuclear cell (PBMC)
scRNA-seq data sets. When tested on these synthetic mixtures,
it showed a sensitivity of 0.911, an accuracy of 0.78, and a
median Jensen Shannon divergence (JSD) value of 0.160, thus
indicating high accuracy of estimated cell type proportions. It
was also able to detect in a sensitive manner different cell types
and other subtle cell states at their expected spatial locations,
and predict accurately despite shallower sequencing,

Another computational tool that identifies statistically
significant spatial gene expression trends is Trendsceek.*” It
ranks and assesses the significance of spatial trends seen for
each gene, thus identifying the set of genes for which
dependencies exist between spatial distribution of cells and
corresponding gene expression in those cells. It uses an
approach where the spatial location of a cell is given by an
assigned point, and expression levels are captured by a mark on
each point. It was used to probe gene expression patterns from
mouse olfactory bulb and breast tumor sections. Thus, this
nonparametric method incorporates both spatial and ex-
pression-level information for a gene, thereby overcoming
limitations of approaches using only one-dimensional
information—pseudospace®® or pseudotime.®”*® Several
genes implicated in breast cancer were found to have crucial
spatial patterns, such as the transcription factor KLF6 and the
transmembrane protein PMEPAL.

Besides the above-mentioned tools, a method designed for
digital analysis of pathology whole-slide images identified the
molecular traits and showed a significantly statistical
connection between survival and heterogeneity.”” Methods
using a deep learning algorithm (ST-Net) that combine spatial
transcriptomics and histology images to capture high-
resolution expression heterogeneity have also been recently
developed.”® ST-Net was trained on spatial transcriptomic data
from 68 breast tissue sections taken from 23 patients and could
predict the expression of 102 genes that correlated well with
experimental measurements too. It takes a 224 X 224 pixel
patch of the histopathology image corresponding to approx-
imately 150 X 150 pm* and predicts the expression of 250
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specific genes. It was trained iteratively using leave-one-out
analysis, i.e, taking 22 patients. Thus, its performance is
affected by experimental noise in spatial transcriptomics data as
well as the limited sequencing depth. For independent
validation of this method, breast cancer samples from the
10x Genomics Spatial Gene Expression data set were used.
Corresponding transcriptomic data set included measurements
for 234 of the 250 genes that ST-Net was trained to predict.
Out of the 234 genes available, the predicted expression of 207
of them were positively correlated with that seen in
experimental data. Next, when applied to breast cancer
samples in TCGA, ST-Net was used to scan hematoxylin
and eosin (H&E) images of 1550 samples from 1093 patients
without any retraining. Because TCGA only has bulk RNA-seq
data, a pseudobulk expression profile for each sample was
derived from ST-Net predictions. For 177 out of 250 genes
whose expression ST-Net could spatially resolve and predict,
the correlation with experimental measurements was positive.
Further, the inferred expression levels could help distinguish
histological subtypes in breast cancer infiltrating ductal
adenocarcinoma and infiltrating lobular carcinoma. Finally,
ST-Net could also predict the top five genes that showed the
highest variation in intratumor expression—GNAS, FASN,
AEBPI1, SPARC and BGN. Given that heterogeneity itself,
instead of mean expression levels, can be a marker of
aggressiveness in breast cancer too,”' the framework proposed
by ST-Net can be helpful in identifying patients with worse
prognoses across multiple cancer types.

Table 2 summarizes the different computational tools listed
in this section.

B INTEGRATING SINGLE-CELL MEASUREMENTS
WITH SPATIAL TRANSCRIPTOMICS

Single-cell high-throughput measurements at genomic, epi-
genetic, metabolomic, proteomic, and chromatin levels are
becoming more popular by the day,”*° but they often
compromise on spatial and temporal information due to the
tissue dissociation step. To overcome this limitation, methods
such as fluorescent in situ sequencing (FISSEQ)”” have been
developed to show in vivo mRNA localization within cells. But
scaling in situ to perform whole genome sequencing is not easy.
Thus, besides array-based approaches such as high-density
spatial transcriptomics (HDST), a few methods can now
obtain spatial information through approaches such as
computational inference, gentle tissue dissociation, and
physical separation by laser microdissection.”””

One of the earlier technologies that allowed visualizing over
100 transcripts per sample with single-cell resolution is single-
molecule fluorescent in situ hybridization (smFISH).'*’ It
provides absolute quantification of copy number and local-
ization of RNA molecules and can detect low copy number
transcripts as well. Earlier, it was limited by the number of
available fluorescent channels, but multiplexing has now
enabled using a larger number of targets (=F"; F = number
of fluorophores, n = number of hybridization cycles). This
approach is called temporal barcoding (also called sequential
FISH or seqFISH) and can visualize 10000+ genes within a
single cell by using specific barcodes.'”" While both FISSEQ
and seqFISH can measure the expression of various genes
while retaining single-cell resolution in a given field of view,
they often have long acquisition times and thus assaying whole
transcriptomes of single cells over large areas of interest is yet
impractical.
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Table 2. Summary of Tools Used to Analyze Spatial Transcriptomics Data

computational

reference

disadvantage

advantage

function mode of action

tool
SPOTlight

84, 92

the NMF method has a nonnegativity constraint; the data normalization

lower computation time; provides accurate predictions even when shallowly

nonnegative ma-

integrates scRNA-seq and

before the analysis is not very well studied; the NMF algorithm is

stochastic and complex

sequenced data is used; is a sensitive tool as it was able to predict even when

trained using only 100 cells

trix factorization

(NMEF)

marked point pro-

spatial transcriptomics

85,93

has lower accuracy in calculating true positives; has lower efficiency in

can detect spatial trends by combining location and expression information; is

identifies genes that show

Trendsceek

identifying spatially variable genes

cesses nonparametric

significant trends in a

spatial manner

90

requires large-scale transcriptomic mapping; pathological sections need

combines expression data with cell morphology; can capture intratumor

deep learning al-

high-resolution expression

ST-Net

to be standardized

heterogeneity in gene expression; automatically differentiates between normal

gorithm
and tumor tissue

heterogeneity in histology

samples
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To overcome these limitations, sci-Space was developed to
provide single-cell resolution, along with determining the
spatial information on a larger scale,'” thus offering an
advantage over spatial transcriptomics where each spot can still
include RNA from multiple cells. It labels nuclei using
unmodified DNA oligos before single-cell RNA sequencing
with specific combinatorial indexing (sci-RNA-seq). This
method was used to profile 14 sagittal sections derived from
two embryonic day 14 (E14.0) mouse embryos (CS7BL/6N)
and led to approximately 120 000 spatially resolved single-cell
transcriptomes. Albeit large, this number still accounts for only
2.2% of nuclei present overall. Thus, this data was integrated
with a nonspatial sci-RNA-seq mouse organogenesis cell atlas
data set spanning adjacent time points —E9.5 to E13.5 and
cells from a developing mouse brain atlas spanning E13.5 to
E14.5, thereby endorsing the ability of sci-RNA-seq in
generating spatially resolved single-cell atlases of mammalian
development. How this technique is applied to investigate the
dynamics of tumor progression at a single-cell level remains to
be demonstrated.

A similar method that integrates histological staining and
spatially resolved RNA-seq data has been developed to study
mammalian tissue.'”> While it can be applied to most high-
quality fresh-frozen tissue types, the spatial resolution is listed
currently to 100 pm. Thus, it can be potentially used for
identifying heterogeneity patterns in smaller regions of interest,
thus limiting the number of cells that can be investigated at a
time. Another workflow that can be applied for tumor samples
is XYZeq, which encodes spatial metadata at S00 um
resolution into scRNA seq libraries.'”* This method could
assign transcriptomes to single cells in the case of a mixed-
species experiment consisting of human (human embryonic
kidney, HEK293T) and mouse (NIH 3T3) cell mixtures.
Mouse tumor models were profiled using XYZeq to capture
the spatially barcoded transcriptomes from tens of thousands
of cells, which led to identifying a cell migration-associated
transcriptomic program in tumor-associated mesenchymal
stem cells (MSCs). Thus, this method could map tran-
scriptome and spatial localization of individual cells in situ and
can capture both spatially variable patterns of gene expression
which is a function of cellular composition and heterogeneity
within a cell type depending on the spatial coordinates. Given
that XYZeq can be adapted to many z-layers, it could
potentially facilitate a three-dimensional map of heterogeneity
within a tumor too. Together, these methods could enable
better understanding of how the microenvironment shapes cell

identity.
H CONCLUSION

Noninvasive molecular imaging methods such as photoacoustic
and mass spectrometry imaging and advanced image analysis
using texture and fractal dimensions of conventional imaging
data such as those obtained from CT or MRI or from PET/CT
and PET/MRI have displayed their abilities to account for
spatial heterogeneity in the entire tumor or intratumor lesion
heterogeneity. However, the anisotropic nature of voxels in
commonly used radiological data from CT, MRI, or PET
images makes it challenging for comparing the radiological
images to histology data directly. When equated to
histopathology and genomics data, the final in-space resolution
of radiological data (200—2000 ym for preclinical and S00—
5000 pm for clinical) is orders of magnitude different and
thereby making it difficult for correlating spatial heterogeneity
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information obtained from pathology images to radiological
data.'>'** One of the current needs is therefore to integrate
spatially corrected imaging data with genomics and spatial
transcriptomics data and pathology biomarkers that can bypass
the caveats of heterogeneity related drug resistance in tumor
and poor tumor prognosis.

Additionally, parcellation techniques which refer to grouping
of “similar voxels” can isolate specific tumor subregions that
might share similar tumor biologies yet differ in their abilities
to resist therapy or promote progression. Parcellation methods
of identifying tumor subregions with spatial heterogeneity can
therefore be matched to the histology of the same subregions
for correlation of imaging and histological evidence of sublocal
heterogeneity. The most common methods of parcellation
techniques involve distinguishing based on a priori assump-
tions (threshold classification such as median apparent
diffusion coefficients (ADCs) in a diffusion-weighted MRI or
binary classifiers, such as K,,, maps from perfusion MRI
graphs) or multispectral analysis (combination of multiple
imaging parameters such as K,,, of DCE-MRI along with SUV
maxima of FDG PET). Results from the parcellation-based
spatial heterogeneity studies have supported the theory that
analysis of tumor subregions may be more useful than
accounting for average values from the entire tumor and
these results when correlated or compared to spatial
transcriptomics data can help better predict tumor response
to therapy or sublocal tumor progression.'*>~"%"

Various recent technological advancements have enabled
mapping the spatiotemporal heterogeneity in tumors at varying
degrees of resolution as highlighted in this review. Such a
deluge of information has also triggered the development of
potent computational methods that can process such high-
dimensional data into biologically meaningful insights, for
instance, association of different localization patterns of tumor
and/or stromal cell types in a tumor with patient outcomes
and metabolic heterogeneity in cancer cells within the same
tumor. Noninvasive imaging methods focus on the visual-
ization and assessment of the same biomarkers, and therefore it
is of the utmost importance that future steps should integrate
these advancements at technological and/or conceptual levels,
with the goal of achieving a predictive systems-level multiscale
understanding of the dynamic tumor microenvironment and its
implication in terms of patient prognosis and outcome. This
understanding can empower more targeted therapeutic
interventions as well as a longitudinal monitoring of variability
within patient response to therapy.
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