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Abstract: The pseudoscalar particles pions, kaons and the g-particle are considerably lighter than the other hadrons such

as protons or neutrons. Their lightness was understood as a consequence of approximate chiral symmetry breaking. This led

to current algebra, a way to express the relations imposed by the symmetry breaking. It was realized by Weinberg that

because of their low mass, it is possible to formulate a purely pionic (effective) field theory at experimental energies, which

carries all information on the (non-perturbative) dynamics, symmetries, and their spontaneous breaking of quantum

chromodynamics (QCD) and allows for systematic calculations of observables. In this review, we trace these developments

and present recent activities in this field. We make the connection to other effective theories, more generally introduced by

Wilson, as approximate field theories at low energies. Indeed, principles and paradigms introduced first for pions have

become ubiquitous in particle physics and the standard model. Lastly, we turn to the latest development where the present

(fundamental) standard model itself is considered as an effective field theory of a—yet to be formulated—even more

fundamental theory. We also discuss important techniques that were developed in order to turn chiral perturbation theory

into a predictive framework and briefly review some connections between lattice QCD and chiral perturbation theory

(ChPT).
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1. Preamble

We dedicate this article to Steven Weinberg, a great

physicist who influenced in many ways the field of ele-

mentary particle physics for decades and is one of the

authors of the Standard Model. Apart from his great

achievements in research, his textbooks which became

classics also testify to his outstanding teaching capacity. He

was awarded the 1979 Nobel Prize in physics along with

Sheldon Glashow and Abdus Salam for the electro-weak

model. In addition, Weinberg pioneered the study of

quantum field theories, behavior of Green functions at

asymptotic energies, symmetries in field theories, Gold-

stone mechanism, current algebra, pion physics and

effective field theories. Weinberg has explained his phi-

losophy in terms of phenomenological Lagrangians [2],

which proved to be the cornerstone for successful devel-

opments in precision pion physics until today. This concept

of an effective Lagrangian, that is, the low-energy (large

distance) manifestation of a fundamental theory, was also

developed by Ken Wilson [3] (Nobel prize 1982) quite

generally. In this picture, short-distance degrees of freedom

are systematically ‘integrated out’ and appear only as

coefficients of a theory with long-distance degrees of

freedom. Weinberg’s and Wilson’s concepts are at the base

of today’s understanding of physics systems with very

different energy scales, such as in particle physics where

the range goes over more than 20 orders of magnitudes [4].

‘‘And so the question naturally arose, is there a way of avoiding the

machinery of current algebra by just writing down a field theory that

would automatically produce the same results with much greater ease

and perhaps physical clarity? Because after all in using current

algebra one had to always wave one’s hands and make assumptions

about the smoothness of matrix elements, whereas if you could get

these results from Feynman diagrams, you could see what the

singularity structure of the matrix elements was and make only those

smoothness assumptions that were consistent with that.’’Steven

Weinberg, 2020 [1]
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In this review, we aim to showcase the developments

and richness of effective theories, report on current pro-

gress, and encourage further work by pointing out where it

is needed. We mention important early work quite com-

prehensively but are more anecdotal in referencing newer

work; the interested reader should be able to navigate it

from the references given.

We have striven to bring under one umbrella several

topics that have been separately reviewed for various sub-

communities. Our hope is that the present review will find

a readership that will encompass all of the working particle

physics community, experimentalists and theorists like-

wise, who wish to get a flavor of what has been going on

under the rubric of chiral perturbation theory and a glimpse

of other effective field theories. The subject of chiral per-

turbation has grown immensely based on rather technical

and detailed computations, in this review, we wish not to

burden the text with too many equations but try to explain

the physical concepts and point the interested reader to

more comprehensive reviews. In particular, we illustrate

how the general principles of analyticity, unitarity, and

crossing (through dispersion relations and the analysis of

experimental data based on them) can be combined with

the scattering amplitudes arising in chiral perturbation

theory. This marriage has in fact led to sufficient accuracy,

thereby providing for testing the standard model at requi-

site levels of precision. In addition, we have also given

references to the various packages used in the literature

which readers can find interesting.

2. A personal note

Both DW and BA have been working for over three dec-

ades on the subjects discussed here, in particular in pion

physics and chiral perturbation theory (ChPT). We are

pleased to share the important lessons learned during the

many years of development in the field. DW was happy to

contribute and to assist BA who has been a longtime friend

and a gate opener to India and its culture.

3. Introduction

Many physical systems look very different when probed at

different length scales or with different energies. While

ordinary matter appears to the eye in an incredibly rich

diversity of forms and textures, at the atomic scale, made

for instance visible by scanning microscope techniques, all

one sees are atoms that are quite similar in different

materials. Thermodynamics, the phenomenological

description of many systems, can be viewed as an effective

‘leftover’ of the microscopic theory of statistical

mechanics. Such large differences appear in many physical

systems. In elementary particle physics, it is in the realm of

strong interactions where this can be studied particularly

well. At experimental energies beyond, say, several GeV,

the relevant picture is that of the simple SU(3) gauge theory

of QCD. But at lower energies, the complicated interac-

tions of pions and nucleons dominate and there is no

obvious trace of QCD. While we consider QCD the fun-

damental theory, the interactions of pions and nucleons are

described by an effective (low-energy) theory, called chiral

perturbation theory, ChPT. So, how does one connect these

two seemingly different manifestations of the same

interactions?

The key is to find properties of QCD that remain man-

ifest also in ChPT. In this case, it turned out that the crucial

property is chiral symmetry SUð3Þ � SUð3Þ with sponta-

neous breaking and a small explicit breaking term. While

this symmetry is easily gleaned from the fundamental

Lagrangian of QCD, it is far less obvious at the effective

level. It took many years, from the late 1950s on, to con-

solidate the effects of that symmetry, and many physicists

are associated with this process. Since these developments

are a fascinating part of the history of particle physics, we

will summarize some of these ideas below.

All the results obtained were cast into a bona fide field

theory using external field techniques by Gasser and

Leutwyler in the 1980s. Apart from a rigorous formulation

of the effective Lagrangian, they gave a complete one-loop

treatment of the effective Lagrangian, also including the

other pseudoscalar mesons of the eightfold way, that is the

kaons and the g. Since then, many developments have

taken place. Systematic two-loop calculations increased to

quality of the predictions substantially. The role of nucle-

ons and vector mesons was investigated; general tech-

niques such as dispersion relations, functional analysis

methods, and rescattering theory advanced the precision of

the calculations. Other methods, such as lattice gauge

theory, furnished important input. All of these represent

diverse and rich activities in physics where each would

require a review article in its own right. Furthermore, the

success of chiral perturbation theory encouraged the

development of many other effective theories in particle

physics. By identifying high-energy and low-energy

degrees of freedom and using Wilson’s procedure to inte-

grate out the high-energy modes, it is possible to arrive at

an effective theory for the low-energy modes in many

cases. Some of the recent theories are the heavy quark

effective theory (HQET) and the soft-collinear effective

theory (SCET). For instance, HQET is based on the

observation that in heavy quark physics (mostly b quarks

but also charmed quarks) mesons, in the limit of large

(bigger than about 1 GeV) heavy quark mass mq, the

B Ananthanarayan et al.



relevant physics can be reliably described in a power series

in ðmqÞ�1
where the first term is independent of ðmqÞ1.

While these theories are designed to understand the non-

perturbative dynamics of QCD better, more recently, the

idea that even the ‘fundamental’ standard model is but the

‘low’-energy effective manifestation of a more basic theory

that would reveal itself at very high energies. This idea is

known as the standard model effective theory (SMEFT). A

further step is to view the theory of gravity, Einstein’s

general relativity, as an effective theory. This is particu-

larly interesting for attempts to turn gravity into a quantum

theory.

The contents of this review are as follows:

The next Sect. 2 gives an overview of chiral perturbation

theory. We recall the basic theory of QCD and describe the

construction of the effective Lagrangian, following Gasser

Leutwyler [5]. Several general observations, sometimes

personal, are mixed into the text.

In Sect. 3, we show how to include particles beyond the

eight light pseudoscalar mesons, in particular the g0, the

vector mesons (such as the q), and nucleons (baryons).

In Sect. 4, we consider processes where ChPT does not

work well and must be improved by auxiliary methods. In

particular, we look here at strong two- and three-body

rescattering where a substantial body of work exists.

In Sect. 5, we look at generalizations of the renormal-

ization procedure for non-renormalizable theories. The

methods that have been developed might be of general

interest in going beyond ‘renormalizable’ theories.

In Sect. 6 we review the weak interactions of the

pseudoscalar mesons, such as the decays of kaons which

play an important role in the understanding of fundamental

effects such as CP-violation.

In Sect. 7, we show some applications which are of

special importance.

In Sect. 8, we discuss effective methods to deal with the

strong interactions in the higher energy regimes where

ChPT does not apply (or only in certain parts of phase

space).

Then, in Sect. 9, we show the newest development in

understanding the standard model and gravity as effective

theories of an even more fundamental theory.

Finally, in Sect. 10, we collect some noteworthy recent

developments that are of relevance for ChPT.

4. The chiral lagrangian

After the initial work of Dashen, Weinstein, and Pagels

[6–9], a breakthrough came from the observations of

Weinberg [2] who argued based on the principles of

quantum field theory and cluster decomposition and pion-

pole dominance, that the lowest order effective Lagrangian

could be used to compute loops whose divergences could

be absorbed into the low-energy constants of higher order

terms in the Lagrangian. This was put on a firm footing by

studying the gauge invariance of the generating functional

of the Green functions of the theory by Gasser and Leut-

wyler [5, 10]. A scholarly exposition is given in the

Scholarpedia article of Leutwyler [11]. In this chapter, we

review their construction of the chiral Lagrangian.

The foundation for this is QCD, the theory of the strong

interactions which determine the behavior of the observed

particles in a variety of experiments where they are influ-

enced by ‘external fields’ or ‘sources.’ These are classical

objects and do not appear in loops. Important examples of

such external fields can be the masses of the quarks2, the

weak interactions, or also experimentally realized fields

like a strong electromagnetic field. Since we know that the

symmetry properties are crucial, we are interested in

external fields that have well-defined transformation

properties under the chiral symmetry which determines the

low-energy spectrum. The objects one wants to calculate

are the Green functions associated with the external fields,

from which the physical matrix amplitudes are derived in a

standard manner.

Thus, the fundamental Lagrangian involving the three

light quark fields (q) has the form:

L ¼ L0
QCD þ �qcl vl þ c5al

� �
q

� �q s� ic5pð Þq� h
32p2

Tr Glm
~G
lm

� �
;

ð1Þ

where

L0
QCD ¼ qicl ol � iGl

� �
q� 1

2g2
Tr GlmGlm
� �

; ð2Þ

and Glm is the gluon field strength tensor and ~G
lm ¼

1
2
�lmabGab its dual. The letters vl, al, s and p denote the

external fields transforming as vectors, axial vectors, sca-

lars and pseudoscalars, respectively; the field h transforms

in a particular nonlinear way. All these quantities are x-

dependent, that is vl ¼ vlðxÞ, etc. The physical Greens

functions from the Lagrangian in eq. 1 are obtained by

expanding the generating function around

vl ¼ al ¼ p ¼ 0, s ¼ M, h ¼ h0 where M is the quark

mass matrix and h0 is the vacuum angle. We note that

s ¼ M can always be chosen to be diagonal, with real

positive elements mu;md;msð Þ and an adjusted vacuum

angle. For more details, see ref. [5]. The last term in eq. 1

is odd under the CP transformation and contributes to CP

1 Recall that the reduced mass of a system of a heavy and a light

particle is largely independent of the heavy mass

2 In the standard model, this is proportional to the vacuum

expectation value of the Higgs field

Chiral perturbation theory



violation effects (for instance the electric dipole moment of

the neutron) from the strong interaction. These effects are

found to be tiny, which requires the vacuum angle to be

unnaturally small h0.10�10 [12, 13]. This is the, still

unresolved, ‘strong CP’ problem. It has sparked many

ideas, including the postulation of the axion, an interesting,

but still hypothetical particle. Various theoretical models of

axions and the experimental bounds on the couplings with

other particles have been explored in the literature, and

these developments can be found in ref. [14]; for a very

recent result, see ref. [15].

Our interest is in the amplitudes at experimental particle

energies below 1 GeV or so. However, the calculations

using the formulas above would be forbiddingly difficult

because at low energies, there are no free quarks (or

inclusive states, such as exist at high energies), but pions or

kaons (the pseudoscalar mesons), or other hadrons that are

complicated bound states of quarks and gluons. Thus, we

must express the physical contents of the QCD Lagrangian

in terms of these fields. This we shall call the effective

(low-energy) chiral Lagrangian. The notion is quite gen-

eral: An effective Lagrangian expresses the physics in

terms of the physical particles (or fields) at the energies

relevant for the experiment considered. The form of the

chiral Lagrangian is dictated by the choice of the physical

(dynamical) fields and the symmetry properties of the

external fields. Because we are interested in low energies,

one considers an expansion in energy (momentum) of the

particles which, because of chiral symmetry, starts at

order(p2) where p is a typical momentum of the particles.

The leading term in an energy (momentum) expansion is

completely fixed due to the work of Callan, Coleman, Wess

and Zumino [16, 17] have allowed us to extract several

general features of the interactions of Goldstone bosons,

quite independent of the knowledge of the dynamics of the

strong interactions, based exclusively on the (global)

symmetries of the underlying Lagrangian. The fact that

they are (approximate) Goldstone bosons already fixes their

mutual interactions to be of the derivative type. Further-

more, the parametrization of the degrees of freedom

encoded by the physical fields requires them to be coor-

dinates of the coset space given by G/H, where G is the

global symmetry of the Lagrangian and H is the symmetry

of the ground state. The broken generators of G not lying in

H are precisely these Goldstone boson degrees of freedom.

Taking into account the symmetry properties of the Gold-

stone bosons, a convenient parametrization where the

chiral transformations are linear and ensures the derivative

nature of the interactions is [18]:

U � ei
ffiffi
2

p
U=Fp ð3Þ

where

U ¼

p0ffiffi
2

p þ g8ffiffi
6

p pþ Kþ

p� � p0ffiffi
2

p þ g8ffiffi
6

p K0

K� K0 � 2g8ffiffi
6

p

0

BBB@

1

CCCA
; ð4Þ

which is unique up to the reparametrization of the Gold-

stone boson fields themselves. As argued by Boulware and

Brown [18], it is advantageous to group the pseudoscalar

fields into a 3 � 3 unitary. The point is that the external

fields should couple to such operators of the fields which

transform linearly under chiral transformations in order

that the interactions can be built by a conventional loop

expansion.

The results of current algebra are all captured by the

effective Lagrangian:

Leff ¼ L2 þ L4 þ L6 þ � � � ð5Þ

where L2, L4 and L6 are the terms of O p2ð Þ, O p4ð Þ and

O p6
� �

, respectively.

The leading-order term in the low-energy expansion is

generated by the nonlinear sigma model coupled to the

external fields(v, a, s, and p, in the notation of the ref. [19]),

L2 ¼ F2
p

4
hDlUD

lUy þ vUy þ vyUi ; ð6Þ

where

DlU ¼ olU � iðvl þ alÞU þ iUðvl � alÞ;
v ¼ 2B sþ ipð Þ :

ð7Þ

The above reproduces the well-known Weinberg result for

pp scattering [20], which sets the scale of the chiral

interaction in terms of the pion decay constant.

Without dynamic external fields, s is proportional to the

masses of the quarks, which are fundamental quantities in

the standard model. In fact, ChPT plays a key role in

determining these quantities in terms of the pseudoscalar

masses [5, 21–23]. There is also considerable effort to

determine them from lattice QCD [24] as well as using

QCD sum rules [25, 26]. The sum rule determinations are

also a powerful tool to determine the QCD parameters, and

their recent applications can be found in the book of

Dominguez [27]. A summary of the most recent determi-

nations can be found in the PDG [28]. Apart from their

importance as fundamental parameters, a value of mu ¼ 0

would have solved the so-called strong CP problem (see

[29] for details), but this does not seem to be the case.

In particular, in order to go beyond the leading order,

Weinberg in ref. [2] argued that the content of a field

theory is dictated by the symmetries and analyticity, per-

turbative unitarity, and cluster decomposition. Using this,

he was able to predict the structure of the pp scattering

amplitude and the corresponding logarithms that would
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have to generate the required imaginary parts of the

amplitude from the original (real-valued) tree-level

amplitude [2]. While this remained a thumb rule, the sys-

tematic study required the introduction of external sources

for the currents of the theory in the spirit of Julian Sch-

winger, who proposed to study field theory through sour-

ces. Rather than being mere mathematical curiosities, the

presence of the external sources allowed a systematic

computation of one-loop generating functional through the

heat-kernel technique, an established method of obtaining

in a compact manner the generating functional rather than

an equivalent yet explicit computation of Feynman dia-

grams. This functional requires regularization (dimen-

sional) and renormalization of the infinities that are

generated by the loops.

Since the original Lagrangian in d ¼ 4 is not renor-

malizable, the procedure generates higher derivative terms

not present in the original two-derivative Lagrangian. Thus

new low-energy constants are introduced into the theory

with corresponding b-functions, which are fixed from the

experiment. Once fixed, at this order, any process of

interest can be computed, which makes the theory predic-

tive. This process can be continued indefinitely to any

order in the loop expansion and/or the momentum expan-

sion. It is the convention to consider each loop to yield a

new power of p2 and also to assign powers to the explicit

mass.

The chiral Lagrangian at Oðp4Þ [5, 10] consistent with

the Lorentz invariance, C and P symmetry is given by:

L4 ¼L1hDlU
yDlUi2 þ L2hDlU

yDmUihDlUyDmUi
þ L3hDlU

yDlUDmU
yDmUi

þ L4hDlU
yDlUihvyU þ vUyi

þ L5hDlU
yDlUðvyU þ UyvÞi

þ L6hvyU þ vUyi2 þ L7hvyU � vUyi2

þ L8hvyUvyU þ vUyvUyi
� iL9hFlm

R DlUDmU
y þ Flm

L DlU
yDmUi

þ L10hUyFlm
R UFLlmi þ L11hFRlmF

lm
R þ FLlmF

lm
L i

þ L12hvyvi ;

ð8Þ

where

Flm
R ¼olrm � omrl � i½rl; rm� ð9Þ

Flm
L ¼ollm � omll � i½ll; lm� : ð10Þ

At this order in the momentum expansion, there are twelve

new couplings Li (also called low-energy constants) that

appear out of which only L3 and L7 are not divergent.

Also, the next O p6
� �

order Lagrangian has been worked

out (see [30, 31]) and there are results of O p8ð Þ [32, 33]. Of

course, the number of couplings increases, and thus the

predictive power for smaller (higher-order) effects

decreases. But by choosing suitable observables, one is still

able to determine some of them.

The low-energy constants can be renormalized in a

standard fashion and one writes:

Li ¼ Lri ðlÞ þ CikðlÞ ð11Þ

where

kðlÞ ¼ ld�4

4p2

1

d � 4
� 1

2
1 þ logð4pÞ � cEð Þ

� �
; ð12Þ

where the function k comes from performing a standard

one-loop calculation and the coefficients Ci coefficients

were calculated in [5, 10]. The divergences in the bare

coupling Li cancel with the one present in the kðlÞ
resulting in renormalized couplings Lri ðlÞ. Their scale

dependence is given by:

Lri ðl2Þ ¼ Lri ðl1Þ þ
Ci

16p2
log

l1

l2

� �
: ð13Þ

The low-energy constants reflect the properties of the

strong interaction spectrum that has been integrated out and

contribute to their numerical values. For instance, in certain

cases, the exchange of a single vector meson accounts for

the observed values; alternatively, there might be an axial-

vector meson dominance [34, 35]. Other higher angular

momentum states also make contributions but are mostly

numerically less significant. Over the last years, several

papers have explored ways to determine the low-energy

constants (see ref. [36]). For a recent review, see ref. [37]

To illustrate the renormalization procedure, we consider

the electromagnetic form factor of pion which is defined as:

hpþðp0ÞjVem
l ð0ÞjpþðpÞi ¼ ðp0 þ pÞlFp

VðtÞ; t ¼ ðp0 � pÞ2 :

ð14Þ

This quantity at tree level and at one-loop is given by:

Ftree
V ðtÞ ¼ 1 ; ð15Þ

Fp;1�loop
V ðtÞ ¼ 2/ðt;Mp; dÞ þ /ðt;MK ; dÞ ; ð16Þ

where

/ðt;M; dÞ ¼ � tMd�4

ð4pÞd=2

Cð2 � d=2Þ
2F2

p

�
Z 1

0

dxxð1 � 2xÞ 1 � t

M2
xð1 � xÞ

� �d�4
2

ð17Þ

The Oðp4Þ contribution to Fp
V comes from L9 and has the

following form:

Chiral perturbation theory



Fp;L4

V ¼ 2L9t

F2
p

; ð18Þ

and the total contribution to Fp
V is finite at this order if the

L9 is tuned as:

L9 ¼ Lr9ðlÞ þ
kðlÞ

4
; ð19Þ

this results into finite scale-dependent renormalized

coupling Lr9ðlÞ. Now the divergent function in eq. 17 is

renormalized by writing:

/ðt;M; dÞ ¼ /renðt;M; l; dÞ � tkðlÞ
6F2

p2

þOðp4Þ ; ð20Þ

and the complete expression for pion electromagnetic form

factor has the form:

p
VðtÞ ¼ 1 þ 2/renðt;Mp; l; dÞ þ /renðt;MK ; l; dÞ

þ 2tLr9ðlÞ
F2
p

þOðp4Þ :
ð21Þ

Other examples can also be found in the book of Dono-

ghue, Golowich and Holstein [38].

An important attribute of the external source technique,

which was not explicitly available in the heuristic proposal

of Weinberg, is the ability to also account for the electro-

magnetic and weak interactions. This promotes the

framework of chiral perturbation theory to an effective

theory of the standard model (that includes electromagnetic

and weak interactions) and not just that of the strong

interaction sector with pions, kaons and the g.

5. Extensions of chiral perturbation theory

While the previous section treated ‘standard’ ChPT and its

development, there are various extensions that are needed

when specific processes are to be investigated where the

methods of the previous section are not sufficient. We

present here a short overview only, for a deeper treatment,

the references given should be consulted.

5.1. The g0

Without the axial anomaly (see eq. 2), there would be 9

light mesons. Because of it, the singlet axial current is not

conserved, and the ninth meson becomes massive; indeed,

the g0 has a mass of 957 GeV, comparable to that of the

nucleons. In the (hypothetical) limit NC ! 1 the g0 is

indeed massless, but NC ¼ 3, and the g0 is heavy. However,

despite the large mass difference of the 8 pseudoscalar

mesons and the g0, its influence on many processes is

substantial, and therefore, it must be included in a

systematic treatment. A successful way is to incorporate

the g0 in the U-matrix, that is, taking a three-dimensional

unitary matrix [5] of form:

UðxÞ ¼ e
1
3
i/0ðxÞei/ðxÞ ð22Þ

and add a mass term for the g0. In the absence of mixing,

/0ðxÞ corresponds to g0. Furthermore, as the g0 and the

external field h are both SU(3) singlet pseudoscalars, they

transform (up to a sign) in the same way under chiral

transformations, and therefore the sum /0 þ h is invariant.

This means that everywhere in the Lagrangian where there

are constants, they should be replaced by arbitrary func-

tions of /0 þ h. This brings of course new uncertainties.

Nevertheless, as shown in []], it is possible to draw some

concrete conclusions, in particular about the mixing of the

neutral pseudoscalar mesons p0, g, and g0. Furthermore, as

can be seen from eq. 8, low-energy constant L7 can be

modeled by the exchange of a chiral singlet pseudoscalar.

In fact, the g0 does a good job. There are possibly further

applications of this way to include the g0 and more details

can be found in Kubis et al. [39, 40]. As mentioned, in the

large NC limit, the models show new interesting aspects.

See refs. [41, 42] for a thorough investigation.

5.2. Vector mesons

The next heavier hadrons after the pseudoscalar mesons are

the vector mesons, such as the q. Using the methods used

before, in particular, that means determining the correct

transformation behavior of the vector mesons under the

chiral symmetry, they can be built into the chiral Lagran-

gian [34]. This does not only contribute to processes with

such vector meson, but the vectors are also resonances that

contribute to the low-energy constants introduced in Sect.

2. In fact, as stated there, in many cases, they largely sat-

urate the constants, thus giving a very successful model for

them. Some recent articles on the subject are [43–45].

5.3. Baryons

The method can also be extended to include the baryon

degrees of freedom see review ref. [46, 47]. In the mani-

festly Lorentz covariant framework, a problem arises

because one cannot have a strict power-counting scheme.

On the other hand, inspired by the heavy quark effective

theory, a heavy baryon version is available due to Jenkins

and Manohar [48]. A reformulated Lorentz invariant

method via infrared regularization due to Ellis [49, 50]

and Becher and Leutwyler [51], along with other ver-

sions such as extended on-mass-shell renormalization

methods that have several advantages [52] were proposed.

The pion-nucleon r�term (see ref. [53] for latest review)

B Ananthanarayan et al.



obtained from the baryon ChPT has also been useful for

beyond the standard model physics considerations, espe-

cially studies related to the dark matter searches [54].

6. Two and three body rescattering

Scattering processes provide important clues to the physics

behind them. Furthermore, scattering is often part of other

processes, like decays, where the total amplitude also

depends on the (re) scattering of the decay products. For

instance, in a decay K into two pions, the pions rescatter

strongly, thereby (in some cases) influencing decisively the

measured decay rate. This is important in cases where the

straightforward application of ChPT is not sufficient to

explain the experimental results and must be supplemented

by additional methods, such as unitarity conditions which

sum up certain higher order corrections. We also note that

there is a vast literature on scattering.

The formalism presented in Sect. 2 for the one-loop

ChPT can be used to calculate the scattering amplitude

involving the pseudoscalar Goldstone bosons. In the limit

of isospin conservation, it is customary to introduce

amplitudes of definite isospin in the s-channel TIðs; tÞ,
which may be related to specific physical charged states

and depend on the process of pp or pK. These isospin

amplitudes can further be decomposed into partial waves

as:

TIðs; tÞ ¼ 32p
X

l

ð2lþ 1ÞtIl ðsÞPlðcosðhÞÞ : ð23Þ

where tIl ðsÞ is partial wave amplitude, h is the scattering

angle in the center of mass frame, and the Pl are the

Legendre polynomials. The tIl ðsÞ are complex above the

threshold and are related by unitarity. For pp scattering it

has the following form [10]:

tIl ðsÞ ¼
s

s� 4m2
p

� �1=2
1

2i
gIl ðsÞe2idIl ðsÞ � 1
� �

; ð24Þ

with dIl being the phase shift and gIl the elasticity parameter.

For pK scattering, an analogous expression can be found in

ref. [55] . It may be recalled that scattering lengths are the

lowest order shape parameters appearing in the expansion

of the real part of the partial wave amplitudes, and their

expression near the threshold looks like this:

Re ðtIl ðsÞÞ ¼ ðq2ÞlðaIl þ bIl q
2 þOðq4ÞÞ; ð25Þ

where q2 is the square of the momentum transfer in the

center of mass frame and ðq2Þl denotes the centrifugal

barrier. The scattering length of the lowest waves domi-

nates the physical cross section at low energies. The scat-

tering lengths are also one of the important quantities for

the pionium as the decay rate that is sensitive to ja0
0 � a2

0j
2

[56]. DIRAC [57] and NA48 experiments ref. [58, 59] at

CERN were aimed to measure the S-wave scattering length

difference in the I ¼ 0 and I ¼ 2 isospin channels and the

observed values were in agreement with ChPT predictions

in ref. [56]. Since pions and kaons are short-lived, one

cannot do fixed target experiments, and the obtained scat-

tering lengths are based on phase shift analyses. Whereas

eþe� ! pþp� is well studied experimentally and is related

to the I ¼ 1 P�wave via the Watson theorem, the other

phase shifts are well measured only at higher energies from

pN scattering. At low energies, they are related to the form

factors of Kl4 decays and have to be extracted using dis-

persion relations. In pion scattering, the suitable framework

is dispersion relations with two subtractions which suffice

due to the Froissart bound, which allows one to write a

system of partial wave equations that leaves the two S-

wave scattering lengths undetermined parameters. These

Roy equations and the corresponding Roy-Steiner equa-

tions for pK scattering have been studied for over 50 years.

They also provide a very useful framework for relating the

dispersion relations to the chiral amplitudes, as shown in

this section.

The Oðp6Þ behavior of these contributions can be cal-

culated following the work of Bijnens et al. [60] and

Colangelo, Gasser and Leutwyler [56] and the pp scatter-

ing amplitude can be decomposed in the following form:

tI‘ðsÞ ¼ tI‘ðsÞ2 þ tI‘ðsÞ4 þ tI‘ðsÞ6 þOðp8Þ : ð26Þ

At the leading order, the non-zero contributions from the S-

and P-waves are given by:

t00ðsÞ2 ¼ 2s�M2
p

32pF2
p

; t11ðsÞ2 ¼ s� 4M2
p

96pF2
p

;

t20ðsÞ2 ¼ � s� 2M2
p

32pF2
p

:

ð27Þ

To Oðp6Þ accuracy, the imaginary parts of the pp (and pK)

scattering amplitude receives contributions only from the

S� and P� partial waves and can be written in terms of the

three functions of only one variable as:

Aðs; t; uÞ ¼Cðs; t; uÞ þ 32p

	
1

3
U0ðsÞ þ 3

2
ðs� uÞU1ðtÞ þ 3

2
U1ðuÞ

þ 1

2
U2ðtÞ þ U2ðuÞ � U2ðsÞ
� �




ð28Þ

where the first term must obey crossing symmetric and has

the form:
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Cðs; t; uÞ ¼ c1 þ sc2 þ s2c3 þ ðt � uÞ2c4

þs3c5 þ sðt � uÞ2c6:
ð29Þ

It may be borne in mind that the real parts obtain

contributions from the Oðp4Þ from higher waves as well.

The ci are the subtraction constants of UiðxÞ, which are also

termed ’unitarity corrections.’ For s�channel with isospin

I ¼ 0; 1; 2 have dispersion relation given by:

U0ðsÞ ¼ s4

p

Z 1

4M2
p

ds0
r s0ð Þt00 s0ð Þ2 t00 s0ð Þ2þ2Ret00 s0ð Þ4

� �

s04 s0 � sð Þ
ð30Þ

U1ðsÞ ¼ s3

p

Z 1

4M2
p

ds0
r s0ð Þt11 s0ð Þ2 t11 s0ð Þ2þ2Ret11 s0ð Þ4

� �

s03 s0 � 4M2
p

� �
s0 � sð Þ

;

ð31Þ

U2ðsÞ ¼ s4

p

Z 1

4M2
p

ds0
r s0ð Þt20 s0ð Þ2 t20 s0ð Þ2þ2Ret20 s0ð Þ4

� �

s04 s0 � sð Þ ;

ð32Þ

more details about various quantities appearing in this

equation can be found in ref. [56].

The case when there is no three-channel crossing sym-

metry, and with unequal mass scattering is also accessible

using a combination of fixed-t and hyperbolic dispersion

relations, which were known in the literature after being

suitably modified to account for chiral counting, in order to

saturate the dispersion relations using the imaginary parts

of the relevant S- and P-waves.

In the case of pK scattering, the structure was analyzed

by Ananthanarayan and Büttiker [55] and by Büttiker,

Descotes-Genon and Moussallam [61]. The pK scattering

amplitude to one-loop can be decomposed into partial

waves. Once one isospin channel amplitude is known,

others or a combination of them can be obtained using the

crossing symmetry relations. Like pp scattering, these

amplitudes can also be written in terms of functions of one

variable as:

Tþðs; t; uÞ ¼ Zþ
t ðtÞ þ Zþ

0 ðsÞ þ Zþ
0 ðuÞ þ ðt � sþ D2

u
ÞZþ

1 ðuÞ

þ ðt � uþ D2

s
ÞZþ

1 ðsÞ

ð33Þ

T�ðs; t; uÞ ¼ Z�
t ðtÞ þ Z�

0 ðsÞ � Z�
0 ðuÞ þ ðt � sþ D2

u
ÞZ�

1 ðuÞ

� ðt � uþ D2

s
ÞZ�

1 ðsÞ :

ð34Þ

The imaginary parts of the Z’s can be written in terms of

the lowest partial waves as:

ImZ�
0 ðsÞ ¼ 16pImf�0 ðsÞ ; ð35Þ

ImZ�
1 ðsÞ ¼

12p
q2
s

Imf�1 ðsÞ ; ð36Þ

ImZþ
t ðsÞ ¼

16p
ffiffiffi
3

p Imf It¼1
0 ðtÞ ; ð37Þ

ImZ�
t ðsÞ ¼ 6

ffiffiffi
2

p
pIm

f It¼1
0 ðtÞ
ptqt

: ð38Þ

The details of various quantities appearing in these equa-

tions can be found in ref [55].

There are processes where it is necessary to account also

for 3-particle rescattering, which is considerably more

complicated. This is, for instance, the case for decays

where phase space is limited. The best-known example is

the decay of g ! 3p with significant data available for the

cases of exclusively neutral, as well as neutral, and charged

pions, in terms of the Dalitz plot as well as in terms of

rates. This rate is sensitive to the u� d mass difference

and, therefore of special importance in the determination of

the quark mass ratio (Q) [62]. The original work of Khuri-

Treiman [63] is based on the dispersive approach to study

the final state interactions in K ! 3p, and a set of integral

equations are obtained and later to g ! 3p by Kambor,

Wisendanger and Wyler [64] and Leutwyler and Aniso-

wich [65]. The presence of final state interactions between

the pion generates the branch cut in the amplitudes that

starts from 4m2
p in s�, t�, and u� channels. As the cen-

trifugal barrier suppresses the higher partial waves, the

amplitude has a resemblance with the 2 body scattering

where higher waves also start contributing from Oðp8Þ.
The important difference between the two is that the three-

body scattering also involves angular averages, which are

difficult to perform. This difficulty has recently been

overcome by an efficient method provided by Gasser and

Rusetsky [66].

The scattering amplitude for g ! 3p can be decom-

posed into the contributions from isospin channel I ¼
0; 1; 2 represented by M0, M1, M2, which are the functions

of one variables in Mandelstam variables. Following the

detailed analysis of refs. [65, 67–69], the discontinuity in

the amplitude has the form:

discMIðsÞ ¼ hðs� 4M2
pÞ
�
MIðsÞ þ M̂IðsÞ

�
sinðdIðsÞÞe�idIðsÞ

ð39Þ

The first term in the braces receives contributions from the

interactions of the s channel, and the second term accounts

for those coming from the t and u channels. The dIðsÞ are

the phase shifts of the pp scattering from the leading partial

waves. The t and u channel contributions are given in terms

of the angular averages of the MI’s as follows:
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M̂0ðsÞ ¼
2

3
hM0i þ 2ðs� s0ÞhM1i þ

2

3
jhzM1i þ

20

9
hM2i

ð40Þ

M̂1ðsÞ ¼ j�1 3hzM0i þ
9

2
ðs� s0ÞhzM1i

	

�5hzM2i þ
3

2
jhz2M1i


 ð41Þ

M̂2ðsÞ ¼ hM0i �
3

2
ðs� s0ÞhM1i �

1

2
jhzM1i þ

1

3
hM2i ;

ð42Þ

where

s0 ¼ 1

3
M2

g þM2
p ð43Þ

jðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4M2
p

s

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

g �MpÞ2 � s
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2
g þMpÞ2 � s

q

ð44Þ

hznMIiðsÞ ¼
1

2

Z 1

�1

dzznMIð
3

2
s0 �

1

2
sþ 1

2
zjðsÞÞ ð45Þ

with I ¼ 0; 1; 2 and n ¼ 0; 1; 2. For more details, we refer

to [70]

The details of the higher order corrections to Oðp6Þ for

the three body decay of the g ! 3p can be found in refs.

[71–73]. The dispersive construction of amplitude can be

found in Kampf et al. [74, 75] and small electromagnetic

corrections to this process in Ditsche, Kubis and Meißner

[[76]]. A detailed analysis using Dalitz plot and modified

non-relativistic effective field-theory in by Schneider,

Kubis and Ditsche in ref. [77]. The determination of quark

mass ratio from these decays are presented in refs.

[62, 78–80]. Cusps in K ! 3p, which are relevant for the

precise determination of the pion scattering lengths, are

studied in ref. [81, 82], in g ! 3p, effects of mixing of gg0

in the g ! 3p Leutwyler [83], dispersive analysis by

Leutwyler and Anisovich in ref. [65] and various topics

related to three-body decays and dispersion relations are

now covered in the book of Anisovich et al. [84]. For a

detailed review, we refer to refs. [40, 70].

7. Generalized renormalization group and large chiral

logarithms

In Sect. 2, we touched briefly upon infinities in the low-

energy constants (see eq. 11). Such infinities are, of

course, well-known in QED and other quantum field the-

ories. Historically such divergencies in the self-energy of

an electron from classical electrodynamics led to the birth

of quantum field theory. Schwinger, Tomanaga, Feynman,

and Dyson gave a covariant description of QED which led

to the consistent description to any order in the perturbation

theory. The infinities are removed by redefinition in the

bare parameters of the Lagrangian, a procedure termed

renormalization. At that time, it was just a mathematical

trick to tackle the divergences. The works of Stueckelberg

and Petermann [85], Gell-Mann and Low [86] showed that

this procedure automatically incorporates the running of

renormalized coupling constants (see eq. 13). The renor-

malization group equations dictate the running and mixing

of various operators with scales and have been used as a

very useful technique that allows to sum up some of the

large logarithmic corrections which are remnants of the

renormalization procedure.

Whereas the early discussion was mainly restricted to

perturbation theory and renormalizable theories, Wilson

[87–89] in the early 1970s further extended it to non-per-

turbative systems in order to understand critical phe-

nomenons and gave a deeper insight to the physics at

different scales. This has found numerous applications in

various areas of physics ranging from condensed matter,

statistical physics, and cosmology to particle physics.

These ideas were later studied in great detail using the path

integral by Polchinski [90]. There are various approach to

the renormalization group and we refer to refs. [91–98]. An

overview can be found in ref. [99].

While the concepts of renormalization are associated

with renormalizable theories, one might ask how they work

in non-renormalizable theories, such as ChPT, where the

number of parameters increases to cancel the divergences

appearing in the loop calculations. In particular, one may

ask how to order the (large) leading logarithms (LL) which

arise in the calculations.

Li and Pagels [100] in the early seventies pointed out

that a large logarithm of type m2
p logðm2

pÞ appears in one-

loop calculations involving pion loops. Weinberg calcu-

lated these logarithms in his famous paper on phe-

nomenological Lagrangians [2] using current algebra and

the renormalization group for pion scattering. Later work

of Gasser and Leutwyler [10] where systematic one-loop

extension of ChPT was performed and significant � 25%

contribution at 1 GeV from such terms were obtained,

especially the corrections to the lowest S-wave pion scat-

tering length. The large logarithm contributions to the two-

loop can be found in [101] and have the following form:
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a0
0 ¼ 7m2

p

32F2
p

1 � 9

2

m2
p

16p2F2
p

logðm2
p=l

2Þ þ 857

42

m2
p

16p2F2
p

� �2

log2ðm2
p=l

2Þ
 !

:

ð46Þ

The full two-loop contributions to scattering length read

[60]:

a0
0 ¼ 0:156

zfflffl}|fflffl{tree

þ
0:039 þ 0:005

L anal:

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
1loop

þ
0:013 þ 0:003 þ 0:001

ki L anal:;

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
2loops

¼ 0:217
zfflffl}|fflffl{total

where ki are the contributions from the single as well as

double chiral logarithms, which can be evaluated using the

renormalization group [2, 101]. Bijnens, Colangelo and

Ecker [102, 103] extended the work on chiral double log-

arithms to the full meson sector. Clearly, logarithmic cor-

rections can be large in ChPT, and a tool like the

renormalization group would be useful.

Indeed, Kazakov [104] and Alvarez, Freedman, and

Mukhi [105] discussed the extension of renormalization to

arbitrary (non-renormalizable) theories in order to calculate

leading and subleading divergences. These ideas were

applied to ChPT by Buchler and Colangelo [106], which

required a new one-loop calculation at each order. The

resummation of these large logarithms to all orders is still

an open question in ChPT. However, the chiral logarithms

have been of constant interest to understand many renor-

malizable and non-renormalizable theories as a toy model.

Bissegger and Fuhrer [107] worked out a method to cal-

culate the chiral logarithms for two flavors to any desired

order in chiral limit using analyticity, crossing symmetry,

and the Roy equations. They have also given the five-loop

results for specific two-point scalar Green functions. Kivel,

Polyakov, and Vladimirov [108] provided a method where

a nonlinear recurrence relation is obtained that efficiently

calculates the leading logarithm (LL) to arbitrary loops for

any non-renormalizable theories. This work was later

extended for form factors in ref. [109] and some results for

the LLs for the massless OðN þ 1Þ=OðNÞ r-model are also

presented. This model, for N ¼ 3, is equivalent to the

chiral SUð2Þ � SUð2Þ model that describes the leading

low-energy interaction of pions in the chiral limit. Later

Koschinski, Polyakov, and Vladimirov [110] provided a

method to calculate the leading infrared logarithms to

essentially unlimited loop order using only the tree-level

results in the non-renormalizable massless effective theory

and later to sigma models on an arbitrary Riemann mani-

fold by Polyakov and Vladimirov in ref. [111]. The LLs in

the massive case for a nonlinear O(N)-sigma model are

studied by Bijnens and Carloni in ref. [112, 113] and

extended to the anomalous sector by Bijnens, Kampf and

Lanzin in ref. [114]. More recently, Ananthanarayan,

Ghosh, Vladimirov, and Wyler [115] have generalized the

massive case to arbitrary order in LL corrections for vari-

ous O(N) and SU(N) models and a Mathematica code is

provided that reproduces the existing results and calculates

higher-order results. Further development in two-dimen-

sional effective field theories can be found in ref.

[116, 117] and an extension to the baryon sector in ref.

[118].

8. Weak interactions of pseudoscalar mesons

The ChPT formalism, especially when formulated with the

external field method, is directly adaptable to weak pro-

cesses involving the pseudoscalar mesons, such as the

decays K ! pp, and others. A recent example illustrating

the persistent importance of ChPT is the rare decays

involving (hypothetical) new light particles such as axions

[119]. The systematic expansion in powers of momentum

and quark masses allows analyzing seriously many ‘small’

effects. An illustration of how the weak interactions fit into

the external field method with well-defined transformation

properties is given in Fig. 1. The large size of MW com-

pared to the QCD scale of a few GeV makes it clear that

any interaction of gluons that affect the W bosons is tiny: It

would involve the strong coupling constant at the MW scale

and further suppression factors 1=MW .

The basis for extending ChPT to the weak interactions

was laid down in ref. [121]. It gives a systematic treatment

of ChPT for weak interactions and extended the weak

interactions Lagrangian to O p4ð Þ. It is based on several

previous works; here, we mention only the pioneering

paper by Cronin [122].

Fig. 1 Illustration of the weak interaction of the pseudoscalar

mesons. The large mass of the W bosons is the reason why the

external field method is appropriate [120]
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To construct the weak chiral Lagrangian, we need the

form of the external field that represents the weak inter-

actions. The (chiral) symmetry properties of the weak

interaction follow from the fact that they arise from the

symmetric product of two left-handed charged octet

currents:

LDS¼1 ¼ gfJ2
1l; J

1l
3 gþ þ g	fJ1

2l; J
3l
1 gþ ; ð47Þ

with

J2
1l ¼ J1l þ iJ2l; J3

1l ¼ J4l þ iJ5l ð48Þ

and where the (numeral) indices refer to the position in the

33 flavor matrix and f; gþ denotes the symmetric product.

This implies that the weak interactions transform as ð8ÞL
and ð27L; Þ. We note that the CP-invariant and the CP-odd

parts can be conveniently separated in ref. [121].

Using now the expressions

Ll ¼ iUþrlU ð49Þ

for the left-handed meson currents, we can write the octet

CP invariant effective weak operator as

L
ð8Þ
WI ¼ c2hk6rlU

yrlUi ¼ c2hk6LlL
li ð50Þ

where the octet property is manifest in the matrix k6
3. At

O p2ð Þ, also a second operator can be written as:

L80

WI ¼ c5hk6 vyU þ Uyv
� �

i ð51Þ

The CP-invariant effective weak chiral Lagrangian

transforming as ð27LÞ is constructed from the octet

components of Ll:

L27
WI ¼ c3f3h Q2

3 þ Q3
2

� �
LlihQ1

1L
li þ 2hQ2

1LlihQ1
3L

li
þ2hQ1

2LlihQ3
1L

lig
ð52Þ

where the matrices Qi
j have a 1 in the position i, j and are

zero otherwise. We note that there is only one operator in

this case. An application of this CP-invariant operator to

K ! p‘‘ process at one-loop can be found in ref. [123].

As to the CP-violating Lagrangian, it is obtained from

the above by replacing k6 by k7 and appropriate changes in

the operators transforming as 27�plet

L�
WI ¼c�2 hk7LlL

li þ c�5 hk7 vyU þ Uyv
� �

i
þ c�3 f3hk7LlihQ1

1L
li þ 2i hQ2

1LlihQ1
3L

li
�

�hQ1
2LlihQ3

1L
li
�
g

ð53Þ

We note that the DS ¼ 2 operator is required for the cal-

culation of the mass difference in the K0- �K
0

mixing, which

transforms as a 27-plet, and it is obtained by setting the

tensor components to their appropriate values (see ref.

[121]).

It is well known that the second octet operator in

eqs. (51) does not contribute to physical processes. The

operator is, in fact, proportional to the variation under a

suitably chosen symmetry and thus to a divergence of a

conserved (Noether) current. Since the operator does not

carry momentum, the matrix element vanishes. In [121],

the argument is extended to the one-loop level. We note

here, however, that in processes where the scalar external

field is not just v, but variable, this statement might not

hold.

In ref. [121], a complete basis of the weak operators at

O p4ð Þ is given; subsequent analyses showed that the basis

could be further reduced (see ref. [124] and ref. [125]). The

complete O p4ð Þ Lagrangian containing 37 operators can be

found in those papers. We also note that not all of these

contribute to the decay of kaons into pions which make the

calculations simpler and the predictions better.

Much like in the strong interaction case discussed

before, the application of the O p4ð Þ Lagrangian to physical

processes is used to determine the coupling strengths of the

low-energy operators, the LECs. In ref. [125] the decay

K ! 3p is analyzed. The order O p4ð Þ gets contributions

from the operators mentioned and loop diagrams whose

vertices are those of the lowest order interactions. For an

improved treatment, see ref. [126]. Also, kaon decays are

again considered as a laboratory for rare processes and

recent progress can be found in ref. [127].

9. Selected applications of chiral perturbative theory

As already mentioned, ChPT has numerous applications in

describing low-energy processes. In some cases, the pre-

cision reached is very high and allows for testing funda-

mental physics. Here we review but a few such cases.

As mentioned before in Sect. 2, the masses of the quarks

can be determined quite precisely using the chiral for-

malism from adequate phenomenological studies, such as

of the g ! 3p decay (see Sect. 4). Input from the lattice

and QCD sum rules increases the accuracy. These studies

have confirmed that the up quark mass mu is non-zero [24].

The predominant decay of p0 into the two photons

proceeds via the chiral anomaly; the prediction for the rate

is C p0 ! ccð Þ ¼ 7:760eV, in remarkable agreement with

C p0 ! ccð Þ ¼ 7:82 � 0:14ðstat:Þ � 17ðsyst:Þ eV obtained3 Since we consider K�decays, only the transition from an s�quark

to a d�quark, that is only the Gell-Mann matrices with elements

(2, 3) contribute
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from the high precision experimental finding of PrimEx-II

[128] experiment.

Other processes such as pp and pK scattering require

detailed analysis using SU(2) and SU(3) versions of the

ChPT. The scattering amplitude of these processes, when

expanded in terms of the partial amplitudes, results in the

notion of the scattering lengths, and their experimental

inputs can be used to fix some of the low-energy constants.

An explicit expressions pp, pK, and KK scattering lengths

to O p4ð Þ can be found in ref. [24] and references therein.

Interestingly, for the pp interaction, the scattering lengths

for the I ¼ 0 isospin channel have a positive sign and are

larger than 3.5 times in magnitude compared to the I ¼ 2

isospin channel, which has a negative sign. These signs

correspond to the repulsive and attractive nature of the

interactions in these channels. Furthermore, the phase shift

analysis of the pp scattering has been found to be a very

useful ingredient in quantifying the hadronic contributions

to the anomalous magnetic moment of the muon (see

below). Readers can find further details on the form factors

in refs. [129–133] and references therein.

Of particular interest is the anomalous magnetic moment

of the muon. It is one of the testing grounds for the stan-

dard model and has been the topic of constant interest in

the particle physics community [134, 135]. The results

from the Brookhaven National Laboratory (BNL) found

tension with the predictions of the standard model a little

over 3r in ref. [136]. Further development in both the

theory and experiment side has taken place and is sum-

marized in ref. [137]. The most recent experiment in Fer-

milab aimed to study this issue with improved purity of the

beam and detector components and found agreement with

the results of BNL with a smaller central value. Their

combined results have has now established the discrepancy

at 4:2r. These results can be found in a set of publications

in refs. [138–141]. The main source of the discrepancy

comes from the hadronic vacuum polarization contribu-

tions and another somewhat less numerically important but

relatively larger uncertainty known as the hadronic light by

light scattering contributions. An excellent summary of all

these discussions was recently presented (see slides of

[142]), and for details, we refer to ref. [129, 143–145] and

references therein. Some of these hadronic light-by-light

contributions, as well as those contributions to ðg� 2Þl
involve related processes where transition form factors

play an important role. These form factors are the complex

functions obeying the unitarity and analyticity conditions,

which dictate their behavior in the complex plane. How-

ever, their values for a given kinematical region can be

fixed by the available information from the experiments or

lattice simulations. In some cases, the Watson theorem

relates the phase shift of the scattering amplitude to the

phase of the form factor. One of them that is worth men-

tioning is the transition form factor for the xp0 for which

discrepancies between experimental data and results from

dispersion theory were reported for low-energy region; see

ref. [146] and references therein for details. However, these

discrepancies can be studied in a model-independent way

using the method of unitarity bounds [147, 148] combined

with the functional analysis method [149] to find the

bounds on the xp0 form factor. These functional methods

have found numerous applications in hadron physics and

are now available in the form of a textbook in ref. [150].

Recently, some agreement between experimental data with

new analysis based on subtracted Khuri-Treiman equations

has been reported for xp transition form factor in ref.

[151].

Of course, several other examples can be studied using

chiral perturbation theory, and many of them can also be

found in the supplementary Mathematica [152] notebooks

of ref. [153] and references therein. The following publicly

available codes are recommended to study some of the

processes:

• Ampcalculator by Unterdorfer and Ecker [154].

• Phi by Orellana which calculates O p4ð Þ corrections to

one-loop and already included in FeynCalc 9.0 [155]

and later versions.

• The Mathematica-based code to study the pp scattering,

and Scalar and Pseudoscalar Form Factor and new

additions to meson-meson scattering using

Uð3Þ�ChPT can be found in the link [156].

• Mathematica notebooks with many solved examples by

Ananthanarayan, Das, and Imsong in ref. [153]

10. Other effective theories for the strong interactions

While ChPT is designed for phenomena where momentum

exchange is below 1 GeV, one must also deal with QCD at

higher energy scales. There are several effective methods

proposed and used in particle physics to account for the

strong interactions, in particular for their leading effects.

They allow for adapted calculations in processes where

strong interactions are important. With the huge harvest of

ever-improving experimental data over the last decades,

such methods are, in fact, necessary to explain and exploit

these results as fully as possible. In particular, they are used

to uncover a possible still more fundamental theory than

the standard model.

Characteristic for these situations is the presence of

(two) very different scales, m1 
 m2, that are relevant for

the processes considered. Then, typically, either an

expansion in the small quantity m1=m2 is possible, or there

B Ananthanarayan et al.



are large logarithms of the form logðm1=m2Þ originating in

loops (see eq. 13 for details).

At present, the study the weak interactions and possibly

other fundamental physics involves three important energy

scales: (1) The weak scale, MW is of the order of 100 GeV,

(2) the mass scale of the heavy quarks b and c (several

GeV), and (3) the QCD scale KQCD of about � 1=3 GeV

where the confinement effects set in.

At MW , the strong coupling constant as is about

� 0:118, and the strong interactions are perturbative

(asymptotic freedom). For the heavy quark mass scale, as is

about 0.25. This still allows for perturbative calculations,

but their precision is limited. While for the b quark mass,

this treatment seems appropriate, the scale of the charm

quark offers substantial difficulties. Even more involved is

the situation for the strange quarks; that is the physics of

kaons. We note, however, that because of the ‘Cabibbo

suppression,’ the decays of the b and s are easier to study

than those of the c quarks. For recent and updated over-

views, see refs. [157, 158] and references therein, or refs.

[159–161] for charm.

We note that the methods to be described are primarily

used to analyze and calculate the effects that the strong

interactions have on investigations of fundamental param-

eters and theories, such as the elements of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix. Of course, there are

still properties of the strong interactions themselves and it

is interesting to understand them, for instance, the spectrum

and decay width of the charm quark systems. Recent pro-

gress in this sector can be found in ref. [162, 163].

10.1. Extended effective weak theory

This methodology was put forward after the discovery of

asymptotic freedom and the realization that QCD, in fact,

allows for perturbative calculations. It is used mainly to

investigate weak interaction processes of the heavy quarks b

and c, but also the (weak) decays of the s where it was first

applied. It is an extension of the original four-Fermi theory and

allows to include loops of the electroweak and strong inter-

actions in a systematic way. In particular, the strong interac-

tion effects can be calculated reliably in the interval between

the weak scale MW and the mass of the heavy quarks, thereby

taking into account the large logarithms. Work on this began

in the mid-seventies. Shifman, Altarelli, Cabibbo, Maiani,

Petronzio, Ellis, Gaillard, Lee, Gilman, Wise, and Buras are

but a few that have made important contributions and per-

fected the theory. For some of the original literature, see refs.

[164–166]. We will give only a rudimentary introduction for

many details of this advanced, by now standard subject; see

the book by Buras [167], which offers an in-depth and updated

treatment; and for an even more recent update, we refer to ref.

[157, 168]. The basic idea is that at energies below MW , the

dynamical fields are the quarks (except the top quark), gluons,

and photons (or other light, undiscovered particles). Thus the

weak Hamiltonian operator Ô can be written as a series of

operators consisting of the quark fields of interest, gluons, and

photons with increasing powers of 1=MW ; in reality, the

important power is 1=M2
W . These operators must satisfy the

symmetries required for the process at hand and are usually

ordered according to increasing orders of 1=M2
W

4. For con-

sistency, all operators that can contribute to the process at the

desired order in the strong and electromagnetic coupling

constant must be considered. This implies that not only the

original left-left four-Fermi operator (W-exchange) is present,

but several others are generated through loop corrections. A

famous example is the so-called penguin operator (see Fig. 2).

For instance, the operator for the decay B ! Xsc (Xs

denotes an inclusive hadronic state with the total strange-

ness of one) takes the form:

Heffðb ! scÞ ¼ � 4GFffiffiffi
2

p V	
tsVtb

X6

i¼1

Ci lbð ÞQi þ C7c lbð ÞQ7c þ C8G lbð ÞQ8G

" #

;

ð54Þ

where the ‘magnetic’ penguin operators in the above are

given by:

Q7c ¼
e

16p2
mb�sar

lvPRbaFlm;

Q8G ¼ gs
16p2

mb�sar
lvPRt

a
abbbG

a
lv :

ð55Þ

4 In cases where the top quark is important, there are also inverse

powers of top quark mass
5 this is indeed the crucial point of using an effective theory in that

all operators consistent with the symmetries must be included.

Fig. 2 Penguin diagram contributing to B ! Xsc
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More details about these equations can be found in the

book of Buras [167]. Here, the operators Q1:::Q6 are four-

Fermi operators. There are six instead of only one because

gluon exchanges rearrange the color order5. The coupling

constants (as well as the quark field operators) depend on

the scale l (see eq. 13). The relevant scale for the decay at

hand is of the order of mb. On the other hand, the constants

of the effective Hamiltonian can be perturbatively calcu-

lated at the high scale, MW . Because of (weak and elec-

tromagnetic) loops, there can be more contributing

operators beyond the simple 4�Fermi interaction at the

scale mb. To connect the two scales, the renormalization

group is employed. This leads to a systematic expansion in

the strong and electromagnetic coupling constants and the

summing up of the large logarithms logðmb=mWÞ. This

procedure has led to a (almost) complete understanding of

the weak parameters (such as the parameters of the

Cabibbo-Kobayashi-Maskawa matrix) and, in particular, an

understanding of CP violation. The status of deviations

from the standard model in the heavy flavor sector can be

found in ref. [168]. For a detailed description of the method

and the results obtained, see ref. [167]. Note that this

method best applies to inclusive hadronic decay products

(that is why in the above case, the final state is Xs, rather

than an exclusive state, such as Kp).

10.2. Heavy quark effective theory

While the effective weak theory described above pertains

to the energy interval mb �MW , the heavy quark effective

theory, HQET, deals with scales below mb in processes

involving b quarks, such as the B-meson. Since the typical

momenta inside a QCD bound state are of the order of the

strong scale KQCD, which is much smaller than mb, the b

quark is only lightly ‘shaken’ and can therefore be con-

sidered at rest in a first approximation. Therefore, for an

arbitrary heavy quark Q, we write the momentum of the

quark as:

pl ¼ mQv
l þ kl ð56Þ

where v is the four-velocity of the hadron containing the

heavy quark, and k is of the order of KQCD, and thus much

smaller than mQ. This decomposition allows, similar to the

well-known treatment in atomic physics, to divide the

spinor into a dominant ‘upper’ component and a ‘lower’

one which is suppressed by 1=mQ. Thus, the idea is to

construct an effective theory in which the upper

component(hvðxÞ) is dynamical, and the lower one(HvðxÞ)
is integrated out. This can be achieved by

suitable projections of the Q quark spinor [169]:

WðxÞ ¼ e�imQv�x hvðxÞ þ HvðxÞ½ � : ð57Þ

The upper and lower component is obtained by the relation:

hvðxÞ ¼ eimQv�x 1 þ v=

2
WðxÞ ; ð58Þ

HvðxÞ ¼ eimQv�x 1 � v=

2
WðxÞ ; ð59Þ

and in the case of heavy antiquark, the substitution of v !
�v is made. Indeed, for 1=mQ ! 0, the small the

component can be integrated out [170–172] and the

theory has an extra spin-symmetry. The leading order (in

1=mQ) Lagrangian has the form:

Leff ¼ �hviv � Dhv þ Llight ð60Þ

and other terms involving the heavy quark field are

rearranged as an expansion in 1=MQ, and the Lagrangian

for light degrees of freedom (quarks and gluons) is given

by:

Llight ¼ � 1

4
Tr GlmG

lm
� �

þ
X

q

Wq iD=� mq

� �
Wq : ð61Þ

This formalism has been extensively used in the literature

to extract the CKM elements (jVcbj, jVubj, heavy flavor sum

rules, and the description of heavy hadron decays. More

details can be found in refs. [173–178].

10.3. NRQCD and pNRQCD

The heavy quark expansion used above is not suitable to

describe a meson with two heavy quarks (like charmonium

or the � ). In HQET, the kinetic energy is a 1=mQ effect and

is taken as a perturbation. But for a bound state, it plays an

important role in balancing the potential energy and,

therefore, should be present at leading order. The necessary

formalism was provided by Bodwin, Braaten and Lepage in

[179] and is known as NRQCD. Such systems also have

additional scales, such as relative momenta p ’ mv(soft)

and a kinetic energy, Ek ’ mv2(ultrasoft scale), constructed

out of the mass of heavy quark (M) and its velocity

(v� as\\1). For the bottomonium system, v2 � 0:1 and

for charmonium systems, v2 � 0:3. The hierarchy scales in

the system are as follows:

mqðhardÞ � mQv � mQv
2 : ð62Þ

The Lagrangian is expressed as an expansion in mQv=mQ

and (mQv
2=mQ), and at leading order in 1=mQ, it has the

following form:

LNRQCD ¼ wy iD0 þ D2

2M

� �
wþ vy iD0 � D2

2M

� �
vþ Llight

ð63Þ
5 this is indeed the crucial point of using an effective theory in that

all operators consistent with the symmetries must be included.
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where iD0 ¼ io0 � gA0 and wðvÞ is the Pauli spinor field of

fermion (antifermion). It should be noted that the presence

of the two dynamical soft and ultrasoft scales can com-

plicate the calculations and interfere with the power-

counting and the non-perturbative effects. The NRQCD is

numerous applications in the threshold production of top-

quark pairs in electron-positron annihilation, spectroscopy

of heavy charmonium and bottomonium bound states

[180], determination of heavy quark masses, strong cou-

pling constant, and in the understanding of the vacuum

structure etc. A modified version of the NRQCD has been

recently proposed in ref. [181, 182] for the production of

the J=W, W0, and vc. For more details, we refer to

[183, 184].

Another interesting system that can be constructed out

of NRQCD is the potential NRQCD (pNRQCD)

[185–187]. It is obtained by integrating out the soft degrees

of freedom. The leading order in 1=mQ and multipole

expansion in r, the Lagrangian has the following form:

L0
pNRQCD ¼ Tr Sy io0 � Vð0Þ

s ðrÞ
� �

S þ Oy iD0 � VoðrÞð ÞO
n o

� 1

4
Fa
lmF

lma

where S and O are the singlet and octet fields. The resulting

EFT has a resemblance to the Schödinger equation as the

matching coefficients ViðrÞ play the role of the potential

between the heavy quark. The equation of motion for the

singlet case is :

io0S ¼ p2

m
� V ð0Þ

s ðrÞ
� �

S ð64Þ

and depending on which scale is closer to KQCD, different

versions of pNRQCD (strongly or weakly coupled) are

used for quarkonium. When there is no other scale between

the soft and ultrasoft scales known as weakly coupled

pNRQCD, the leading order static potentials have the form:

V 0ð Þ
s ¼ �CF

aVs
ðrÞ
r

; V 0ð Þ
o ¼ CA

2
� CF

� �
aVo

ðrÞ
r

ð65Þ

and Vs=oðrÞ has a perturbative expansion in the strong

coupling constant. These potentials have now been com-

puted numerically to there-loop in refs. [188, 189] and

analytically in ref. [190]. Some ultrasoft contributions to

static energy in the weak coupling limit are already known

to Oða4
s Þ [191] and two of us have given Padé prediction

for O a4
s

� �
term to VsðrÞ in ref. [192]. The QCD static

potential has been a very useful quantity in the determi-

nation of the strong coupling constant as as it can be cal-

culated to very good precision on the lattice [93]]. Recent

updates of as from static energy can be found in ref.

[194–196] and references therein. There are several

packages available in the literature that can be used to

study non-relativistic systems. Recently, Brambilla et al.

[197] have published the publicly available Mathematica-

based package FeynOnium that can be used to study the

NREFTs to one-loop. Another useful package relevant to

studying the threshold quarkonium system is

QQbar_threshold by Beneke et al. [198]. A detailed

review on NRQCD, pNRQCD, and a description of

quarkonia from these EFTs can be found in refs.

[183, 199].

10.4. Heavy-light mesons

There exist some mesonic states with heavy and light

quarks, and one may ask how to combine HQET and ChPT

to study their production and decay. This issue has indeed

been taken up by Burdmann and Donoghue [200], Wise

[201] and Yan et al. [202], and is now known as heavy

meson ChPT(HMChPT). It is formulated on the fact that

the mass difference between the heavy meson and its

excited state scales as � 1=MQ, which can be of the order

of a few MeVs for heavy mesons such as B meson. Heavy

quark symmetry relates to the couplings of the B and B	,
and it also relates to other mesons such as D as long as the

charm quark can be treated as heavy. A meson with one

heavy quark can be labeled by the light quark spin jl and

states with spin jl � 1
2

are degenerate due to heavy quark

spin symmetry. Due to this fact, a consistent description of

a heavy light system requires an excited state such as B	 for

B systems, as their production will require much less

energy than the pion mass. Since the energy involved is

less than the pion mass, an extension to the chiral frame-

work can be merged with the HQET.

Degenerate triplets of spin-zero mesons Pa (a ¼ u; d; s)

and spin-one meson P	
a triplets are obtained by combining

the spins of heavy and light quark spins using the heavy

quark spin symmetry. These fields can be used to define the

4 � 4 matrix Ha, given by:

Ha ¼
1 þ v=ð Þ

2
P	
alc

l � Pac5

h i
ð66Þ

where P	
al is an operator that destroys a P	a meson with

velocity v and satisfies:

vlP	
al ¼ 0 : ð67Þ

Defining Ha as:

Ha � c0Hy
ac

0 ¼ P	y
alc

l þ Py
ac5

h i 1 þ v=ð Þ
2

; ð68Þ

then most general leading order Lagrangian to describe the

strong interaction between pseudo-Goldstone boson with

heavy meson is given by:
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L ¼� iTr Hv � oH
� �

þ F2
p

8
Tr olUolU

y� �

þ i

2
Tr Hvl Uyol þ UolU

y� �
H

� �

þ ig

2
Tr Hcmc5 Uyom � UomUy� �

H
� �

� D
8

Tr HrlmHrlm
� �

þ . . . ;

ð69Þ

where D ¼ mP	 � mP, g is the axial coupling constant and

field U is defined in eq. 3 and ellipses denote the higher

order terms, and complete Lagrangian to one-loop can be

found in ref. [203]. The Lagrangian in eq. 69 is consistent

with the SUð3ÞL � SUð3ÞR, Lorentz transformations, and

the heavy quark symmetry SUð2Þv.
The leading order Lagrangian in eq. 69 can be used to

predict the P	 ! Pp transitions. Such transitions for B

meson are kinematically forbidden; however, for the D

system, it has the form:

C D	þ ! D0pþ
� �

¼ g2

6pF2
p
j p!pj3 ; ð70Þ

C D	þ ! Dþp�ð Þ ¼ C D	0 ! D0p0
� �

¼ g2

12pF2
p
j p!pj3 :

ð71Þ

Using experimental input for these decays, the axial cou-

pling g can be fixed. There are many charmed states which

have gained attention over the years as they can not be

described by the traditional methods, which require their

own review. For a details on the applications and status of

heavy light systems, we refer to refs. [46, 163, 203–206]

and references therein.

10.5. Soft collinear effective theory, SCET

The (light) decay products of heavy (B) mesons typically

have a large momentum of order mb, in comparison to

KQCD, for instance, in the decay B ! Kp. The quarks in

those fast-moving light mesons are typically on the light

cone, collinear with the meson that contains them. Devia-

tions from collinearity are caused by QCD interactions and

small, of the order KQCD=mb in case of the decay of a B

meson. In this situation, the effective theory is constructed

‘around’ those collinear quarks. In an early attempt, Dugan

and Grinstein [207] constructed a ‘large energy effective

theory (LEET),’ to describe the interaction of the high-

energy quarks (E around mb) with the soft gluons (energy

about KQCD in an expansion in q/E. Since the hadrons also

contain collinear gluons, a complete theory must include

them too. In refs. [208, 209], Bauer, Fleming, Luke, Pirjol,

and Stewart presented a soft collinear effective theory

(SCET). A comprehensive description of SCET is found in

the book [210]; for more recent results and developments,

see, for instance, refs. [211, 212]. We note that SCET,

while originally applied to heavy meson decays, perfectly

fits the needs of high-energy (jet) physics that is a main part

of LHC physics (see, for instance, in ref. [213]).

To account for the dominance of the collinear particles,

light cone coordinates p ¼ ðpþ; p?; p�Þ are used. The

coordinate basis for motion in the z direction is chosen to

be nl ¼ ð1; 0; 0; 1Þ, nl ¼ ð1; 0; 0; 1Þ, with n � n ¼ 2 (the

coordinates are (t,x,y,z)). The small parameter which

characterizes the perpendicular components is

k ¼ p?=n � p. The momenta are decomposed according to

pl ¼ n � p n
l

2
þ p?ð Þl

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
~p

þn � p n
l

2
¼ Oðk0Þ þOðk1Þ þOðk2Þ :

ð72Þ

This decomposition into large and small components to

construct an effective field the theory looks similar to the

method of regions, where the different momentum regions

are first separated and then treated differently. However,

the effective field theory approach allows for

systematically including the running of operators or

power corrections. The construction of the effective

theory then is similar to the theories discussed. SCET

also involves three scales like NRQCD. The quantity ~p now

acts as the label to the fields, and the large momenta ~p are

removed by defining:

wðxÞ ¼
X

~p

wn; ~p ð73Þ

and the derivative ol on fields wn;p gives dynamical

contributions of Oðk2Þ like in NRQCD. Particle moving

along nl has two large components and small components

denoted by nn;p and nn;p respectively. These are related to

wn;p by the following relations:

nn;p ¼
n=n=

4
wn;p; nn;p ¼

n=n=

4
wn;p

ð74Þ

satisfying the relations:

n=n=

4
nn;p ¼ nn;p; n=nn;p ¼ 0 ; ð75Þ

n=n=

4
nn;p ¼ nn;p; n=nn;p ¼ 0 : ð76Þ

The Lagrangian constructed with the above discussion has

the form:
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LSCET ¼
X

p;p0

	
nn;p0

n=

2
in � Dð Þnn;p

þ nn;p0
n=

2
n � pþ in � Dð Þnn;p

þ nn;p0 p=? þ iD=?ð Þnn;p

þ nn;p0 p=? þ iD=?ð Þnn;p


;

ð77Þ

where Dl ¼ ol � igTaAa
l is covariant derivative. More

details can be found in refs. [209, 210]. SCET is applied to

a large variety of processes with collinear high-energy

particles, not only in decays of heavy mesons but

increasingly in very high-energy processes such as at the

LHC. For the newest developments, see the latest SCET

conference [214].

11. Effective theories beyond the standard model

11.1. The standard model effective theory

So far, the standard model has proven to be essentially

faultless; apart from a few cosmological phenomena (dark

matter, matter-antimatter ratio, etc.) and alleged anomalies

in B meson decay [215], it reproduces all experimental

results very precisely. However, it is widely believed that

there are more fundamental interactions with a typical

energy scale K which seems considerably higher than MW ,

as indicated by the absence of discoveries of very heavy

particles beyond the top quark, the W and the Z bosons and

the Higgs particle at LHC. This is reminiscent of the early

days of the weak interactions when the four-Fermi theory

HW �GFðqLclqLÞðqLclqL) was put forward and the W-

boson entered indirectly only through the Fermi constant

GF � 1=M2
W and its symmetry properties.

Similarly, in order to parameterize physics beyond the

standard model, originating from physics at a scale K, one

considers effective operators made up of the standard

model particles (including the Higgs boson and the W, Z

bosons with a coupling proportional to powers of 1=K,

L¼
X

n

1

Kn O
n ð78Þ

where the operators On have dimension 4 þ n (each On

consists of many distinct operators, each with an unknown

coupling) and are composed out of standard model fields

such that the total operator is invariant under

SUð3Þ � SUð2Þ � Uð1Þ. At the lowest order, ð1=KÞ0
, we

have just the standard model. At next order,ð1=KÞ1
there is

one operator [216, 217] which violates lepton number. At

the next order, ð1=KÞ2
, there are nearly 100 operators, see

[218, 219]. In principle, the task is to determine the

unknown couplings by comparing them to suitable experi-

mental results. Given a large number of such couplings,

this is a difficult task. This is a very active field, with

several strategies to overcome the difficulties. See ref.

[220] for a comprehensive overview. For the newest

developments, see the proceedings of the 2019 conference

on SMEFT-tools [221]. This conference will again be held

in 2022 [222].

11.2. Quantum gravity

One of the biggest-if not the biggest-unsolved problems in

theoretical physics is how to quantize gravity. A modest

but important step can be achieved if general relativity is

viewed as a field theory. The metric glm is promoted as the

field, and the effective field theory has the general coor-

dinate invariance of general relativity(GR). Using the fact

that the connection, defined as:

Cab
k ¼ gkr

2

�
oagbr þ obgar � orgab

�
; ð79Þ

has one derivative, and the curvature, defined in terms of

the Riemann tensor (Rlmab), given by:

Rlma
b ¼ olCma

b � omCla
b � Clk

bCma
k � Cmk

bCla
k ; ð80Þ

has two derivatives. The two derivatives present in the

Riemann tensor correspond to the powers of energy when

evaluated in terms of the matrix elements. It is important to

note that the various contractions of the Riemann tensor are

coordinate invariant, which is also the symmetry of the

low-energy theory. Hence, the Lagrangian can be

constructed out of various possible contractions of the

Riemann tensor, and energy expansion can be naturally

constructed including more and more contractions of the

Riemann tensor. In particular, Donoghue [223–225] has

shown how a possible extension of general relativity to a

theory with quantum degrees of freedom results naturally

in an expansion in the theory of gravity, which includes as

the

S ¼
Z

d4x
ffiffiffi
g

p
	
Kþ 2

j2
Rþ c1R

2 þ c2RlmR
lm þ � � � þ Lmatter



;

ð81Þ

where K is cosmological constant, R ¼ glmRlm and Rlm ¼
Rlma

a are known as the Ricci scalar and the Ricci tensor,

respectively. So far, this theory has found only limited

applications, but it may be a guide to correct quantum

gravity. A SCET inspired treatment of quantum gravity can

be found in refs. [226–228]. For more details, we refer to

refs. [223–225, 229].
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12. Miscellaneous items

In this section, we cover a range of mostly technical topics

which both feed into effective theories and in whose

developments effective theories have played a role.

12.1. Feynman integral methods for effective field

theories

When calculating Feynman diagrams, one integrates

overall kinematically allowed values of the internal

momenta of quarks and gluons. There has been consider-

able effort in evaluating them to very high orders for pre-

cision physics. Many computational as well as theoretical

tools, have been developed over the years. Many of these

developments can be found in the recent book of Weinzierl

[230]. In a theory like QCD where the interaction of a

gluon with quarks or gluon at 1 GeV is very different for an

energy scale of several GeVs. The diagrammatic evalua-

tion of any process gets more complicated in these multi-

ple-parameter theories when one goes to higher orders due

to the presence of the various scales(masses and momenta)

in the loops. It is, therefore, reasonable to divide the inte-

grand into regions and use different rules for the various

region. The method of regions [231] is one of the very

useful strategies for evaluating Feynman integrals in

specific kinematic limits of the mass and momenta. In this

technique, the integrand of Feynman diagrams is expanded

by identifying the scaling behavior of the ratios of masses

and momenta. Although it is not rigorously proven to be

correct, it appears to work in all known instances [232].

Interestingly, the expansion of Feynman diagrams in var-

ious regions corresponds to an EFT in the asymptotic limits

of the parameters. In some cases, these regions may

overlap and need to be systematically subtracted (zero-bin

subtraction) following the procedure of Jantzen [233].

Application of this method in the ChPT was first made by

Kaiser and Kaiser and Schweizer [234]. Now, there exist

well-dedicated codes asy.m [235], asy2.m [236] and

ASPIRE algorithm [237] that can be used to study multi-

scale Feynman integrals. For more details, we refer to

[232, 233] and references therein.

The Mellin-Barnes (MB) technique is also one of the

most commonly used techniques in the literature for the

analytic evaluation of the Feynman integrals and has been

recently used in the context of ChPT in refs. [238–240].

The two-loop sunset diagrams play a key role in the ana-

lytic representation of the masses and decay constants of

the pion, kaon, and g-mesons. These diagrams are calcu-

lated using the MB technique in ref. [241–245] and further

used in evaluating some three-loop Feynman diagrams

relevant for the QED corrections to g� 2 of charged lep-

tons in ref. [246]. The MB technique yields the final

expression in terms of generalized hypergeometric func-

tions (pFq) and Kampé de Fériet (KdF) series. Recently, a

geometric method using conic hulls is developed in ref.

[239] and implemented in the Mathematica package

MBConicHulls.wl which allows systematic computa-

tion of certain N-fold MB integral, and in the case of

convergent series case, one can also find the master series

which is useful for numerical studies. This technique is

used to solve certain non-trivial conformal Feynman inte-

grals in refs. [238, 240].

These ChPT-inspired studies have immensely con-

tributed to finding the new analytic continuations of the

Appell function F4 in terms of the 2F1 in ref. [247]. These

multivariate hypergeometric functions and their properties,

domain of convergences, and linear transformations are

studied in mathematics literature [248–251]. One of the

strategies to find the analytic continuation of a multivariate

hypergeometric function is to use the known analytic

continuations of hypergeometric functions with a lower

number of variables. The linear transformation formulae of

the one variable Gauss 2F1 function are used to find the

analytic continuations of the double variable Appell F1 in

[252]. This process of finding analytic continuations of

hypergeometric series of more than one variable is auto-

mated in the Mathematica package Olsson.wl [253].

The package can also find the domain of convergence of

only the double-variable hypergeometric functions. The

analytic continuations of the Appell F2 functions are found

using the same technique and are used to construct the

numerical package AppellF2.wl [254]. It can find the

numerical value of the Appell F2 function for real values of

its arguments (i.e. x, y) and general complex values of the

Pochhammer parameters. Some new analytic continuations

of Appell F4 are obtained using the known quadratic

transformation of the Gauss 2F1 function [247]. The linear

transformations of the three variable Srivastava HC func-

tion are also found [255].

12.2. Chiral lagrangians and ricci flows

Right from the early days, the nonlinear sigma model

provided the fundamental building block for the realization

of chiral symmetry. Whereas for the simplest purposes,

these were based on SUð2Þ � SUð2Þ or alternatively on

SO(4) general theorems for the realization of these sym-

metries and the Goldstone phenomenon were established

for a general group G breaking down to H by Coleman,

Wess and Zumino [16], and Coleman, Callan, Wess, and

Zumino [17]. Friedan [256, 257] studied the nonlinear

sigma model in 2 þ � dimension where fields u are defined

on a manifold M and the coupling are is determined by a

Riemannian metric on M. The action has the form:
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SðuÞ ¼ K�

Z
dx

1

2
T�1gijðuðxÞÞoluiðxÞolu jðxÞ ð82Þ

where k is short distance cutoff and T�1gijðuðxÞÞ is

dimensionless coupling is Riemannian metric on M. The

renormalization group running of this metric at two-loop

was found to be:

K�1 o

oK�1
gij ¼ bij T

�1g
� �

¼ ��T�1gij þ Rij

þ 1

2
T RiklnRjkln

� �
þ O T2

� �
:

ð83Þ

and the one-loop b-function was already calculated by

Ecker and Honerkamp [258]. The running of coupling in

eq. 83 is known as Ricci flow introduced by Hamilton

[259]. The ideas developed by Hamilton were an attempt to

solve the long-standing problem of Poincaré conjecture.

Perelman published the proof of this conjecture in the three

articles [260–262] in 2002-3 where Ricci flow played a key

role. A detailed explanation of Perelman’s proof was

published by Morgan and Tian [263] and Huai-Dong Cao,

Xi-Ping Zhu [264].

13. Lattice

The non-renormalizable nature of the ChPT results in the

increasing numbers of LECs as one goes to higher orders

and has to be fixed by inputs from other sources. Most of

the LECs can be determined from the experiments or

estimated using a large Nc limit of QCD or low-energy

description of strong interactions. Lattice QCD is one of

the candidates at very low energy and has provided

numerous inputs and cross-checks over the years. Lattice

calculations are performed on finite lattice spacing, finite

volume, and unphysical quark masses, and ChPT provides

a way to crosscheck, analyze and quantify these effects in

the continuum limit. For the brief introduction of the

interplay of lattice QCD and the ChPT, we refer to

Shanahan [265] and references therein.

Among these topics, proton charge radius and the muon

g� 2 anomaly has been of constant interest over the year

for their potential to provide hints to new physics beyond

the standard model at low energies. Issue of the small

charge radius of proton came into the picture in 2010 when

the existing value of charge radius rp ¼ 0:8775ð51Þ fm

from CODATA [266] world average using the spectro-

scopic method and electron-proton scattering was found to

be larger than the one obtained from muonic hydrogen

rp ¼ 0:84184ð67Þ fm by Pohl et.al. [267]. Pohl’s result

later confirmed by CREMA collaboration [268] with

rp ¼ 0:84087ð39Þfm. There are various theoretical models

for new physics were also studied, and some future

experiments are also proposed to get more precise results,

but the issue is now believed to be settled and we refer to a

very recent review by Gao and Vanderhaeghen [269] and

Hammer, Meißner [270], Bernauer [271], Peset et. al. [272]

and references therein for further details. Lattice determi-

nations of form factors are also extensively performed and

the results are compatible with existing literature. For

details of lattice determination of proton charge radius, we

refer to Ishikawa et.al. [273] and references therein for

details. Lattice methods themselves require their own

review to explain various methods developed over the

years to extract the parameters of strong interaction. For

details, we refer to Golterman [274], FLAG reviews

[24, 275, 276].

14. Outlook

Chiral perturbation theory, ChPT, has proven very fruitful

over the last 50 years. It has provided ample predictions for

understanding a great number of experimental results

involving the pseudoscalar mesons. It is still being refined

to adapt to new theoretical and experimental results, and

there are still many results waiting to be improved. ChPT

has helped to understand field theory more generally; in

particular, it has shed some light on the limited role of

renormalizable theories. This direction of research is far

from being at its end, and for instance, work devoted to

non-renormalizable theories will very likely yield many

interesting results [115] Thirdly ChPT has also become a

valuable tool to be used in circumstances not thought to be

in its realm. For instance, the calculation of the anomalous

magnetic moment of the muon—one of the crucial calcu-

lations in particle physics—has benefited from results

obtained by ChPT. We, therefore, believe that chiral per-

turbation theory, albeit an established and mature tech-

nology, has considerable potential to be improved and

gateway to many other developments in particle physics.
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